WorldWideScience

Sample records for plasmon mode spectrum

  1. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  2. Nanowire Plasmon Excitation by Adiabatic Mode Transformation

    Science.gov (United States)

    Verhagen, Ewold; Spasenović, Marko; Polman, Albert; Kuipers, L. (Kobus)

    2009-05-01

    We show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.

  3. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  4. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  5. Mode matching for optimal plasmonic nonlinear generation

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Jun Suk; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2013-03-01

    Nanostructures and metamaterials have attracted interest in the nonlinear optics community due to the possibility of engineering their nonlinear responses; however, the underlying physics to describe nonlinear light generation in nanostructures and the design rules to maximize the emission are still under debate. We study the geometry dependence of the second harmonic and third harmonic emission from gold nanostructures, by designing arrays of nanostructures whose geometry varies from bars to split ring resonators. We fix the length (and volume) of the nanostructure on one axis, and change the morphology from a split ring resonator on the other axis. We observed that the optimal second harmonic generation does not occur at the morphology indicated by a nonlinear oscillator model with parameters derived from the far field transmission and is not maximized by a spectral overlap of the plasmonic modes; however, we find a near field overlap integral and mode matching considerations accurately predict the optimal geometry.

  6. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    Science.gov (United States)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  7. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas

    CERN Document Server

    Zhang, Qiang; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-01-01

    Plasmonic nanoantenna is of promising applications in optical sensing, single-molecular detection, and enhancement of optical nonlinear effect, surface optical spectroscopy, photochemistry, photoemission, photovoltaics, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics (e.g., the radial order n and the azimuthal quantum number m ). More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM a...

  8. Collective plasmon modes in a compositionally asymmetric nanoparticle dimer

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The plasmon coupling phenomenon of heterodimers composed of silver, gold and copper nanoparticles of 60 nm in size and spherical in shape were studied theoretically within the scattered field formulation framework. In-phase dipole coupled σ-modes were observed for the Ag-Au and Ag-Cu heterodimers, and an antiphase dipole coupled π-mode was observed for the Ag-Au heterodimer. These observations agree well with the plasmon hybridization theory. However, quadrupole coupled modes dominate the high energy wavelength range from 357-443 nm in the scattering cross section of the D=60 nm Ag-Au and Ag-Cu heterodimer. We demonstrate for the first time that collective plasmon modes in a compositionally asymmetric nanoparticle dimer have to be predicted from the dipole-dipole approximation of plasmon hybridization theory together with the interband transition effect of the constitutive metals and the retardation effect of the nanoparticle size.

  9. Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays

    Science.gov (United States)

    Zhang, Lei; Dong, Zhaogang; Wang, Ying Min; Liu, Yan Jun; Zhang, Shuang; Yang, Joel Kwang Wei; Qiu, Cheng-Wei

    2015-07-01

    We present a novel strategy capable of dynamically configuring the plasmon-induced transparency (PIT) effect with a polarization-dependent controllability based on a nanoring dimer array. The controllable coupling strength between the superradiant and subradiant modes is due to the polarization-dependent field distributions. It is shown that this dynamically controlled PIT is realized with a modulation depth as high as 95%, and a linear dependence of the coupling strength on polarization angle is deduced using a coupled-oscillator model. We believe that our results will inspire further exciting achievements that utilize various polarization states of the electromagnetic wave and pave a way towards applications using PIT with dynamic controllability such as slow light, optical nonlinearities and chemical/bio-sensing.We present a novel strategy capable of dynamically configuring the plasmon-induced transparency (PIT) effect with a polarization-dependent controllability based on a nanoring dimer array. The controllable coupling strength between the superradiant and subradiant modes is due to the polarization-dependent field distributions. It is shown that this dynamically controlled PIT is realized with a modulation depth as high as 95%, and a linear dependence of the coupling strength on polarization angle is deduced using a coupled-oscillator model. We believe that our results will inspire further exciting achievements that utilize various polarization states of the electromagnetic wave and pave a way towards applications using PIT with dynamic controllability such as slow light, optical nonlinearities and chemical/bio-sensing. Electronic supplementary information (ESI) available: Method, mode supported by single nanoring, transmittance spectrum of single nanoring, comparison of transmittance spectra simulated under different illumination angles, diffraction coupling in the proposed nanoring dimer system, and the coupled Lorentz oscillator model and parameters

  10. Patterned graphene edges for tailored reflection of plasmonic modes.

    Science.gov (United States)

    Rosolen, Gilles; Maes, Bjorn

    2015-06-15

    Combining graphene with plasmonics is expected to lead to new nanoscale applications such as sensors, photodetectors, and optical circuits, since graphene plasmons in the infrared have relatively low losses and are easily tunable. It was shown that the edges of a graphene sheet completely reflect these plasmons with negligible radiation losses. Here, however, we examine structured graphene edges, which provide the ability to tailor and even completely cancel the reflection. These properties depend on the suitable dimensions of the edge grating. We explain the reflection modulation via the appearance of longitudinal Fabry-Perot type modes. Interesting phase changes and resonances appear when the longitudinal modes interact with lateral modes mediated by edge plasmons.

  11. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.

    Science.gov (United States)

    Zhang, Qiang; Xiao, Jun-Jun; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-11-27

    Plasmonic nanoantenna is of promising applications in optical sensing and detection, enhancement of optical nonlinear effect, surface optical spectroscopy, photoemission, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics. More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM and CM resonances. We supply both detailed near-field and far-field analysis, showing that the modal overlap and phase relationship between the fundamental moments of different order play a crucial role. Finally, we show that the resonance bands of the AM and CMs can be tuned by adjusting the geometry parameters and the permittivity of the load. Our results may be useful in plasmonic cloaking, spin-polarized directional light emission, ultra-sensitive optical sensing, and plasmon-mediated photoluminescence.

  12. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua;

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode in...

  13. Collective plasmon-modes in gain media quantum emitters and plasmonic nanostructures

    CERN Document Server

    Rivera, V A G; Ledemi, Y; Messaddeq, Y; Marega Jr , E

    2015-01-01

    This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustaine...

  14. Topology induced anomalous plasmon modes in metallic Mobius nanorings

    CERN Document Server

    Yin, Yin; Engemaier, Vivienne; Naz, Ehsan Saei Ghareh; Giudicatti, Silvia; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    We report on the investigation of plasmonic resonances in metallic M\\"obius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase {\\pi} provided by the topology of the M\\"obius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the M\\"obius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is invariant to the change of charge distribution on the M\\"obius nanoring due to the nontrivial topology. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena in plasmonic applications such as high sensitive dete...

  15. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  16. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  17. Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials.

    Science.gov (United States)

    Chowdhury, Dibakar Roy; Su, Xiaofang; Zeng, Yong; Chen, Xiaoshuang; Taylor, Antoinette J; Azad, Abul

    2014-08-11

    Plasmonic structures with high symmetry, such as double-identical gap split ring resonators, possess dark eigenmodes. These dark eigenmodes are dominated by magnetic dipole and/or higher-order multi-poles such as electric quadrapoles. Consequently these dark modes interact very weakly with the surrounding environment, and can have very high quality factors (Q). In this work, we have studied, experimentally as well as theoretically, these dark eigenmodes in terahertz metamaterials. Theoretical investigations with the help of classical perturbation theory clearly indicate the existence of these dark modes in symmetric plasmonic metamaterials. However, these dark modes can be excited experimentally by breaking the symmetry within the constituting metamaterial resonators cell, resulting in high quality factor resonance mode. The symmetry broken metamaterials with such high quality factor can pave the way in realizing high sensitivity sensors, in addition to other applications.

  18. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements

    Science.gov (United States)

    Vacacela Gomez, C.; Pisarra, M.; Gravina, M.; Pitarke, J. M.; Sindona, A.

    2016-09-01

    Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations—known as plasmons—when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.

  19. Collective plasmonic modes in ordered assemblies of metallic nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Tserkezis, C; Gantzounis, G; Stefanou, N [Section of Solid State Physics, University of Athens, Panepistimioupolis, GR-157 84 Athens (Greece)], E-mail: ctserk@phys.uoa.gr

    2008-02-20

    Collective plasmonic modes in two- and three-dimensional periodic assemblies of metallic nanoshells are studied by means of full electrodynamic calculations using the layer-multiple-scattering method. We consider structures made of a single type of nanoshell as well as binary heterostructures made of two different types of nanoshells. The complex photonic band structure of such three-dimensional photonic crystals is analyzed in conjunction with relevant transmission diagrams of corresponding finite slabs and the physical origin of the different optical modes is elucidated. Moreover, we discuss associated absorption spectra and provide a consistent interpretation of the underlying physics. In the case of the binary systems, the plasmonic modes of the two building components coexist, leading to a rich structure of resonances over an extended frequency range and to broadband absorption.

  20. Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit.

    Science.gov (United States)

    Raghunathan, S B; Gan, C H; van Dijk, T; Ea Kim, B; Schouten, H F; Ubachs, W; Lalanne, P; Visser, T D

    2012-07-02

    We report a plasmon steering method that enables us to dynamically control the direction of surface plasmons generated by a two-mode slit in a thin metal film. By varying the phase between different coherent beams that are incident on the slit, individual waveguide modes are excited. Different linear combinations of the two modes lead to different diffracted fields at the exit of the slit. As a result, the direction in which surface plasmons are launched can be controlled. Experiments confirm that it is possible to distribute an approximately constant surface plasmon intensity in any desired proportion over the two launching directions. We also find that the anti-symmetric mode generates surface plasmons more efficiently than the fundamental symmetric mode.

  1. Utilization of hybrid plasmonic modes to investigate surface interactions between nanocubes and polymer substrates

    Science.gov (United States)

    Bushell, Michael; Bottomley, Adam; Ianoul, Anatoli

    2017-02-01

    Silver nanocube monolayers deposited on polymer films were heated past the glass transition temperature of the polymer. Surface interactions between the cubes and substrate dictate the depth and rate of incorporation into the polymer. Silver nanocubes support hybrid plasmonic modes that are spatially separated when there is anisotropy in the local refractive index. Using this measure, it becomes possible to monitor the position of the cubes relative to the surface and tune spectral features in the visible spectrum. These spatially resolved plasmonic modes were used to probe the local glass transition temperature of polystyrene (PS), polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC), the glass transition temperature of PS, PMMA, PVC were 103 ± 2, 122 ± 12, 81 ± 2 °C, respectively.

  2. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  3. Detection limits in plasmonic whispering gallery mode biosensors

    CERN Document Server

    Swaim, Jon D; Bowen, Warwick P

    2011-01-01

    We analyze a whispering gallery mode biosensor with a metallic nanorod bound to its surface. It is found that a localized surface plasmon resonance in the nanorod can reduce the optical mode volume of the resonator by as much as four orders of magnitude via a local enhancement of the electric field, thus improving the detection sensitivity. Optical frequency shifts as large as 15 MHz are predicted for typical proteins and, for typical experimental parameters, the biosensor is predicted to be limited by laser frequency noise, leading to a minimum detectable polarizability on the order of 10 cubic angstroms.

  4. Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures

    Science.gov (United States)

    Ge, Rong-Chun; Hughes, Stephen

    2016-05-01

    Understanding light-matter interactions using localized surface plasmons (LSPs) is of fundamental interest in classical and quantum plasmonics and has a wide range of applications. In order to understand the spatial properties of LSPs, electron energy loss spectroscopy (EELS) is a common and powerful method of spatially resolving the extreme localized fields that can be obtained with metal resonators. However, modelling EELS for general shaped resonators presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. Here we present an intuitive and computationally simple method for computing EELS maps of plasmonic resonators using a quasinormal mode (QNM) expansion technique. By separating the contribution of the QNM and the bulk material, we give closed-form analytical formulas for the plasmonic QNM contribution to the EELS maps. We exemplify our technique for a split ring resonator, a gold nanorod, and a nanorod dimer structure. The method is accurate, intuitive, and gives orders of magnitude improvements over direct dipole simulations that numerically solve the full 3D Maxwell equations. We also show how the same QNM Green function can be used to obtain the Purcell factor (and projected local density of optical states) from quantum dipole emitters or two level atoms, and we demonstrate how the spectral features differ in general to the EELS spectrum.

  5. Hybridization of photon-plasmon modes in metal-coated microtubular cavities

    CERN Document Server

    Yin, Yin; Engemaier, Vivienne; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    The coupling of resonant light and surface plasmons in metal layer coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on opto-plasmonic microtubular cavities. By changing the cavity structure and the metal layer thickness, weakly, moderately and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. An effective potential approach is applied to illustrate the hybridization of photon-plasmon modes relying on the competition between light confinement by the cavity wall and the potential barrier introduced by the metal layer. Our work reveals the basic physical mechanisms for the generation of hybrid modes in metal-coated whispering-gallery-mode microcavities, and is of importance for the study of enhanced light-matter interactions and potential sensing applications.

  6. Asymmetric excitation of surface plasmons by dark mode coupling.

    Science.gov (United States)

    Zhang, Xueqian; Xu, Quan; Li, Quan; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Liu, Yongmin; Zhang, Shuang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-02-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  7. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  8. Strong coupling of in-plane plasmon modes and their control

    OpenAIRE

    Kasture, Sachin; Mandal, Prasanta; Gupta, S. Dutta; Achanta, Venu Gopal

    2012-01-01

    We show anti-crossings due to strong in-plane coupling of plasmon modes in dielectric-metal-dielectric structure with top 2D dielectric pattern. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes can be controlled by the orientation of the sample.

  9. Exceptional Points and Asymmetric Mode Switching in Plasmonic Waveguides

    CERN Document Server

    Ke, Shaolin; Qin, Chengzhi; Long, Hua; Wang, Kai; Lu, Peixiang

    2016-01-01

    We investigate the exceptional points (EPs) in a non-Hermitian system composed of a pair of graphene sheets with different losses. There are two surface plasmon polaritons (SPP) modes in the graphene waveguide. By varying the distance between two graphene sheets and chemical potential of graphene, the EPs appear as the eigenvalues, that is, the wave vectors of the two modes coalesce. The cross conversion of eigenmodes and variation of geometric phase can be observed by encircling the EP in the parametric space formed by the geometric parameters and chemical potential of graphene. At the same time, a certain input SPP mode may lead to completely different output. The study paves a way to the development of nanoscale sensitive optical switches and sensors.

  10. Optical mode control of surface-plasmon quantum cascade lasers

    Science.gov (United States)

    Moreau, V.; Bahriz, M.; Palomo, J.; Wilson, L. R.; Krysa, A. B.; Sirtori, C.; Austin, D. A.; Cockburn, J. W.; Roberts, J. S.; Colombelli, R.

    2007-04-01

    Surface-plasmon waveguides based on metallic strips can provide a two dimensional optical confinement. This concept has been successfully applied to quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. For devices operating at a wavelength of λ ≈7.5 μm, the room-temperature threshold current density was reduced from 6.3 kA/cm2 to 4.4 kA/cm2 with respect to larger devices with full top metallization.

  11. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive...

  12. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    models. Here we present a method to identify and compute spatially resolved plasmon modes from first-principles based on a spectral analysis of the dynamical dielectric function. As an example we calculate the plasmon modes of 0.5 to 4 nm thick Na films and find that they can be classified...

  13. Polarization switching from plasmonic lattice mode to multipolar localized surface plasmon resonances in arrays of large nanoantennas

    Science.gov (United States)

    Wing, Waylin J.; Sadeghi, Seyed M.; Gutha, Rithvik R.

    2016-12-01

    We experimentally investigate plasmonic lattice modes of gold nanoantenna arrays that occur in asymmetric structures containing a silica substrate and either air or a thin layer of a high-index dielectric. Very distinct polarization switching is observed in the nanoantenna arrays wherein by rotating the incident light polarization by ninety degrees, the array can exhibit either a plasmonic lattice mode or a multipolar localized surface plasmon resonance of varying nature. A large range of nanoantenna lengths are studied, and since the length of the nanoantennas dictates the multipolar localized surface plasmon resonance, we find that the characteristics of the polarization switching are affected accordingly. We also investigate how the thin layer of the high-index dielectric on top of the nanoantenna arrays, in conjunction with varying nanoantenna length, impacts the generation of plasmonic lattice modes and the polarization switching in the arrays. The high-index dielectric is found to assist in the generation and optical coupling of the plasmonic lattice modes. By altering the angle of incidence, the polarization switching can become very large, and the arrays can be made to selectively transmit light of certain wavelengths.

  14. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  15. Standing wave plasmon modes interact in an antenna-coupled nanowire

    Science.gov (United States)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  16. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a sub...

  17. Plasmon mode excitation and photoluminescence enhancement on silver nanoring

    CERN Document Server

    Kuchmizhak, A A; Kulchin, Yu N; Vitrik, O B

    2015-01-01

    We demonstrate a simple and high-performance laser-assisted technique for silver nanoring fabrication, which includes the ablation of the Ag film by focused nanosecond pulses and subsequent reactive ion polishing. The nanoring diameter and thickness can be controlled by optimizing both the pulse energy and the metal film thickness at laser ablation step, while the subsequent reactive ion polishing provides the ability to fabricate the nanoring with desirable height. Scattering patterns of s-polarized collimated laser beam obliquely illuminating the nanoring demonstrate the focal spot inside the nanoring shifted from its center at a distance of ~ 0.57Rring. Five-fold enhancement of the photoluminescence signal from the Rhodamine 6G organic dye near the Ag nanoring was demonstrated. This enhancement was attributed to the increase of the electromagnetic field amplitude near the nanoring surface arising from excitation of the multipole plasmon modes traveling along the nanoring. This assumption was confirmed by d...

  18. Plasmonic Mode Converter for Controlling Optical Impedance and Nanoscale Light-matter Interaction

    CERN Document Server

    Hung, Yun-Ting; Huang, Jer-Shing

    2012-01-01

    Nanoantennas and plasmonic waveguides can concentrate and manipulate light in a sub-wavelength area. To ensure strong interaction between light and nanomatter, it is of key importance to control the spatial distribution and polarization of the guided modes such that the optical impedance matches to that of nearby quantum systems. Nanosized plasmonic two-wire transmission lines consisting of two parallel plasmonic nanowires separated by a nanogap provide unique opportunity to achieve the required control. According to the symmetry of the charge distribution, the guided transverse electric and transverse magnetic modes on a two-wire transmission line exhibit distinct propagation properties and optical impedance that are suitable for various different circuit functions. In this work, we present efficient mode converters for the control of guided modes in a plasmonic nanocircuit. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. We demonst...

  19. Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films

    DEFF Research Database (Denmark)

    Huck, Alexander; Witthaut, Dirk; Kumar, Shailesh

    2013-01-01

    We investigate the optical nonlinear effects of a long-range surface plasmon polariton mode propagating on a thin gold film. These effects may play a key role in the design of future nanophotonic circuits as they allow for the realization of active plasmonic elements. We demonstrate a significant...

  20. Guided plasmon modes of triangular and inverted triangular cross section silver nanoridges

    CERN Document Server

    Pan, Zeyu; Soref, Richard; Buchwald, Walter; Sun, Greg

    2012-01-01

    Propagating two-dimensional plasmon modes guided along silver nanoridge waveguides with triangular and inverted triangular cross sections are investigated in this paper. Mode field profiles, dispersion curves, propagation distances, and figure-of-merits of the plasmon ridge modes are calculated for silver nanoridge waveguides with various triangular and inverted triangular waveguide cross sections. It is found that the triangular cross section nanoridge waveguide, if designed properly, can have longer propagation distance and higher figure-of-merit than the flat-top nanoridge waveguide of the same width. When the triangle height of the nanoridge is high, the mode approaches to the small angle wedge mode. An inverted triangular cross section nanoridge mode can be considered as a hybrid mode of two metal wedge plasmon modes. When inverted triangle depth increases, the propagation distance and the figure-of-merit decrease dramatically, suggesting the poorer performance when compared to the flat-top nanoridge pla...

  1. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.

    Science.gov (United States)

    Fan, Ren-Hao; Qi, Dong-Xiang; Hu, Qing; Qin, Ling; Peng, Ru-Wen; Wang, Mu

    2013-02-01

    In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

  2. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.

    Science.gov (United States)

    Dallapiccola, Ramona; Gopinath, Ashwin; Stellacci, Francesco; Dal Negro, Luca

    2008-04-14

    In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dimers in Fibonacci arrays results in a quasi-periodic lattice of localized nanoparticle plasmons. The possibility to accurately predict the spatial distribution of enhanced localized plasmon modes in quasi-periodic Fibonacci arrays can have a significant impact for the design and fabrication of novel nano-plasmonics devices.

  3. Maximum modulation of plasmon-guided modes by graphene gating

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Grigorenko, Alexander N.

    2016-01-01

    The potential of graphene in plasmonic electro-optical waveguide modulators has been investigated in detail by finite-element method modelling of various widely used plasmonic waveguiding configurations. We estimated the maximum possible modulation depth values one can achieve with plasmonic...... devices operating at telecom wavelengths and exploiting the optical Pauli blocking effect in graphene. Conclusions and guidelines for optimization of modulation/intrinsic loss trade-off have been provided and generalized for any graphene-based plasmonic waveguide modulators, which should help...

  4. Theory on Plasmon Modes of the Cell Membranes

    CERN Document Server

    Nhan, T T; Ngo, V Thanh; Viet, N A

    2007-01-01

    Considering the plasmon oscillation of each layer of the cell membranes as a quasi-particle, we introduce a simple model for the membrane collective charge excitations, take into account the surface effective potential of the plasmon-plasmon interaction between two layers. By using the useful Bogoliubov transformation method, we easily obtained the expressions of the frequencies of plasmon oscillations as a function of wave-number $k$ and membrane thickness $d$, magnitude of these frequencies is in the order of $\\sqrt{kd}$. Our results are in good agreement with ones obtained by E. Manousakis.

  5. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  6. Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers

    Science.gov (United States)

    Kumar, Samir; Shukla, Mukesh Kumar; Sona Maji, Partha; Das, Ritwick

    2017-09-01

    A coupled Tamm-plasmon-polariton (TPP) hybrid-mode based self-referenced refractive-index sensor is proposed. The geometry is comprised of a sub-wavelength analyte (sensing) layer sandwiched between two metal-clad distributed-Bragg-reflectors (DBRs). Reflection spectrum of the geometry exhibits two discernible reflectivity minima within the photonic-bandgap of DBR. The reflectivity minima are essentially due to excitation of two hybrid modes which have symmetric and anti-symmetric field distribution about the center resulting in an anti-crossing behaviour exhibited by hybrid-TPP mode dispersion curves. The low frequency symmetric mode exhibits strong dispersive properties by virtue of significant presence of mode-field in sensing medium. On the other hand, the high-frequency anti-symmetric mode remains unchanged with alterations in sensing layer. Thus, we propose a self-referenced sensing scheme using hybrid-TPP modes with sensitivity varying from 65~nm~RIU-1 to 180~nm~RIU-1 in the visible band. In addition, the TPP resonance are appreciably sharp as compared to surface-plasmon based geometries which results in improved detection accuracy and figure of merit. We also present an analysis for optimizing the sensor design for enhancing the sensitivity as well as detection accuracy.

  7. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...

  8. Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Sha, Wei E I; Ho, Ho-Pui; Choy, Wallace C H

    2015-10-28

    We demonstrate that the silver nanoplate-based macroscopically periodic (macro-periodic) and microscopically random (micro-random) structure has a broadband near-field enhancement as compared to conventional silver gratings. The specific field enhancement in a wide spectral range (from UV to near-infrared) originates from the abundance of localized surface-plasmonic (LSP) modes in the microscopically random distributed silver nanoplates and propagating Bloch-plasmonic (PBP) modes from the macroscopically periodic pattern. The characterization of polarization dependent spectral absorption, surface-enhanced Raman spectroscopy (SERS), as well as theoretical simulation was conducted to comprehensively understand the features of the broadband spectrum and highly concentrated near-field. The reported macro-periodic and micro-random structure may offer a new route for the design of plasmonic systems for photonic and optoelectronic applications.

  9. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy

    Science.gov (United States)

    Li, Guang-Can; Zhang, Yong-Liang; Lei, Dang Yuan

    2016-03-01

    Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film

  10. Giant Faraday rotation of high-order plasmonic modes in graphene-covered nanowires

    CERN Document Server

    Kuzmin, Dmitry A; Shavrov, Vladimir G; Temnov, Vasily V

    2016-01-01

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPP propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ~ 100 degrees on scale of about 500 nm at mid-infrared frequencies. Tuning carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  11. Quantum dot based detections of propagating plasmonic modes excited by bowtie antennas

    Science.gov (United States)

    Wen, Jing; Wang, Kang; Feng, Hui; Lv, Yating; Chen, Jiannong; Zhang, Dawei

    2017-03-01

    Propagating plasmonic modes excited by bowtie apertures based on emissions from a layer of CdSe/ZnS quantum dots are experimentally detected. The mode distributions with a cladding of 20 nm thick Al2O3 film in between the silver and the quantum dot layers are more homogenous compared to the uncoated structure. The variation discipline of the effective indexes and the decay lengths of the plasmonic modes are discussed for various refractive indexes and thicknesses of the cladding. The three dimensional field distributions of the structure are simulated and the plasmonic fields are only excited in and around the cladding layer on top of the silver film. Such quantum dots based detection methods are promising tools for simultaneous imaging of near field optical distributions in integrated plasmonic nano-circuits.

  12. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  13. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    Energy Technology Data Exchange (ETDEWEB)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei (Brunei Darussalam); Lee, Chuanyo [Department of Electronic Engineering, Chien Hsin University of Science and Technology, No. 229, Jianxing Rd., Zhongli City, Taoyuan County 32097, Taiwan (China); Huang, Hung Ji; Lin, Chun-Ting [Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan (China); Chiang, Hai-Pang [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2016-09-07

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  14. Efficient conversion of surface-plasmon-like modes to spatial radiated modes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun Jun; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun, E-mail: tjcui@seu.edu.cn [State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096 (China)

    2015-01-12

    We propose a spoof surface plasmon polariton (SPP) emitter which is composed of ultrathin corrugated metallic strips, exhibiting the directional radiation property. The spoof SPP emitter provides a way to quickly convert the SPP mode to a radiated mode. By controlling phase modulations produced by the phase-gradient metasurface on the ultrathin metallic strips, we demonstrate theoretically and experimentally that spoof SPP waves are converted into spatial propagating waves with high efficiency, which are further radiated with flexible beam steering. The proposed method sets up a link between SPP waves and radiation waves in a highly controllable way, which would possibly open an avenue in designing new kinds of microwave and optical elements in engineering.

  15. Surface-plasmon mode hybridization in sub-wavelength microdisk lasers

    CERN Document Server

    Perahia, R; Safavi-Naeini, A; Painter, O

    2009-01-01

    Hybridization of surface-plasmon and dielectric waveguide whispering-gallery modes are demonstrated in a semiconductor microdisk laser cavity of sub-wavelength proportions. A metal layer is deposited on top of the semiconductor microdisk, the radius of which is systematically varied to enable mode hybridization between surface-plasmon and dielectric modes. The anti-crossing behavior of the two cavity mode types is experimentally observed via photoluminescence spectroscopy and optically pumped lasing action at a wavelength of 1.3 micron is achieved at room temperature.

  16. Ballooning mode spectrum in general toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.; Glasser, A.H.

    1982-04-01

    A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.

  17. Plasmon modes of a massive Dirac plasma, and their superlattices

    Science.gov (United States)

    Sachdeva, Rashi; Thakur, Anmol; Vignale, Giovanni; Agarwal, Amit

    2015-05-01

    We explore the collective density oscillations of a collection of charged massive Dirac particles, in one, two, and three dimensions, and their one-dimensional (1D) superlattice. We calculate the long-wavelength limit of the dynamical polarization function analytically, and use the random phase approximation to obtain the plasmon dispersion. The density dependence of the long-wavelength plasmon frequency in massive Dirac systems is found to be different compared to systems with parabolic and gapless Dirac dispersion. We also calculate the long-wavelength plasmon dispersion of a 1D metamaterial made from 1D and 2D massive Dirac plasma. Our analytical results will be useful for exploring the use of massive Dirac materials as electrostatically tunable plasmonic metamaterials and can be experimentally verified by infrared spectroscopy, as in the case of graphene [L. Ju et al., Nat. Nanotechnol. 6, 630 (2011), 10.1038/nnano.2011.146].

  18. Quantitatively analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes

    CERN Document Server

    Hu, Li; Fang, Yurui

    2016-01-01

    Plasmonic chirality exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response. Previous reports on plasmonic chirality explanations are mainly based on phase retardation and coupling. We propose a quantitative model similar to the chiral molecules for explaining the mechanism of the intrinsic plasmonic chirality quantitatively based on the interplay and mixing of electric and magnetic dipole modes, which forms a mixed electric and magnetic polarizability. The analysis method is also suitable for small chiral object down to quasi-static limit without phase delay and expected to be a universal rule.

  19. Lasing in dark and bright modes of a finite-sized plasmonic lattice

    CERN Document Server

    Hakala, T K; Väkeväinen, A I; Martikainen, J -P; Moilanen, A J; Törmä, P

    2016-01-01

    Lasing at the nanometer scale promises strong light-matter interactions and ultrafast operation. The first realizations of nanoscale lasing have been achieved but suffer from losses and lack of beam directionality. Band-edge lasing in periodic plasmonic structures offered an improvement but radiative losses remained high. Intriguingly, plasmonic nanoparticle arrays support also non-radiative dark modes that offer longer life-times but are inaccessible to far field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nanometers at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.

  20. Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence

    KAUST Repository

    Barnard, Edward S.

    2011-10-12

    We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments. © 2011 American Chemical Society.

  1. Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well

    DEFF Research Database (Denmark)

    Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.;

    1997-01-01

    At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between...... experiment and theory testing the validity of local field theories. Using a perpendicular magnetic field to raise the magnetoplasmon energy we can induce a crossover to single-particle Coulomb scattering....

  2. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  3. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Haizi; Tu, Wanli [Laboratory of Optics, Terahertz and Non-Destructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108 (China); Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com [Laboratory of Optics, Terahertz and Non-Destructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108 (China); Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ (United Kingdom); Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou 350108 (China)

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in a higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.

  4. Identification of Plasmonic Modes in Parabolic Cylinder Geometry by Quasi-Separation of Variables.

    Science.gov (United States)

    Kurihara, Kazuyoshi; Otomo, Akira; Yamamoto, Kazuhiro; Takahara, Junichi; Tani, Masahiko; Kuwashima, Fumiyoshi

    This paper describes the plasmonic modes in the parabolic cylinder geometry as a theoretical complement to the previous paper (J Phys A 42:185401) that considered the modes in the circular paraboloidal geometry. In order to identify the plasmonic modes in the parabolic cylinder geometry, analytic solutions for surface plasmon polaritons are examined by solving the wave equation for the magnetic field in parabolic cylindrical coordinates using quasi-separation of variables in combination with perturbation methods. The examination of the zeroth-order perturbation equations showed that solutions cannot exist for the parabolic metal wedge but can be obtained for the parabolic metal groove as standing wave solutions indicated by the even and odd symmetries.

  5. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.

    Science.gov (United States)

    Guo, Chang-Lei; Che, Kai-Jun; Gu, Guo-Qiang; Cai, Guo-Xiong; Cai, Zhi-Ping; Xu, Hui-Ying

    2015-02-20

    Plasmonic whispering gallery (WG) modes confined in metal-coated resonators are theoretically investigated by electromagnetic analyses. The resonance can be tuned from internal surface plasmonic WG modes to the hybrid state of the plasmonic mode by an introduced isolation layer. As the coated metal is reduced in size, the optical resonance is shifted out by the mode coupling of the internal and external surface plasmonic WG modes. Based on the optical leak of the plasmonic WG mode, the optical influences led by the surroundings with a variable refractive index are considered. Device performance criteria such as optical power leak, resonant wavelength shift, and threshold gain are studied. Full wave simulations are also employed and the results present good consistency with analytic solutions. The metal-coated resonator assisted by an active material is expected to provide promising performance as a refractometric sensor.

  6. Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures

    NARCIS (Netherlands)

    Gjonaj, B.; Aulbach, J.; Johnson, P.M.; Mosk, A.P.; Kuipers, L.; Lagendijk, A.

    2012-01-01

    We study and actively control the coherent properties of surface plasmon polaritons (SPPs) optically excited on a nanohole array. Amplitude and phase of the optical excitation are externally controlled via a digital spatial light modulator (SLM) and SPP interference fringe patterns are designed and

  7. Far-field and near-field investigation of plasmonic-photonic hybrid laser mode

    CERN Document Server

    Zhang, Taiping; Callard, Ségolène; jamois, Cecile; Letartre, Xavier; Chevalier, Celine; Rojo-Romeo, Pedro; Devif, Brice; Viktorovitch, Pierre

    2014-01-01

    We report an approach to achieve this goal via build a plasmonic-dielectric photonic hybrid system. We induce a defect mode based photonic crystal (PC) cavity to work as a intermedium storage as well as a near-field light source to excite a plasmonic nanoantenna (NA). In this way, a plasmonic-photonic nano-laser source is created in present experiment. The coupling condition between the two elements is investigated in far-field and near-field level. We found that the NA reduces the Q-factor of the PC-cavity. Meanwhile, the NA concentrates and enhances the laser emission of the PC-cavity. This novel hybrid dielectric-plasmonic structure may open a new avenue in the generation of nano-light sources, which can be applied in areas such as optical information storage, non-linear optics, optical trapping and detection, integrated optics, etc.

  8. Dual-mode bioenabled nano-plasmonic sensors for biological and chemical detection

    Science.gov (United States)

    Kong, Xianming; Squire, Kenny; Xi, Yuting; LeDuff, Paul; Rorrer, Gregory L.; Wang, Alan X.

    2016-03-01

    Plasmonic biosensors have greatly overcome the limitations of conventional optical sensors in terms of sensitivity, tunability, photo-stability, and in vivo applicability. In this paper, we present plasmonic biosensors using bioenabled nanomaterials diatom biosilica, with active surface functionalities as affordable and eco-friendly integration platforms of Ag nanoparticles for label-free detection of biomolecules. Dual-mode plasmon sensing mechanisms, including surface-enhanced Raman scattering (SERS) and refractive-index (RI) sensing will be simultaneously implemented on the plasmonic-biosilica nanostructures to obtain quantitative biosensing with structural resolution of the biomolecules. We have achieved ultra-sensitive detection of Rhodamine 6G (R6G) at concentrations as low as 10-10 M. Furthermore, this substrate was used to detect TNT, illustrating the potential application as viable substrates for monitoring pollutant and toxics in environment.

  9. Photonic and plasmonic guiding modes in graphene-silicon photonic crystals

    CERN Document Server

    Gu, Tingyi; Hao, Yufeng; Li, Yilei; Hone, James; Wong, Chee Wei; Lavrinenko, Andrei; Low, Tony; Heinz, Tony F

    2015-01-01

    We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into four distinct regimes depending on the photonic crystal lattice constant and the various modal wavelengths (i.e. plasmonic, photonic and free-space). By optimizing the design of the substrate, these resonant modes can magnify the graphene absorption in infrared wavelength, for efficient modulators, filters, sensors and photodetectors on silicon photonic platforms.

  10. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng;

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending...... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators......, filters, sensors, and photodetectors utilizing silicon photonic platforms....

  11. Nonreciprocal propagation of surface plasmon mode guided through graphene layer on magnetized semiconductor

    Science.gov (United States)

    Bhagyaraj, C.; Mathew, Vincent

    2017-01-01

    This paper discusses the nonreciprocal effect induced by magnetized semiconductor substrate on surface plasmon mode guided through monolayer graphene. Dispersion relation for the fundamental antisymmetric mode is derived analytically. Nonreciprocal propagation characteristics of fundamental mode is studied as a function of wavelength, graphene layer chemical potential and biasing magnetic field. Fundamental mode exhibits appreciable nonreciprocal dispersion for transversal magnetization of semiconductor substrate in midinfrared and terahertz frequencies. Cutoff wavelength for backward propagating mode is observed above 2.5 T of external biasing field. Cutoff wavelength is found to be decreasing with increase in the biasing magnetic field and cladding index, also identified to be independent of graphene layer chemical potential. Proposed waveguide structure suggests the possibility of realizing one way propagating plasmonic waveguides with widely tunable guiding characteristics and related functional devices such as isolators, modulators, phase shifters and switches for integrated photonic circuits.

  12. Lasing in dark and bright modes of a finite-sized plasmonic lattice

    Science.gov (United States)

    Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.; Martikainen, J.-P.; Nečada, M.; Moilanen, A. J.; Törmä, P.

    2017-01-01

    Lasing at the nanometre scale promises strong light-matter interactions and ultrafast operation. Plasmonic resonances supported by metallic nanoparticles have extremely small mode volumes and high field enhancements, making them an ideal platform for studying nanoscale lasing. At visible frequencies, however, the applicability of plasmon resonances is limited due to strong ohmic and radiative losses. Intriguingly, plasmonic nanoparticle arrays support non-radiative dark modes that offer longer life-times but are inaccessible to far-field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nm at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.

  13. Onset of Bonding Plasmon Hybridization Preceded by Gap Modes in Dielectric Splitting of Metal Disks

    DEFF Research Database (Denmark)

    Frederiksen, Maj; Bochenkov, Vladimir; Ogaki, Ryosuke;

    2013-01-01

    Dielectric splitting of nanoscale disks was studied experimentally and via finite-difference time-domain (FDTD) simulations through systematic introduction of multiple ultrathin dielectric layers. Tunable, hybridized dark bonding modes were seen with first-order gap modes preceding the appearance...... of bonding dipole−dipole disk modes. The observed bright dipolar mode did not show the energy shift expected from plasmon hybridization but activated dark higher order gap modes. Introducing lateral asymmetry was shown to remodel the field distribution resulting in 3D asymmetry that reoriented the dipole...

  14. High-Q band edge mode of plasmonic crystals studied by cathodoluminescence

    Science.gov (United States)

    Honda, Masahiro; Yamamoto, Naoki

    2014-02-01

    We have investigated the quality factor (Q-factor) of the band edge modes in the plasmonic crystal by a cathodoluminescence technique. We have found that the Q-factor at the Γ point depends on the terrace width (D)/period (P) ratio of the plasmonic crystal. The finite-difference time-domain methods predict that the band edge mode at D/P = 3/4 has a high-Q-factor (Q ˜ 250 by Palik's permittivity data and Q ˜ 530 by Johnson and Christy's data). The beam-scan spectral images allowed us to visualize the standing surface plasmon polariton waves at the band edge energies, and a high-Q-factor of ˜200 was observed at D/P ˜ 3/4.

  15. High-Q band edge mode of plasmonic crystals studied by cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Masahiro; Yamamoto, Naoki, E-mail: nyamamot@phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2014-02-24

    We have investigated the quality factor (Q-factor) of the band edge modes in the plasmonic crystal by a cathodoluminescence technique. We have found that the Q-factor at the Γ point depends on the terrace width (D)/period (P) ratio of the plasmonic crystal. The finite-difference time-domain methods predict that the band edge mode at D/P = 3/4 has a high-Q-factor (Q ∼ 250 by Palik's permittivity data and Q ∼ 530 by Johnson and Christy's data). The beam-scan spectral images allowed us to visualize the standing surface plasmon polariton waves at the band edge energies, and a high-Q-factor of ∼200 was observed at D/P ∼ 3/4.

  16. Mode conversion of Mie plasmons at the surface of metallic atomic clusters

    Science.gov (United States)

    El-Khawaldeh, A.; Kull, H.-J.

    2017-04-01

    The dynamics of the Mie plasmon is described in the framework of the self-consistent quantum Vlasov theory by a reduced single-state model. The single-state model is validated by many-electron calculations for Na clusters. In this framework, collisionless damping of the Mie plasmon can be investigated for a wide range of cluster parameters by linear perturbation theory. The characteristic scaling of the damping rate with the inverse cluster radius is demonstrated. The basic damping mechanism of the Mie plasmon can be explained by a conversion of surface modes into volume modes due to the scattering by the self-consistent potential of the electron-electron interaction at the cluster boundary.

  17. Mode spectrum and temporal soliton formation in optical microresonators

    CERN Document Server

    Herr, T; Jost, J D; Mirgorodskiy, I; Lihachev, G; Gorodetsky, M L; Kippenberg, T J

    2013-01-01

    The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton f...

  18. Coulomb Drag as a Probe of Coupled Plasmon Modes in Parallel Quantum Wells

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang

    1994-01-01

    parameters. The acoustic mode causes a sharp upturn in the scaled drag rate with increasing temperature at T≈0.2TF. Other experimental signatures of the plasmon-dominated drag rate are a d-3 dependence on the well separation d and a peak as a function of relative densities at matched Fermi velocities....

  19. Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons

    NARCIS (Netherlands)

    Compaijen, Paul J.; Malyshev, Victor A.; Knoester, Jasper

    2016-01-01

    We propose a new method for the directional excitation of surface plasmon polaritons by a metal nanoparticle antenna, based on the elliptical polarization of the normal modes of the antenna when it is in close proximity to a metallic substrate. The proposed theoretical model allows for the full char

  20. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.

    Science.gov (United States)

    Wersäll, Martin; Cuadra, Jorge; Antosiewicz, Tomasz J; Balci, Sinan; Shegai, Timur

    2017-01-11

    Plasmon-exciton interactions are important for many prominent spectroscopic applications such as surface-enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum optical effects studied in solid state and atomic systems previously. In plasmonics, similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles. We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, ∼20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong coupling phenomena in plasmonics.

  1. Formation of a hybrid plasmonic waveguide mode probed by dispersion measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152-8551 (Japan); Kurata, H., E-mail: kurata@eels.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2015-04-07

    Hybrid waveguides, i.e., dielectric waveguides combined with plasmonic waveguides, have great potential for concomitantly exhibiting subwavelength confinement and long range propagation, enabling a highly integrated photonic circuit. We report the characterization of hybrid waveguide modes excited in Si/SiO{sub 2}/Al films, by dispersion measurement using angle-resolved electron energy-loss spectroscopy. This experiment directly verifies the formation of the hybrid waveguide mode with a strongly localized electromagnetic field in a 6-nm-thick SiO{sub 2} layer. The results clearly describe the characteristic behavior of the hybrid waveguide mode, which depends on the effective index of the constituent dielectric waveguide and the surface plasmon-polariton modes.

  2. Plasmon spectrum of degenerated electron gas. T=0 Green function method. Detailed pedagogical derivation

    OpenAIRE

    Mishonov, Todor M.; Atanasova, Liliya A.; Ivanov, Peter A; Valchev, Tihomir I.; Arnaudov, Dimo L.

    2003-01-01

    Plasmon spectrum and polarization operator of 1, 2, and 3 dimensional electron gas are calculated by T=0 Green function technique. It is shown that this field theory method gives probably the simplest pedagogical derivation of the statistical problem for the response function. The explanation is complimentary to the standard courses on condensed matter and plasma physics of the level of IX volume of Landau-Lifshitz encyclopedia on theoretical physics.

  3. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  4. Near-Field Analysis of Bright and Dark Modes on Plasmonic Metasurfaces Showing Extraordinary Suppressed Transmission

    CERN Document Server

    Dobmann, Sabine; Ploss, Daniel; Peschel, Ulf

    2014-01-01

    Plasmonic metasurfaces are investigated that consist of a sub wavelength line pattern in an ultrathin (~ 10 nm) silver film, designed for extraordinarily suppressed transmission (EOST) in the visible spectral range. Measurements with a near-field scanning optical microscope (NSOM) demonstrate that far field irradiation creates resonant excitations of antenna like (bright) modes that are localized on the metal ridges. In contrast, bound (dark) surface plasmon polaritons (SPPs) launched from an NSOM tip propagate well across the metasurface, preferentially perpendicular to the grating lines.

  5. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    DEFF Research Database (Denmark)

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger;

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...... vary along the nanorod's length and whose wavelength becomes compressed towards the ends of the nanorod. Theoretical calculations modelling the surface plasmon response of the silver nanorodsilicon nitride system show the importance of including retardation and substrate effects in order to describe...

  6. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  7. BB mode angular power spectrum of CMB from massive gravity

    CERN Document Server

    Malsawmtluangi, N

    2016-01-01

    The primordial massive gravitational waves are placed in the squeezed vacuum state and corresponding $BB$-mode correlation angular power spectrum of the cosmic microwave background is obtained for various slow roll inflation models. The angular power spectrum is compared with the limit of BICEP2/Keck and Planck joint analysis data and the hybrid inflation model is found favorable.

  8. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  9. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  10. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    YAO HaoMin; LI Zhi; GONG QiHuang

    2009-01-01

    Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparti-cles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanopar-ticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  11. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the finite-difference time-domain(FDTD) method,we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere.The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated.It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle.This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  12. Dark and bright modes manipulation for plasmon-triggered photonic devices

    KAUST Repository

    Panaro, S.

    2014-09-10

    In the last decade, several efforts have been spent in the study of near-field coupled systems, in order to induce hybridization of plasmonic modes. Within this context, particular attention has been recently paid on the possibility to couple conventional bright and dark modes. As a result of such phenomenon, a Fano resonance appears as a characteristic sharp dip in the scattering spectra. Here we show how, gradually coupling a single rod-like nanostructure to an aligned nanoantenna dimer, it is possible to induce the near-field activation of an anti-bonding dark mode. The high polarization sensitivity presented by the far-field response of T-shape trimer, combined with the sharp Fano resonance sustained by this plasmonic device, opens interesting perspectives towards a new era of photonic devices. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons

    CERN Document Server

    Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min

    2016-01-01

    Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...

  14. Core-Shell Structured Dielectric-Metal Circular Nanodisk Antenna: Gap Plasmon Assisted Magnetic Toroid-like Cavity Modes

    CERN Document Server

    Zhang, Qiang; Zhang, Xiao Ming; Han, Dezhuan; Gao, Lei

    2014-01-01

    Plasmonic nanoantennas, the properties of which are essentially determined by their resonance modes, are of interest both fundamentally and for various applications. Antennas with various shapes, geometries and compositions have been demonstrated, each possessing unique properties and potential applications. Here, we propose the use of a sidewall coating as an additional degree of freedom to manipulate plasmonic gap cavity modes in strongly coupled metallic nanodisks. It is demonstrated that for a dielectric middle layer with a thickness of a few tens of nanometers and a sidewall plasmonic coating of more than ten nanometers, the usual optical magnetic resonance modes are eliminated, and only magnetic toroid-like modes are sustainable in the infrared and visible regime. All of these deep-subwavelength modes can be interpreted as an interference effect from the gap surface plasmon polaritons. Our results will be useful in nanoantenna design, high-Q cavity sensing, structured light-beam generation, and photon e...

  15. Photon, electron, magnon, phonon and plasmon mono-mode circuits [review article

    Science.gov (United States)

    Vasseur, J. O.; Akjouj, A.; Dobrzynski, L.; Djafari-Rouhani, B.; El Boudouti, E. H.

    2004-06-01

    Photon circuits are light conducting networks formed by joining several dielectric wave-guide channels for the transmission of light. Their production utilizes the most advanced surface technologies and represents one of the most important challenges for the next decade. These circuits are usually mono-mode when the lateral dimensions of the conducting wires are small as compared to the photon wavelength. Plasmon circuits are plasmon conducting networks, a plasmon being a collective excitation of an electron gas in a metal. Such circuits made out of nanometric metallic clusters and wires can also be tuned to work at light wavelength. Similarly, electron circuits can be designed with modern surface technologies in which the propagation of electrons is non-diffusive. Similar investigations also started recently for circuits in which the propagating excitations are phonons and magnons (spin waves). In this review paper, we deal with mono-mode circuits for propagating photons, non-diffusive ballistic electrons, magnons, phonons and plasmons. In all these circuits, the interfaces between the different wires out of which the circuits are made of, play a fundamental role. All such circuits exhibit a variety of interference effects in their transport properties. Emphasis in this review paper is placed on the network creations, which include barriers, stubs or resonators, closed loops, interconnecting branched networks and multiplexers. Results for the transmission and reflection properties of such circuits are discussed as a function of the wavelength of the excitations and the physical properties of the circuits.

  16. Avoided Crossing Patterns and Spectral Gaps of Surface Plasmon Modes in Gold Nano-Structures

    CERN Document Server

    Kolomenskii, Alexandre; Hembd, Jeshurun; Kolomenski, Andrei; Noel, John; Teizer, Winfried; Schuessler, Hans

    2010-01-01

    The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the high frequency dark mode to the low frequency bright mode for increasing wavelength of the excitation light. PACS numbers: 73.20.Mf, 42.70.Qs, 42.25.-p,

  17. Ferrell-Berreman modes in plasmonic epsilon-near-zero media

    CERN Document Server

    Newman, Ward D; Atkinson, Jon; Pramanik, Sandipan; DeCorby, Raymond G; Jacob, Zubin

    2015-01-01

    We observe unique absorption resonances in silver/silica multilayer-based epsilon-near-zero (ENZ) metamaterials that are related to radiative bulk plasmon-polariton states of thin-films originally studied by Ferrell (1958) and Berreman (1963). In the local effective medium, metamaterial descrip- tion, the unique effect of the excitation of these microscopic modes is counterintuitive and captured within the complex propagation constant, not the effective dielectric permittivities. Theoretical anal- ysis of the band structure for our metamaterials shows the existence of multiple Ferrell-Berreman branches with slow light characteristics. The demonstration that the propagation constant reveals subtle microscopic resonances can lead to the design of devices where Ferrell-Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement.

  18. Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes

    Science.gov (United States)

    Soni, J.; Mansha, S.; Dutta Gupta, S.; Banerjee, A.; Ghosh, N.

    2014-07-01

    The longitudinal and the transverse beam shifts, namely, the Goos-H\\"anchen (GH) and the Spin-Hall (SH) shifts are usually observed at planar interfaces. It has recently been shown that the transverse SH shift may also arise due to scattering of plane waves. Here, we show that analogous in-plane (longitudinal) shift also exist in scattering of plane waves from micro/nano systems. We study both the GH and the SH shifts in plasmonic metal nanoparticles/ nanostructures and dielectric micro-particles employing a unified framework that utilizes the transverse components of the Poynting vector of the scattered wave. The results demonstrate that interference of neighboring resonance modes in plasmonic nanostructures (e.g., electric dipolar and quadrupolar modes in metal spheres) leads to giant enhancement of GH shift in scattering from such systems. We also unravel interesting correlations between these shifts with the polarimetry parameters, diattenuation and retardance.

  19. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation

    Science.gov (United States)

    Reyes Gómez, F.; Mejía-Salazar, J. R.; Oliveira, Osvaldo N.; Porras-Montenegro, N.

    2017-08-01

    We demonstrate that the defect mode in the bulk plasmon-polariton gap of one-dimensional defective metamaterial photonic crystals can be used to achieve a giant enhancement of more than four orders of magnitude in the second harmonic (SH) conversion efficiency only by changing the incidence angle. Furthermore, the one-dimensional photonic crystal may be designed in order for the SH wave to coincide with the edge of the Bragg gap or with the defect mode inside this gap, in which case the enhancement is even higher. Because of the robustness of the bulk plasmon-polariton gap to scaling effects, the present proposal may inspire different routes for frequency upconversion, signal filtering, and switching photonic devices.

  20. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement

    Science.gov (United States)

    Huang, Yu; Ma, Lingwei; Li, Jianghao; Zhang, Zhengjun

    2017-03-01

    We present a careful numerical study of nanoparticle (NP) faceting, highlighting the great influence of small morphological changes of NP-mirror cavities on near-field enhancement in the nanoparticle-on-mirror (NPOM) system. Using a 3D finite element method (FEM) plasmon mapping method, the active transverse cavity modes can be confirmed. For the dominant mode, we have found that, by increasing the facet width, the resonance can be tuned linearly to the red with little decrease of the peak near-field intensity. It is further demonstrated that by increasing the NP size, the near-field intensity can be strongly enhanced. Understanding of such extreme optics benefits significantly both the optimized design of potential plasmonic devices and the fundamental understanding of nano-optics. Collaborative experimental considerations are expected with the rapid development of nanotechnology.

  1. Hot carrier relaxation in CdTe via phonon-plasmon modes

    Science.gov (United States)

    Zhong, Y.; Ostach, D.; Scholz, M.; Epp, S. W.; Techert, S.; Schlichting, I.; Ullrich, J.; Krasniqi, F. S.

    2017-03-01

    Carrier and lattice dynamics of laser excited CdTe was studied by time-resolved reflectivity for excitation fluences spanning about three orders of magnitude, from 0.064 to 6.14 mJ cm-2. At fluences below 1 mJ cm-2 the transient reflectivity is dominated by the dynamics of hybrid phonon-plasmon modes. At fluences above 1 mJ cm-2 the time-dependent reflectivity curves show a complex interplay between band-gap renormalization, band filling, carrier dynamics and recombination. A framework that accounts for such complex dynamics is presented and used to model the time-dependent reflectivity data. This model suggests that the excess energy of the laser-excited hot carriers is reduced much more efficiently by emitting hybrid phonon-plasmon modes rather than bare longitudinal optical phonons.

  2. Giant Goos-H\\"anchen shift in Scattering: the role of interfering Localized Plasmon modes

    CERN Document Server

    Soni, J; Gupta, S Dutta; Banerjee, A; Ghosh, N

    2014-01-01

    The longitudinal and the transverse beam shifts, namely, the Goos-H\\"anchen (GH) and the Spin-Hall (SH) shifts are usually observed at planar interfaces. It has recently been shown that the transverse SH shift may also arise due to scattering of plane waves. Here, we show that analogous in-plane (longitudinal) shift also exist in scattering of plane waves from micro/nano systems. We study both the GH and the SH shifts in plasmonic metal nanoparticles/ nanostructures and dielectric micro-particles employing a unified framework that utilizes the transverse components of the Poynting vector of the scattered wave. The results demonstrate that interference of neighboring resonance modes in plasmonic nanostructures (e.g., electric dipolar and quadrupolar modes in metal spheres) leads to giant enhancement of GH shift in scattering from such systems. We also unravel interesting correlations between these shifts with the polarimetry parameters, diattenuation and retardance.

  3. Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Madore, Wendy-Julie; De Montigny, Etienne; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-11-15

    We present a novel optical fiber surface plasmon resonance (SPR) sensor scheme using reflected guided cladding modes captured by a double-clad fiber coupler and excited in a gold-coated fiber with a tilted Bragg grating. This new interrogation approach, based on the reflection spectrum, provides an improvement in the operating range of the device over previous techniques. The device allows detection of SPR in the reflected guided cladding modes and also in the transmitted spectrum, allowing comparison with standard techniques. The sensor has a large operating range from 1.335 to 1.432 RIU, and a sensitivity of 510.5 nm/RIU. The device shows strong dependence on the polarization state of the guided core mode which can be used to turn the SPR on or off.

  4. Localized surface plasmon modes in a system of two interacting metallic cylinders

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Vergeles, Sergey S.; Vorobev, Petr E.

    2012-01-01

    of geometrical characteristics of the system and Ohmic losses in the metal. The results of numerical simulations were systematically compared with the analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into account the retardation effects. We also...... present the physical qualitative picture of the plasmon modes, which is validated by numerical simulations and analytical theory....

  5. Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem

    Science.gov (United States)

    Koch, R. J.; Seyller, Th.; Schaefer, J. A.

    2010-11-01

    We report on strong coupling of the charge-carrier plasmon ωPL in graphene with the surface-optical phonon ωSO of the underlying SiC(0001) substrate with low-electron concentration (n=1.2×1015cm-3) in the long-wavelength limit (q∥→0) . Energy-dependent energy-loss spectra give clear evidence of two coupled phonon-plasmon modes ω± separated by a gap between ωSO(q∥→0) and ωTO(q∥≫0) , the transverse-optical-phonon mode, in particular, for higher primary electron energies (E0≥20eV) . A simplified model based on dielectric theory is able to simulate our energy-loss spectra as well as the dispersion of the two coupled phonon-plasmon modes ω± . In contrast, Liu and Willis [Phys. Rev. B 81, 081406(R) (2010)]10.1103/PhysRevB.81.081406 postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.

  6. Surface-mode model of the extraordinary optical transmission without plasmons.

    Science.gov (United States)

    Xie, Yunya; Liu, Haitao; Jia, Hongwei; Zhong, Ying

    2015-03-09

    We propose a microscopic surface-mode model for the extraordinary optical transmission (EOT) through subwavelength metallic slit array covered with a thin dielectric layer under illumination of transverse-electric (TE) polarization. Remarkably, surface plasmon polarizations (SPPs) do not exist for this polarization. It is commonly believed that the waveguide mode in the dielectric layer plays a role similar to that of the SPP in classical EOT. To check the intuitive belief, we derive a surface-mode model by considering the multiple scattering process of the fundamental waveguide mode and neglecting all other residual field in the thin dielectric layer. The model captures the main feature of EOT and provides a phase-matching condition to predict the transmission resonance. Quantitative comparison between fully-vectorial calculations and model predictions shows that besides the fundamental waveguide mode, other residual field in the thin dielectric layer also contributes to the EOT without SPP.

  7. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Kekesi, R., E-mail: renata.kekesi@csic.es; Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G., E-mail: gaspar@imm.cnm.csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain)

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  8. Mie Plasmons: Modes Volumes, Quality Factors, and Coupling Strengths (Purcell Factor to a Dipolar Emitter

    Directory of Open Access Journals (Sweden)

    G. Colas des Francs

    2012-01-01

    Full Text Available Using either quasistatic approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor Qn and define the effective volume Vn of the nth mode in such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/Vn (Purcell factor. The role of Joule losses, far-field scattering, and mode confinement in the coupling mechanism is introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.

  9. Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter

    CERN Document Server

    Francs, G Colas des; Vincent, R; Bouhelier, A; Dereux, A

    2011-01-01

    Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor $Q_n$ and define the effective volume $V_n$ of the $n^{th}$ mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio $Q_n/V_n$ (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.

  10. Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding.

    Science.gov (United States)

    Cheng, Pi-Ju; Weng, Chen-Ya; Chang, Shu-Wei; Lin, Tzy-Rong; Tien, Chung-Hao

    2013-06-03

    We theoretically analyze plasmonic gap-mode nanocavities covered by a thick cladding layer at telecommunication wavelengths. In the presence of high-index cladding materials such as semiconductors, the first-order hybrid gap mode becomes more promising for lasing than the fundamental one. Still, the significant mirror loss remains the main challenge to lasing. Using silver coatings within a decent thickness range at two end facets, we show that the reflectivity is substantially enhanced above 95 %. At a coating thickness of 50 nm and cavity length of 1.51 μm, the quality factor is about 150, and the threshold gain is lower than 1500 cm(-1).

  11. Adiabatic mode coupler on ion-exchanged waveguides for the efficient excitation of surface plasmon modes (Presentation Recording)

    Science.gov (United States)

    Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain; Geng, Wei

    2015-10-01

    Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. The efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5]. However, the use of weakconfined guided modes of a glass ion exchanged waveguide as a SPP excitation source represents a technological challenge, because the mismatch between the size of their respective electromagnetic modes is so high that the resultant coupling loss is unacceptable for practical applications. In this work, we describe how an adiabatic taper structure formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14

  12. Continuous spectrum of modes for optical micro-sphere resonators

    Science.gov (United States)

    Nooramin, Amir Saman; Shahabadi, Mahmoud

    2016-09-01

    This paper presents an improved modal analysis for the spherical dielectric resonator. This is commonly carried out by assuming an outgoing spherical Hankel function for the region surrounding the dielectric sphere. It will be shown that this assumption is incomplete and cannot lead to the entire spectrum of resonance frequencies. Following an analytical formulation, we prove that, like cylindrical resonators, the only choice for the outer region of the dielectric sphere can be a proper linear combination of an inward and an outward traveling wave. Starting from this formulation, we determine the complete spectrum of the resonance frequencies and the associated mode fields. In this analysis, the continuous spectrum of resonance frequencies is introduced and the properties of radiation modes are studied in detail. The proposed analytical formulation is thereafter employed to calculate the quality factor of the resonator due to radiation and dielectric loss.

  13. Raman spectrum of plutonium dioxide: Vibrational and crystal field modes

    Science.gov (United States)

    Naji, M.; Magnani, N.; Bonales, L. J.; Mastromarino, S.; Colle, J.-Y.; Cobos, J.; Manara, D.

    2017-03-01

    The Raman spectrum of plutonium dioxide is studied both experimentally and theoretically. Particular attention has been devoted to the identification of high-energy modes at 2110 and 2620 c m-1 , whose attribution has so far been controversial. The temperature dependence of both modes suggests an electronic origin for them. Original crystal field (CF) calculations reported in this work show that these two modes can be respectively assigned to the Γ1→Γ5 and Γ1→Γ3 CF transitions within the I54 manifold. These two modes, together with the only vibrational line foreseen by the group theory for the F m -3 m Pu O2 symmetry—the T2 gPu -O stretching mode observed at 478 c m-1 —can thus be used as a Raman fingerprint of fcc plutonium dioxide.

  14. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2015-12-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  15. Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Pérot cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C. X.; Li, L. L.; Zhang, C. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, W., E-mail: wenxu-issp@aliyun.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China); Peeters, F. M. [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-06-14

    We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum- and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Pérot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic- or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices.

  16. Dual-frequency plasmon lasing modes in active three-layered bimetallic Ag/Au nanoshells

    Science.gov (United States)

    Wu, DaJian; Wu, XueWei; Cheng, Ying; Jin, BiaoBing; Liu, XiaoJun

    2015-11-01

    The optical properties of three-layered silver-gold-silica (SGS) nanoshells with gain have been investigated theoretically by using Mie theory. Surface plasmon amplification by stimulated emission of radiation (spaser) phenomena can be observed at two plasmon modes of the active SGS nanoshell in the visible region. It is found with the decrease in the radius of the inner Ag core that the critical value of ɛg″(ωg ) for the super-resonance of the low-energy mode increases first and then decreases while that for the high-energy mode decreases. An interesting overlap between the two curves for the critical value of ɛg″(ωg ) can be found at a special core radius. At this point, two super-resonances can be achieved concurrently at the low- and high-energy modes of the active SGS nanoshell with the same gain coefficient. This dual-frequency spaser based on the bimetallic Ag/Au nanoshell may be an efficient candidate for designing the nanolaser.

  17. Plasmonic antennas and zero mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy towards physiological concentrations

    CERN Document Server

    Punj, Deep; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as F\\"orster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero mode waveguides and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometre scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET and FCS. Single molecule spectroscopy techniques greatly benefit from zero mode waveguides and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics...

  18. Polynomials for Crystal Frameworks and the Rigid Unit Mode Spectrum

    CERN Document Server

    Power, S C

    2011-01-01

    Two derivations are given for a matrix-valued function $\\Phi_\\C(z)$, defined on the $d$-torus, that can be associated with a discrete, translationally periodic bar-joint framework $\\C$ in $\\bR^d$. The rigid unit mode (RUM) spectrum of $\\C$ is defined in terms of the phases of phase-periodic infinitesimal flexes and is identified in terms of the singular points of the function $z \\to \\rank \\Phi_\\C(z)$ and also in terms of the wave vectors of excitations with vanishing energy in the long wavelength limit. To a crystal framework $\\C$ in Maxwell counting equilibrium we associate a unique multi-variable monic polynomial $p_\\C(z_1,..,z_d)$ and for ideal zeolites the algebraic variety of zeros of $p_\\C(z)$ on the $d$-torus determines the RUM spectrum. The matrix function is related to periodic "floppy modes" and their asymptotic order and an explicit formula is obtained for the number of periodic floppy modes for a given supercell. The crystal polynomial, RUM spectrum and the mode multiplicity are computed for a num...

  19. Single-band high absorption and coupling between localized surface plasmons modes in a metamaterials absorber

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-10-01

    In this paper, we design and simulate a metamaterials absorbers based on the resonance of the local surface plasmon (LSP) mode. The damping constant of gold layer is optimized in simulations to eliminate the effect of the inappropriate material parameters on the electromagnetic properties of the proposed metamaterial absorber. The horizontal distance between two metal particles is optimized in simulations and a perfect absorption resonance peak is achieved due to the strong coupling of LSP modes. A new absorption peak is obtained when the horizontal distance is 0 nm. The vertical distance between the new metal particles and the bottom metal layer is reduced, which leads to the absorption peak reduce based on the reduction of the intensity of LSP modes. A new absorption peak is obtained when the new metallic particle and the bottom gold layer form a whole structure.

  20. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  1. SiGe metallized stub and plasmonic gap mode electro-absorption modulators

    Science.gov (United States)

    Thomas, Roney; Ikonic, Zoran; Kelsall, Robert W.

    2011-01-01

    The performance of an electro-optic modulator based on quantum confined Stark effect in a SiGe filled metal stub, coupled to an underlying Si-waveguide, is investigated using finite element simulations. The transmission of the system is controlled by changing the absorption coefficient of the material filling the stub, which modifies both the power transmitted by the stub itself and the field profile, and hence the coupling of this field into the single-mode output waveguide. An extinction ratio of {8.5 dB with an insertion loss of {8.5 dB can be achieved via electro-absorption derived from the quantum confined Stark effect (QCSE), assuming that the stub is filled with Ge/SiGe multiple quantum wells (MQWs) or Ge quantum dots (QDs) in a silicon matrix. With the sub-wavelength dimensions of the device offering low power operation and high switching speeds, the effect is of potential interest for application in silicon platform integrated photonics. Comparison is then made with an alternative class of plasmonic modulators based on metal-gap-dielectric structures, relying on the sensitivity of the gap plasmon mode losses near the mode cutoff to the precise refractive index profile, which can be changed via free carrier accumulation. These devices offer reduced insertion losses and, in contrast to the stub structures, their insertion loss and modulation depth scale with device length.

  2. Photoneutron spectrum measured with Bonner Spheres in Planetary method mode

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm{sup 2} at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm{sup 3}. The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)

  3. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  4. Abnormal Cutoff Thickness of Long-Range Surface Plasmon Polariton Modes Guided by Thin Metal Films

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; RAO Yi; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2007-01-01

    Long-range surface plasmon polariton(LRSPP) modes guided by a thin metal film surrounded by semi-infinite dielectrics with different refractive indices are studied.Our cMculation results show that the cutoff thickness of the metal film does not monotonically increase with refractive index difference △n between the SHbstrate and superstrate.Just because of this abnormal behaviour of cutoff thickness,the existence of LRSPP illustrates complicated situations in asymmetric configurations.For a certain metal film thickness,LRsPP may exist in one.two or three refractive index difference △n regions.

  5. Unbiased pseudo-Cl power spectrum estimation with mode projection

    CERN Document Server

    Elsner, Franz; Peiris, Hiranya V

    2016-01-01

    With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cl (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast...

  6. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  7. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.

    Science.gov (United States)

    Sharma, Yashna; Tiruveedhula, Veeranjaneya A; Muth, John F; Dhawan, Anuj

    2015-03-09

    In this paper, we present one dimensional plasmonic narrow groove nano-gratings, covered with a thin film of VO(2) (Vanadium Dioxide), as novel optical switches. These narrow groove gratings couple the incident optical radiation to plasmonic waveguide modes leading to high electromagnetic fields in the gaps between the nano-gratings. Since VO(2) changes from its semiconductor to its metallic phase on heating, on exposure to infra-red light, or on application of voltage, the optical properties of the underlying plasmonic grating also get altered during this phase transition, thereby resulting in significant switchability of the reflectance spectra. Moreover, as the phase transition in VO(2) can occur at femto-second time-scales, the VO(2)-coated plasmonic optical switch described in this paper can potentially be employed for ultrafast optical switching. We aim at maximizing this switchability, i.e., maximizing the differential reflectance (DR) between the two states (metallic and semiconductor) of this VO(2) coated nano-grating. Rigorous Coupled Wave Analysis (RCWA) reveals that the switching wavelengths - i.e., the wavelengths at which the values of the differential reflectance between VO(2) (S) and VO(2) (M) phases are maximum - can be tuned over a large spectral regime by varying the nano-grating parameters such as groove width, depth of the narrow groove, grating width, and thickness of the VO(2) layer. A comparison of the proposed ideal nano-gratings with various types of non-ideal nano-gratings - i.e., nano-gratings with non-parallel sidewalls - has also been carried out. It is found that significant switchability is also present for these non-ideal gratings that are easy to fabricate. Thus, we propose highly switchable and wide-spectra VO(2) based narrow groove nano-gratings that do not have a complex structure and can be easily fabricated.

  8. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    Science.gov (United States)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  9. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-07-21

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (CMOS technology.

  10. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission

    Science.gov (United States)

    Sun, Yu; Zheng, Zheng; Cheng, Jiangtao; Liu, Jianwei

    2014-10-01

    We report a novel plasmonic waveguide by incorporating a uniformly-biased graphene sheet over a high-index ridge. The fundamental mode in the proposed waveguide concentrates in the low-index low-loss gap, which is easier to excite and leads to longer propagation length than that of graphene ribbon waveguides', where the field is mostly confined at the high-loss graphene edges. The single mode transmission can be achieved at far-infrared regime without the hard-to-fabricate, ultra-narrow ribbon that results in extra material loss. Instead of the reflection mechanism at the ribbon edges, the optical field is laterally confined by the effective index difference of graphene plasmons due to the ridge. The results based on the effective index method (EIM) have been validated by finite-element simulations at each stage. Rapid design and optimization is carried out by EIM without requiring further extensive numerical computations. The presented waveguide might be employed in integrated wafer-scale photonic systems to enable high performance graphene-based devices.

  11. Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity

    Directory of Open Access Journals (Sweden)

    S. El-Jallal

    2016-12-01

    Full Text Available We present a theoretical investigation of the acousto-optic interaction in a two-dimensional phoxonic crystal cavity containing a metallic nanowire. The crystal is constituted by a square array of cylindrical holes in a TiO2 matrix containing a cavity inside which a gold nanowire is introduced. The optical modes of the cavity are therefore of combined photonic-plasmonic character. We calculate the strength of coupling between these modes and the localized phonons of the cavity, based on the “Moving Interface” mechanism of acousto-optic coupling. We discuss the coupling strength as a function of the size and position of the metallic nanowire and compare the results with those of a cavity without metallic particle.

  12. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement.

    Science.gov (United States)

    Ma, Youqiao; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2014-02-15

    In this Letter, a novel waveguide based on hybrid surface plasmon polaritons (HSPPs) is proposed and numerically analyzed. This waveguide consists of two dielectric nanowires placed on both sides of a nanowedge-patterned metal film, which can confine light in the ultra-deep-subwavelength region (ranging from λ²/4000 to λ²/400) with a long propagation length (ranging from 1200 to 3500 μm). Compared to a previous HSPPs waveguide without the nanowedges, with the same propagation length, our proposed structure has much higher mode confinement with 1 order of magnitude smaller normalized mode area. An investigation of the effect of structural perturbations indicates that our proposed waveguide also has good tolerance of fabrication errors. The proposed waveguide could be an interesting alternative structure to realize nanolasers and optical trapping.

  13. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    CERN Document Server

    Kumar, Shailesh; Garcia-Ortiz, Cesar E; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Smith, Cameron L C; Kristensen, Anders; Bozhevolnyi, Sergey I

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the fir...

  14. A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber

    Science.gov (United States)

    Gasior, Katarzyna; Martynkien, Tadeusz; Napiorkowski, Maciej; Zolnacz, Kinga; Mergo, Pawel; Urbanczyk, Waclaw

    2017-02-01

    For the first time to our knowledge, we report a successful fabrication of surface plasmon resonance (SPR) sensors in a specially developed single-mode birefringent polymer D-shape fiber with a core made of PMMA/PS copolymer. A small distance between the core and the cladding boundary allows to deposit a gold layer directly onto the flat fiber surface, which significantly simplifies the sensors fabrication process. The developed SPR sensor exhibits a sensitivity of 2765 nm RIU-1 for the refractive index of external medium equal to 1.410, which is similar to the sensitivity of the SPR sensors based on conventional side-polished single-mode silica fibers. Using the finite element method, we also numerically studied the sensor performance. The sensor characteristics obtained in the simulations are in a relatively good agreement with the experimental results.

  15. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  16. Unbiased pseudo-Cℓ power spectrum estimation with mode projection

    Science.gov (United States)

    Elsner, Franz; Leistedt, Boris; Peiris, Hiranya V.

    2017-02-01

    With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map, reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cℓ (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast in a form which allows a numerically efficient evaluation, preserving the favourable O( ℓ_{max} ^3 ) time complexity of PCL estimator algorithms. Using simulated data sets, we assess the scaling of the bias with various analysis parameters and demonstrate that it can be reliably removed. We conclude that in combination with mode projection, PCL estimators allow for a fast and robust computation of power spectra in the presence of systematic effects - properties in high demand for the analysis of ongoing and future large-scale structure surveys.

  17. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    OpenAIRE

    Quanshui Li; Zhili Zhang

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redsh...

  18. Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes

    Science.gov (United States)

    Saravanan, S.; Dubey, R. S.

    2016-10-01

    Presently, energy problems and environmental issues have attracted the scientific community for the development of cost-effective and high-performance solar cells. Thin film solar cells are cheaper but weak light absorption in longer wavelength has demanded an efficient light trapping scheme for the better harvesting of solar radiation to a maximum possibility. In this paper, we numerically explore the design efforts of an ultrathin film silicon solar cell, integrated with top dielectric and bottom metal gratings. The proposed design is influenced by the localized surface plasmon modes, surface plasmon polariton and optical resonances which leads to the optimal harvesting of sunlight within 40 nm thick absorbing layer. The optimized design of solar cell shows enhanced light absorption with cell efficiency ∼25% at normal transverse magnetic polarization condition. Our design approach assisted by photonic and plasmonic modes is promising for the realization of new generation, low-cost ultrathin film solar cells.

  19. Stroboscobic near-field scanning optical microscopy for 3D mapping of mode profiles of plasmonic nanostructures (Conference Presentation)

    Science.gov (United States)

    Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze

    2016-09-01

    We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.

  20. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.

    Science.gov (United States)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; De Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ∼5 × 10(-10) W(-1), enabling a second harmonic photon yield higher than 3 × 10(6) photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  1. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Science.gov (United States)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  2. Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method.

    Science.gov (United States)

    Kulchin, Yu N; Vitrik, O B; Dyshlyuk, A V

    2014-09-08

    A numerical study is presented of surface plasmon waves excitation in a metal film applied to the cladding of a standard bent single-mode optical fiber. It was shown that by adjusting the bend radius and metal film thickness one can achieve effective coupling between the fiber fundamental mode and symmetric surface plasmon mode through the intermediary of whispering gallery modes supported by the cladding of the bent fiber. This effect is demonstrated to allow for refractometric measurement both in the wavelength and intensity-modulated regimes with a resolution of up to 10⁻⁸ RIU. Usage of standard noise reduction techniques for intensity-modulated optical signals promises further increase in accuracy.

  3. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    the spontaneous emission of emitters by exciting plasmonic modes. An enhancement of photoemission up to 30 times is observed, leading to a 4 times broader emission spectrum. Next, we mainly discuss the LMIs in metal-graphene hybrid plasmonic structures. We introduce two novel hybrid systems for studying light...

  4. Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor

    Science.gov (United States)

    Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje

    2015-11-01

    The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.

  5. Meta-Optical Chirality and Emergent Eigen-polarization Modes via Plasmon Interactions

    Science.gov (United States)

    Moocarme, Matthew; Proscia, Nicholas V.; Vuong, Luat T.

    2017-02-01

    The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.

  6. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons.

    Science.gov (United States)

    Wu, Jin Jei; Hou, Da Jun; Liu, Kexin; Shen, Linfang; Tsai, Chi An; Wu, Chien Jang; Tsai, Dichi; Yang, Tzong-Jer

    2014-11-03

    We apply the concept of spoof surface plasmon polaritons (SPPs) to the design of differential microstrip lines by introducing periodic subwavelength corrugations on their edges. The dispersion relation and field distribution of those lines are analyzed numerically. And then through designing practical coupling circuits, we found that compared with conventional differential microstrip lines, the electromagnetic field can be strongly confined inside the grooves of the corrugated microstrip lines, so the crosstalk between the differential pair and the adjacent microstrip lines is greatly reduced, and the conversion from the differential signal to the common mode signal can also be effectively suppressed. The propagation length of those lines is also very long in a wide band. Moreover, the experimental results in time domain demonstrate those lines perform very well in high-speed circuit. Therefore, those novel kinds of spoof SPPs based differential microstrip lines can be widely utilized in high-density microwave circuits and guarantee signal integrity in high-speed systems.

  7. Reply to "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' "

    Science.gov (United States)

    Kristensen, Philip Trøst; Ge, Rong-Chun; Hughes, Stephen

    2017-07-01

    We refute all claims of the "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' " by E. A. Muljarov and W. Langbein. Based entirely on information already contained in our original article [P. T. Kristensen, R.-C. Ge, and S. Hughes, Phys. Rev. A 92, 053810 (2015), 10.1103/PhysRevA.92.053810], we dismiss every point of criticism as being unsupported and point out how important parts of our argumentation appear to have been overlooked by the Comment authors. In addition, we provide additional calculations showing directly the connection between the normalizations by Sauvan et al. and Muljarov et al., which were not included in our original article.

  8. Plasmonic metasurfaces for coloration of plastic consumer products.

    Science.gov (United States)

    Clausen, Jeppe S; Højlund-Nielsen, Emil; Christiansen, Alexander B; Yazdi, Sadegh; Grajower, Meir; Taha, Hesham; Levy, Uriel; Kristensen, Anders; Mortensen, N Asger

    2014-08-13

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum.

  9. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun;

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  10. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  11. Dual mode operation, highly selective nanohole array-based plasmonic colour filters

    Science.gov (United States)

    Fouladi Mahani, Fatemeh; Mokhtari, Arash; Mehran, Mahdiyeh

    2017-09-01

    Taking advantage of nanostructured metal films as plasmonic colour filters (PCFs) has been evolved remarkably as an alternative to the conventional technologies of chemical colour filtering. However, most of the proposed PCFs depict a poor colour purity focusing on generating either the additive or subtractive colours. In this paper, we present dual mode operation PCFs employing an opaque aluminium film patterned with sub-wavelength holes. Subtractive colours like cyan, magenta, and yellow are the results of reflection mode of these filters yielding optical efficiencies as high as 70%–80% and full width at half maximum of the stop-bands up to 40–50 nm. The colour selectivity of the transmission mode for the additive colours is also significant due to their enhanced performance through the utilization of a relatively thick aluminium film in contact with a modified dielectric environment. These filters provide a simple design with one-step lithography in addition to compatibility with the conventional CMOS processes. Moreover, they are polarization insensitive due to their symmetric geometry. A complete palette of pure subtractive and additive colours has been realized with potential applications, such as multispectral imaging, CMOS image sensors, displays, and colour printing.

  12. Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum

    Science.gov (United States)

    Guo, B. S.; Loo, Y. L.; Ong, C. K.

    2017-10-01

    This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.

  13. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating

    Institute of Scientific and Technical Information of China (English)

    Changkui HU; Deming LIU

    2009-01-01

    A transmission-type surface plasmon resonance (SPR) sensor is presented. In the transmission-type SPR structure, surface plasmon waves are outcoupled to radia-tion modes by the use of dielectric grating on a thin-film layer of Ag. Compared with the traditional reflection-type SPR sensor, the new method provides larger detectable range, which might be useful to investigate thick targets such as in cell analysis. Theoretical simulations show that the structures provide high transmission efficiency for surface plasmon resonance and the devices present extre-mely linear sensing characteristics. Furthermore, it is found that the transmission efficiency and the refractive index detection sensitivity of the SPR sensor can be improved by the use of a lower refractive index glass prism.

  14. Resonanant enhancement of molecular excitation intensity in inelastic electron scattering spectrum owing to interaction with plasmons in metallic nanoshell

    OpenAIRE

    Goliney, I. Yu.; Onykienko, Ye. V.

    2014-01-01

    A quantum-mechanical model to calculate the electron energy-loss spectra (EELS) for the system of a closely located metallic nanoshell and a molecule has been developed. At the resonance between the molecular excitation and plasmon modes in the nanoshell, which can be provided by a proper choice of the ratio of the inner and outer nanoshell radii, the cross-section of inelastic electron scattering at the molecular excitation energy is shown to grow significantly, because the molecular transit...

  15. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  16. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    Science.gov (United States)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  17. Assessing the plasmonics of gold nano-triangles with higher order laser modes

    Directory of Open Access Journals (Sweden)

    Laura E. Hennemann

    2012-10-01

    Full Text Available Regular arrays of metallic nano-triangles – so called Fischer patterns – are fabricated by nano-sphere lithography. We studied such gold nano-triangle arrays on silicon or glass substrates. A series of different samples was investigated with a parabolic mirror based confocal microscope where the sample is scanned through the laser focus. By employing higher order laser modes (azimuthally and radially polarised laser beams, we can excite the Fischer patterns using either a pure in-plane (x,y electric field or a strongly z-directional (optical axis of the optical microscope electric field. We collected and evaluated the emitted luminescence and thereby investigated the respectively excited plasmonic modes. These varied considerably: firstly with the light polarisation in the focus, secondly with the aspect ratio of the triangles and thirdly with the employed substrate. Moreover, we obtained strongly enhanced Raman spectra of an adenine (sub-monolayer on gold Fischer patterns on glass. We thus showed that gold Fischer patterns are promising surface-enhanced Raman scattering (SERS substrates.

  18. Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases.

    Science.gov (United States)

    Zhang, Yuan; Zhang, Xuejin; Mei, Ting; Fiddy, Michael

    2010-06-07

    Surface plasmon modes in structures of metal-insulator-metal (MIM), insulator-insulator-metal (IIM) and insulator-metal-insulator (IMI) are studied theoretically for both lossless and lossy cases. Causality dictates which solutions of Maxwell's equations we accept for these structures. We find that for both lossless and lossy cases, the negative index modes and positive index modes are independent and should be treated separately. For the lossless case, our results differ from some published papers. By studying in detail the lossy case, we demonstrate how the curves should look like.

  19. Design of Highly Efficient Hybrid Si-Au Taper for Dielectric Strip Waveguide to Plasmonic Slot Waveguide Mode Converter

    CERN Document Server

    Chen, Chin-Ta; Hosseini, Amir; Pan, Zeyu; Subbaraman, Harish; Zhang, Xingyu; Chen, Ray T

    2015-01-01

    In this paper, we design a dielectric-to-plasmonic slot waveguide mode converter based on the hybrid silicon-gold taper. The effects of mode matching, the effective index matching, and the metallic absorption loss on the conversion efficiency are studied. Consequently, a metallic taper-funnel coupler with an overall length of 1.7um is designed to achieve a very high conversion efficiency of 93.3% at 1550 nm. The configuration limitations for not allowing this mode converter to achieve a 100% conversion efficiency are also investigated. Such a high-efficiency converter can provide practical routes to realize ultracompact integrated circuits.

  20. Confocal Raman depth-scanning spectroscopic study of phonon-plasmon modes in GaN epilayers

    Science.gov (United States)

    Strelchuk, V. V.; Bryksa, V. P.; Avramenko, K. A.; Valakh, M. Ya.; Belyaev, A. E.; Mazur, Yu. I.; Ware, M. E.; DeCuir, E. A.; Salamo, G. J.

    2011-06-01

    Coupled longitudinal-optical (LO)-phonon-plasmon excitations were studied using confocal micro-Raman spectroscopy. The high-quality Si-doped GaN epilayers were grown in a Gunn diode structure on (0001) sapphire substrates by plasma assisted molecular beam epitaxy. Depth-profiled Raman spectra exhibit a spatial variation of both low, ω-, and high, ω+, frequency coupled phonon-plasmon modes (CPPMs) in the n-GaN layers. To describe the features of the CPPMs in the Raman spectra a self-consistent model that includes both the electro-optic and deformation-potential as well as charge-density fluctuation mechanisms as important processes for light scattering in n-GaN has been proposed. An agreement between the theoretical and experimental line shapes of the Raman spectra is obtained. From the best line-shape fitting of the CPPMs the depth profiles of the plasmon and phonon damping, plasmon frequency, free carrier concentrations, and electron mobility as well as the contributions of the electron-phonon interaction and charge density fluctuations to the Raman cross section in the GaN layers are determined. It is found that these depth profiles exhibit considerable nonuniformity and change at different laser pump-power excitations. Despite the high electron concentration in the n+-GaN layers, a strong peak of the unscreened A1(LO) phonon is also observed. A possible origin for the appearance of this mode is discussed.

  1. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.

    Science.gov (United States)

    Paul, Aniruddha; Solis, David; Bao, Kui; Chang, Wei-Shun; Nauert, Scott; Vidgerman, Leonid; Zubarev, Eugene R; Nordlander, Peter; Link, Stephan

    2012-09-25

    A comprehensive understanding of the type of modes and their propagation length for surface plasmon polaritons (SPPs) in gold nanowires is essential for potential applications of these materials as nanoscale optical waveguides. We have studied chemically synthesized single gold nanowires by a novel technique called bleach-imaged plasmon propagation (BlIPP), which relies on the plasmonic near-field induced photobleaching of a dye to report the SPP propagation in nanowires. We observed a much longer propagation length of 7.5 ± 2.0 μm at 785 nm compared to earlier reports, which found propagation lengths of ~2.5 μm. Finite difference time domain simulations revealed that the bleach-imaged SPP is a higher order m = 1 mode and that the lowest order m = 0 mode is strongly quenched due to the loss to the dye layer and cannot be resolved by BlIPP. A comparative assessment of BlIPP with direct fluorescence imaging furthermore showed that the significant difference in propagation lengths obtained by these two techniques can be attributed to the difference in their experimental conditions, especially to the difference in thickness of the dye layer coating on the nanowire. In addition to identifying a higher order SPP mode with long propagation length, our study infers that caution must be taken in selecting indirect measurement techniques for probing SPP propagation in nanoscale metallic waveguides.

  2. The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures

    CERN Document Server

    Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

    2014-01-01

    The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

  3. Dielectric function and plasmons in graphene

    OpenAIRE

    Hill, A.; Mikhailov, S. A.; Ziegler, K

    2009-01-01

    The electromagnetic response of graphene, expressed by the dielectric function, and the spectrum of collective excitations are studied as a function of wave vector and frequency. Our calculation is based on the full band structure, calculated within the tight-binding approximation. As a result, we find plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac fermions. In contrast to the latter, however, we find a stronger damping of the plasmon modes d...

  4. Resonanant enhancement of molecular excitation intensity in inelastic electron scattering spectrum owing to interaction with plasmons in metallic nanoshell

    CERN Document Server

    Goliney, I Yu

    2014-01-01

    A quantum-mechanical model to calculate the electron energy-loss spectra (EELS) for the system of a closely located metallic nanoshell and a molecule has been developed. At the resonance between the molecular excitation and plasmon modes in the nanoshell, which can be provided by a proper choice of the ratio of the inner and outer nanoshell radii, the cross-section of inelastic electron scattering at the molecular excitation energy is shown to grow significantly, because the molecular transition borrows the oscillator strength from a plasmon. The enhancement of the inelastic electron scattering by the molecule makes it possible to observe molecular transitions with an electron microscope. The dependences of the EEL spectra on the relative arrangement of the molecule and the nanoshell, the ratio between the inner and outer nanoshell radii, and the scattering angle are plotted and analyzed.

  5. Beyond dipolar regime in high-order plasmon mode bowtie antennas

    Science.gov (United States)

    Cuche, Aurélien; Viarbitskaya, Sviatlana; Kumar, Upkar; Sharma, Jadab; Arbouet, Arnaud; Girard, Christian; Dujardin, Erik

    2017-03-01

    Optical nanoantennas have shown their great potential for far-field to near-field coupling and for light confinement in subwavelength volumes. Here, we report on a multimodal configuration for bright and polarization-dependent bowtie antenna based on large and highly crystalline gold prisms. Each individual prism constituting an antenna arm sustains high order plasmon modes in the visible and near infrared range that allow for high field confinement and two-dimensional optical information propagation. We demonstrate by scanning two-photon luminescence (TPL) microscopy and numerical simulations based on the Green dyadic method that these bowtie antennas result in intense hot spots in different antenna locations as a function of the incident polarization. Finally, we quantify the local field enhancement above the antennas by computing the normalized total decay rate of a molecular system placed in the near field of the antenna gap as a function of the dipole orientation. We demonstrate the existence of a subtle relation between antenna geometry, polarization dependence and field enhancement. These new multimodal optical antennas are excellent far field to near field converter and they open the door for new strategies in the design of coplanar optical components for a wide range of applications including sensing, energy conversion or integrated information processing.

  6. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  7. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  8. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  9. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  10. Resolution Enhancement in Surface Plasmon Resonance Sensor Based on Waveguide Coupled Mode by Combining a Bimetallic Approach

    Directory of Open Access Journals (Sweden)

    Won Mok Kim

    2010-12-01

    Full Text Available In this study, we present and demonstrate a new route to a great enhancement in resolution of surface plasmon resonance sensors. Basically, our approach combines a waveguide coupled plasmonic mode and a kind of Au/Ag bimetallic enhancement concept. Theoretical modeling was carried out by solving Fresnel equations for the multilayer stack of prism/Ag inner-metal layer/dielectric waveguide/Au outer-metal layer. The inner Ag layer couples incident light to a guided wave and makes more fields effectively concentrated on the outer Au surface. A substantial enhancement in resolution was experimentally verified for the model stack using a ZnS-SiO2 waveguide layer.

  11. Multi-Beam Interference Transmission Spectrum Observed from an Eccentric Core Single-Mode Fiber

    Institute of Scientific and Technical Information of China (English)

    FAN Un-Yong; JIANG Wei-Wei; ZHAO Rui-Feng; PEI Li; JIAN Shui-Sheng

    2011-01-01

    @@ An eccentric core single-mode fiber, whose core is away from the axis of the fiber, is fabricated by using the fiber preform goniometric-groove method and the stack-and-draw method.An eccentric core single-mode fiber without coating is spliced between two single-mode fibers.Fundamental mode and cladding modes are excited at one splicing point between the eccentric core single-mode fiber and the single-mode fiber, and propagate in the eccentric core single-mode fiber, then interfere with each other at the other splicing point.Multi-beam interference transmission spectrum is observed.An in-line fiber interferometric strain sensor based on the eccentric core single-mode fiber is realized.%An eccentric core single-mode fiber, whose core is away from the axis of the fiber, is fabricated by using the fiber preform goniometric-groove method and the stack-and-draw method. An eccentric core single-mode fiber without coating is spliced between two single-mode fibers. Fundamental mode and cladding modes are excited at one splicing point between the eccentric core single-mode fiber and the single-mode fiber, and propagate in the eccentric core single-mode fiber, then interfere with each other at the other splicing point. Multi-beam interference transmission spectrum is observed. An in-line fiber interferometric strain sensor based on the eccentric core single-mode fiber is realized.

  12. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    Science.gov (United States)

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

  13. Complex frequencies and field distributions of localized surface plasmon modes in graphene-coated subwavelength wires

    Science.gov (United States)

    Cuevas, Mauro; Riso, Máximo A.; Depine, Ricardo A.

    2016-04-01

    In this work we study the modal characteristics of localized surface plasmons in graphene-coated, circular cross-section wires. Localized surface plasmons are represented in terms of cylindrical multipole partial waves characterized by discrete, complex frequencies that depend on the size of the wire and can be dynamically tuned via a gate voltage. We consider both intrinsically nonplasmonic wires and intrinsically plasmonic wires. In the first case the localized surface plasmons are introduced by the graphene coating, whereas in the second case the localized eigenmodes of the graphene coating are expected to hybridize those already existing in the bare wire. We show that the approach presented here, valid for particle sizes where the retardation effects can be significant, is in good agreement with analytical expressions obtained in the limit when particle size is very small compared to the wavelength of the eigenmode and with results indirectly determined from scattering cross-section spectra.

  14. Theory of nonlinear s-polarized plasmon-polariton and phonon-polariton modes in dielectric superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Baher, S. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of) and Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)]. E-mail: bahersalar@yahoo.com; Baharvand, A. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Sepahvand, R. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Badraghi, J. [Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)

    2007-04-30

    The propagation of nonlinear s-polarized polariton waves (TE modes) in an infinitely extended superlattice is considered. The periodic system is composed of two different components where the layers are arranged in an alternating fashion so that each layer of material 1 is bounded by two layers of material 2 and vice versa. In general, each of the individual layers may be characterized by a Kerr-type nonlinear dielectric function with a frequency-dependent characteristic of either the plasmons in a metal/semiconductor or the optical phonons in an ionic crystal. To investigate the propagation of polariton modes in such a system, a theoretical model is formulated leading to Jacobi elliptic functions for the electric field amplitude across the layers. Subsequently, the application of boundary conditions at the interfaces gives rise to dispersion relations. Numerical examples are given for plasmon-polariton and phonon-polariton modes and a comparison is made with phonon-polariton modes propagating in a three layered system.

  15. Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber.

    Science.gov (United States)

    Tuniz, Alessandro; Chemnitz, Mario; Dellith, Jan; Weidlich, Stefan; Schmidt, Markus A

    2017-02-08

    We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.

  16. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  17. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael;

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs....... The radial mode numbers q and the angular mode numbers p = l-m are identified and labeled via far-field imaging. The polar mode numbers l are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination...

  18. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  19. An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency

    Science.gov (United States)

    Teng, Da; Cao, Qing; Wang, Kai

    2017-05-01

    We present an extension of the generalized nonlocal (GNL) optical response theory for the mode analysis of several plasmonic waveguides. We show that, compared with the local description, the imaginary part of the effective mode index is enlarged using the GNL response model. We ascribe this enlargement to the ‘effective’ surface modification and the induced charge diffusion. This result is quite different from that of the hydrodynamic model, where the imaginary part becomes smaller compared with that of the local model. Further, we investigate the influence of geometry parameters on propagation properties and find that the nonlocal effects are much more remarkable for smaller gap and sharper tip. Although the introduction of diffusion has a negative impact on the propagation length, it reveals the true physical insight and should be taken care when dealing with nanoplasmonic waveguide for photonic integration applications.

  20. Numerical integral methods to study plasmonic modes in a photonic crystal waveguide with circular inclusions that involve a metamaterial

    Science.gov (United States)

    Mendoza-Suárez, A.; Pérez-Aguilar, H.

    2016-09-01

    We present several numerical integral methods for the study of a photonic crystal waveguide, formed by two parallel conducting plates and an array of circular inclusions involving a conducting material and a metamaterial. Band structures and reflectance were calculated, for infinite and finite photonic crystal waveguides, respectively. The numerical results obtained show that the numerical methods applied provide good accuracy and efficiency. An interesting detail that resulted from this study was the appearance of a propagating mode in a band gap due to defects in the middle of the photonic crystal waveguide. This is equivalent to dope a semiconductor to introduce allowed energy states within a band gap. Our main interest in this work is to model photonic crystal waveguides that involve left-handed materials (LHMs). For the specific LHM considered, a surface plasmon mode on the vacuum-LHM interface was found.

  1. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  2. Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

    Directory of Open Access Journals (Sweden)

    Nikita Arnold

    2013-12-01

    Full Text Available We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering cross section for dye-doped polystyrene spheres (radius 195 nm, which are half-covered by a silver layer of 10–40 nm thickness. Such silver capped spheres are interesting candidates for nanoplasmonic lasers, so-called spasers. We find that spasing requires gain levels less than 3.7 times higher than those in commercially available dye-doped spheres. However, commercially available concentrations are already apt to achieve negative absorption, and to narrow and enhance scattering by higher order modes. Narrowing of the plasmonic modes by gain also makes visible higher order modes, which are normally obscured by the broad spectral features of the lower order modes. We further show that the angular distribution of the far-field scattering of the spasing modes is by no means dipole-like and is very sensitive to the geometry of the structure.

  3. Broadband converging plasmon resonance at a conical nanotip

    OpenAIRE

    Wang, Yunshan; Plouraboué, Franck; Chang, Hsueh-Chia

    2013-01-01

    International audience; We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smoot...

  4. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths rang...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors.......Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths ranges....... Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...

  5. [Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber].

    Science.gov (United States)

    Luo, Yun-Han; Chen, Xiao-Long; Xu, Meng-Yun; Ge, Jia; Zhang, Yi-Long; He, Yong-Hong; Tang, Jie-Yuan; Yu, Jian-Hui; Zhang, Jun; Chen, Zhe; Chen, Xing-Dan

    2014-03-01

    Surface plasmon resonance, which utilizes the resonance of optical evanescent wave with the metal surface plasmon wave, has been developed into a high sensitivity, rapid, label-less measurement method for chemical and biological analysis. In order to improve the spectral sensitivity in refractive index for a side polished fiber surface plasmon resonance sensor, the whole cladding layer and part of core of a multimode fiber was polished off. Additionally, an extra chrome layer with relatively high refractive index was coated on the polished zone before a gold film. The results showed that the sensor can measure the refractive index range from 1.333 to 1. 431 RIU, with the average spectral sensitivity of 4.11 x 10(3) nm RIU(-1), which is better than the reported results. Especially, in the refractive index range of 1. 417 1. 431 RIU, the sensitivity reaches to 1.09 x 10(4) nm RIU(-1). The minimum resolution of approximately 3.6 x 10(-5) RIU was estimated by a combination analysis with the sensor sensitivity and stability. The superiorities possessed by the proposed sensor in high sensitivity, wide detection range, small size and good stability and reproducibility, etc., make it a good candidate for food testing, environmental monitoring, biomedical testing and other related fields.

  6. Plasmonics in buried structures

    OpenAIRE

    Romero, I. T.; García de Abajo, Francisco Javier

    2009-01-01

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative los...

  7. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    Science.gov (United States)

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  8. Characteristics of the transmission spectrum of the long period fiber gratings based on the coupling of core mode to the higher order cladding modes

    Institute of Scientific and Technical Information of China (English)

    Zijia Zhang(张自嘉); Wenkang Shi(施文康)

    2003-01-01

    The characteristics of the transmission spectrum of the Long-period fiber gratings (LPFGs) based on thecoupling of core mode to a higher order cladding mode (HE mode) are investigated using the coupled modetheory. This kind of LPFGs is different from that based on the coupling of core mode to a lower ordercladding mode because of the effect of the coupling of core mode to EH cladding mode. When the claddingmode order is higher, the coupling coefficients of core mode to HE and EH cladding modes are comparableand both of the propagation constants of HE and EH cladding modes approach, so the spectrum has anadditional loss peak. The bandwidth of LPFG based on the coupling of core mode to different claddingmode differs greatly. With the change of the mode orders from lower to higher, the transmission spectrumchanges from narrow to wide and more narrow.

  9. Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters

    Science.gov (United States)

    Nooshnab, Vida; Golmohammadi, Saeed

    2017-01-01

    Aluminum nanoparticle nanocomplexes have extensively been utilized for sustaining ultrastrong plasmonic bonding and antibonding resonant modes across the ultraviolet to visible spectrum. In this study, we analyze the plasmon response for two conventional symmetric heptamer and antisymmetric octamer antennas mediated by conductive film as a substrate to induce very sharp Fano-resonant mode at the high energy states. Besides, presence of an underlying conductive film in touching regime with the plasmonic nanoantennas leads to formation of charge transfer plasmons (CTPs) across the deep-UV band. It is also shown that presence of dielectric carbon nanospheres in the gap spots between proximal nanodisks gives rise to breaking the symmetry of the assemblies, while the new magnetic multipolar modes are induced and divided the Fano dip in two parts as well as formation of a couple of charge transfer plasmon resonant shoulders. The compactness and geometries of the clusters allow for inducing substantially strong resonant modes across the deep-UV domain. Our investigations provide new pathways and features for designing multifunctional molecular probes, biochemical sensors, and cathodoluminescence antennas across the UV spectrum. The proposed analysis were done using a blend of Finite-Difference Time-Domain (FDTD) calculations and transfer of plasmonic charges in nanoscale systems.

  10. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd;

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  11. Photon-neutrino scattering and the B-mode spectrum of CMB photons

    CERN Document Server

    Khodagholizadeh, Jafar; Xue, She-Sheng

    2014-01-01

    On the basis of the quantum Boltzmann equation governing the time-evolution of the density matrix of polarized CMB photons in the primordial scalar perturbations of metric, we calculate the B-mode spectrum of polarized CMB photons contributed from the scattering of CMB photons and CNB neutrinos (Cosmic Neutrino Background). We show that such contribution to the B-mode spectrum is negligible for small $\\ell$, however is significantly large for $50 < \\ell< 200$ by plotting our results together with the BICEP2 data. Our study and results imply that in order to theoretically better understand the origin of the observed B-mode spectrum of polarized CMB photons ($r$-parameter), it should be necessary to study the relevant and dominate processes in both tensor and scalar perturbations.

  12. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    Science.gov (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  13. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  14. Space Quantization of Light Transmission by Strong Coupling of Plasmonic Cavity Modes with Photosynthetic Complexes

    CERN Document Server

    Carmeli, Itai; Hieflero, Omri; Liliach, Igal; Zalevsky, Zeev; Mujica, Vladimiro; Richeter, Shachar

    2014-01-01

    The interaction between molecules and surface plasmons in defined geometries can lead to new light mater hybrid states where light propagation is strongly influenced by molecular photon absorption. Their application range from lasing LEDs to controlling chemical reactions and are relevant in light harvesting. The coupling between the electromagnetic field and molecular excitations may also lead to macroscopic extended coherent states characterized by an increase in temporal and spatial coherency. In this respect, it is intriguing to explore the coherency of the hybrid system for molecules that possess highly efficient exciton energy transfer. Such a molecule, is the photosynthetic light harvesting complex photosystem I which has an extended antenna system dedicated for efficient light harvesting. In this work, we demonstrate space quantization of light transmission through a single slit in free standing Au film coated with several layers of PS I. A self assembly technique for multilayer fabrication is used, e...

  15. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  16. Plasmonic components fabrication via nanoimprint

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2009-01-01

    A review report on nanoimprinted plasmonic components is given. The fabrication of different metal–dielectric geometries and nanostructured surfaces that support either propagating or localized surface plasmon modes is discussed. The main characteristics and advantages of the nanoimprint technolo...

  17. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  18. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2017-09-01

    We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

  19. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    Science.gov (United States)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  20. Measuring the mode volume of plasmonic nanocavities using coupled optical emitters

    CERN Document Server

    Russell, Kasey J; Hu, Evelyn; 10.1103/PhysRevB.85.245445

    2012-01-01

    Metallic optical systems can confine light to deep sub-wavelength dimensions, but verifying the level of confinement at these length scales typically requires specialized techniques and equipment for probing the near-field of the structure. We experimentally measured the confinement of a metal-based optical cavity by using the cavity modes themselves as a sensitive probe of the cavity characteristics. By perturbing the cavity modes with conformal dielectric layers of sub-nm thickness using atomic layer deposition, we find the exponential decay length of the modes to be less than 5% of the free-space wavelength (\\lambda) and the mode volume to be of order \\lambda^3/1000. These results provide experimental confirmation of the deep sub-wavelength confinement capabilities of metal-based optical cavities.

  1. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Larsen Lausen, Jens; García Ortíz, César Eduardo

    2016-01-01

    polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces...... protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only...

  2. Efficient coupling of a single diamond color center to propagating plasmonic gap modes

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Andersen, Ulrik L

    2013-01-01

    We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope...

  3. On the collective mode spectrum for composite fermions at 1/3 filling factor

    CERN Document Server

    Pérez-Martínez, A; Guerra, V; Martinez, Aurora Perez; Cabo, Alejandro; Guerra, Valia

    1995-01-01

    The collective mode spectrum of the composite fermion state 1/3 filling factor is evaluated. At zero momentum, the result coincides with the cyclotron energy at the external magnetic field value, and not at the effective magnetic field, in spite of the fact that only the former enters in the equations, thus, the Kohn theorem is satisfied. Unexpectedly, in place of a magneto roton minimum, the collective mode gets a treshold indicating the instability of the mean field composite fermion state under the formation of crystalline structures. However, the question about if if this outcome only appears within the mean field approximation should be further considered.

  4. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, V. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Beruete, M. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Sánchez, P. [Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain); Del Villar, I. [Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain)

    2016-01-25

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide.

  5. What can be learned from the lensed cosmic microwave background B-mode polarization power spectrum?

    CERN Document Server

    Smith, S; Rocha, G; Smith, Sarah; Challinor, Anthony; Rocha, Graca

    2006-01-01

    The effect of weak gravitational lensing on the cosmic microwave background (CMB) temperature anisotropies and polarization will provide access to cosmological information that cannot be obtained from the primary anisotropies alone. We compare the information content of the lensed B-mode polarization power spectrum, properly accounting for the non-Gaussian correlations between the power on different scales, with that of the unlensed CMB fields and the lensing potential. The latter represent the products of an (idealised) optimal analysis that exploits the lens-induced non-Gaussianity to reconstruct the fields. Compressing the non-Gaussian lensed CMB into power spectra is wasteful and leaves a tight degeneracy between the equation of state of dark energy and neutrino mass that is much stronger than in the more optimal analysis. Despite this, a power spectrum analysis will be a useful first step in analysing future B-mode polarization data. For this reason, we also consider how to extract accurate parameter con...

  6. 6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum

    Science.gov (United States)

    Fujimoto, Yukihiro; Hasegawa, Kouhei; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro

    2017-09-01

    We classify possible boundary conditions of a 6d Dirac fermion Ψ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) internal chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter θ. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. When such 6d fermions couple with a 6d scalar with a vacuum expectation value, θ contributes to a mass matrix of zero-mode fermions consisting of Yukawa interactions. The emergence of the angle parameter θ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotational symmetry is promoted to the two-dimensional conformal symmetry though no chiral massless zero mode appears. We also discuss the correspondence between our model on a rectangle and orbifold models in some details.

  7. Dispersion induced splitting of the collective mode spectrum in A-phase of superfluid 3He

    Science.gov (United States)

    Brusov, Peter; Brusov, Pavel

    2009-05-01

    The whole collective mode spectrum in A-phase of superfluid 3He with dispersion corrections is calculated. The degeneracy of clapping-modes depends on the direction of the collective mode momentum k with respect to the vector l (mutual orbital moment of Cooper pairs), namely: the mode degeneracy remains the same as in case of zero momentum k for k∥l only. For any other directions there is a three-fold splitting of these modes, which reaches maximum for k⊥l. The obtained results means that new interesting features can be observed in ultrasound experiments in axial-phase: the change of the number of peaks in ultrasound absorption into clapping-mode. Single peak, observed for these modes in axial-phase by Ling et al. [R. Ling, W. Wojtanowski, J. Saunders, E.R. Dobbs, J. Low Temp. Phys. 78 (1990) 187] will split into three peaks under change the ultrasound direction with respect to the vector l.

  8. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform

    CERN Document Server

    Peyskens, Frédéric; Van Dorpe, Pol; Thomas, Nicolas Le; Baets, Roel

    2015-01-01

    Surface Enhanced Raman Spectroscopy (SERS) is a well-established technique for enhancing Raman signals. Recently photonic integrated circuits have been used, as an alternative to microscopy based excitation and collection, to probe SERS signals from external metallic nanoparticles. However, in order to develop quantitative on-chip SERS sensors, integration of dedicated nanoplasmonic antennas and waveguides is desirable. Here we bridge this gap by demonstrating for the first time the generation of SERS signals from integrated bowtie nanoantennas, excited and collected by a single mode waveguide, and rigorously quantify the enhancement process. The guided Raman power generated by a 4-Nitrothiophenol coated bowtie antenna shows an 8 x 10^6 enhancement compared to the free-space Raman scattering. An excellent correspondence is obtained between the theoretically predicted and observed absolute Raman power. This work paves the way towards fully integrated lab-on-a-chip systems where the single mode SERS-probe can b...

  9. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  10. Plasmons in Anisotropic Quark-Gluon Plasma

    CERN Document Server

    Carrington, Margaret E; Mrowczynski, Stanislaw

    2014-01-01

    Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...

  11. Quasinormal modes, Superradiance and Area Spectrum for 2+1 Acoustic Black Holes

    CERN Document Server

    Lepe, S; Lepe, Samuel; Saavedra, Joel

    2005-01-01

    We present an exact expression for the quasinormal modes of acoustic disturbances in a rotating 2+1 dimensional sonic black hole (draining bathtub fluid flow) in the low frequency limit and evaluate the adiabatic invariant proposed by Kunstatter. We also compute,via Bohr-Sommerfeld quantization rule the equivalent area spectrum for this acoustic black hole, and we compute the superradiance phenomena for pure spinning 2+1 black holes.

  12. Evaluating the Spectrum of Unlocked Injection Frequency Dividers in Pulling Mode

    Directory of Open Access Journals (Sweden)

    Alessandro Lo Schiavo

    2013-09-01

    Full Text Available We study the phenomenon of periodic pulling which occurs in certain integrated microcircuits of relevant interest in applications, namely the injection-locked frequency dividers (ILFDs. They are modelled as second-order driven oscillators working in the subharmonic (secondary resonance regime, i.e., when the self-oscillating frequency is close (resonant to an integer submultiple n of the driving frequency. Under the assumption of weak injection, we find the spectrum of the system’s oscillatory response in the unlocked mode through closed-form expressions, showing that such spectrum is double-sided and asymmetric, unlike the single-sided spectrum of systems with primary resonance (n=1. An analytical expression for the amplitude modulation of the oscillatory response is also presented. Numerical results are presented to support theoretical relations derived.

  13. Wigner spectrum and coherent feedback control of continuous-mode single-photon Fock states

    Science.gov (United States)

    Dong, Zhiyuan; Cui, Lei; Zhang, Guofeng; Fu, Hongchen

    2016-10-01

    Single photons are very useful resources in quantum information science. In real applications it is often required that the photons have a well-defined spectral (or equivalently temporal) modal structure. For example, a rising exponential pulse is able to fully excite a two-level atom while a Gaussian pulse cannot. This motivates the study of continuous-mode single-photon Fock states. Such states are characterized by a spectral (or temporal) pulse shape. In this paper we investigate the statistical property of continuous-mode single-photon Fock states. Instead of the commonly used normal ordering (Wick order), the tool we proposed is the Wigner spectrum. The Wigner spectrum has two advantages: (1) it allows to study continuous-mode single-photon Fock states in the time domain and frequency domain simultaneously; (2) because it can deal with the Dirac delta function directly, it has the potential to provide more information than the normal ordering where the Dirac delta function is always discarded. We also show how various control methods in particular coherent feedback control can be used to manipulate the pulse shapes of continuous-mode single-photon Fock states.

  14. Neoclassical tearing mode (NTM) magnetic spectrum and magnetic coupling in JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Baruzzo, M; Bolzonella, T [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, 35127 Padova (Italy); Alper, B; Brix, M; Challis, C D; De Vries, P C; Giroud, C; Hawkes, N C; Howell, D F; Mailloux, J [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Buratti, P; Crisanti, F; Tudisco, O [Associazione Euratom/ENEA sulla Fusione, CP 65-00044 Frascati, Rome (Italy); De la Luna, E [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Imbeaux, F; Joffrin, E; Litaudon, X [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Koslowski, H R [Forschungszentrum Juelich GmbH, Association EURATOM-FZ Juelich, Institut fuer Plasmaphysik, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Sips, A C C, E-mail: matteo.baruzzo@igi.cnr.i [European Commission, Brussels, B-1094 (Belgium)

    2010-07-15

    An experimental study on the poloidal mode number (m) spectrum produced by a single toroidal mode number (n) neoclassical tearing mode (NTM) in the JET tokamak is presented. Clear evidence of the existence of more than one significant m component is given. The analysis is performed comparing several methods and diagnostics; among the latter we mention high frequency magnetic pick-up coils and an electron cyclotron emission radiometer, which measures detailed electron temperature radial profiles at high time resolution. The two diagnostics are also used together in a cross coherence calculation technique. The issue of the interaction of this multiple m structure with the plasma is addressed as well, with particular attention paid to plasma toroidal rotation and rotation shear, obtained from charge exchange spectroscopy data. This effect has been studied under two different operational plasma scenarios on JET in order to investigate both dependences on plasma parameters and consequences on the scenario itself.

  15. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge2Sb2Te5 Bridged Metallodielectric Dimers

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih

    2017-01-01

    Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state. PMID:28205643

  16. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  17. Plasmonics in buried structures.

    Science.gov (United States)

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  18. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  19. 6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum

    CERN Document Server

    Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro

    2016-01-01

    We classify possible boundary conditions of a 6d Dirac fermion $\\Psi$ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) 2d-chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter $\\theta$. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. The emergence of the angle parameter $\\theta$ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotat...

  20. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    Science.gov (United States)

    Scuderi, M. M.; Marone, C.; Tinti, E.; di Stefano, G.; Collettini, C.

    2016-09-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviours including slow earthquakes, tremor and low-frequency earthquakes. Laboratory and theoretical studies predict changes in seismic velocity before earthquake failure; however, tectonic faults fail in a spectrum of modes and little is known about precursors for those modes. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real-time monitoring of active faults may be a means to detect earthquake precursors.

  1. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, Minnesota 55812 (United States); Alù, Andrea [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 77812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, Minnesota 55812 (United States)

    2015-01-14

    We theoretically explore signatures of plasmonic Fano interferences in a subwavelength plasmonic metamolecule consisting of closely packed asymmetric gold nanodimers, which lead to the possibility of generating multiple Fano resonances in the scattering spectrum. This spectral feature is attributed to the interference between bright and dark plasmonic modes sustained by the constituent nanodimers. The excited Fano dips are highly sensitive in both wavelength and amplitude to geometry and background dielectric medium. The tunability of induced Fano resonances associated with enhanced electric fields from the visible to infrared region provides promising applications, particularly in refractive index sensing, light-trapping, and photon up-converting.

  2. Modified High Frequency Radial Spin Wave Mode Spectrum in a Chirality-Controlled Nanopillar

    Science.gov (United States)

    Kolthammer, J. E.; Rudge, J.; Choi, B. C.; Hong, Y. K.

    2016-09-01

    Circular magnetic spin valve nanopillars in a dual vortex configuration have dynamic characteristics strongly dependent on the interlayer dipole coupling. We report here on frequency domain properties of such nanopillars obtained by micromagnetic simulations. After the free layer is chirality switched with spin transfer torque, a radial spin wave eigenmode spectrum forms in the free layer with unusually large edge amplitude. The structure of these modes indicate a departure from the magnetostatic processes typically observed experimentally and treated analytically in low aspect ratio isolated disks. Our findings give new details of dynamic chirality control and relxation in nanopillars and raise potential signatures for experiments.

  3. Polarization mode dispersion spectrum measurement via high-speed wavelength-parallel polarimetry.

    Science.gov (United States)

    Xu, Li; Wang, Shawn X; Miao, Houxun; Weiner, Andrew M

    2009-08-20

    We report experiments in which wavelength-parallel spectral polarimetry technology is used for measurement of the frequency-dependent polarization mode dispersion (PMD) vector. Experiments have been performed using either a grating spectral disperser, configured to provide 13.6 GHz spectral resolution over a 14 nm optical bandwidth, or a virtually imaged phased array spectral disperser, configured for 1.6 GHz spectral resolution over a 200 GHz band. Our results indicate that the spectral polarimetry data obtained via this approach are of sufficient quality to permit accurate extraction of the PMD spectrum. The wavelength-parallel spectral polarimetry approach allows data acquisition within a few milliseconds.

  4. Spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry

    CERN Document Server

    Dewar, Robert L; Tuen,; Hole, Matthew J

    2016-01-01

    A general formulation of the problem of calculating the spectrum of stable and unstable eigenmodes of linearized perturbations about a magnetically confined toroidal plasma is presented. The analysis is based on a new hydromagnetic dynamical model, Multi-region Relaxed Magnetohydrodynamics (MRxMHD), which models the plasma-magnetic field system as consisting of multiple regions, containing compressible Euler fluid and Taylor-relaxed magnetic field, separated by flexible ideal-MHD current sheets. This is illustrated using a first-principles analysis of a two-region slab geometry, with periodic boundary conditions to model the outer regions of typical tokamak or reversed-field pinch plasmas. The lowest and second-lowest eigenvalues in plasmas unstable to tearing and kink-tearing modes are calculated. Very near marginal stability the lowest mode obtained using the incompressible approximation to the kinetic energy normalization of the present study is shown to correspond to the eigenvalues found in previous stud...

  5. Chiral near fields generated from plasmonic lattices

    CERN Document Server

    Canaguier-Durand, Antoine

    2014-01-01

    Plasmonic fields are usually considered non-chiral because of the transverse magnetic polarization of surface plasmon modes. We however show here that plasmonic lattices built from coherent superpositions of surface plasmons can generate optical chirality in the interfering near field. We reveal in particular the emergence of plasmonic potentials relevant to the generation of near-field chiral forces. This draws promising perspectives for performing enantiomeric separation schemes within the near field.

  6. Broadband converging plasmon resonance at a conical nanotip.

    Science.gov (United States)

    Wang, Yunshan; Plouraboue, Franck; Chang, Hsueh-Chia

    2013-03-11

    We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smooth nano-structures. The theory also explicitly connects the optimal angles and resonant optical frequencies to the material permittivities, with a specific optimum half angle that depends only on the real permittivity for high-permittivity and low-loss materials.

  7. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    Directory of Open Access Journals (Sweden)

    Lepage Dominic

    2011-01-01

    Full Text Available Abstract A surface plasmon resonance (SPR scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  8. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing.

    Science.gov (United States)

    Lepage, Dominic; Carrier, Dominic; Jiménez, Alvaro; Beauvais, Jacques; Dubowski, Jan J

    2011-05-17

    A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  9. Plasmon transmission through excitonic subwavelength gaps

    CERN Document Server

    Sukharev, Maxim

    2016-01-01

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorodes. The absence of spacer in the gap separating the rods the system exhibits the strong coupling between longitudinal plasmons in the two rods. The nature and magnitude of this coupling is studied by varying various geometrical parameters. When the length of one rod is varied this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. As a function of frequency the transmission is dominated by a splitted longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap, and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When off-resonant $2-$level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic lineshape, the tran...

  10. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyond...

  11. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    Science.gov (United States)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  12. Cavity spatial mode-locking and high controllability of radial output coupling for circular/square plasmonic nano-resonator lasers.

    Science.gov (United States)

    Chen, Xi; Huang, Yingyan; Ho, Seng-Tiong

    2015-02-01

    We proposed and investigated a novel output coupling scheme for a circular and a square plasmonic nano-ring laser based on a T-shaped radial coupler that is easier to realize than a tangential coupler. The amount of coupling efficiency is shown to be highly controllable from a few percent to tens of percents. This is due to the fact that the standing-wave lasing mode pattern will rotate to give the minimal cavity loss at the T-coupler's location, making the amount of output coupling surprisingly low and hence, controllable. For a non-circular cavity, other symmetry-breaking and geometry-induced scattering could result in separate mode-pattern locking. These give a few main ways to control and optimize the coupling efficiency: via widening/narrowing or rotating the T-coupler's waveguide, or, for the case of a non-circular cavity, via shifting the location of the T-coupler. We observed increased unidirectional lasing induced by either rotating the waveguide or shifting it (for non-circular cases). We simulated the coupling using Maxwell's equations based on the multi-level multi-electron FDTD (MLME-FDTD) method to realistically model the lasing and output coupling behaviors of such plasmonic semiconductor lasers.

  13. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer.

    Science.gov (United States)

    Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-03-21

    We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 10(8) and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU(-1). The SERS EF of FlexBrite in the wet state was found to be 4.81 × 10(8), 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays.

  14. Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser

    Science.gov (United States)

    Zhang, Shao-Hui; Shu-Lian, Zhang; Tan, Yi-Dong; Sun, Li-Qun

    2015-12-01

    We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4 microchip laser (ML). We find that low-frequency relaxation oscillation (RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4 ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well. Project supported by the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0086), the Tsinghua University Initiative Scientific Research Programme, China (Grant No. 2012Z02166), and the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China (Grant No. 2011YQ04013603).

  15. Hadron spectrum in quenched lattice QCD and distribution of zero modes

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Yoichi (Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics)

    1989-06-01

    I report the results of the calculation of the hadron spectrum with the standard one-plaquette gauge action on a 16{sup 3}x48 lattice at beta=5.85 in the quenched lattice QCD. The result remarkably agrees with that of quark potential models for the case where the quark mass is equal to or is larger than the strange quark mass, even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. Further, I show the distribution of zero modes of quark matrix, both in the cases of a RG improved gauge action and the standard action, and discuss the difference between the two cases. (orig.).

  16. The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate.

    Directory of Open Access Journals (Sweden)

    Libertad García-Villada

    Full Text Available Riboviruses (RNA viruses without DNA replication intermediates are the most abundant pathogens infecting animals and plants. Only a few riboviral infections can be controlled with antiviral drugs, mainly because of the rapid appearance of resistance mutations. Little reliable information is available concerning i kinds and relative frequencies of mutations (the mutational spectrum, ii mode of genome replication and mutation accumulation, and iii rates of spontaneous mutation. To illuminate these issues, we developed a model in vivo system based on phage Qß infecting its natural host, Escherichia coli. The Qß RT gene encoding the Read-Through protein was used as a mutation reporter. To reduce uncertainties in mutation frequencies due to selection, the experimental Qß populations were established after a single cycle of infection and selection against RT(- mutants during phage growth was ameliorated by plasmid-based RT complementation in trans. The dynamics of Qß genome replication were confirmed to reflect the linear process of iterative copying (the stamping-machine mode. A total of 32 RT mutants were detected among 7,517 Qß isolates. Sequencing analysis of 45 RT mutations revealed a spectrum dominated by 39 transitions, plus 4 transversions and 2 indels. A clear template•primer mismatch bias was observed: A•C>C•A>U•G>G•U> transversion mismatches. The average mutation rate per base replication was ≈9.1×10(-6 for base substitutions and ≈2.3×10(-7 for indels. The estimated mutation rate per genome replication, μ(g, was ≈0.04 (or, per phage generation, ≈0.08, although secondary RT mutations arose during the growth of some RT mutants at a rate about 7-fold higher, signaling the possible impact of transitory bouts of hypermutation. These results are contrasted with those previously reported for other riboviruses to depict the current state of the art in riboviral mutagenesis.

  17. Hybrid Airy Plasmons with Dynamically Steerable Trajectories

    CERN Document Server

    Li, Rujiang; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    With the intriguing properties of diffraction-free, self-accelerating, and self-healing, Airy plasmons are promising to be used in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, the high dissipative loss and the lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal the hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to the coupling between an optical mode and a plasmonic mode, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting be...

  18. Hybrid Airy plasmons with dynamically steerable trajectories.

    Science.gov (United States)

    Li, Rujiang; Imran, Muhammad; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2017-01-26

    With their intriguing diffraction-free, self-accelerating, and self-healing properties, Airy plasmons show promise for use in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, high dissipative loss and lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to coupling between optical modes and plasmonic modes, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of the hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting beams along with the emerging developments of optical tweezers and tractor beams.

  19. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    Science.gov (United States)

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  20. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  1. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies

    Science.gov (United States)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Kotov, Leonid N.

    2016-01-01

    Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity’s imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications. PMID:27225745

  2. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Science.gov (United States)

    Suárez, Isaac; Ferrando, Albert; Marques-Hueso, Jose; Díez, Antonio; Abargues, Rafael; Rodríguez-Cantó, Pedro J.; Martínez-Pastor, Juan P.

    2017-08-01

    In this work, the unique optical properties of surface plasmon polaritons (SPPs), i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height), respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs) dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate) waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (super)modes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs) over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  3. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    OpenAIRE

    Lepage Dominic; Carrier Dominic; Jiménez Alvaro; Beauvais Jacques; Dubowski Jan

    2011-01-01

    Abstract A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral r...

  4. Output power spectrum of a single-mode laser driven by coloured pump and quantum noises with coloured correlation

    Institute of Scientific and Technical Information of China (English)

    Han Li-Bo; Cao Li; Wu Da-Jin

    2004-01-01

    By using the linear approximation method, the output power spectrum is calculated for a single-mode laser driven by coloured pump and quantum noises with coloured correlation. We have observed that the configuration of the output power spectrum is complicated: that is, it can be of single peak, two peaks or three peaks. The configurations of the power spectrum can be transformed from one into another by changing the cross-correlation time, the cross-correlation coefficient between the two noises, and pump noise intensity.

  5. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer

    CERN Document Server

    Xu, Zhida; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-01-01

    We demonstrated a highly sensitive, waferscale, highly uniform plasmonic nanomushroom substrate based on plastic for nakedeye plasmonic colorimetry and surface enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dualmode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 10^8 and labelfree quantitative analysis by naked eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 X 10^8, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The labelfree detection of biotin streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic based dual-mode nano-mushroom substrate has the potential to be used as a sensing pla...

  6. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  7. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    Science.gov (United States)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  8. Hilbert spectrum and intrinsic oscillation mode of dynamic response of a bilinear SDOF system: influence of harmonic excitation amplitude

    Institute of Scientific and Technical Information of China (English)

    Zhang Yushan; Liang Jianwen; Hu Yuxian

    2005-01-01

    Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.

  9. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  10. Phonon-Plasmon Interaction in Metal-Insulator-Metal Localized Surface Plasmon Systems

    CERN Document Server

    Mrabti, Abdelali; Nicolas, Rana; Maurer, Thomas; Adam, Pierre-Michel; Akjouj, Abdellatif; Pennec, Yan; Djafari-Rouhani, Bahram

    2016-01-01

    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the phononic properties of the system, and then compute the acousto-plasmon...

  11. Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer

    CERN Document Server

    Gao, Fei; Luo, Yu; Zhang, Baile

    2016-01-01

    Invisibility dips, minima in scattering spectrum associated with asymmetric Fano-like line-shapes, have been predicted with transformation optics in studying strong coupling between two plasmonic nanoparticles. This feature of strongly coupled plasmonic nanoparticles holds promise for sensor cloaking. It requires an extremely narrow gap between the two nanoparticles, though, preventing its experimental observation at optical frequencies. Here, the concept of spoof surface plasmons is utilized to facilitate the strong coupling between two spoof-localized-surface-plasmon (SLSP) resonators. Instead of observing in far field, the near-field energy transport is probed through the two SLSP resonators. By virtue of enhanced coupling between the two resonators stacked vertically, a spectral transmission dip with asymmetric Fano-like line-shape, similar to the far-field invisibility dips predicted by transformation optics, is observed. The underlying mode interference mechanism is further demonstrated by directly imag...

  12. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  13. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor.

    Science.gov (United States)

    Albert, Jacques; Lepinay, Sandrine; Caucheteur, Christophe; Derosa, Maria C

    2013-10-01

    A surface plasmon resonance biochemical sensor based on a tilted fiber Bragg grating imprinted in a single mode fiber core is demonstrated. A 30-50 nm thick gold coating on the cladding of the fiber provides the support for surface plasmon waves whose interaction with attached biomolecules is monitored at near infrared wavelengths near 1,550 nm. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon with high accuracy. The attachment on the gold surfaces of aptamers with specific affinities for proteins provides the required target-analyte system and is shown to be functional in the framework of our sensing device. The implementation of the sensor either as a stand-alone device or as part of a multi-sensor platform is also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes

    CERN Document Server

    Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...

  15. Nanoscale photonics using coupled hybrid plasmonic architectures

    Science.gov (United States)

    Lin, Charles; Su, Yiwen; Helmy, Amr S.

    2016-04-01

    Plasmonic waveguides, which support surface plasmon polaritons (SPP) propagating along metal-dielectric interfaces, offer strong field confinement and are ideal for the design of integrated nano-scale photonic devices. However, due to free-carrier absorption in the metal, the enhanced mode confinement inevitably entails an increase in the waveguide loss. This lowers the device figure-of-merit achievable with passive plasmonic components and in turn hinders the performance of active plasmonic components such as optical modulators.

  16. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics

    OpenAIRE

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Wangperawong, Artit; Roelofs, Katherine E.; Bent, Stacey F.

    2016-01-01

    When optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping...

  17. Dispersion-Induced Splitting of the Collective Mode Spectrum in Axial and Planar Phases of Superfluid 3He

    Science.gov (United States)

    Brusov, Peter; Brusov, Pavel

    2009-05-01

    The whole collective mode spectrum in axial and planar phases of superfluid 3He with dispersion corrections is calculated for the first time. In axial A-phase the degeneracy of clapping modes depends on the direction of the collective mode momentum k with respect to the vector l (mutual orbital moment of Cooper pairs), namely: the mode degeneracy remains the same as in case of zero momentum k for k‖ l only. For any other directions there is a threefold splitting of these modes, which reaches maximum for k ⊥ l. In planar 2 D-phase, which exists in the magnetic field (at H> H C ) we find that for clapping modes the degeneracy depends on the direction of the collective mode momentum k with respect to the external magnetic field H, namely: the mode degeneracy remains the same as in case of zero momentum k for k‖ H only. For any other directions different from this one (for example, for k ⊥ H) there is twofold splitting of these modes. The obtained results imply that new interesting features can be observed in ultrasound experiments in axial and planar phases: the change of the number of peaks in ultrasound absorption into clapping mode. One peak, observed for these modes by Ling et al. (J. Low Temp. Phys. 78:187, 1990), will split into two peaks in a planar phase and into three peaks in an axial phase under the change of ultrasound direction with respect to the external magnetic field H in a planar phase and with respect to the vector l in an axial phase. In planar phase, some Goldstone modes in the magnetic field become massive (quasi-Goldstone) and have a similar twofold splitting under the change of ultrasound direction with respect to the external magnetic field H. The obtained results as well will be useful under interpretation of the ultrasound experiments in axial and planar phases of superfluid 3He.

  18. Plasmon-Exciton-Polariton Lasing

    CERN Document Server

    Ramezani, Mohammad; Fernández-Domínguez, Antonio I; Feist, Johannes; Rodriguez, Said Rahimzadeh-Kalaleh; Garcia-Vidal, Francisco J; Gómez-Rivas, Jaime

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton lasing in a plasmonic system, i.e., PEP lasing. These losses can be reduced in collective plasmonic resonances supported by arrays of nanoparticles. Here we demonstrate PEP lasing in arrays of silver nanoparticles by showing the emergence of a threshold in the photoluminescence accompanied by both a superlinear increase of the emission and spectral narrowing. We also observe a reduction of the threshold by increasing the coupling between the molecular excitons and the resonances supported by the array despite the reduction of the quantum efficiency of the emitters. The coexistence of bright and dark collective modes in this plasmonic system allows for a 90?-change of polarization in the emission beyond the threshold.

  19. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  20. Evaluation of frequency spectrum and main oscillation modes of box type multiple cross sections spans

    Directory of Open Access Journals (Sweden)

    Sokolov Oleg Leonidovich

    2014-05-01

    Full Text Available From the viewpoint of mechanics the box span of trestle bridges is non-diaphragm prismatic shell of multiple cross section of average length. Though many problems of static analysis of such structures have been solved, the development of analytical methods of calculating non-diaphragm box type structures on the vibration is an urgent task. The presented method for analysis of free vibration of non-diaphragm spans of box trestle bridges of multiple cross sections is based on the variation theory of prismatic shells of average length by V.Z. Vlasov. In this method the discrete-continuum design scheme, in which the mass of the structure is reduced to its nodal lines, is used. Equations of free vibration are variation equations and represent the work of internal and external forces in the possible displacements. The possible displacements are determined by the static approximation. The order frequency equation, obtained by solving the equation system of free vibration, coincides with the number of the vertical walls of the box span. For a split design scheme span the frequency equation is algebraic, and its components are calculated in analytical formulas. The method is illustrated by free vibrations of non-diaphragm box spans with four cross sections. As a result, the solution frequency spectrum and modes of vibration were defined. The advantage of the presented method of calculation is that the components of the frequency equation are calculated in analytical formulas. This method helps to study free vibration non-diaphragm box spans of multiple cross sections depending on changes in the design parameters. Application of this method will reduce the time and improve the design quality, and also monitor the results of structures analysis prepared with the help of computer complex.

  1. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...... phase and group velocity of the surface plasmon polariton (SPP) waveguiding mode (0.967c and 0.85c at λLaser = 812nm) as well as the effective propagation length (39 μm) along the fiber-gold interface. We furthermore observe that the propagation properties of the SPP waveguiding mode are governed...

  2. Plasmonic response of nanoscale spirals.

    Science.gov (United States)

    Ziegler, Jed I; Haglund, Richard F

    2010-08-11

    The Archimedean spiral geometry presents a platform for exploration of complex plasmonic mechanisms and applications. Here we show both through simulations and experiment that more complex plasmonic modes with unique near-field structure and larger mode volumes can be realized within a single, topologically robust structure. In the spiral, complex polarization response, resonant interactions and symmetry-breaking features are defined by the width and spacing of the spiral tracks and by the winding number of the spiral.

  3. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    Science.gov (United States)

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  4. Femtosecond dynamics of Tamm plasmon-polaritons (Conference Presentation)

    Science.gov (United States)

    Afinogenov, Boris I.; Popkova, Anna A.; Bessonov, Vladimir O.; Fedyanin, Andrey A.

    2016-09-01

    Tamm plasmon-polaritons (TPPs) have attracted many interest due to the peculiarities of their optical properties. TPPs are optical surface states, which can be excited at the boundary of distributed Bragg reflector and metal film. Like in case of surface plasmon-polaritons or surface electromagnetic waves excitation, the emergence of the TPP leads to the localization of the electromagnetic field near the DBR/metal interface. Experimentally, TPP can be detected by a narrow resonance in reflectance or transmittance spectrum of the DBR/metal structure. Tamm plasmon-polaritons were proposed to be used in several types of novel optical elements, such as sensors and lasers. It was also shown that TPPs can be effectively coupled with other localized states like surface plasmons and microcavity modes. In this contribution the direct measurements of the Tamm plasmon-polariton relaxation dynamics are presented. The lifetime of the TPP in one-dimensional photonic crystal is estimated experimentally and compared to the results of numerical calculations. The dependence of the lifetime on the angle of incidence and duration of the incident pulse is supported by numerical studies performed with the finite difference time-domain technique.

  5. Plasmonic atoms and plasmonic molecules

    CERN Document Server

    Klimov, V V

    2007-01-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  6. Plasmonic atoms and plasmonic molecules

    Science.gov (United States)

    Klimov, V. V.; Guzatov, D. V.

    2007-11-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for the construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  7. Dispersion induced splitting of the collective mode spectrum in A-phase of superfluid {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Brusov, Peter [Finance Academy under the Government of the Russian Federation, 49-55, Leningradsky Ave., Moscow 125993 (Russian Federation)], E-mail: pnb1983@yahoo.com; Brusov, Pavel [Physical Research Institute, South Federal University, 194 Stachki Ave., Rostov-on-Don 344090 (Russian Federation)

    2009-05-11

    The whole collective mode spectrum in A-phase of superfluid {sup 3}He with dispersion corrections is calculated. The degeneracy of clapping-modes depends on the direction of the collective mode momentum k with respect to the vector l (mutual orbital moment of Cooper pairs), namely: the mode degeneracy remains the same as in case of zero momentum k for k-parallel l only. For any other directions there is a three-fold splitting of these modes, which reaches maximum for k-perpendicular l. The obtained results means that new interesting features can be observed in ultrasound experiments in axial-phase: the change of the number of peaks in ultrasound absorption into clapping-mode. Single peak, observed for these modes in axial-phase by Ling et al. [R. Ling, W. Wojtanowski, J. Saunders, E.R. Dobbs, J. Low Temp. Phys. 78 (1990) 187] will split into three peaks under change the ultrasound direction with respect to the vector l.

  8. Excitation of surface and volume plasmons in metal nanocluster by fast electrons

    CERN Document Server

    Gildenburg, V B; Pavlichenko, I A

    2015-01-01

    Surface and volume plasmons excited in a metal cluster by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed and found to be in good enough agreement with the data of scanning transmission electron microscopy (STEM) experiments. It is shown that, in the general case, a pronounced contribution to the formation of th...

  9. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    Science.gov (United States)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  10. The Influence of Tuners and Temperature on the Higher Order Mode Spectrum for 1.3 GHz SCRF Cavities

    CERN Document Server

    Ainsworth, R; Zhang, P; Grecki, M; Baboi, N; Wamsat, T; Eddy, N

    2013-01-01

    Higher Order Modes (HOMs) are of concern for superconducting cavities as they can drive instabilities and so are usually damped and monitored. With special dedicated electronics, HOMs can provide information on the position on the beam. It has been proposed that piezo tuners used to keep the cavities operating at 1.3 GHz could alter the HOM spectrum altering the calibration constants used to read out the beam position affecting long term stability of the system. Also, of interest is how the cavity reacts to the slow tuner. Detuning and the retuning the cavity may alter the HOM spectrum. This is of particular interest for future machines not planning to use dedicated HOM damping as the tuning procedure may shift the frequency of HOMs onto dangerous resonances. The effect of temperature on the HOM spectrum is also investigated. An investigation of these effects has been performed at FLASH and the results are presented.

  11. Plasmons in QED vacuum

    Science.gov (United States)

    Petrov, E. Yu.; Kudrin, A. V.

    2016-09-01

    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  12. Sex Differences in the Default Mode Network with Regard to Autism Spectrum Traits: A Resting State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Minyoung Jung

    Full Text Available Autism spectrum traits exist on a continuum and are more common in males than in females, but the basis for this sex difference is unclear. To this end, the present study draws on the extreme male brain theory, investigating the relationship between sex difference and the default mode network (DMN, both known to be associated with autism spectrum traits. Resting-state functional magnetic resonance imaging (MRI was carried out in 42 females (mean age ± standard deviation, 22.4 ± 4.2 years and 43 males (mean age ± standard deviation, 23.8 ± 3.9 years with typical development. Using a combination of different analyses (viz., independent component analysis (ICA, fractional amplitude of low-frequency fluctuation (fALFF, regional homogeneity (ReHo, and seed-based analyses, we examined sex differences in the DMN and the relationship to autism spectrum traits as measured by autism-spectrum quotient (AQ scores. We found significant differences between female and male subjects in DMN brain regions, with seed-based analysis revealing a significant negative correlation between default-mode resting state functional connectivity of the anterior medial prefrontal cortex seed (aMPFC and AQ scores in males. However, there were no relationships between DMN sex differences and autism spectrum traits in females. Our findings may provide important insight into the skewed balance of functional connectivity in males compared to females that could serve as a potential biomarker of the degree of autism spectrum traits in line with the extreme male brain theory.

  13. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  14. Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities

    Science.gov (United States)

    Li, Rui-Qi; Hernángomez-Pérez, D.; García-Vidal, F. J.; Fernández-Domínguez, A. I.

    2016-09-01

    We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. Inspired by transformation optics ideas, a quasianalytical approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.

  15. Energy Levels of Coupled Plasmonic Cavities

    Institute of Scientific and Technical Information of China (English)

    Chuan-Pu Liu; Xin-Li Zhu; Jia-Sen Zhang; Jun Xu; Yamin Leprince-Wang; Da-Peng Yu

    2016-01-01

    We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy.Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones,the contrary cases happen for small quantum number modes.We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes.These results provide an understanding of the resonant properties in coupled plasmonic cavities,which have potential applications in nanophotonic devices.

  16. Direct imaging of localized surface plasmon polaritons

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla

    2011-09-01

    In this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white-light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with finite-difference time-domain calculations.

  17. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  18. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  19. Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders

    Directory of Open Access Journals (Sweden)

    Beathe Haatveit

    2016-01-01

    Conclusion: These results support a general load-dependent DMN dysfunction in schizophrenia spectrum disorder across two demanding executive tasks that is not merely an epiphenomenon of cognitive dysfunction.

  20. Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser.

    Science.gov (United States)

    Longhi, Stefano

    2005-04-01

    It is shown that a frequency mode-locked laser with a sinusoidal sweep of modulation frequency around a mode-locking condition represents an ideal optical system for observing in the spectral domain the phenomena of dynamic localization and Bloch oscillations of electrons in an ideal solid placed in an external ac electric field.

  1. Electrochemically Programmable Plasmonic Antennas.

    Science.gov (United States)

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  2. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  3. Atomically localized plasmon enhancement in monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wu [Vanderbilt University; Lee, Jaekwang [Vanderbilt University; Nanda, Jagjit [ORNL; Pantelides, Sokrates T. [Vanderbilt University; Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL

    2012-01-01

    Plasmons in graphene can be tuned by using electrostatic gating or chemical doping, and the ability to confine plasmons in very small regions could have applications in optoelectronics, plasmonics and transformation optics. However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm. Here, we show that surface plasmon resonances in graphene can be enhanced locally at the atomic scale. Using electron energy-loss spectrum imaging in an aberration-corrected scanning transmission electron microscope, we find that a single point defect can act as an atomic antenna in the petahertz (10{sup 15} Hz) frequency range, leading to surface plasmon resonances at the subnanometer scale.

  4. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires

    CERN Document Server

    Huang, Changming; Oladipo, Abiola O; Panoiu, Nicolae C; Ye, Fangwei

    2015-01-01

    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal lo...

  5. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  6. EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal

    Science.gov (United States)

    Chen, Yong; Wu, Chun-ting; Liu, Huan-lin

    2017-07-01

    Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.

  7. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy

    Science.gov (United States)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J.; Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    2016-03-01

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction—required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C‧) channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

  8. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy.

    Science.gov (United States)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen

    2016-03-11

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

  9. The Mass of the Planet-hosting Giant Star Beta Geminorum Determined from its p-mode Oscillation Spectrum

    CERN Document Server

    Hatzes, A P; Matthews, J; Kuschnig, R; Walker, G A H; Doellinger, M; Guenther, D B; Moffat, A F J; Rucinski, S M; Sasselov, D

    2012-01-01

    We use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star Beta Gem. This spacing along with the interferometric radius for this star is used to derive an accurate stellar mass. A long time series of over 60 hours of precise stellar radial velocity measurements of Beta Gem were taken with an iodine absorption cell and the echelle spectrograph mounted on the 2m Alfred Jensch Telescope. Complementary photometric data for this star were also taken with the MOST microsatellite spanning 3.6 d. A Fourier analysis of the radial velocity data reveals the presence of up to 17 significant pulsation modes in the frequency interval 10-250 micro-Hz. Most of these fall on a grid of equally-spaced frequencies having a separation of 7.14 +/- 0.12 micro-Hz. An analysis of 3.6 days of high precision photometry taken with the MOST space telescope shows the presence of up to 16 modes, six of which are consistent with modes found i...

  10. A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR

    CERN Document Server

    Ade, P A R; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A H; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-01-01

    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of 30 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.5% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.0...

  11. When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-09-01

    The merger of colliding black holes (BHs) should lead to the production of ringdown or quasinormal modes (QNMs), which may very well be sensitive to the state of the interior. We put this idea to the test with a recent proposal that the interior of a BH consists of a bound state of highly excited, long, closed, interacting strings; figuratively, a collapsed polymer. We show, using scalar perturbations for simplicity, that such BHs do indeed have a distinct signature in their QNM spectrum: A new class of modes whose frequencies are parametrically lower than the lowest-frequency mode of a classical BH and whose damping times are parametrically longer. The reason for the appearance of the new modes is that our model contains another scale, the string length, which is parametrically larger than the Planck length. This distinction between the collapsed-polymer model and general-relativistic BHs could be made with gravitational-wave observations and offers a means for potentially measuring the strength of the coupling in string theory. For example, GW150914 already allows us to probe the strength of the string coupling near the regime which is predicted by the unification of the gravitational and gauge-theory couplings. We also derive bounds on the amplitude of the collapsed-polymer QNMs that can be placed by current and future gravitational-wave observations.

  12. Digital Plasmonics

    CERN Document Server

    Gjonaj, Bergin; Johnson, Patrick M; Mosk, Allard P; Kuipers, Kobus; Lagendijk, Ad

    2010-01-01

    The field of plasmonics offers a route to control light fields with metallic nanostructures through the excitation of Surface Plasmon Polaritons (SPPs). These surface waves, bound to a metal dielectric interface, tightly confine electromagnetic energy. Active control over SPPs has potential for applications in sensing, photovoltaics, quantum communication, nano circuitry, metamaterials and super-resolution microscopy. We achieve here a new level of control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases via feedback we focus SPPs at a freely pre-chosen point on the surface of a nanohole array with high resolution. Digital addressing and scanning of SPPs without mechanical motion will enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

  13. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    CERN Document Server

    Wang, Weihua; Mortensen, N Asger; Christensen, Johan

    2015-01-01

    Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.

  14. Visualizing hybridized quantum plasmons in coupled nanowires

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jensen, Kristian Lund; Mortensen, N. Asger

    2013-01-01

    We present full quantum-mechanical calculations of the hybridized plasmon modes of two nanowires at small separation, providing real-space visualization of the modes in the transition from the classical to the quantum tunneling regime. The plasmon modes are obtained as certain eigenfunctions...... of the dynamical dielectric function, which is computed using time-dependent density functional theory (TDDFT). For freestanding wires, the energy of both surface and bulk plasmon modes deviate from the classical result for low wire radii and high momentum transfer due to effects of electron spill-out, nonlocal...... response, and coupling to single-particle transitions. For the wire dimer, the shape of the hybridized plasmon modes are continuously altered with decreasing separation, and below 6 A˚, the energy dispersion of the modes deviate from classical results due to the onset of weak tunneling. Below 2-3 A...

  15. Fabrication of a cost-effective polymer nanograting as a disposable plasmonic biosensor using nanoimprint lithography

    Science.gov (United States)

    Mohapatra, Saswat; Kumari, Sudha; Moirangthem, Rakesh S.

    2017-07-01

    A simple and cost-effective flexible plasmonic sensor is developed using a gold-coated polymer nanograting structure prepared via soft UV nanoimprint lithography. The sub-wavelength nanograting patterns of digital versatile discs were used as a template to prepare the polydimethylsiloxane stamp. The plasmonic sensing substrate was achieved after coating a gold thin film on top of the imprinted nanograting sample. The surface plasmon resonance (SPR) modes excited on the gold-coated nanograting structure appeared as a dip in the reflectance spectrum measured at normal incidence under white light illumination in the ambient air medium. Electromagnetic simulation based on the finite element method was carried out to analyze the excited SPR modes. The simulated result shows very close agreement with the experimental data. The performance of the sensor with respect to changing the surrounding dielectric medium yields a bulk refractive index sensitivity of 788  ±  21 nm per refractive index unit. Further, label-free detection of proteins using a plasmonic sensing substrate was demonstrated by monitoring specific interactions between bovine serum albumin (BSA) and anti-BSA proteins, which gave a detection limit of 123 pg mm-2 with respect to target anti-BSA protein binding. Thus, our proposed plasