WorldWideScience

Sample records for plasmon polariton spp

  1. Numerical modelling of surface plasmonic polaritons

    Science.gov (United States)

    Mansoor, Riyadh; AL-Khursan, Amin Habbeb

    2018-06-01

    Extending optoelectronics into the nano-regime seems problematic due to the relatively long wavelengths of light. The conversion of light into plasmons is a possible way to overcome this problem. Plasmon's wavelengths are much shorter than that of light which enables the propagation of signals in small size components. In this paper, a 3D simulation of surface plasmon polariton (SPP) excitation is performed. The Finite integration technique was used to solve Maxwell's equations in the dielectric-metal interface. The results show how the surface plasmon polariton was generated at the grating assisted dielectric-metal interface. SPP is a good candidate for signal confinement in small size optoelectronics which allow high density optical integrated circuits in all optical networks.

  2. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  3. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  4. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  5. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernández-Dominguez, A.I.; Feist, J.; Rodriguez, S.R.K.; Gómez-Rivas, J.; Garcia-Vidal, F.J.

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton

  6. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  7. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  8. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  9. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of...

  10. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...

  11. New surface plasmon polariton waveguide based on GaN nanowires

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Lasers are nowadays widely used in industry, in hospitals and in many devices that we have at home. Random laser development is challenging given its high threshold and low integration. Surface plasmon polariton (SPP can improve random laser characteristics because of its ability to control diffraction. In this study, we establish a random laser structural model with silicon-based parcel GaN nanowires. The GaN nanowire gain and enhanced surface plasmon increase population inversion level. Our laser model is based on random particle scattering feedback mechanism, nanowire use, and surface plasmon enhancement effect, which causes stochastic laser emergence. Analysis shows that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. We also investigate emergent laser performance for a more limited light field capacity and lower threshold. Keywords: Random laser, Surface plasmon polariton, Feedback mechanism, Low threshold, Subwavelength constraints

  12. Interference of Multiple Surface Plasmon Polaritons

    International Nuclear Information System (INIS)

    Wang, Dapeng; Yuan, Xiaocong; Lin, Jiao

    2017-01-01

    Benefiting from strongly electromagnetic confinement and enhancement effects, surface plasmon polaritons (SPPs) hold great promises for tailoring light on micro and nanoscale. By contrast with previous efforts which massively concentrate on localized SPP mode, we investigated the propagating SPPs in this paper. A number of symmetrical gratings on metal surface are employed to excite multiple SPPs. Interestingly, the exotic interfering phenomena have been observed. They show good agreement with free-space interferences and take advantage of precise controllability. These findings will be promising in the applications of optical tweezers and SPP lithography. (paper)

  13. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  14. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  15. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio betw...

  16. Pass-band reconfigurable spoof surface plasmon polaritons

    Science.gov (United States)

    Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun

    2018-04-01

    In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

  17. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  18. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  19. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.

    Science.gov (United States)

    Mehfuz, R; Chowdhury, F A; Chau, K J

    2012-05-07

    We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

  20. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  1. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    Science.gov (United States)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  2. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  3. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad; Alsunaidi, Mohammad A.

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi

  4. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  5. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  6. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...

  7. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  8. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  9. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  10. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  11. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded......), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-mm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0...

  12. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  13. Near-field investigation of surface plasmon polaritons

    NARCIS (Netherlands)

    Jose, J.

    2010-01-01

    The interaction of light with metals contains a resonant phenomenon called the Surface Plasmon Resonance (SPR), at which the free electrons in the metal collectively oscillate. This collective oscillation of the free electrons, called Surface Plasmon Polaritons (SPPs), is highly sensitive to the

  14. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  15. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  16. Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2004-01-01

    This thesis describes a new class of components for integrated optics, based on the propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in a dielectric. These novel components can provide guiding of light as well as coupling and splitting from/into a number...... with experimental results is obtained. The interaction of LR-SPPs with photonic crystals (PCs) is also studied. The PC structures are formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film. The LR-SPP transmission through...... of channels with good performance. Guiding of LR-SPPs along nm-thin and µm-wide gold stripes embedded in polymer is investigated in the wavelength range of 1250 – 1650 nm. LR-SPP guiding properties, such as the propagation loss and mode field diameter, are studied for different stripe widths and thicknesses...

  17. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect......We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic...

  18. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  19. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying; Li, Shaoxian; Xu, Quan; Tian, Chunxiu; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; Han, Jiaguang; Zhang, Weili

    2017-01-01

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  20. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  1. Fundamental aspects of surface plasmon polaritons at terahertz frequencies

    NARCIS (Netherlands)

    Gómez Rivas, J.; Zhang, Y.; Berrier, A.; Saeedkia, D.

    2013-01-01

    We present in this chapter an introduction to the field of terahertz (THz) plasmonics. The characteristics of surface plasmon polaritons (SPPs) are determined by the complex permittivity of conductors. Therefore, we introduce the Drude model to describe the permittivity of conductors at THz

  2. Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    Recently, it has been proven that light can be squeezed into metallic channels with subwavelength lateral dimensions. Here, we present the study of the propagation of channel plasmon polaritons confined in gold V-grooves, filled with fluorescent particles. In this way, channel plasmon polaritons......-diameter beads, we show the possibility of individual excitation, what may have applications to develop very sensitive biosensors....

  3. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  4. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  5. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    Science.gov (United States)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui; Mortensen, N. Asger

    2018-01-01

    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional transition-metal dichalcogenide (TMDC) deposited onto a metal substrate or coating a metallic thin film. We determine the polaritonic spectrum and show that, in the former case, the addition of a top dielectric layer and, in the latter case, the thickness of the metal film can be used to tune and promote plasmon-exciton interactions well within the strong-coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can readily be achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this Rapid Communication provides a simple and intuitive picture to tailor strong coupling in plexcitonics with potential applications for engineering compact photonic devices with tunable optical properties.

  6. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.

  7. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hao; Li, Yan; Cui, Hai-Bo; Yang, Hong; Gong, Qi-Huang [Peking University, State Key Laboratory for Mesoscopic Physics and Department of Physics, Beijing (China)

    2009-11-15

    The design, fabrication, and characterization of dielectric-loaded surface plasmon-polariton nanowave-guides on a gold film are presented. The nanostructures are produced by two-photon polymerization with femtosecond laser pulses, and the minimum ridge height is {proportional_to}170 nm. Leakage radiation microscopy shows that these surface plasmon-polariton waveguides are single mode with strong mode confinement at the wavelength of 830 nm. The experimental results are in good agreement with the simulation by the effective-index method. (orig.)

  8. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  10. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a

  11. A classroom theory of the surface plasmon polariton

    International Nuclear Information System (INIS)

    Barchiesi, Dominique

    2012-01-01

    Surface plasmon resonance, also called the surface plasmon polariton, is an attractive illustration of basic electromagnetism. The investigation of this phenomenon in textbooks is often confusing for undergraduate students. The link between classical concepts of resonance and the solution of the problem is proposed in this work to clarify the procedure. The relationship with the course of solid state physics is proposed using the dispersion curves. The experimental setups are also mentioned. (paper)

  12. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  13. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  14. Dispersion anisotropy of plasmon-exciton-polaritons in lattices of metallic nanoparticles

    NARCIS (Netherlands)

    Ramezani, Mohammad; Halpin, Alexei; Feist, Johannes; Van Hoof, Niels; Fernández-Domínguez, Antonio I.; Garcia-Vidal, Francisco J.; Gómez Rivas, Jaime

    2018-01-01

    When the electromagnetic modes supported by plasmonic-based cavities interact strongly with molecules located within the cavity, new hybrid states known as plasmon-exciton-polaritons (PEPs) are formed. The properties of PEPs, such as group velocity, effective mass, and lifetime, depend on the

  15. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  16. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  17. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode in...

  18. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  19. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  20. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui

    2018-01-01

    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional transition-metal dichalcogenide (TMDC) deposited onto a metal......-coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can readily be achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this Rapid Communication provides a simple and intuitive picture to tailor strong coupling in plexcitonics...

  1. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    International Nuclear Information System (INIS)

    Liang, Huawei; Ruan, Shuangchen; Zhang, Min; Su, Hong; Li, Irene Ling

    2015-01-01

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices

  2. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huawei; Ruan, Shuangchen, E-mail: scruan@szu.edu.cn; Zhang, Min; Su, Hong; Li, Irene Ling [Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060 (China)

    2015-08-31

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices.

  3. Multi-Periodic Photonic Hyper-Crystals: Volume Plasmon Polaritons and the Purcell Effect

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Iorsh, I. V.; Orlov, A. A.

    2014-01-01

    We theoretically demonstrate superior degree of control over volume plasmon polariton propagation and the Purcell effect in multi-period (4-layer unit cell) plasmonic multilayers, which can be viewed as multiscale hyperbolic metamaterials or multi-periodic photonic hyper-crystals. © 2014 OSA....

  4. Plasmon-Polariton Properties in Metallic Nanosphere Chains

    Directory of Open Access Journals (Sweden)

    Witold Aleksander Jacak

    2015-06-01

    Full Text Available The propagation of collective wave type plasmonic excitations along infinite chains of metallic nanospheres has been analyzed, including near-, medium- and far-field contributions to the plasmon dipole interaction with all retardation effects taken into account. It is proven that there exist weakly-damped self-modes of plasmon-polaritons in the chain for which the propagation range is limited by relatively small Ohmic losses only. In this regime, the Lorentz friction irradiation losses on each nanosphere in the chain are ideally compensated by the energy income from the rest of the chain. The completely undamped collective waves were identified in the case of the presence of persistent external excitation of some fragment of the chain. The obtained characteristics of these excitations fit the experimental observations well.

  5. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  6. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  7. Side-coupled cavity model for surface plasmon-polariton transmission across a groove

    International Nuclear Information System (INIS)

    Liu, J.S.Q.

    2010-01-01

    We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

  8. Compensation of propagation loss of surface plasmon polaritons with a finite-thickness dielectric gain layer

    International Nuclear Information System (INIS)

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2012-01-01

    We theoretically study the compensation of propagation loss of surface plasmon polaritons (SPPs) with the use of a finite-thickness dielectric layer with optical gain. The impacts of the gain coefficient, the gain-layer thickness and the wavelength on the loss compensation and the field distribution of the SPP mode are systematically explored with a fully vectorial method. Abnormal behaviors for the loss compensation as the gain-layer thickness increases are found and explained. Critical values of the gain coefficient and of the corresponding gain-layer thickness for just compensating the propagation loss are provided. Our results show that as the SPP propagation loss is fully compensated with a gain coefficient at a reasonably low level, the gain layer is still thin enough to ensure a large exterior SPP field at the gain-layer/air interface, which is important for achieving a strong light–matter interaction for applications such as bio-chemical sensing. (paper)

  9. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  10. High Excitation Efficiency of Channel Plasmon Polaritons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs.......We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs....

  11. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zeyu; Yang, Tian, E-mail: tianyang@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-18

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  13. Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates

    Science.gov (United States)

    Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.

    2018-05-01

    Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.

  14. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  15. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  16. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    Science.gov (United States)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  17. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  18. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect...... and electric dipole moments supported by the dielectric nanoantenna....

  19. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Directory of Open Access Journals (Sweden)

    Zhijie Ma

    2017-11-01

    Full Text Available We present a highly sensitive microfluidic sensing technique for the terahertz (THz region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs. By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide’s fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  20. Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures

    Science.gov (United States)

    Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.

    2018-03-01

    Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.

  1. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  2. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan; Ghulam Saber, Md.; Alsunaidi, Mohammad

    2016-01-01

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known

  3. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  4. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.

    2014-01-01

    ) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop......, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind...

  5. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  6. Surface plasmon polaritons in a semi-bounded degenerate plasma: Role of spatial dispersion and collisions

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Kompaneets, R.; Vladimirov, S. V.

    2012-01-01

    Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and electron-ion (electron-lattice, for metals) collisions. SPP dispersion and damping are obtained in both retarded (ω/k z ∼c) and non-retarded (ω/k z ≪c) regions, as well as in between. It is shown that the plasma spatial dispersion significantly affects the properties of SPPs, especially at short wavelengths (less than the collisionless skin depth, λ ≲ c/ω pe ). Namely, the collisionless (Landau) damping of SPPs (due to spatial dispersion) is comparable to the purely collisional (Ohmic) damping (due to electron-lattice collisions) in a wide range of SPP wavelengths, e.g., from λ∼20 nm to λ∼0.8 nm for SPP in gold at T = 293 K and from λ∼400 nm to λ∼0.7 nm for SPPs in gold at T = 100 K. The spatial dispersion is also shown to affect, in a qualitative way, the dispersion of SPPs at short wavelengths λ ≲ c/ω pe .

  7. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    International Nuclear Information System (INIS)

    Kumar, Shailesh; Lausen, Jens L; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Bozhevolnyi, Sergey I; Garcia-Ortiz, Cesar E; Smith, Cameron L C; Kristensen, Anders

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes. (paper)

  8. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  9. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  10. Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration

    Science.gov (United States)

    Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.

    2018-05-01

    We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.

  11. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  12. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide

    International Nuclear Information System (INIS)

    Zhu, Qiong-gan; Wang, Zhi-guo; Tan, Wei

    2014-01-01

    The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal (MDM) surface plasmon polariton (SPP) waveguide is investigated theoretically using Green's function method. Our result suggests that the gain and loss parameters influence the amplitude and phase of the fields localized in the two cavities. For the case of balanced gain and loss, the fields of the two cavities are always of equi-amplitude but out of phase. A plasmon induced transparency (PIT)-like transmission peak can be achieved by the destructive interference of two fields with anti-phase. For the case of unbalanced gain and loss, some unexpected responses of structure are generated. When the gain is more than the loss, the system response is dissipative at around the resonant frequency of the two cavities, where the sum of reflectance and transmittance becomes less than one. This is because the lossy cavity, with a stronger localized field, makes the main contribution to the system response. When the gain is less than the loss, the reverse is true. It is found that the metal loss dissipates the system energy but facilitates the gain cavity to make a dominant effect on the system response. This mechanism may have a potential application for optical amplification and for a plasmonic waveguide switch. (paper)

  13. Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect

    Directory of Open Access Journals (Sweden)

    Lars E. Kreilkamp

    2013-11-01

    Full Text Available Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto-optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field.

  14. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    Science.gov (United States)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  15. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan; Alsunaidi, Mohammad A.; Ooi, Boon S.

    2011-01-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method

  16. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  17. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  18. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  19. Surface Plasmon Polariton Resonance of Gold, Silver, and Copper Studied in the Kretschmann Geometry: Dependence on Wavelength, Angle of Incidence, and Film Thickness

    Science.gov (United States)

    Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-12-01

    Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with

  20. Plasmonic fluorescence enhancement of DBMBF2 monomers and DBMBF2-toluene exciplexes using al-hole arrays

    NARCIS (Netherlands)

    Schmidt, T.M.; Bochenkov, V.E.; Espinoza, J.D.A.; Smits, E.C.P.; Muzafarov, A.M.; Kononevich, Y.N.; Sutherland, D.S.

    2014-01-01

    The optical properties of aluminum hole arrays fabricated via colloidal lithography were investigated. By tuning the hole diameter and hole spacing independently, their influence on the Bloch wave-surface plasmon polariton (BW-SPP) and localized surface plasmon resonances resonances (LSPR) could be

  1. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  2. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  3. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  4. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  5. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP...

  6. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  7. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  8. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Nielsen, Michael Grøndahl; Albrektsen, Ole

    2010-01-01

    Amplification of surface plasmon polaritons (SPPs) in planar metal-dielectric structure through stimulated emission is investigated using leakage-radiation microscopy configuration. The gain medium is a thin polymethylmethacrylate layer doped with lead-sulphide nanocrystals emitting at near-infrared...

  9. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...

  10. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  11. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  12. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    Science.gov (United States)

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  13. Bessel Plasmon-Polaritons at the Boundaries of Metamaterials with Near-Zero Dielectric Constants

    Science.gov (United States)

    Kurilkina, S. N.; Belyi, V. N.; Kazak, N. S.; Binhussain, M. A.

    2015-07-01

    The conditions for and features of the excitation of Bessel plasmon-polaritons (BPP) are examined at the boundary of a hyperbolic metamaterial with a near-zero dielectric constant made of a dielectric matrix with metal nanorods embedded in it normal to its surface. This material is compared with BPP that have traditional surface plasmons. The effect of the absorption of the metamaterial on the excitation of BPP is studied. The possibility of changes in the direction of the radial energy fl ows in BPP excited at the surface of an isotropic medium, a hyperbolic metamaterial, is demonstrated and the conditions for these changes are determined.

  14. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    Science.gov (United States)

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  15. Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings.

    Science.gov (United States)

    Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano

    2014-01-21

    We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.

  16. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  17. Terahertz instability of surface optical-phonon polaritons that interact with surface plasmon polaritons in the presence of electron drift

    International Nuclear Information System (INIS)

    Sydoruk, O.; Solymar, L.; Shamonina, E.; Kalinin, V.

    2010-01-01

    Traveling-wave interaction between optical phonons and electrons drifting in diatomic semiconductors has potential for amplification and generation of terahertz radiation. Existing models of this interaction were developed for infinite materials. As a more practically relevant configuration, we studied theoretically a finite semiconductor slab surrounded by a dielectric. This paper analyzes the optical-phonon instability in the slab including the Lorentz force and compares it to the instability in an infinite material. As the analysis shows, the slab instability occurs because of the interaction of surface optical-phonon polaritons with surface plasmon polaritons in the presence of electron drift. The properties of the instability depend on the slab thickness when the thickness is comparable to the wavelength. For large slab thicknesses, however, the dispersion relation of the slab is similar to that of an infinite material, although the coupling is weaker. The results could be used for the design of practical terahertz traveling-wave oscillators and amplifiers.

  18. Dye gain gold NW array of surface plasmon polariton waveguide

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. At present in the single visible light frequency, the optical gain method of constraint SPP on metal nanowires structure reported less. We design the gold nanowire array structure, consisting of PMMA and R6G dye molecules as gain, by 488 nm pump in the middle of the nanowires position for wide range of light, use symmetry broken overcome that momentum does not match the photonic and SPP energy conversion. Theoretical analysis shows that dyes provide coherent optical feedback, resulting in nanowires face will observe laser properties of surface plasmons. Feature analysis: the incident light and pump joint strength is greater than the sum of strength which is the incident light, pump respectively. Under the effect of dye molecules gain effective, length of SPP transmission can increase 1 µm. The results achieved in a single optical frequency of stimulated radiation, application of dye optical gain can achieve continuous gain effect. This is for the future development of plasma amplifier and the wavelength laser. Keywords: SPP, Stimulated radiation, Gold nanowires array, Dye molecules

  19. Surface plasmon transmission through discontinuous conducting surfaces: Plasmon amplitude modulation by grazing scattered fields

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral-Astorga, L. A.; Gaspar-Armenta, J. A.; Ramos-Mendieta, F. [Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora, 83190 México (Mexico)

    2016-04-15

    We have studied numerically the diffraction of a surface plasmon polariton (SPP) when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the second slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD) method with a grid size λ/100.

  20. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  1. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  2. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    Science.gov (United States)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  3. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  4. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  5. Active components for integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Krasavin, A.V.; Bolger, P.M.; Zayats, A.V.

    2009-01-01

    We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.......We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides....

  6. Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes

    Science.gov (United States)

    Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2017-10-01

    We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.

  7. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    Surface plasmon polaritons (SPPs) are collective electron oscillations, confined at metal-dielectric interfaces. Coupling incident photons to SPPs may lead to spectrally broad field enhancement and confinement below the diffraction limit [1]. This phenomenon facilitates various applications......, including highly sensitive refractive index sensing [2], and plasmonic dipole mirrors for cold atoms [3]. Key to a successful application is a strong photon-to-SPP coupling. To this end, prism-based coupling is classically used, but this method contradicts compact device applications. An alternative...... the proposed plasmonic transmission gratings via near-field optical scanning microscopy (NSOM) and goniometric far field measurements. We support the evidence of our analyses with numerical calculations, carried out via rigorous coupled wave analysis (RCWA) and finite-difference in time-domain (FDTD...

  8. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  9. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  10. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Wang, Xinke [Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Kan, Qiang [State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Qu, Shiliang [Optoelectronics Department, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  11. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials.

    Science.gov (United States)

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji

    2008-06-23

    We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

  12. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam

    International Nuclear Information System (INIS)

    Yuan, G H; Wang, Q; Tan, P S; Lin, J; Yuan, X-C

    2012-01-01

    A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam’s topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips. (paper)

  13. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  14. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  15. Plasmon exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, H.A.; Feist, J.; Fernández-Dominguez, A.; Rodriguez, S.R.K.; Garcia-Vidal, F.J.; Gomez-Rivas, J.

    2017-01-01

    Strong light-matter interaction leads to the appearance of new states, i.e. exciton-polaritons, with photophysical properties rather distinct from their constituents. Recent developments in fabrication techniques allow us to make metallic structures with strong electric field confinement in

  16. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham–Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin–orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  17. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Y Bliokh, Konstantin; Y Bekshaev, Aleksandr; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham-Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin-orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  18. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael, E-mail: Michael.Kaniber@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany and Nanosystems Initiative Munich, Schellingstraße 4, 80799 München (Germany)

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  19. Ultracompact Refractive Index Sensor Based on Surface-Plasmon-Polariton Interference

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jian-Jun; Tang Wei-Hua; Xiao Jing-Hua

    2012-01-01

    Using an ultracompact groove-slit-groove (GSG) structure, a refractive index sensor with a broadband response is proposed and experimentally demonstrated. Due to the interference of surface plasmon polaritons (SPPs), the transmission spectra in the GSG structure exhibit oscillation behaviors in a broad bandwidth, and they are quite sensitive to the refractive index of the surroundings. Based on the principle, the characteristics of its refractive index sensing are demonstrated experimentally. In the experiment, the structure is illuminated with a bulk light source (not a tightly focused light source) from the back side. This decreases the difficulty of the experimental measurement and can protect strong light sources from damaging the detection samples. Meanwhile, the whole structure of the sensor can be made more ultracompact without considering the influence of the incident waves

  20. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    Science.gov (United States)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  1. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device

    Science.gov (United States)

    Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.

    2018-05-01

    We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.

  2. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jinna He

    2012-01-01

    Full Text Available The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR of Ag stripes, and surface plasmon polaritons (SPP arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.

  3. Plasmonics of magnetic and topological graphene-based nanostructures

    Science.gov (United States)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.

    2018-02-01

    Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.

  4. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  5. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.

    Science.gov (United States)

    Otte, Marinus A; Sepúlveda, Borja; Ni, Weihai; Juste, Jorge Pérez; Liz-Marzán, Luis M; Lechuga, Laura M

    2010-01-26

    We present a theoretical and experimental study involving the sensing characteristics of wavelength-interrogated plasmonic sensors based on surface plasmon polaritons (SPP) in planar gold films and on localized surface plasmon resonances (LSPR) of single gold nanorods. The tunability of both sensing platforms allowed us to analyze their bulk and surface sensing characteristics as a function of the plasmon resonance position. We demonstrate that a general figure of merit (FOM), which is equivalent in wavelength and energy scales, can be employed to mutually compare both sensing schemes. Most interestingly, this FOM has revealed a spectral region for which the surface sensitivity performance of both sensor types is optimized, which we attribute to the intrinsic dielectric properties of plasmonic materials. Additionally, in good agreement with theoretical predictions, we experimentally demonstrate that, although the SPP sensor offers a much better bulk sensitivity, the LSPR sensor shows an approximately 15% better performance for surface sensitivity measurements when its FOM is optimized. However, optimization of the substrate refractive index and the accessibility of the relevant molecules to the nanoparticles can lead to a total 3-fold improvement of the FOM in LSPR sensors.

  6. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  7. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  8. Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal.

    Science.gov (United States)

    Chremmos, Ioannis

    2009-12-01

    A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green's function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green's function and the Jacobi-Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs' spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

  9. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernandez, A. I.; Feist, J.; Rodriguez, S. R. K.; Garcia-Vidal, F. J.; J. Gomez Rivas,

    2017-01-01

    Metallic nanostructures provide a toolkit for the generation of coherent light below the diffraction limit. Plasmonic-based lasing relies on the population inversion of emitters (such as organic fluorophores) along with feedback provided by plasmonic resonances. In this regime, known as weak

  10. Theoretical analysis of ridge gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2006-01-01

    Optical properties of ridge gratings for long-range surface plasmon polaritons (LRSPPs) are analyzed theoretically in a two-dimensional configuration via the Lippmann-Schwinger integral equation method. LRSPPs being supported by a thin planar gold film embedded in dielectric are considered...... to be scattered by an array of equidistant gold ridges on each side of the film designed for in-plane Bragg scattering of LRSPPs at the wavelength ~1550 nm. Out-of-plane scattering (OUPS), LRSPP transmission, reflection, and absorption are investigated with respect to the wavelength, the height of the ridges...... peak it is preferable to use longer gratings with smaller ridges compared to gratings with larger ridges, because the former result in a smaller OUPS from the grating facets than the latter. The theoretical analysis and its conclusions are supported with experimental results on the LRSPP reflection...

  11. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  12. Universal description of channel plasmons in two-dimensional materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Channeling surface plasmon-polaritons to control their propagation direction is of the utmost importance for future optoelectronic devices. Here, we develop an effective-index method to describe and characterize the properties of 2D material's channel plasmon-polaritons (CPPs) guided along a V-sh...

  13. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    Science.gov (United States)

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabricating plasmonic components for nanophotonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed....

  15. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  16. Low-frequency active surface plasmon optics on semiconductors

    NARCIS (Netherlands)

    Gómez Rivas, J.; Kuttge, M.; Kurz, H.; Haring Bolivar, P.; Sánchez-Gil, J.A.

    2006-01-01

    A major challenge in the development of surface plasmon optics or plasmonics is the active control of the propagation of surface plasmon polaritons (SPPs). Here, we demonstrate the feasibility of low-frequency active plasmonics using semiconductors. We show experimentally that the Bragg scattering

  17. Tailor-made surface plasmon polaritons above the bulk plasma frequency: a design strategy for indium tin oxide

    International Nuclear Information System (INIS)

    Brand, S; Abram, R A; Kaliteevski, M A

    2010-01-01

    A simple phase-matching approach is employed as a design aid to engineer surface plasmon polariton states at the interface of an indium tin oxide layer on the top of a Bragg reflector. By altering the details of the reflector, and in particular the ordering of the layers and the thickness of the layer adjacent to the indium tin oxide, it is possible to readily adjust the energy of these states. Examples of structures engineered to give rise to distinctive features in the reflectivity spectra above the bulk screened plasma frequency for states of both possible polarizations are presented.

  18. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  19. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  20. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  1. Plasmon-negative refraction at the heterointerface of graphene sheet arrays.

    Science.gov (United States)

    Huang, He; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang

    2014-10-15

    We demonstrate negative refraction of surface plasmon polaritons (SPPs) at the heterointerface of two monolayer graphene sheet arrays (MGSAs) with different periods. The refraction angle is specifically related to the period ratio of the two MGSAs. By varying the incident Bloch momentum, the SPPs might be refracted in the direction normal to the heterointerface. Moreover, both positive and negative refraction could appear simultaneously. Because of the linear diffraction relation, the incident and refracted SPP beams experience diffraction-free propagation. The heterostructures composed of the MGSAs may find great applications in deep-subwavelength spatial light modulators, optical splitters, and switches.

  2. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  3. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  4. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  5. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed; Guenneau, Sé bastien; Bagci, Hakan

    2013-01-01

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  6. Preliminary results on an innovative plasmonic device for macromolecules analysis and sequencing

    KAUST Repository

    Francardi, Marco; Candeloro, Patrizio; Malara, Natalia Maria; Gentile, Francesco T.; Coluccio, Maria Laura; Perozziello, Gerardo; Gaggero, Aleesandro; De Angelis, Francesco De; Cherubini, Enrico; Di Fabrizio, Enzo M.

    2013-01-01

    In this work we present the fabrication and theoretical simulation for a new device constituted by a on Substrate Plasmonic Antenna (SPA) combined with a bio-functionalized Atomic Force Microscopy (AFM) cantilever. This device could represent a new strategy to sequence and analyze a single protein or DNA. The idea is to use an SPA composed of an innovative "wedding cake"shaped grating (WCG), in order to excite a Surface Plasmon Polariton (SPP) mode, and a 30-tilted Plasmonic Antenna (PA), able to compress adiabatically the SPP until the tip. The Plasmonic device is placed inside an electrical contact that could be used to unfold protein molecules or DNA. A bio-functionalized AFM tip can be used to fish a single biological element and for alignment with the SPA. Then the unfolded element could be scanned close to the PA and a Tip Enhanced Raman Signal (TERS) can be recorded from the biomolecule. The spatial resolution is limited by the size of the radius of curvature of the antenna, which in this work is about 15 nm, while the vertical scanning is controlled by the piezoelectric of the AFM set up. In this work we demonstrate the possibility to fabricate this innovative plasmonic device and we report FDTD simulations of the innovative WCG. The FDTD simulations show the generation of a plasmonic mode that, coupled with the antenna, give rise to an adiabatic compression which produce an increase of the electric field of about 40 times. © 2013 Elsevier B.V. All rights reserved.

  7. Preliminary results on an innovative plasmonic device for macromolecules analysis and sequencing

    KAUST Repository

    Francardi, Marco

    2013-11-01

    In this work we present the fabrication and theoretical simulation for a new device constituted by a on Substrate Plasmonic Antenna (SPA) combined with a bio-functionalized Atomic Force Microscopy (AFM) cantilever. This device could represent a new strategy to sequence and analyze a single protein or DNA. The idea is to use an SPA composed of an innovative "wedding cake"shaped grating (WCG), in order to excite a Surface Plasmon Polariton (SPP) mode, and a 30-tilted Plasmonic Antenna (PA), able to compress adiabatically the SPP until the tip. The Plasmonic device is placed inside an electrical contact that could be used to unfold protein molecules or DNA. A bio-functionalized AFM tip can be used to fish a single biological element and for alignment with the SPA. Then the unfolded element could be scanned close to the PA and a Tip Enhanced Raman Signal (TERS) can be recorded from the biomolecule. The spatial resolution is limited by the size of the radius of curvature of the antenna, which in this work is about 15 nm, while the vertical scanning is controlled by the piezoelectric of the AFM set up. In this work we demonstrate the possibility to fabricate this innovative plasmonic device and we report FDTD simulations of the innovative WCG. The FDTD simulations show the generation of a plasmonic mode that, coupled with the antenna, give rise to an adiabatic compression which produce an increase of the electric field of about 40 times. © 2013 Elsevier B.V. All rights reserved.

  8. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    the diffraction limit, i.e., on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes along with ever increasing demands for miniaturization of photonic components and circuits generates an exponentially growing interest to SPP-mediated radiation...... guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of main planar SPP modes, and then describing in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement. Excitation...

  9. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes

    Directory of Open Access Journals (Sweden)

    E. Petronijevic

    2017-02-01

    Full Text Available We apply photo-acoustic (PA technique to examine plasmonic properties of 2D periodic arrays of nanoholes etched in gold/chromium layer upon a glass substrate. The pitch of these arrays lies in the near IR, and this, under appropriate wave vector matching conditions in the visible region, allows for the excitation of surface plasmon polaritons (SPP guided along a dielectric – metal surface. SPP offered new approaches in light guiding and local field intensity enhancement, but their detection is often difficult due to the problematic discrimination of their contribution from the overall scattering. Here PA measures the energy absorbed due to the non-radiative decay of SPPs. We report on the absorption enhancement by presenting the spatial mapping of absorption under the incidence angles and wavelength that correspond to the efficient excitation of SPPs. Moreover, a comparison with optical transmission measurements is carried out, underlining the applicability and sensitivity of PA technique.

  10. Progress in surface plasmon subwavelength optics

    International Nuclear Information System (INIS)

    Zhang Douguo; Wang Pei; Jiao Xiaojin; Tang Lin; Lu Yonghua; Ming Hai

    2005-01-01

    Now great attention is being paid to the potential applications of surface plasmon polaritons (SPPs) in data storage, light generation, microscopy and bio-photonics. The authors review the properties of SPPs and topics of recent interest in surface plasmon subwavelength optics. (author)

  11. Surface plasmon—polaritons on ultrathin metal films

    International Nuclear Information System (INIS)

    Quan Jun; Zhang Jun; Shao Le-Xi; Tian Ying

    2011-01-01

    We discuss the surface plasmon—polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin

    2018-05-01

    We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.

  13. A plasmonic spanner for metal particle manipulation

    NARCIS (Netherlands)

    Zhang, Y.; Shi, W.; Shen, Z.; Man, Z.; Min, C.; Shen, J.; Zhu, S.; Urbach, H.P.; Yuan, X.

    2015-01-01

    Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and

  14. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  15. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    Science.gov (United States)

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  16. Universal description of channel plasmons in two-dimensional materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Channeling surface plasmon-polaritons to control their propagation direction is of the utmost importance for future optoelectronic devices. Here, we develop an effective-index method to describe and characterize the properties of 2D material's channel plasmon-polaritons (CPPs) guided along a V......-shaped channel. Focusing on the case of graphene, we derive a universal Schr\\"odinger-like equation from which one can determine the dispersion relation of graphene CPPs and corresponding field distributions at any given frequency, since they depend on the geometry of the structure alone. The results...

  17. Surface plasmon polariton nanocavity with ultrasmall mode volume

    Science.gov (United States)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  18. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    Science.gov (United States)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  19. Tunable optical response at the plasmon-polariton frequency in dielectric-graphene-metamaterial systems

    Science.gov (United States)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2018-04-01

    By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.

  20. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  1. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    Science.gov (United States)

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  2. Design, fabrication and SNOM investigation of plasmonic devices

    DEFF Research Database (Denmark)

    Malureanu, Radu; Zenin, Vladimir A.; Andryieuski, Andrei

    2016-01-01

    Surface plasmon-polaritons are a possible solution for on-chip transportation and manipulation of information. Although there are several possibilities for designing the plasmonic waveguides, the two major caveats for all of them are the coupling to/from external sources and the losses they exhib...

  3. On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both ...... and an up to 42-fold spontaneous emission rate enhancement at the zero-phonon line (a ∼7-fold resonance enhancement in addition to a ∼6-fold broadband enhancement) is achieved, revealing the potential of our approach for on-chip realization of quantum-optical networks....... from a large Purcell factor and from a large radiative efficiency (low quenching rates) [1, 2]. In this work, we present a DLSPPW-based Bragg cavity resonator to direct emission from a single diamond nitrogen vacancy (NV) center into the zero-phonon line (Fig. 1). A quality factor of ∼70 for the cavity...

  4. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon int...

  5. Propagation of Channel Plasmons at the Visible Regime in Aluminum V-Groove Waveguides

    DEFF Research Database (Denmark)

    Lotan, Oren; Smith, Cameron; Bar-David, Jonathan

    2016-01-01

    Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V-grooves are ......Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V......-grooves are fabricated by a process involving UV-photolithography, crystallographic silicon etching, and metal deposition. Polarization measurements of coupling demonstrate a preference to the TM-aligned mode, as predicted in simulations....

  6. Plasmonics light modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    Surface plasmon polaritons (SPPs) are waves propagating at the interface between a metal and a dielectric and, due to their tight confinement, may be used for nanoscale control of the light propagation. Thus, photonic integrated circuits can benefit from devices using SPPs because of their highly...

  7. Demonstration of a variable plasmonic beam splitter

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Andersen, Ulrik Lund

    2014-01-01

    In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire such tha......In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire...... such that surface plasmons can evanescently couple. In our experiment, we are able to tune the coupling strength from one nano-wire to another by adjusting the gap with the aid of the atomic force microscope. Numerical calculations of the coupling strength are carried out, which support the values found...

  8. Dispersion Anisotropy of Plasmon–Exciton–Polaritons in Lattices of Metallic Nanoparticles

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Feist, J.; van Hoof, N.; Fernández-Domínguez, A. I.; Garcia-Vidal, F. J.; Rivas, Gomez

    2018-01-01

    When the electromagnetic modes supported by plasmonic-based cavities interact strongly with molecules located within the cavity, new hybrid states known as plasmon–exciton–polaritons (PEPs) are formed. The properties of PEPs, such as group velocity, effective mass, and lifetime, depend on the

  9. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  10. Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence

    KAUST Repository

    Barnard, Edward S.

    2011-10-12

    We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments. © 2011 American Chemical Society.

  11. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  12. Light-Triggered Control of Plasmonic Refraction and Group Delay by Photochromic Molecular Switches

    DEFF Research Database (Denmark)

    Großmann, Malte; Klick, Alwin; Lemke, Christoph

    2015-01-01

    An interface supporting plasmonic switching is prepared from a gold substrate coated with a polymerfilm doped with photochromic molecular switches. A reversible light-induced change in the surface plasmon polariton dispersion curve of the interface is experimentally demonstrated, evidencing...... complex functionalities based on surface plasmon refraction and group delay....

  13. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  14. Graphene-based hybrid plasmonic modulator

    International Nuclear Information System (INIS)

    Shin, Jin-Soo; Kim, Jin-Soo; Tae Kim, Jin

    2015-01-01

    A graphene-based hybrid plasmonic modulator is designed based on an asymmetric double-electrode plasmonic waveguide structure. The photonic device consists of a monolayer graphene, a thin metal strip, and a thin dielectric layer that is inserted between the grapheme and the metal strip. By electrically tuning the graphene’s refractive index, the propagation loss of the hybrid long-range surface plasmon polariton strip mode in the proposed graphene-based hybrid plasmonic waveguide is switchable, and hence the intensity of the guided modes is modulated. The highest modulation depth is observed at the graphene’s epsilon-near-zero region. The device characteristics are characterized over the entire C-band (1.530–1.565 μm). (paper)

  15. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    Science.gov (United States)

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  16. Wave refraction and backward magnon-plasmon polaritons in left-handed antiferromagnet/semiconductor superlattices

    International Nuclear Information System (INIS)

    Tarkhanyan, R.H.; Niarchos, D.G.

    2007-01-01

    Characteristics of the bulk electromagnetic waves in teraHertz frequency region are examined in a left-handed superlattice (SL) which consists of alternating layers of nonmagnetic semiconductor and nonconducting antiferromagnetic materials. General problem on the sign of the refractive index for anisotropic media is considered. It is shown that the phase refraction index is always positive while the group refractive index can be negative when some general conditions are fulfilled. Effective permittivity and permeability tensors of the SL are derived for perpendicular and parallel orientation of the magnetic anisotropy axis with respect to the plane of the layers. Problem of anomalous refraction for transverse electric and transverse magnetic-type polarized waves is examined in such media. Analytical expressions for both the phase and group refractive indices are obtained for various propagated modes. It is shown that, in general, three different types of the refracted waves with different relative orientation of the phase and group velocity vectors are possible in left-handed media. Unusual peculiarities of the backward modes corresponding to the coupled magnon-plasmon polaritons are considered. It is shown, in particular, that the number of the backward modes depends on the free charge carrier's density in semiconductor layers, variation of which allows to create different frequency regions for the wave propagation

  17. Experimental verification of ‘waveguide’ plasmonics

    Science.gov (United States)

    Prudêncio, Filipa R.; Costa, Jorge R.; Fernandes, Carlos A.; Engheta, Nader; Silveirinha, Mário G.

    2017-12-01

    Surface plasmons polaritons are collective excitations of an electron gas that occur at an interface between negative-ɛ and positive-ɛ media. Here, we report the experimental observation of such surface waves using simple waveguide metamaterials filled only with available positive-ɛ media at microwave frequencies. In contrast to optical designs, in our setup the propagation length of the surface plasmons can be rather long as low loss conventional dielectrics are chosen to avoid typical losses from negative-ɛ media. Plasmonic phenomena have potential applications in enhancing light-matter interactions, implementing nanoscale photonic circuits and integrated photonics.

  18. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    Science.gov (United States)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  19. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    Science.gov (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  20. V-groove plasmonic waveguides fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Fernandez-Cuesta, I.; Nielsen, R.B.; Boltasseva, Alexandra

    2007-01-01

    Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication of integra...... of integrated optical devices composed of metal V grooves. This method represents an improvement with respect to previous works, where the V grooves were fabricated by direct milling of the metal, in terms of robustness and throughput. © 2007 American Vacuum Society......Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication...

  1. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  2. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  3. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  4. Asymmetric transmission of surface plasmon polaritons

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 043805 ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : one-way duffarction grating * scattering * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.042, year: 2012

  5. Surface plasmon polariton Wannier-Stark ladder

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A. A.; Méndez, E.R.

    2014-01-01

    Roč. 39, č. 6 (2014), s. 1613-1616 ISSN 0146-9592 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Finite difference time domain method * Electromagnetic wave polarization * Plasmons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  6. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    Science.gov (United States)

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  7. Quantum bus of metal nanoring with surface plasmon polaritons

    International Nuclear Information System (INIS)

    Lin Zhirong; Guo Guoping; Tu Tao; Li Haiou; Zou Changling; Ren Xifeng; Guo Guangcan; Chen Junxue; Lu Yonghua

    2010-01-01

    We develop an architecture for distributed quantum computation using quantum bus of plasmonic circuits and spin qubits in self-assembled quantum dots. Deterministic quantum gates between two distant spin qubits can be reached by using an adiabatic approach in which quantum dots couple with highly detuned plasmon modes in a metallic nanoring. Plasmonic quantum bus offers a robust and scalable platform for quantum optics experiments and the development of on-chip quantum networks composed of various quantum nodes, such as quantum dots, molecules, and nanoparticles.

  8. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  9. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  10. Generation and Controlled Routing of Single Plasmons on a Chip

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Huck, Alexander

    2014-01-01

    We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...... size between the wires with an atomic force microscope. By numerical methods, we estimate the splitting ratios for different gap sizes, and the results support the values obtained in the experiment.......We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...

  11. Semiconductor plasmonic crystals : active control of THz extinction

    NARCIS (Netherlands)

    Schaafsma, M.C.; Gomez Rivas, J.

    2013-01-01

    We investigate theoretically the enhanced THz extinction by periodic arrays of semiconductor particles. Scattering particles of doped semiconductors can sustain localized surface plasmon polaritons, which can be diffractively coupled giving rise to surface lattice resonances. These resonances are

  12. Ultra-thin films for plasmonics: a technology overview

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei

    2015-01-01

    Ultra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve...... the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues...... of their deposition and reported characterization of film plasmonic performance....

  13. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  14. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  15. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  16. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    International Nuclear Information System (INIS)

    Roshan Entezar, S.

    2015-01-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism

  17. A hybrid plasmonic microresonator with high quality factor and small mode volume

    International Nuclear Information System (INIS)

    Lu, Qijing; Chen, Daru; Wu, Genzhu; Peng, Baojin; Xu, Jiancheng

    2012-01-01

    We propose a novel hybrid plasmonic microcavity which is composed of a silver nanoring and a silica toroidal microcavity. The hybrid mode of the proposed hybrid plasmonic microcavity due to the coupling between the surface plasmon polaritons (SPPs) and the dielectric mode is demonstrated with a high quality factor (>1000) and an ultrasmall mode volume (∼0.8 μm 3 ). This microcavity shows great potential in fundamental studies of nonlinear optics and cavity quantum electrodynamics (cQED) and applications in low-threshold plasmonic microlasers. (paper)

  18. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons

    Science.gov (United States)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-01

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  19. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  20. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties

    International Nuclear Information System (INIS)

    Tomilin, S V; Berzhansky, V N; Shaposhnikov, A N; Prokopov, A R; Milyukova, E T; Karavaynikov, A V; Tomilina, O A

    2016-01-01

    In present work the results of investigation of optical (transmission spectra) and plasmonic (surface plasmon-polariton resonance) properties of ultrathin and nanostructured Au films are presents. Methods and techniques for the syntheses of samples of ultrathin and nanostructured metallic films, and for the experimental studies of optical and plasmonic properties are representative. Au films on SiO 2 (optic glass) substrates were investigated. (paper)

  1. Terahertz plasmonic Bessel beamformer

    International Nuclear Information System (INIS)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-01

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources

  2. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    Science.gov (United States)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  3. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    Science.gov (United States)

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  4. Low-loss CMOS copper plasmonic waveguides at the nanoscale (Conference Presentation)

    Science.gov (United States)

    Fedyanin, Dmitry Y.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.; Volkov, Valentyn S.

    2016-05-01

    Implementation of optical components in microprocessors can increase their performance by orders of magnitude. However, the size of optical elements is fundamentally limited by diffraction, while miniaturization is one of the essential concepts in the development of high-speed and energy-efficient electronic chips. Surface plasmon polaritons (SPPs) are widely considered to be promising candidates for the next generation of chip-scale technology thanks to the ability to break down the fundamental diffraction limit and manipulate optical signals at the truly nometer scale. In the past years, a variety of deep-subwavelength plasmonic structures have been proposed and investigated, including dielectric-loaded SPP waveguides, V-groove waveguides, hybrid plasmonic waveguides and metal nanowires. At the same time, for practical application, such waveguide structures must be integrated on a silicon chip and be fabricated using CMOS fabrication process. However, to date, acceptable characteristics have been demonstrated only with noble metals (gold and silver), which are not compatible with industry-standard manufacturing technologies. On the other hand, alternative materials introduce enormous propagation losses due absorption in the metal. This prevents plasmonic components from implementation in on-chip nanophotonic circuits. In this work, we experimentally demonstrate for the first time that copper plasmonic waveguides fabricated in a CMOS compatible process can outperform gold waveguides showing the same level of mode confinement and lower propagation losses. At telecommunication wavelengths, the fabricated ultralow-loss deep-subwavelength hybrid plasmonic waveguides ensure a relatively long propagation length of more than 50 um along with strong mode confinement with the mode size down to lambda^2/70, which is confirmed by direct scanning near-field optical microscopy (SNOM) measurements. These results create the backbone for design and development of high

  5. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.

    Science.gov (United States)

    Chremmos, Ioannis

    2010-01-01

    The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

  6. Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector

    Directory of Open Access Journals (Sweden)

    Yuehua An

    2016-02-01

    Full Text Available Surface plasmon polariton (SPP is electro-magnetic wave coupled to free electron oscillations near the surface of metal, and has been used to improve the photoelectric properties in many optoelectronic devices. In the present study, the Au nanoparticles (NPs/β-Ga2O3 composite thin film was fabricated through depositing Au ultra-thin film on the β-Ga2O3 thin film followed by post-thermal treatment. Compared to bare β-Ga2O3 thin film, a significant absorption around 510 nm, which is attributed to SPP of Au NPs, was observed in the UV–vis spectrum of Au NPs/β-Ga2O3 composite thin film. The results showed that the photoresponse of Au NPs/Ga2O3 photodetector illuminated under 254 nm+532 nm light was much higher than that illuminated under 254 nm light, indicating an enhancement of photoelectric property for the solar-blind photodetector based on β-Ga2O3 thin film.

  7. Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips

    International Nuclear Information System (INIS)

    Zerulla, D.; Isfort, G.; Koelbach, M.; Otto, A.; Schierbaum, K.

    2003-01-01

    The use of electrochemically structured Al surfaces as sensor arrays for combinatorial chemistry and its detection via microscopic laser techniques from very small volumes has been explored. The methodology is based on three different techniques which will be discussed separately: firstly, attenuated total reflection (ATR) is used in connection with surface-plasmon-polariton (SPP) excitation. A thin Al layer, evaporated on sapphire or quartz and covered with a naturally grown oxide layer, provides an optimum enhancement and confinement of the electrical field close to the surface. This is revealed by calculations and experimental data. Secondly, a Raman microscope is applied, enabling chemical spot analysis in the visible and UV range with a lateral resolution close to the diffraction limit. Finally, its application to investigate electrochemically structured Al films is discussed

  8. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  9. Plasmon resonances in large noble-metal clusters

    International Nuclear Information System (INIS)

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  10. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    Science.gov (United States)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  11. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Choudhury, Sajid; Saha, Soham

    2017-01-01

    Bound hybrid plasmon-polariton modes supported by waveguides, which are formed by gold coating of ridges etched into a silica substrate, are analyzed using numerical simulations and investigated experimentally using near-field microscopy at telecom wavelengths (1425-1625 nm). Drastic modification...

  12. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  13. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  14. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    Science.gov (United States)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  15. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed; Chen, Pai Yen; Guenneau, Sebastien; Bagci, Hakan

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed

  16. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  17. Graphene-plasmon polaritons: from fundamental properties to potential applications [arXiv

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Zhu, Xiaolong; Li, Bo-Hong

    2016-01-01

    With the unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. This paper briefly reviews the recent exciting progress i...... plasmonics with applications in modulators and sensors. Finally, we seek to address some of the apparent challenges and promising perspectives of graphene plasmonics. [Front. Phys. 11(2), 117801 (2016) doi:10.1007/s11467-016-0551-z]....

  18. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  19. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen; Farhat, Mohamed; Askarpour, Amir Nader; Tymchenko, Mykhailo; Alù , Andrea

    2014-01-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a 'one-atom-thick' graphene monolayer is typically

  20. Plasmon Enhanced Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Aleksandr [Univ. of California, Berkeley, CA (United States)

    2012-05-08

    Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5 μJ incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response. Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP). The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity. In

  1. Giant enhancement of sum-frequency yield by surface-plasmon excitation

    NARCIS (Netherlands)

    van der Ham, E. W. M.; Vrehen, Q. H. F.; Eliel, E. R.; Yakovlev, V. A.; Valieva, E. V.; Kuzik, L. A.; Petrov, J. E.; Sychugov, V. A.; van der Meer, A. F. G.

    1999-01-01

    We show experimentally that the radiation generated in infrared-visible sum-frequency mixing at an air-silver interface can be greatly enhanced when the visible input beam excites a surface plasmon-polariton at the interface. With either a prism or a grating used to couple the visible radiation with

  2. Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Mollet, O.; Drezet, A.; Huant, S. [Institut Néel, CNRS and Université Joseph Fourier, BP 166, F-38042 Grenoble (France)

    2013-12-04

    A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.

  3. Plasmonic leak-free focusing lens under radially polarized illumination

    International Nuclear Information System (INIS)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2010-01-01

    A plasmonic leak-free focusing lens with two asymmetric concentric ring slits under radially polarized illumination is proposed. Each ring slit in the plasmonic lens is designed to generate surface plasmon polaritons (SPPs) with a relative initial phase controlled by the ring slit parameters. Through mutual interference of the SPPs with different phases excited by the two concentric ring slits at the output metal–dielectric interface, the field intensity towards the center of the focusing lens can be enhanced while that leaking to the counter-focus direction is effectively suppressed. The optimal parameters of the plasmonic leak-free lens are theoretically obtained by satisfying the above condition and its focusing performance is demonstrated by numerical simulation. Furthermore, a plasmonic leak-free lens with multiple double-slit groups is proposed and discussed, which exhibits a higher energy density at the focusing spot of the output interface

  4. Tailoring channeled plasmon polaritons in metallic V-grooves

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Marie, Rodolphe

    2013-01-01

    of propagating plasmons to optimize the trade-off between lateral confinement and loss [2]. Accordingly, the traits of CPPs in metallic V-grooves suggest their widespread implementation, with applications ranging from ultracompact photonic circuitry [3] to lab-on-a-chip sensing. Current CPP research focuses...

  5. Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission

    DEFF Research Database (Denmark)

    Levy, Uriel; Grajower, Meir; Gonçalves, P. A. D.

    2017-01-01

    a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor...

  6. The gaseous plasmonic response of a one-dimensional photonic crystal composed of striated plasma layers

    Science.gov (United States)

    Wang, B.; Righetti, F.; Cappelli, M. A.

    2018-03-01

    We present simulations of the response of a one-dimensional striated plasma slab to incident electromagnetic waves that span regions both above and below the plasma frequency, ωp. Photonic bandgap modes are present throughout these regions, and volume and surface plasmon modes facilitate the response below ωp, where the dielectric constant, ɛp frequency, there is a feature for transverse magnetic (TM) polarization that is associated with the emergence of new dispersion branches. Also for TM polarization, a very low frequency mode emerges outside of the light line. Both these features are plasmonic and are attributed to the excitation of symmetric and asymmetric surface plasmon polaritons (SPPs) at the plasma-dielectric interface of the multi-layer plasma slabs. The features seen in the bandgap maps near ωp reveal the possible presence of Fano resonances between the symmetric branch of the SPP and the Bragg resonance as a narrow stop band (anti-node) is superimposed on the otherwise broad transmission band seen for transverse-electric polarization. We provide renderings that allow the visualization of where the transmission bands are and compute the transmittance and reflectance to facilitate the design and interpretation of experiments. The transmission bands associated with photonic bandgap modes above the plasma frequency are rather broad. The plasmonic modes, i.e., those associated with ɛp ≤ 0, can be quite narrow and are tuned by varying the plasma density, affording an opportunity for the application of these structures as ultra-narrow tunable microwave transmission filters.

  7. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  8. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  9. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  10. Color selectivity of surface-plasmon holograms illuminated with white light.

    Science.gov (United States)

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2013-09-20

    By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO(2) and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.

  11. Channel surface plasmons in a continuous and flat graphene sheet

    Science.gov (United States)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  12. Effect of polariton propagation on spectra of SRS amplification and CARS from polaritons

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2001-01-01

    The properties of k spectra of SRS amplification and CARS from polaritons caused by 'running out' of polaritons from the volume of their interaction with incident light beams are theoretically analysed. It is shown that the shape and width of the spectra depend on the relation between the size of the overlap region of exciting waves in a crystal along the direction of polariton propagation and the mean free path of polaritons. The conditions are found under which the widths of SRS amplification and CARS spectra give information on the polariton decay. (nonlinear optical phenomena and devices)

  13. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  14. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  15. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  16. Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure.

    Science.gov (United States)

    Bychkov, Igor V; Kuzmin, Dmitry A; Tolkachev, Valentine A; Plaksin, Pavel S; Shavrov, Vladimir G

    2018-01-01

    This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.

  17. Sensor based on Fano resonances of plane metamaterial with narrow slits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wan-Xia, E-mail: kate@mail.ahnu.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433 (China); The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China); Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren [The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China)

    2017-03-11

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection. - Highlights: • The plasmonic nanostructure composed of narrow slits and nano hole pairs were designed. • The optical properties were investigated experimentally and numerically. • The Fano resonances were found on the compound nanostructure. • The results have potential applications in sensing and weak signal detection.

  18. One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties

    Science.gov (United States)

    Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.

    2017-12-01

    Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.

  19. Beam manipulating by metal–anisotropic–metal plasmonic lens

    International Nuclear Information System (INIS)

    Bahramipanah, M; Abrishamian, M S; Mirtaheri, S A

    2012-01-01

    Embedding anisotropic media in the slit region of a plasmonic nano-optic lens is proposed as a new method of actively modulating the output beam. The focal length can be controlled easily by exposing the plasmonic nano-optic lens to a constant external electric field. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons (SPPs) in the slits and the electro-optical effect of liquid crystals. Our numerical simulations using the finite-difference time-domain (FDTD) technique reveal that a large tuning range of the focal length up to 545 nm at the first communication window can be achieved. The special feature of the proposed structure gives it an opportunity to be used as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes. (paper)

  20. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma

    2017-10-23

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.

  1. Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    We report on the fabrication and characterization of straight dielectric-loaded surface plasmon polaritons waveguides doped with lead-sulfide quantum dots as a near infra-red gain medium. A loss compensation of ~33% (an optical gain of ~143 cm^−1) was observed in the guided mode. The mode propaga...

  2. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1−xN (0 ≤ x ≤ 1) Ternary Alloy

    International Nuclear Information System (INIS)

    Ng, S. S.; Hassan, Z.; Hassan, H. Abu

    2008-01-01

    We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-In x Ga 1-x N ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-In x Ga 1-x N semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of −28.9 cm −1 is theoretically obtained

  3. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    Science.gov (United States)

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  4. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Toma, Andrea; Francardi, Marco; Malerba, Mario; Alabastri, Alessandro; Proietti Zaccaria, Remo; Stockman, Mark Mark; Di Fabrizio, Enzo M.

    2013-01-01

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  5. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  6. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  7. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    14-nm-thick stripes and a wavelength of 1550 urn, LR-SPP propagation loss is determined for the stripe widths varying from 2 to 12 mu m and is found to be similar to 7 and 5 dB/cm for 10- and 4-mu m-wide stripes, respectively. For the directional couplers based on 14-nm-thick and 8-mu m-wide gold...... stripes and a wavelength of 1570 nm, the coupling lengths of 4.1, 1.9, and 0.8 mm are found for the respective waveguide separations of 8, 4, and 0 mu m. We model the LR-SPP-based directional couplers using the effective-refractive-index method and obtain a good agreement with the experimental results....... The transmission spectra of LR-SPP-based directional couplers are presented demonstrating an efficient (similar to 30 dB) separation of different telecom wavelength bands. Various possibilities for dynamic control of wavelength division/multiplexing with LRSPP-based directional couplers that utilize the thermo...

  8. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  9. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  10. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  11. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    Science.gov (United States)

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  12. Systematic study of the focal shift effect in planar plasmonic slit lenses

    International Nuclear Information System (INIS)

    Hu Bin; Wang Qijie; Zhang Ying

    2012-01-01

    In this paper, we systematically studied the focal shift effect in planar plasmonic slit lenses. Through theoretical derivations and numerical simulations, we found that there is a focal length shift between the traditional design model and the finite-difference time-domain simulations. The shift is not only dependent on the Fresnel number (FN) of the lens, like traditional dielectric lenses, determined by the lens width and the designed focal length, but also on the surface plasmon polariton (SPPs) interaction on the lens surfaces, dependent on the slit numbers. We also found that the FN-induced focal shift is predominant when FN 1. An approximated theoretical model is presented to estimate the focal shift of plasmonic slit lens with FN < 1. (paper)

  13. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Beermann, Jonas; Eriksen, René L.; Stær, Tobias Holmgaard

    2014-01-01

    Plasmonic black surfaces formed by two-dimensional arrays of ultra-sharp convex metal grooves, in which the incident radiation is converted into gap surface plasmon polaritons (GSPPs) and subsequently absorbed (via adiabatic nanofocusing), are fabricated and investigated experimentally for gold......%, averaged over the investigated wavelength range of 400-985 nm. The highest averaged absorption level (similar to 97%) is achieved with 250-nm-period arrays in palladium that also has the highest melting temperature(similar to 15526 degrees C), promising thereby potential applications for broadband...

  14. A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films

    Science.gov (United States)

    Abbas, Farhat; Faryad, Muhammad

    2017-11-01

    Surface plasmon-polariton (SPP) waves guided by an interface of a metal and a hyperbolic chiral sculptured thin film (STF) were theoretically investigated for optical sensing of an analyte. The chiral STF was infiltrated with the analyte to be sensed, and the resulting change in the incidence angle of excitation of the SPP waves in the prism-coupled configuration was computed. The results indicated the potential of this configuration for a plasmonic sensor with sensitivity up to 6000 degrees per refractive index units of the infiltrating fluid in the angular investigation scheme, with multiple SPP waves of the same frequency but different phase speeds, spatial profiles, and sensitivities. The enhancement in the sensitivity is attributed to the high field strength of the SPP waves near the interface. A multiplasmonic sensor is advantageous because of its potential for higher confidence in the measurement of the same analyte.

  15. Thermalization and cooling of plasmon-exciton polaritons : towards quantum condensation

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Feist, J.; Verschuuren, M.A.; Garcia Vidal, F.J.; Gomez Rivas, J.

    2013-01-01

    We present indications of thermalization and cooling of quasiparticles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances

  16. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  17. A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons.

    Science.gov (United States)

    Liu, Liang-liang; Li, Zhuo; Gu, Chang-qing; Ning, Ping-ping; Xu, Bing-zheng; Niu, Zhen-yi; Zhao, Yong-jiu

    2014-05-05

    In this paper, we demonstrate that spoof surface magnon polaritons (SSMPs) can propagate along a corrugated perfect magnetic conductor (PMC) surface. From duality theorem, the existence of surface electromagnetic modes on corrugated PMC surfaces are manifest to be transverse electric (TE) mode compared with the transverse magnetic (TM) mode of spoof surface plasmon plaritons (SSPPs) excited on corrugated perfect electric conductor surfaces. Theoretical deduction through modal expansion method and simulation results clearly verify that SSMPs share the same dispersion relationship with the SSPPs. It is worth noting that this metamaterial will have more similar properties and potential applications as the SSPPs in large number of areas.

  18. Decay of non-equilibrium polariton condensate in semiconductors

    International Nuclear Information System (INIS)

    Beloussov, I.V.; Shvera, Y.M.

    1993-08-01

    Excitation dynamics of polariton quantum fluctuations arising in direct-gap semi-conductor as a result of parametric decay of non-equilibrium polariton condensate with non-zero wave vector is studied. The predominant mechanism of polariton scattering is supposed to be exciton-exciton interaction. Steady state which corresponds to the case of dynamic equilibrium between the polariton condensate and quantum fluctuations is obtained. Distribution functions of non-condensate polaritons are localized in the resonant regions, corresponding to two-particle excitation of polaritons from the condensate. The spectrum of elementary excitations in steady state coincides with usual polariton energy with the shift proportional to initial density of polariton condensate. (author). 25 refs

  19. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method.

    Science.gov (United States)

    Ding, Kun; Chan, C T

    2018-02-28

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  20. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  1. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    , wavelength scale, the propagation of bulk plasmon polaritons in the resulting multiscale HMM is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. As an example, Bragg reflection and Fabry-Pérot resonances...... are demonstrated in multiscale HMMs with periodic superstructures. More complicated, aperiodically ordered superstructures are also considered, with fractal Cantor-like multiscale HMMs exhibiting characteristic self-similar spectral signatures in the high-k band. The multiscale HMM concept is shown...

  2. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  3. Hybrid plasmonic bullseye antennas for efficient photon collection

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Bozhevolnyi, Sergey I.; Shalaev, Vladimir M.

    2018-01-01

    We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are consequently converted into highly directional out-of-plane emission. The proposed...... configuration consists of a high-index titania bullseye grating separated from a planar silver film by a thin low-index silica spacer layer. Such hybrid systems are theoretically capable of directing 85% of the dipole emission into a 0.9 NA objective, while featuring a spectrally narrow-band tunable decay rate...... stable operation. For experimental characterization of the antenna properties, a fluorescent nanodiamond containing multiple nitrogen vacancy centers (NV-center) was deterministically placed in the bullseye center, using an atomic force microscope. Probing the NV-center fluorescence we demonstrate...

  4. Theoretical analysis of gold nano-strip gap plasmon resonators

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, T; Jung, J; Bozhevolnyi, S I; Della Valle, G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Oest (Denmark)], E-mail: ts@nano.aau.dk

    2008-10-15

    Gold gap plasmon resonators consisting of two nm-thin and sub-micron-wide gold strips separated by a nm-thin air or quartz gap are considered. Scattering resonances and resonant fields are related to a model of resonances being due to counter-propagating gap plasmon polaritons forming standing waves. A small gap ({approx}10 nm) is found to result in small resonance peaks in scattering spectra but large electric field magnitude enhancement ({approx}20), whereas a large gap ({approx}100 nm) is found to result in more pronounced scattering peaks but smaller field enhancement. Design curves are presented that allow construction of gap plasmon resonators with any desired resonance wavelength in the range from the visible to the infrared, including telecom wavelengths. The relation between resonance wavelength and resonator width is close to being linear. The field magnitude enhancement mid between the gold strips is systematically investigated versus gap size and wavelength.

  5. Photothermal Transport of DNA in Entropy-Landscape Plasmonic Waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Pedersen, Jonas Nyvold

    2017-01-01

    landscapes. Separately, a range of plasmonic configurations have demonstrated active manipulation of nano-objects by harnessing concentrated electric fields. The integration of these two independent techniques promises a range of sophisticated and complementary functions to handle, for example, DNA...... photothermal transport of DNA through the losses of plasmonic modes. The propulsive forces, assisted by in-coupling to propagating channel plasmon polaritons, extend along the V-grooves with a directed motion up to ≈0.5 μm·mW-1 away from the input beam and λ-DNA velocities reaching ≈0.2 μm·s-1·mW-1....... The entropic trapping enables the V-grooves to be flexibly loaded and unloaded with DNA by variation of transverse fluid flow, a process that is selective to biopolymers versus fixed-shape objects and also allows the technique to address the challenges of nanoscale interaction volumes. Our self-aligning, light...

  6. Aberration correction in photoemission microscopy and applications in photonics and plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Koenenkamp, Rolf [Portland State Univ., Portland, OR (United States)

    2017-09-28

    We report on the design, assembly, operation and application of an aberration-corrected photoemission electron microscope. The instrument used novel hyperbolic mirror-correctors with two and three electrodes that allowed simultaneous correction of spherical and chromatic aberrations. A spatial resolution of 5.4nm was obtained with this instrument in 2009, and 4.7nm in subsequent years. New imaging methodology was introduced involving interferometric imaging of light diffraction. This methodology was applied in nano-photonics and in the characterization of surface-plasmon polaritons. Photonic crystals and waveguides, optical antennas and new plasmonic devices such as routers, localizers and filters were designed and demonstrated using the new capabilities offered by the microscope.

  7. A strongly interacting polaritonic quantum dot

    Science.gov (United States)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  8. Visualizing Surface Plasmons with Photons, Photoelectrons, and Electrons

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Abellan Baeza, Patricia; Gong, Yu; Hage, F. S.; Cottom, J.; Joly, Alan G.; Brydson, R.; Ramasse, Q. M.; Hess, Wayne P.

    2016-06-21

    Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint sub-nanometer spatial and sub-femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes over the relevant length and time scales. In this mini-review, we briefly highlight different techniques we employ to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

  9. Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission

    Energy Technology Data Exchange (ETDEWEB)

    Bragas, Andrea V. [Departamento de Física, FCEyN, Universidad de Buenos Aires, IFIBA CONICET, 1428 Buenos Aires (Argentina); Singh, Mahi R. [Department of Physics and Astronomy, Western University, London (Canada)

    2014-03-31

    Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metal nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.

  10. Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.

    Science.gov (United States)

    Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad

    2017-12-19

    Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.

  11. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon...... emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...

  12. Chiral solitons in spinor polariton rings

    Science.gov (United States)

    Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.

    2018-04-01

    We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.

  13. Design and characterization of dielectric-loaded plasmonic directional couplers

    DEFF Research Database (Denmark)

    Stær, Tobias Holmgaard; Chen, Zhuo; Bozhevolnyi, Sergey

    2009-01-01

    Ultracompact directional couplers (DCs) based on dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are analyzed using the effective index method (EIM), with the coupling, both in the parallel interaction region and in- and out-coupling regions, being taken into account. Near-field...... characterization of fabricated DCs performed with a scanning near-field optical microscope verifies the applicability of the EIM in the analysis and design of DLSPPW-based wavelength-selective DCs. The design approach applicable to a large variety of integrated optical waveguides is developed, enabling...

  14. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    Science.gov (United States)

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm.

  15. Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators

    Science.gov (United States)

    Liu, Dongdong; Wang, Jicheng; Lu, Jian

    2016-11-01

    The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.

  16. Non-spectroscopic surface plasmon sensor with a tunable sensitivity

    International Nuclear Information System (INIS)

    Wen, Qiuling; Han, Xu; Hu, Chuang; Zhang, Jiasen

    2015-01-01

    We demonstrate a non-spectroscopic surface plasmon sensor with a tunable sensitivity which is based on the relationship between the wave number of surface plasmon polaritons (SPPs) on metal film and the refractive index of the specimen in contact with the metal film. A change in the wave number of the SPPs results in a variation in the propagation angle of the leakage radiation of the SPPs. A reference light is used to interfere with the leakage radiation, and the refractive index of the specimen can be obtained by measuring the period of the interference fringes. The sensitivity of the sensor can be tuned by changing the incident direction of the reference light and this cannot be realized by conventional surface plasmon sensors. For a reference angle of 1.007°, the sensitivity and resolution of the sensor are 4629 μm/RIU (RIU stands for refractive index unit) and 3.6 × 10 −4 RIU, respectively. In addition, the sensor only needs a monochromatic light source, which simplifies the measurement setup and reduces the cost

  17. Active tuning of surface phonon polariton resonances via carrier photoinjection

    Science.gov (United States)

    Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.

    2018-01-01

    Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (electronic and phononic excitations.

  18. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  19. Long-range hybrid ridge and trench plasmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-23

    We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.

  20. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers.

    Science.gov (United States)

    Dong, H M; Yang, Y H; Yang, G W

    2015-03-05

    We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is appropriate. Furthermore, we achieve high Q factor and super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on the surface of the Au substrate, in which Q factor can reach 5790 and threshold is 0.45 KW/cm(2) which is the lowest value reported to date for ZnO nanostructures lasing, at least 10 times smaller than that of ZnO at the nanometer. Electron transfer mechanisms are proposed to understand the physical origin of quenching and enhancement of ZnO emission on the surface of Au substrates. These investigations show that this novel coupling mode holds a great potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications as well as all-optic integrated circuits.

  1. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    Science.gov (United States)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  2. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  3. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  4. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

    Science.gov (United States)

    Chekhov, Alexander L.; Stognij, Alexander I.; Satoh, Takuya; Murzina, Tatiana V.; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-01

    Ultrafast all-optical control of spins with femtosecond laser pulses is one of the hot topics at the crossroads of photonics and magnetism with a direct impact on future magnetic recording. Unveiling light-assisted recording mechanisms for an increase of the bit density beyond the diffraction limit without excessive heating of the recording medium is an open challenge. Here we show that surface plasmon-polaritons in hybrid metal-dielectric structures can provide spatial confinement of the inverse Faraday effect, mediating the excitation of localized coherent spin precession with 0.41 THz frequency. We demonstrate a two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within the 100 nm layer in dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways towards non-thermal opto-magnetic recording at the nano-scale.

  5. Theory for Nonlinear Spectroscopy of Vibrational Polaritons

    OpenAIRE

    Ribeiro, RF; Dunkelberger, AD; Xiang, B; Xiong, W; Simpkins, BS; Owrutsky, JC; Yuen-Zhou, J

    2017-01-01

    Molecular polaritons have gained considerable attention due to their potential to control nanoscale molecular processes by harnessing electromagnetic coherence. Although recent experiments with liquid-phase vibrational polaritons have shown great promise for exploiting these effects, significant challenges remain in interpreting their spectroscopic signatures. In this letter, we develop a quantum-mechanical theory of pump-probe spectroscopy for this class of polaritons based on the quantum La...

  6. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Science.gov (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  7. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting

    International Nuclear Information System (INIS)

    Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J

    2008-01-01

    This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission

  8. Competing role of interactions in synchronisation of exciton-polariton condensates

    Science.gov (United States)

    Khan, Saeed A.; Türeci, Hakan E.

    2017-10-01

    We present a theoretical study of synchronisation dynamics of incoherently pumped exciton-polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalised Gross-Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton-polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronised phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronisation. We map out a phase diagram and discuss the general characteristics of these phases using a generalised Adler equation.

  9. Magnetic polarons in a nonequilibrium polariton condensate

    Science.gov (United States)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  10. Polariton condensation with localized excitons and propagating photons

    International Nuclear Information System (INIS)

    Keeling, Jonathan; Eastham, P.R.; Szymanska, M.H.; Littlewood, P.B.

    2004-01-01

    We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localized excitons in a planar microcavity, using a generalized Dicke model. At low densities, we find a condensation temperature T c ∝ρ, as expected for a gas of structureless polaritons. However, as T c becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a BCS-like mean-field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra

  11. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    International Nuclear Information System (INIS)

    Setayesh, Amir; Mirnaziry, S Reza; Abrishamian, Mohammad Sadegh

    2011-01-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal–insulator–metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated

  12. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    Science.gov (United States)

    Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad

    2011-03-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.

  13. Polariton effects in naphthalene crystals

    International Nuclear Information System (INIS)

    Robinette, S.L.

    1977-10-01

    The experimental verification of the two-step nature of energy dissipation of photon energy by a crystal is the subject of this dissertation. The α(O,O) Davydov component of the lowest energy singlet transition in pure strain-free napthalene single crystals is shown to exhibit an increase in absorption with increasing temperature, due to an increase in polariton damping via polariton-phonon scattering processes

  14. Observation of the exceptional point in cavity magnon-polaritons.

    Science.gov (United States)

    Zhang, Dengke; Luo, Xiao-Qing; Wang, Yi-Pu; Li, Tie-Fu; You, J Q

    2017-11-08

    Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.

  15. Semiconductor plasmonic crystals: active control of THz extinction

    International Nuclear Information System (INIS)

    Schaafsma, M C; Rivas, J Gómez

    2013-01-01

    We investigate theoretically the enhanced THz extinction by periodic arrays of semiconductor particles. Scattering particles of doped semiconductors can sustain localized surface plasmon polaritons, which can be diffractively coupled giving rise to surface lattice resonances. These resonances are characterized by a large extinction and narrow bandwidth, which can be tuned by controlling the charge carrier density in the semiconductor. The underlaying mechanism leading to this tuneability is explained using the coupled dipole approximation and considering GaAs as the semiconductor. The enhanced THz extinction in arrays of GaAs particles could be tuned in a wide range by optical pumping of charge carriers. (invited article)

  16. Resonant Magnon-Phonon Polaritons in a Ferrimagnet

    Science.gov (United States)

    2000-09-29

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11604 TITLE: Resonant Magnon -Phonon Polaritons in a Ferrimagnet...part numbers comprise the compilation report: ADP011588 thru ADP011680 UNCLASSIFIED 75 Resonant Magnon -Phonon Polaritons in a Ferrimagnet I. E...susceptibilities X"aa and X’m << X’m appear, where 77 xem - DPx igEo0 i_ Xxy - hy- C1 (0)2 _ 00t2) 4= -7• 4 3. Phonon and magnon polaritons We solve the

  17. Mass of polaritons in different dielectric media

    International Nuclear Information System (INIS)

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  18. Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron L. C.; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 μm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic...... silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable...

  19. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Science.gov (United States)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  20. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  1. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    Science.gov (United States)

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  2. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer

    2017-01-01

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  3. Optical properties of hybrid semiconductor-metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kreilkamp, L.E.; Pohl, M.; Akimov, I.A.; Yakovlev, D.R.; Bayer, M. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Belotelov, V.I.; Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119992 Moscow (Russian Federation); Karczewski, G.; Wojtowicz, T. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland); Rudzinski, A.; Kahl, M. [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-07-01

    We study the optical properties of hybrid nanostructures comprising a semiconductor CdTe quantum well (QW) separated by a thin CdMgTe cap layer of 40 nm from a patterned gold film. The CdTe/CdMgTe QW structure with a well width of 10nm was grown by molecular beam epitaxy. The one-dimensional periodic gold films on top were made using e-beam lithography and lift-off process. The investigated structures can be considered as plasmonic crystals because the metal films attached to the semiconductor are patterned with a period in the range from 475 to 600 nm, which is comparable to the surface plasmon-polariton (SPP) wavelength. Angle dependent reflection spectra at room temperature clearly show plasmonic resonances. PL spectra taken at low temperatures of about 10 K under below- and above-barrier illumination show significant modifications compared to the unstructured QW sample. The number of emission lines and their position shift change depending on the excitation energy. The role of exciton-SPP coupling and Schottky barrier at the semiconductor-metal interface are discussed.

  4. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  5. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  6. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...

  7. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces...

  8. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    Science.gov (United States)

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  9. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  10. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  11. Manipulation of plasmonic wavefront and light–matter interaction in metallic nanostructures: A brief review

    International Nuclear Information System (INIS)

    Li Jia-Fang; Li Zhi-Yuan

    2014-01-01

    The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)

  12. Microcavity polariton linewidths in the weak-disorder regime

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Woggon, U.

    2000-01-01

    Polariton linewidths have been measured in a series of high-quality microcavities with different excitonic inhomogeneous broadening in the weak-disorder regime. We show experimentally that the influence of the disorder on the polariton linewidths is canceled when the polariton energies are far in...... in the tail of the excitonic absorption. The measured linewidths are quantitatively compared with an estimation using the measured excitonic absorption spectrum of the bare quantum wells, and good agreement is found....

  13. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  14. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  15. Ultra-fast polariton dynamics in an organic microcavity

    Directory of Open Access Journals (Sweden)

    Polli D.

    2013-03-01

    Full Text Available We study an organic semiconductor microcavity operating in the strong-coupling regime using femtosecond pump-probe spectroscopy. By probing the photo-induced absorption bands, we characterize the time-dependent population densities of states in the two polariton branches. We found evidence of a scattering process from the upper-branch cavity polaritons to the exciton reservoir having a rate of (150 fs-1. A slower process similarly populates lower-branch polaritons with a rate of around (3ps-1

  16. Elastic scattering dynamics of cavity polaritons: Evidence for time-energy uncertainty and polariton localization

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2002-01-01

    The directional dynamics of the resonant Rayleigh scattering from a semiconductor microcavity is investigated. When optically exciting the lower polariton branch, the strong dispersion results in a directional emission on a ring. The coherent emission ring shows a reduction of its angular width...... for increasing time after excitation, giving direct evidence for the time-energy uncertainty in the dynamics of the scattering by disorder. The ring width converges with time to a finite value, a direct measure of an intrinsic momentum broadening of the polariton states localized by multiple disorder scattering....

  17. Detection of the ODMR signal of a nitrogen vacancy centre in nanodiamond in propagating surface plasmons

    Science.gov (United States)

    Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min

    2018-02-01

    We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.

  18. Competing role of Interactions in Synchronization of Exciton-Polariton condensates

    Science.gov (United States)

    Khan, Saeed; Tureci, Hakan E.

    We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  19. Bistability of Cavity Magnon Polaritons

    Science.gov (United States)

    Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.

    2018-01-01

    We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.

  20. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  1. Interfacing Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides: Theoretical Analysis and Experimental Demonstration

    DEFF Research Database (Denmark)

    Tsilipakos, O.; Pitilakis, A.; Yioultsis, T. V.

    2012-01-01

    A comprehensive theoretical analysis of end-fire coupling between dielectric-loaded surface plasmon polariton and rib/wire silicon-on-insulator (SOI) waveguides is presented. Simulations are based on the 3-D vector finite element method. The geometrical parameters of the interface are varied...... in order to identify the ones leading to optimum performance, i.e., maximum coupling efficiency. Fabrication tolerances about the optimum parameter values are also assessed. In addition, the effect of a longitudinal metallic stripe gap on coupling efficiency is quantified, since such gaps have been...

  2. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    Energy Technology Data Exchange (ETDEWEB)

    Tuz, Vladimir R., E-mail: tvr@rian.kharkov.ua

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  3. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    International Nuclear Information System (INIS)

    Tuz, Vladimir R.

    2016-01-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  4. Surface phonon polaritons in semi-infinite semiconductor superlattices

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1986-07-01

    Surface phonon polaritons in a semi-infinite semiconductor superlattice bounded by vacuum are studied. The modes associated with the polaritons are obtained and used to obtain the dispersion relation. Numerical results show that polariton bands exist between the TO and LO phonon frequencies, and are found to approach two surface mode frequencies in the limit of large tangential wave vector. Dependency of frequencies on the ratio of layer thicknesses is shown. Results are illustrated by a GaAs-GaP superlattice bounded by vacuum. (author)

  5. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    Science.gov (United States)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  6. Interactions between excitation and extraction modes in an organic-based plasmon-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Nan-Fu, E-mail: nfchiu@ntnu.edu.tw [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Le Ster, Maxime [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Material Sciences and Engineering, Institut National des Sciences Appliquées de Rennes, Rennes 35708 (France); Yang, Cheng-Du [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Tseng, Ming-Hung; Tsai, Feng-Yu [Department of Material Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-03-30

    Highlights: • Directional emission properties give rise to a spectral band-gap response enhancement. • The subsequent emission intensity can increase by up to 3.5 times. • FWHM of approximately 60 nm in a defined direction is achieved. • SP coupling rate is approximately 80% on the metal grating structure. - Abstract: This study demonstrates the feasibility of enhancing an organic-based plasmon-emitting diode on the directional light beaming efficiency by near-field surface plasmon polaritons (SPPs) in both metal grating and polymer grating nanostructures. The interaction between organic/metal and PR/metal interfaces to cause SPPs can facilitate specific directional emission. Directional emission properties give rise to a spectral band-gap response enhancement. Our results also verify that efficient surface plasmon grating coupled emissions (SPGCEs) can improve directionality under index-mediated tuning. Experimental results indicate SP decoupling emission in the visible light. The subsequent emission intensity can increase by up to 3.5 times. Moreover, a narrow FWHM of approximately 60 nm in a defined direction is achieved, and an SP coupling rate is approximately 80% on the metal grating structure. The proposed method is highly promising for use as an active plasmonic emitter and discoloration biosensors with enhanced SPPs resonance energy, owing to interactions with the organic/metal nanostructure.

  7. Seeding of Polariton Stimulation in a Homogeneously Broadened Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    In time-resolved light emission from a high-quality semiconductor microcavity after pulsed excitation suitable for angle-resonant polariton-polariton scattering on the lower-polariton branch, we find strong evidence for final-state stimulation of this process. The self-stimulated emission...... and the intensity of this emission can be controlled. The time-resolved data and the density dependences are in agreement with a rate equation model neglecting polarization mixing effects. This model gives a coupling coefficient of b(LP,k)=0 = 2.4 x 10(-9) cm(4) s(-1) for the stimulated angle-resonant polariton......, following single-pulse excitation, appears on a fast time scale of only a few lens of ps with a maximum at 15 ps. This is in striking contrast to the photoluminescence decay time of 110 ps observed in the low-density limit. By injection of polaritons into the final state by a seeding pulse, the dynamics...

  8. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Directory of Open Access Journals (Sweden)

    Uriel Levy

    2017-02-01

    Full Text Available Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene ( ∼ π α = 2.3 % . Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  9. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  10. GaAs-based high temperature electrically pumped polariton laser

    Energy Technology Data Exchange (ETDEWEB)

    Baten, Md Zunaid; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu; Frost, Thomas; Deshpande, Saniya; Das, Ayan [Center for Photonic and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lubyshev, Dimitri; Fastenau, Joel M.; Liu, Amy W. K. [IQE, Inc., 119 Technology Drive, Bethlehem, Pennsylvania 18015 (United States)

    2014-06-09

    Strong coupling effects and polariton lasing are observed at 155 K with an edge-emitting GaAs-based microcavity diode with a single Al{sub 0.31}Ga{sub 0.69}As/Al{sub 0.41}Ga{sub 0.59}As quantum well as the emitter. The threshold for polariton lasing is observed at 90 A/cm{sup 2}, accompanied by a reduction of the emission linewidth to 0.85 meV and a blueshift of the emission wavelength by 0.89 meV. Polariton lasing is confirmed by the observation of a polariton population redistribution in momentum space and spatial coherence. Conventional photon lasing is recorded in the same device at higher pump powers.

  11. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  12. Focus Issue on surface plasmon photonics introduction

    DEFF Research Database (Denmark)

    Levy, Uriel; Berini, Pierre; Maier, Stefan A.

    2015-01-01

    The 7th International Conference on Surface Plasmon Photonics (SPP7) was held in Jerusalem, Israel from May 31st to June 5th, 2015. This independent series of biennial conferences is widely regarded as the premier series in the field, and the 7th edition maintained the tradition of excellence...

  13. Apertureless SNOM imaging of the surface phonon polariton waves: what do we measure?

    Science.gov (United States)

    Kazantsev, D. V.; Ryssel, H.

    2013-10-01

    The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip-surface electromagnetic near-field interaction plays a significant role.

  14. Storage and retrieval of electromagnetic waves with orbital angular momentum via plasmon-induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Xu, Datang; Huang, Guoxiang

    2017-01-23

    We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

  15. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan

    2011-08-01

    We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  16. Enhanced Plasmonic Wavelength Selective Infrared Emission Combined with Microheater

    Directory of Open Access Journals (Sweden)

    Hiroki Ishihara

    2017-09-01

    Full Text Available The indirect wavelength selective thermal emitter that we have proposed is constructed using a new microheater, demonstrating the enhancement of the emission peak generated by the surface plasmon polariton. The thermal isolation is improved using a 2 μm-thick Si membrane having 3.6 and 5.4 mm outer diameter. The emission at around the wavelength of the absorption band of CO2 gas is enhanced. The absorption signal increases, confirming the suitability for gas sensing. Against input power, the intensity at the peak wavelength shows a steeper increasing ratio than the background intensity. The microheater with higher thermal isolation gives larger peak intensity and its increasing ratio against the input power.

  17. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  18. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  19. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    ) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon...

  20. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  1. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan; Heo, Junseok; Jankowski, Marc; Guo, Wei; Zhang, Lei; Deng, Hui; Bhattacharya, Pallab

    2011-01-01

    , and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  2. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  3. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-01-01

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  4. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    KAUST Repository

    Lee, Kevin C. J.

    2015-11-17

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.

  5. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    KAUST Repository

    Lee, Kevin C. J.; Chen, Yi-Huan; Lin, Hsiang-Yu; Cheng, Chia-Chin; Chen, Pei-Ying; Wu, Ting-Yi; Shih, Min-Hsiung; Wei, Kung-Hwa; Li, Lain-Jong; Chang, Chien-Wen

    2015-01-01

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.

  6. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  7. Dispersion relation for localized magnetic polaritons propagating at ...

    Indian Academy of Sciences (India)

    Abstract. Localized magnetic polaritons are investigated in the systems consisting of two magnetic superlattices, coupled by a ferromagnetic contact layer. The general dis- persion relation for localized magnetic polaritons are derived in the framework of the electromagnetic wave theory in the Voigt geometry by the 'transfer' ...

  8. Nonequilibrium dynamics of polariton entanglement in a cluster of coupled traps

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga, L [Departamento de Fisica, Universidad de Los Andes, A.A.4976, Bogota D.C. (Colombia); Tejedor, C, E-mail: lquiroga@uniandes.edu.c [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain)

    2009-05-01

    We study in detail the generation and relaxation of quantum coherences (entanglement) in a system of coupled polariton traps. By exploiting a Lie algebraic based super-operator technique we provide an analytical exact solution for the Markovian dissipative dynamics (Master equation) of such system which is valid for arbitrary cluster size, polariton-polariton interaction strength, temperature and initial state. Based on the exact solution of the Master equation at T = OK, we discuss how dissipation affects the quantum entanglement dynamics of coupled polariton systems.

  9. Ag doped silicon nitride nanocomposites for embedded plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, M.; Bonafos, C., E-mail: bonafos@cemes.fr; Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, Cedex 04 (France); Khomenkova, L.; Gourbilleau, F. [CIMAP, CNRS/CEA/ENSICAEN/UCBN, 6 Boulevard Maréchal Juin, 14050 Caen, Cedex 4 (France)

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  10. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  11. Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs

    Science.gov (United States)

    González-Vila, Álvaro; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2017-11-01

    Gold-coated tilted fiber Bragg gratings can probe surface Plasmon polaritons with high resolution and sensitivity. In this work, we report two configurations to interrogate such plasmonic biosensors, with the aim of providing more efficient alternatives to the widespread spectrometer-based techniques. To this aim, the interrogation is based on measuring the optical power evolution of the cladding modes with respect to surrounding refractive index changes instead of computing their wavelength shift. Both setups are composed of a broadband source and a photodiode and enable a narrowband interrogation around the cladding mode that excites the surface Plasmon resonance. The first configuration makes use of a uniform fiber Bragg grating to filter the broadband response of the source in a way that the final interrogation is based on an intensity modulation measured in transmission. The second setup uses a uniform fiber grating too, but located beyond the sensor and acting as a selective optical mirror, so the interrogation is carried out in reflection. Both configurations are compared, showing interesting differential features. The first one exhibits a very high sensitivity while the second one has an almost temperature-insensitive behavior. Hence, the choice of the most appropriate method will be driven by the requirements of the target application.

  12. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  13. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  14. The dynamics of a polariton dimer in a disordered coupled array of cavities

    Science.gov (United States)

    Aiyejina, Abuenameh; Andrews, Roger

    2018-03-01

    We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent - 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

  15. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  16. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    Science.gov (United States)

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  17. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  18. Surface Plasmon Waves on Thin Metal Films.

    Science.gov (United States)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  19. Oscillatory solitons and time-resolved phase locking of two polariton condensates

    International Nuclear Information System (INIS)

    Christmann, Gabriel; Tosi, Guilherme; Baumberg, Jeremy J; Berloff, Natalia G; Tsotsis, Panagiotis; Eldridge, Peter S; Hatzopoulos, Zacharias; Savvidis, Pavlos G

    2014-01-01

    When pumped nonresonantly, semiconductor microcavity polaritons form Bose–Einstein condensates that can be manipulated optically. Using tightly-focused excitation spots, radially expanding condensates can be formed in close proximity. Using high time resolution streak camera measurements we study the time dependent properties of these macroscopic coherent states. By coupling this method with interferometry we observe directly the phase locking of two independent condensates in time, showing the effect of polariton–polariton interactions. We also directly observe fast spontaneous soliton-like oscillations of the polariton cloud trapped between the pump spots, which can be either dark or bright solitons. This transition from dark to bright is a consequence of the change of sign of the nonlinearity which we propose is due to the shape of the polariton dispersion leading to either positive or negative polariton effective mass. (paper)

  20. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  1. Amplitude-Mode Dynamics of Polariton Condensates

    International Nuclear Information System (INIS)

    Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.

    2011-01-01

    We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.

  2. Toward stimulated interaction of surface phonon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, B. D.; Trew, R. J.; Kim, K. W., E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2013-12-21

    Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.

  3. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  4. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  5. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    Science.gov (United States)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  6. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    Science.gov (United States)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  7. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  8. Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Eyderman, Sergey; Vanwolleghem, M.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 045403 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP205/10/0046 Grant - others:GA MŠk(CZ) MP0702 Institutional support: RVO:67985882 Keywords : one-way electromegnetic waveguide * magneto-optic photonic crystal * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.767, year: 2012

  9. Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Eyderman, Sergey; Vanwolleghem, M.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 045403 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP205/10/0046 Grant - others:GA MŠk(CZ) MP0702 Institutional support: RVO:67985882 Keywords : one-way electromegnetic waveguide * magneto- optic photonic crystal * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.767, year: 2012

  10. Sustained propagation and control of topological excitations in polariton superfluid

    Science.gov (United States)

    Pigeon, Simon; Bramati, Alberto

    2017-09-01

    We present a simple method to compensate for losses in a polariton superfluid. Based on a weak support field, it allows for the extended propagation of a resonantly driven polariton superfluid with minimal energetic cost. Moreover, this setup is based on optical bistability and leads to the significant release of the phase constraint imposed by resonant driving. This release, together with macroscopic polariton propagation, offers a unique opportunity to study the hydrodynamics of the topological excitations of polariton superfluids such as quantized vortices and dark solitons. We numerically study how the coherent field supporting the superfluid flow interacts with the vortices and how it can be used to control them. Interestingly, we show that standard hydrodynamics does not apply for this driven-dissipative fluid and new types of behaviour are identified.

  11. Spectra of magnetoplasma polaritons in a semiconductor layer on a metallic substrate

    International Nuclear Information System (INIS)

    Beletsekii, N.N.; Gasan, E.A.; Yakovenko, V.M.

    1988-01-01

    The dispersion properties of volume and surface magnetoplasma polaritons in a three-layer metal-semiconductor-insulator structure are studied. It is predicted that surface magnetoplasma polaritons propagating on the two boundaries of the semiconductor layer interact resonantly. It is shown that for a certain direction of propagation the dispersion curves of surface and volume magnetoplasma polaritons contain sections with negative dispersion. Nonreciprocal propagation of volume magnetoplasma polaritons has been observed. Losses in the semiconductor layer split the starting spectral lines into dispersion curves of two types, corresponding to forward and backward waves

  12. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    International Nuclear Information System (INIS)

    Wen, P; Nelson, Keith A; Christmann, G; Baumberg, J J

    2013-01-01

    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded. (paper)

  13. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  15. Generation and preservation of field enhancement for organic-plasmonic devices

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana

    with optically transparent and hard diamond-like carbon thin films has been investigated by means of atomic-force microscopy. The following optical characterizations of nanostructures with different coating thicknesses allow one to find the optimum balance between their optical and mechanical properties. Finally...... transferred on a silver film have been investigated by means of leakage spectroscopy, demonstrating the possibility to excite surface plasmon polaritons by luminescence from irradiated nanofibers. As an example for applications of such hybrid systems, the organic phototransistor with integrated gold....... The optical response of fabricated nanostructures has been characterized using a recently developed “imprint” technique, where a polymer film, deposited on the nanostructures is ablated by the structure-enhanced electric near-field. The improvement of mechanical durability of gold nanostructures coated...

  16. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    International Nuclear Information System (INIS)

    Jiang, Chang; Lu, Jing; Zhou, Lan

    2012-01-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  17. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chang [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Lu, Jing, E-mail: lujing@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhou, Lan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2012-10-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  18. Excitation of Surface Plasmon Polaritons by Fluorescent Light from Organic Nanofibers

    DEFF Research Database (Denmark)

    Sobolewska, Elżbieta Karolina; Jozefowski, Leszek; Kawalec, Tomasz

    2017-01-01

    -coherent excitation indicates its prospect for future integrated systems. To support our experimental results, we investigate the proposed geometries by analytical calculations and finite-difference-time-domain (FDTD) modelling. The experimentally obtained angular leakage radiation peak positions can readily...... be predicted by our analytical calculations. Nevertheless, the experimental results exhibit a distinct asymmetry in the peak intensities. In agreement with our FDTD calculations, we address this asymmetrical SPP excitation to the nanofiber molecular orientation. The proposed structure’s high flexibility...

  19. Effect of interface disorder on quantum well excitons and microcavity polaritons

    International Nuclear Information System (INIS)

    Savona, Vincenzo

    2007-01-01

    The theory of the linear optical response of excitons in quantum wells and polaritons in planar semiconductor microcavities is reviewed, in the light of the existing experiments. For quantum well excitons, it is shown that disorder mainly affects the exciton centre-of-mass motion and is modelled by an effective Schroedinger equation in two dimensions. For polaritons, a unified model accounting for quantum well roughness and fluctuations of the microcavity thickness is developed. Numerical results confirm that polaritons are mostly affected by disorder acting on the photon component, thus confirming existing studies on the influence of exciton disorder. The polariton localization length is estimated to be in the few-micrometres range, depending on the amplitude of disorder, in agreement with recent experimental findings

  20. Resonant nano-antennas for light trapping in plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mokkapati, S; Beck, F J; Catchpole, K R [Centre for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra, 0200 (Australia); De Waele, R; Polman, A, E-mail: sudha.mokkapati@anu.edu.au [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-05-11

    We investigate the influence of nanoparticle height on light trapping in thin-film solar cells covered with metal nanoparticles. We show that in taller nanoparticles the scattering cross-section is enhanced by resonant excitation of plasmonic standing waves. Tall nanoparticles have higher coupling efficiency when placed on the illuminated surface of the cell than on the rear of the cell due to their forward scattering nature. One of the major factors affecting the coupling efficiency of these particles is the phase shift of surface plasmon polaritons propagating along the nanoparticle due to reflection from the Ag/Si or Ag/air interface. The high scattering cross-sections of tall nanoparticles on the illuminated surface of the cell could be exploited for efficient light trapping by modifying the coupling efficiency of nanoparticles by engineering this phase shift. We demonstrate that the path length enhancement (with a nanoparticle of height 500 nm) at an incident wavelength of 700 nm can be increased from {approx}6 to {approx}16 by modifying the phase shift at the Ag/air interface by coating the surface of the nanoparticle with a layer of Si.

  1. Nonlinear dynamics of a coherent polariton-biexciton system

    International Nuclear Information System (INIS)

    Nguyen Trung Dan; Vo Tinh

    1994-08-01

    The nonlinear dynamics of a coherent interacting polariton-biexciton system in optically excited semiconductors is investigated. We consider the case when two macroscopically coherent modes - a lower branch polariton and a biexciton existing simultaneously in a direct-gap semiconductor. The conditions for exhibiting optical bistability in stationary regime are obtained. Numerical simulation for the nonlinear dynamics equations of the system is also carried out. (author). 16 refs, 4 figs

  2. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers.

    Science.gov (United States)

    Chen, Yu; Yu, Minghuai; Ye, Shuai; Song, Jun; Qu, Junle

    2018-04-05

    Lead halide perovskite nanocrystals with efficient two-photon absorption and ease of achieving population inversion have been recognized as good candidates to achieve frequency up-conversion for biophotonics applications, but suffer from the limitation of the miniaturization of the device and its corresponding poor stability when exposed to atmospheric moisture. Here we demonstrate the miniaturization of plasmonic nanolasers via embedding perovskite quantum dots (QDs) in rationally designed dual-mesoporous silica with gold nanocore. The nanocomposite supports resonant surface plasmon-polaritons (SPPs), which overlap both spatially and spectrally with the CsPbBr3 QDs. The outcoupling between surface plasmon oscillations and photonics modes within a wavelength range completely overcomes the loss of localized surface plasmons, and finally contributes to a novel application of two-photon-pumped nanolasers. Large optical gain under two-photon excitation was observed as a result of resonant energy transfer from excited perovskite QDs to surface plasmon oscillations and stimulated emission of surface plasmons in a luminous mode. The outmost organic-inorganic hybrid shells of the dual-mesoporous silica nanocomposites act as a protective layer of the perovskite QDs against water and endow the nanocomposites with superhydrophobicity. This work provides an alternative inspiration for the design of new two-photon pumped nanolasers.

  3. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  4. Terahertz Magnon-Polaritons in TmFeO3.

    Science.gov (United States)

    Grishunin, Kirill; Huisman, Thomas; Li, Guanqiao; Mishina, Elena; Rasing, Theo; Kimel, Alexey V; Zhang, Kailing; Jin, Zuanming; Cao, Shixun; Ren, Wei; Ma, Guo-Hong; Mikhaylovskiy, Rostislav V

    2018-04-18

    Magnon-polaritons are shown to play a dominant role in the propagation of terahertz (THz) waves through TmFeO 3 orthoferrite, if the frequencies of the waves are in the vicinity of the quasi-antiferromagnetic spin resonance mode. Both time-domain THz transmission and emission spectroscopies reveal clear beatings between two modes with frequencies slightly above and slightly below this resonance, respectively. Rigorous modeling of the interaction between the spins of TmFeO 3 and the THz light shows that the frequencies correspond to the upper and lower magnon-polariton branches. Our findings reveal the previously ignored importance of propagation effects and polaritons in such heavily debated areas as THz magnonics and THz spectroscopy of electromagnons. It also shows that future progress in these areas calls for an interdisciplinary approach at the interface between magnetism and photonics.

  5. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  6. Spontaneous and superfluid chiral edge states in exciton-polariton condensates

    Science.gov (United States)

    Sigurdsson, H.; Li, G.; Liew, T. C. H.

    2017-09-01

    We present a scheme of interaction-induced topological band structures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under nonresonant pumping we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under either nonresonant or resonant coherent pumping we find that it is also possible to engineer a topological dispersion that is linear in wave vector—a property associated with polariton superfluidity.

  7. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  8. On the equivalence of two approaches in the exciton-polariton theory

    International Nuclear Information System (INIS)

    Ha Vinh Tan; Nguyen Toan Thang

    1983-02-01

    The polariton effect in the optical processes involving photons with energies near that of an exciton is investigated by the Bogolubov diagonalization and the Green function approaches in a simple model of the direct band gap semiconductor with the electrical dipole allowed transition. To take into account the non-resonant terms of the interaction Hamiltonian of the photon-exciton system the Green function approach derived by Nguyen Van Hieu is presented with the use of Green's function matrix technique analogous to that suggested by Nambu in the theory of superconductivity. It is shown that with the suitable choice of the phase factors the renormalization constants are equal to the diagonalization coefficients. The disperson of polaritons and the matrix elements of processes with the participation of polaritons are identically calculated by both methods. However the Green function approach has an advantage in including the damping effect of polaritons. (author)

  9. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    Science.gov (United States)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined

  10. Dark and bright-state polaritons in triple- Λ EIT system

    Science.gov (United States)

    Selvan, Karthick

    2018-04-01

    Properties of polaritons in triple-Λ EIT system are investigated using Sawada-Brout-Chong method. The role of dark and bright-state polaritons in the dynamics of the system is studied in detail by including the decay of excited atomic levels. Time evolution of entanglement of single and three-photon EIT modes within the system is investigated to explain this study.

  11. Optical orientation of the homogeneous nonequilibrium Bose-Einstein condensate of exciton polaritons

    Science.gov (United States)

    Korenev, V. L.

    2012-07-01

    A simple model, describing the steady state of the nonequilibrium polarization of a homogeneous Bose-Einstein condensate of exciton polaritons, is considered. It explains the suppression of spin splitting of a nonequilibrium polariton condensate in an external magnetic field, the linear polarization, the linear-to-circular polarization conversion, and the unexpected sign of the circular polarization of the condensate all on equal footing. It is shown that inverse effects are possible, to wit, spontaneous circular polarization and the enhancement of spin splitting of a nonequilibrium condensate of polaritons.

  12. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode...... at a temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  13. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication

    Science.gov (United States)

    Joshi, Neetu; Pathak, Nagendra P.

    2018-02-01

    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  14. Raman scattering by hot and thermal polaritons in crystal quartz

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F.; Colocci, M.; Neri, M.; Querzoli, R.

    1984-11-01

    Nonlinear mixing of IR and visible radiation, i.e. coherent Raman scattering by polaritons driven by a CO/sub 2/ laser, has been used to obtain the dispersion curve and its width in q-space of the polariton associated to the E-phonon at 1065 cm/sup -1/ in crystal quartz. It is shown in this paper that a direct method to determine independently, with high precision, the refractive index and absorbance of a crystal can be obtained in this way. The results are compared with accurate data obtained from Raman scattering by polaritions in thermal equilibrium and very good agreement is found between the two measurements. It is finally shown that nonlinear-mixing techniques turn out to be completely consistent with the simple picture of scattering of light by hot polaritons.

  15. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates

    Science.gov (United States)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim

    2016-05-01

    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  16. Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals

    International Nuclear Information System (INIS)

    Liang Hong; Zhang Qiang; Liu Huan; Fu Shu-Fang; Zhou Sheng; Wang Xuan-Zhang

    2015-01-01

    Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto–optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ < 750 nm all of the reflection are over 10% for the arbitrary filling ratio f 1 , in addition, the enhancement of Kerr rotation angles are at least one order of magnitude. (paper)

  17. Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam

    Science.gov (United States)

    Kim, Myun-Sik; Herzig, Hans Peter

    2018-01-01

    We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.

  18. Coherence properties of exciton-polariton OPO condensates in one and two dimensions

    DEFF Research Database (Denmark)

    Spano, R.; Cuadra, J.; Anton, C.

    2012-01-01

    We give an overview of the coherence properties of exciton-polariton condensates generated by optical parametric scattering. Different aspects of the first-order coherence (g((1))) have been investigated. The spatial coherence extension of a two-dimensional (2D) polariton system, below and at the...

  19. Dynamics of defect-induced dark solitons in an exciton-polariton condensate

    Science.gov (United States)

    Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał

    2018-04-01

    We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.

  20. Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.

    Science.gov (United States)

    Estrecho, E; Gao, T; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A

    2016-11-25

    Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles-exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.

  1. Characterization of long-range plasmonic waveguides at visible to near-infrared regime

    Directory of Open Access Journals (Sweden)

    Sheng-Ting Huang

    2017-12-01

    Full Text Available Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.

  2. Interface plasmon-phonons modes in ion-beam synthesized Mg2Si nanolayers

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.

    2009-01-01

    Raman scattering of samples, representing n- and p-type Si matrix with unburied Mg 2 Si nanolayers, formed by ion-beam synthesis, are studied. Despite the features in the Raman spectra attributed to the polariton modes with frequencies between those of the TO and LO phonons, additional features outside this interval are detected. The frequencies of these features are very sensitive to the plasma frequency, being different in the n- and p-type Si matrix and to the annealing time. The latter implies the generation of interface plasmonphonons modes. The frequencies of the interface plasmon-phonon modes are calculated and compared with the experimental results. The order of the carrier concentration in Mg 2 Si, the data of which are not available in the literature, is evaluated. (authors)

  3. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  4. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  5. Optical orientation of the homogeneous non-equilibrium Bose-Einstein condensate of bright excitons (polaritons)

    OpenAIRE

    Korenev, V. L.

    2011-01-01

    A simple model, describing the dynamics of the non-equilibrium pseudospin of a homogeneous Bose-Einstein condensate of exciton polaritons, has been formulated. It explains the suppression of spin splitting of a non-equilibrium polariton condensate in an external magnetic field, the optical alignment, and the conversion of alignment into orientation of polaritons. It has been shown that inverse effects are possible, to wit, the spontaneous circular polarization and the enhancement of spin spli...

  6. Microscopic description of exciton polaritons in direct two-band semiconductors

    Science.gov (United States)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  7. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding. The opt......This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...

  8. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    Science.gov (United States)

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  9. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  10. Optical bistability and multistability in polaritonic materials doped with nanoparticles

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate the optical bistability and multistability in polaritonic materials doped with nanoparticles inside an optical ring cavity. It is found that the optical bistability and multistability can be easily controlled by adjusting the corresponding parameters of the system properly. The effect of the dipole–dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens up the possibility of controling the optical bistability and multistability in polaritonic materials doped with nanoparticles. (letter)

  11. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO

    Science.gov (United States)

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P.; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J.; Lafosse, X.; Bouchoule, S.; Li, F.; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2016-03-01

    The polariton condensation phase diagram is compared in GaN and ZnO microcavities grown on mesa-patterned silicon substrate. Owing to a common platform, these microcavities share similar photonic properties with large quality factors and low photonic disorder, which makes it possible to determine the optimal spot diameter and to realize a thorough phase diagram study. Both systems have been investigated under the same experimental conditions. The experimental results and the subsequent analysis reveal clearly that longitudinal optical phonons have no influence in the thermodynamic region of the condensation phase diagram, while they allow a strong (slight) decrease of the polariton lasing threshold in the trade-off zone (kinetic region). Phase diagrams are compared with numerical simulations using Boltzmann equations, and are in satisfactory agreement. A lower polariton lasing threshold has been measured at low temperature in the ZnO microcavity, as is expected due to a larger Rabi splitting. This study highlights polariton relaxation mechanisms and their importance in polariton lasing.

  12. Bistability and self-oscillations effects in a polariton-laser semiconductor microcavity

    International Nuclear Information System (INIS)

    Cotta, E A; Matinaga, F M

    2007-01-01

    We report an experimental observation of polaritonic optical bistability of the laser emission in a planar semiconductor microcavity with a 100 0 A GaAs single quantum well in the strong-coupling regime. The bistability curves show crossings that indicate a competition between a Kerr-like effect induced by the polariton population and thermal effects. Associated with the bistability, laser-like emission occurs at the bare cavity mode

  13. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    Science.gov (United States)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  14. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    Science.gov (United States)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  15. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2017-01-01

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  16. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea

    2017-08-17

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  17. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C.; Podolskiy, V. A. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Hoffman, A. J. [Department of Electrical Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  18. A novel phase-sensitive scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Wu Xiao-Yu; Lin Sun; Tan Qiao-Feng; Wang Jia

    2015-01-01

    Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field optical microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization. (paper)

  19. High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices

    DEFF Research Database (Denmark)

    Sukham, Johneph; Takayama, Osamu; Lavrinenko, Andrei

    2017-01-01

    , in particular, when the Au layer is not much thicker than the adhesion layers. We experimentally compared the performances of the ultrathin gold films to show the pivotal influence of adhesion layers on highly confined propagating plasmonic modes, using Cr and 3-aminopropyl trimethoxysilane (APTMS) adhesion...

  20. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  1. Phase Transitions of the Polariton Condensate in 2D Dirac Materials.

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-13

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  2. Phase Transitions of the Polariton Condensate in 2D Dirac Materials

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-01

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e -ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS2 or WSe2 . Specifically, in forming the polariton, the e -ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e -e ) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  3. Energy equipartition and unidirectional emission in a spaser nanolaser

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    A spaser is a nanoplasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and a resonant cavity replaced by a metallic nanostructure supporting localized plasmonic modes. By combining analytical results and first

  4. Two-photon transitions to exciton polaritons

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1979-08-01

    A semiclassical theory for the creation of excitonic polariton states by two-photon absorption, via an intermediate exciton state, is given. A band model has been introduced which gives the dominant contribution to this process. A numerical calculation is found to be in good agreement with a recent observation in CuCl. (author)

  5. Temperature-dependent polarized luminescence of exciton polaritons in a ZnO film

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, A.A.; Nekrutkina, O.V.; Shubina, T.V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Gruber, Th.; Kirchner, C. [Department of Semiconductor Physics, Ulm University, 89081 Ulm (Germany); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany); Karlsson, K.F.; Monemar, B. [Linkoeping University, 581 83 Linkoeping (Sweden)

    2005-02-01

    We report on the studies of linearly polarized photoluminescence (PL) in a (0001) oriented ZnO epitaxial film, grown by metal organic chemical vapor deposition on a GaN template. The emission of mixed longitudinal-transverse exciton polariton modes was observed up to 130 K that evidences polaritonic nature of the excitonic spectrum up to this elevated temperature. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Invited Article: Plasmonic growth of patterned metamaterials with fractal geometry

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takeyasu

    2016-08-01

    Full Text Available Large-scale metallic three-dimensional (3D structures composed of sub-wavelength fine details, called metamaterials, have attracted optical scientists and materials scientists because of their unconventional and extraordinary optical properties that are not seen in nature. However, existing nano-fabrication technologies including two-photon fabrication, e-beam, focused ion-beam, and probe microscopy are not necessarily suitable for fabricating such large-scale 3D metallic nanostructures. In this article, we propose a different method of fabricating metamaterials, which is based on a bottom-up approach. We mimicked the generation of wood forest under the sunlight and rain in nature. In our method, a silver nano-forest is grown from the silver seeds (nanoparticles placed on the glass substrate in silver-ion solution. The metallic nano-forest is formed only in the area where ultraviolet light is illuminated. The local temperature increases at nano-seeds and tips of nano-trees and their branches due to the plasmonic heating as a result of UV light excitation of localized mode of surface plasmon polaritons. We have made experiments of growth of metallic nano-forest patterned by the light distribution. The experimental results show a beautiful nano-forest made of silver with self-similarity. Fractal dimension and spectral response of the grown structure are discussed. The structures exhibit a broad spectral response from ultraviolet to infrared, which was used for surface-enhanced Raman detection of molecules.

  7. Quantum-well exciton polariton emission from multi-quantum-well wire structures

    Science.gov (United States)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    The radiative decay of quantum-well exciton (QWE) polaritons in microstructured Al0.3Ga0.7As - GaAs multi-quantum wells (MQW) has been studied by photoluminescence spectroscopy. Periodic wire structures with lateral periodicities a = 250-500 nm and lateral widths t = 100-200 nm have been fabricated by plasma etching. The thickness of the QWs was 13 nm. In the QW wire samples the free-exciton photoluminescence was strongly reduced and the QWE polariton emission was observed as a maximum peaked at a 3 meV higher energy than the free QWE transition. In samples which had only a microstructured cladding layer, the free-exciton photoluminescence was dominant in the spectrum and the QWE polariton emission was observed as a shoulder on the high-energy side of the free QWE transition. In addition, two transitions at the low energy side of the free QWE photoluminescence were present in the microstructured samples, which were related to etching induced states.

  8. Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Gentile, Francesco T.; Candeloro, Patrizio; Coluccio, Maria Laura; Perozziello, Gerardo; Limongi, Tania; Marini, Monica; Raimondo, Raffaella; Tirinato, Luca; Francardi, Marco; Das, Gobind; Proietti Zaccaria, Remo; Falqui, Andrea; Di Fabrizio, Enzo M.

    2014-01-01

    In this work we review novel strategies and new physical effects to achieve compositional and structural recognition at single molecule level. This chapter is divided in two main parts. The first one introduces the strategies currently adopted to investigate matter at few molecules level. Exploiting the capability of surface plasmon polaritons to deliver optical excitation at nanoscale, we introduce a technique relying on a new transport phenomenon with chemical sensitivity and nanometer spatial resolution. The second part describes how micro and nanostructured superhydrofobic textures can concentrate and localize a small number of molecules into a well-defined region, even when only an extremely diluted solution is available. Several applications of these devices as micro- and nano-systems for high-resolution imaging techniques, cell cultures and tissue engineering applications are also discussed.

  9. Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale

    KAUST Repository

    Giugni, Andrea

    2014-08-11

    In this work we review novel strategies and new physical effects to achieve compositional and structural recognition at single molecule level. This chapter is divided in two main parts. The first one introduces the strategies currently adopted to investigate matter at few molecules level. Exploiting the capability of surface plasmon polaritons to deliver optical excitation at nanoscale, we introduce a technique relying on a new transport phenomenon with chemical sensitivity and nanometer spatial resolution. The second part describes how micro and nanostructured superhydrofobic textures can concentrate and localize a small number of molecules into a well-defined region, even when only an extremely diluted solution is available. Several applications of these devices as micro- and nano-systems for high-resolution imaging techniques, cell cultures and tissue engineering applications are also discussed.

  10. Strong nonreciprocity of phonon polaritons of an insulator at its boundary with an ideal metal or superconductor in a magnetic field

    International Nuclear Information System (INIS)

    Chupis, I.E.; Mamaluy, D.A.

    2000-01-01

    Surface phonon polaritons in a semi-infinite insulator in a constant magnetic field at the boundary with an ideal metal or a superconductor have been considered. These phonon polaritons are induced by dynamic magnetoelectric interaction, which exists in the presence of a magnetic field. The modes of these surface polaritons appreciably differ in opposite directions of the magnetic field or the propagation of the wave. As a result, polaritons of a given optical or infrared frequency propagate only in one direction with respect to the magnetic field, which is the effect of rectification of surface electromagnetic waves. The inversion of the magnetic field results in 'switching on' or 'switching off' of surface polaritons. The existence of radiant surface polariton modes is predicted. (author)

  11. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  12. Effect of exciton polaritons of absorption edge of GaTe

    International Nuclear Information System (INIS)

    Kurbatov, L.N.; Dirochka, A.I.; Sosin, V.A.

    1979-01-01

    The experimental results, pointing to the dependence of spectral and integral coefficients of exciton absorption as well as to the exciton relaxation parameter γsub(0) over the exciton zone on the sample thickness, are presented. It is tried to explain the inverse dependences of absorption intensity in the maximum of αsub(max) and γsub(0) exciton line within the limits of polariton theory. The values of polariton free path length in GaTe at various temperatures, as well as the volume γsub(vol.) and surface γsub(surf.) parameters of exciton relaxation over the exciton zone are discussed

  13. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    Science.gov (United States)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  14. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  15. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  16. Polariton solitons and nonlinear localized states in a one-dimensional semiconductor microcavity

    Science.gov (United States)

    Chen, Ting-Wei; Cheng, Szu-Cheng

    2018-01-01

    This paper presents numerical studies of cavity polariton solitons (CPSs) in a resonantly pumped semiconductor microcavity with an imbedded spatial defect. In the bistable regime of the well-known homogeneous polariton condensate, with proper incident wave vector and pump strength, bright and/or dark cavity solitons can be found in the presence of a spatially confined potential. The minimum pump strength required to observe the CPSs or nonlinear localized states in this parametric pump scheme is therefore reported.

  17. Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.

  18. Interaction of the Bragg gap with polaritonic gap in opal photonic crystals

    Science.gov (United States)

    Nayer, Eradat; Sivachenko, Andrey Yu; Li, Sergey; Raikh, Mikhail E.; Valy Vardeny, Z.

    2001-03-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self- assembled structures of silica (SiO_2) spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω=ω_B) and polaritonic (at ω=ω_T) resonances are well separated in frequency. A completely different situation occurs when ωT =ω_B. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations. (The work was supported in part by Army Research office DAAD19-00-1-0406.)

  19. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  20. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, Seyedeh Mehri, E-mail: M_hamidi@sbu.ac.ir [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Mosaeii, Babak; Afsharnia, Mina [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Aftabi, Ali [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor. - Highlights: • The magneto-optical properties of aligned multilayer nanowires has been investigated. • We see the sufficient sensitivity in magneto-optical surface plasmon resonance of Ni and Co nanowires. • The magnetic modulation mechanism in Ni/Co multilayer has been changed by angular modulation. • The magnetization modulation of the excitation angle accompanying the SPP wave vector modulation takes place in each nanodisk of multilayer.

  1. Enhanced device performances of a new inverted top-emitting OLEDs with relatively thick Ag electrode.

    Science.gov (United States)

    Park, So-Ra; Suh, Min Chul

    2018-02-19

    To improve the device performances of top-emitting organic light emitting diodes (TEOLEDs), we developed a new inverted TEOLEDs structure with silver (Ag) metal as a semi-transparent top electrode. Especially, we found that the use of relatively thick Ag electrode without using any carrier injection layer is beneficial to realize highly efficient device performances. Also, we could insert very thick overlying hole transport layer (HTL) on the emitting layer (EML) which could be very helpful to suppress the surface plasmon polariton (SPP) coupling if it is applied to the common bottom-emission OLEDs (BEOLEDs). As a result, we could realize noteworthy high current efficiency of approximately ~188.1 cd/A in our new inverted TEOLEDs with 25 nm thick Ag electrode.

  2. Impact of graphene on the polarizability of a neighbour nanoparticle: A dyadic green's function study

    DEFF Research Database (Denmark)

    Amorim, B.; Dias Gonçalves, Paulo André; Vasilevskiy, M. I.

    2017-01-01

    We discuss the renormalization of the polarizability of a nanoparticle in the presence of either: (1) a continuous graphene sheet; or (2) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon polaritons in graphene...

  3. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    DEFF Research Database (Denmark)

    Bache, Morten; Lavrinenko, Andrei

    2017-01-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still...

  4. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  5. BCS-BEC crossover in a system of microcavity polaritons

    International Nuclear Information System (INIS)

    Keeling, Jonathan; Eastham, P.R.; Szymanska, M.H.; Littlewood, P.B.

    2005-01-01

    We investigate the thermodynamics and signatures of a polariton condensate over a range of densities, using a model of microcavity polaritons with internal structure. We determine a phase diagram for this system including fluctuation corrections to the mean-field theory. At low densities the condensation temperature T c behaves like that for point bosons. At higher densities, when T c approaches the Rabi splitting, T c deviates from the form for point bosons, and instead approaches the result of a BCS-like mean-field theory. This crossover occurs at densities much less than the Mott density. We show that current experiments are in a density range where the phase boundary is described by the BCS-like mean-field boundary. We investigate the influence of inhomogeneous broadening and detuning of excitons on the phase diagram

  6. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  7. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    Science.gov (United States)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  8. Experimental verification of the intrinsic ultrafast delayed nonlinearity of gold

    DEFF Research Database (Denmark)

    Bache, Morten; Lysenko, Oleg; Olivier, Nicolas

    2017-01-01

    Surface plasmon polaritons (SPPs) in plasmonic metal waveguides can excite a third-order nonlinear response [1] much akin the well-known self-phase modulation (SPM) and two-photon absorption seen in light propagating in dielectric waveguides. In metals, the nonlinearity mainly arises as a self...

  9. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  10. The dispersion of the polariton frequencies in orthorhombic KNbO3

    International Nuclear Information System (INIS)

    Claus, R.; Winter, F.X.

    1975-01-01

    The dispersion of the polariton frequencies in all of the three main planes of an orthorhombic crystal has been studied at the example KNbO 3 for the first time. In this case pure transverse polar modes of the species A 1 , B 1 and B 2 occur. The investigations have been carried out with Raman scattering. The experimental data have been compared with dispersion curves, which have been calculated numerically on the basis of the general theory of polaritons. In each one of the main planes the pure transverse modes of one symmetry species are independent from the direction as predicted. (orig.) [de

  11. Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures

    International Nuclear Information System (INIS)

    Chen, Y. L.; Ma, Y. J.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Jiang, Z. M.; Chen, D. D.; Xu, F.

    2014-01-01

    Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488 nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325 nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.

  12. Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

    International Nuclear Information System (INIS)

    Wu Ping; Xu Wen; Li Long-Long; Lu Tie-Cheng; Wu Wei-Dong

    2014-01-01

    We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector q z = q max beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra- and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  14. Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Fan Zhen-Kai; Li Shu-Guang; Fan Yu-Qiu; Zhang Wan; An Guo-Wen; Bao Ya-Jie

    2014-01-01

    We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach −58 dB and −60 dB and the bandwidths as the extinction ratio better than −12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Bragg polaritons in a ZnSe-based unfolded microcavity at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Rahman, SK. S.; Cornelius, M.; Kaya, T.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Gust, A.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klembt, S. [Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble (France)

    2016-03-21

    In this contribution, we present strong coupling of ZnSe quantum well excitons to Bragg modes resulting in the formation of Bragg polariton eigenstates, characterized by a small effective mass in comparison to a conventional microcavity. We observe an anticrossing of the excitonic and the photonic component in our sample being a clear signature for the strong-coupling regime. The anticrossing is investigated by changing the detuning between the excitonic components and the Bragg mode. We find anticrossings between the first Bragg mode and the heavy- as well as light-hole exciton, respectively, resulting in three polariton branches. The observed Bragg-polariton branches are in good agreement with theoretical calculations. The strong indication for the existence of strong coupling is traceable up to a temperature of 200 K, with a Rabi-splitting energy of 24 meV and 13 meV for the Bragg mode with the heavy- and light-hole exciton, respectively. These findings demonstrate the advantages of this sample configuration for ZnSe-based devices for the strong coupling regime.

  16. Light modulators and deflectors based on polariton effects

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    , the polariton, and hence the photon part, can be deflected or modulated. The connection with geometrical optics is established, and it is shown that the deflection is due to a gradient in the refraction index created by the applied external field. Several examples with electric, magnetic, and stress fields...

  17. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...... colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances...... and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large...

  18. Localized magnetic polaritons in thin flims

    International Nuclear Information System (INIS)

    Lima, N.P.

    1985-01-01

    In this thesis we study the localized retarted modes (polaritons) in a ferromagnetic slab. For this we used the linear response theory to obtain the dispersion relations of the bulk, surface and guided modes, for a geometry more general than the Voigt's one. We got both the Green functions in the Voight geometry and the power spectra of these modes. Finally, we show that these Green functions fulfill the correct general symmetry requirements. (author) [pt

  19. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    Science.gov (United States)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  20. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  1. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  2. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    Science.gov (United States)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  3. Hotspot related plasmon assisted multiphoton photocurrents in metal-insulator-metal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Differt, Dominik; Pfeiffer, Walter [Universitaet Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany); Diesing, Detlef [Universitaet Duisburg-Essen, Universitaetsstr. 5, 45117 Essen (Germany)

    2011-07-01

    Scanning photocurrent microscopy of metal-insulator-metal junctions (MIM) is used to investigate the mechanisms of femtosecond multiphoton photocurrent injection at liquid nitrogen temperature. The locally induced multiphoton photocurrent in a Ag-TaO-Ta MIM junction is measured in a scanning microscope cryostat under focused illumination (5{mu}m focus diameter, 800 nm, 30 fs, 80 MHz repetition rate). The intensity dependence reveals a mixture of two-photon and three-photon processes that are responsible for the photocurrent. Its lateral variation shows hotspot-like behaviour with significant magnitude variations on a 100 to 200 nm length scale. Assuming an injection current duration of 40fs the peak injection current density of about 10{sup 4} A cm{sup -2} is estimated - 10{sup 6} times higher than that for 400 nm continuous wave illumination slightly below the damage threshold. The simultaneously measured extinction of the incident radiation reveals a 20 to 30% increased absorption at the hotspots. We attribute the local photocurrent enhancement to the defect-assisted excitation of surface plasmon polaritons at the silver electrode leading to an enhanced local excitation.

  4. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  5. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  6. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Science.gov (United States)

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  7. Anomalous transmission through heavily doped conducting polymer films with periodic subwavelength hole array

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-08-01

    We observed resonantly enhanced (or anomalous transmission) terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF 6 molecules [PPy(PF6)]. The anomalous transmission spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the resonantly enhanced transmission peaks are broader in the exotic metallic PPy(PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, indicating that the surface plasmon polaritons on the PPy(PF6) film surfaces have higher attenuation.

  8. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  9. Near-field heat transfer between graphene/hBN multilayers

    Science.gov (United States)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  10. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  11. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  12. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  13. Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling.

    Science.gov (United States)

    Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun

    2016-04-04

    This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.

  14. Topological order and thermal equilibrium in polariton condensates

    Science.gov (United States)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; de Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N.; Gigli, Giuseppe; Laussy, Fabrice P.; Szymańska, Marzena H.; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  15. Topological order and thermal equilibrium in polariton condensates.

    Science.gov (United States)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; De Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N; Gigli, Giuseppe; Laussy, Fabrice P; Szymańska, Marzena H; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  16. Femtosecond Nanofocusing with Full Optical Waveform Control

    International Nuclear Information System (INIS)

    Berweger, Samuel; Atkin, Joanna M.; Xu, Xiaoji G.; Olmon, Robert L.; Raschke, Markus Bernd

    2011-01-01

    The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.

  17. Schottky-contact plasmonic dipole rectenna concept for biosensing.

    Science.gov (United States)

    Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre

    2013-02-25

    Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

  18. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    Science.gov (United States)

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  19. A study of polaritonic transparency in couplers made from excitonic materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Racknor, Chris [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  20. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic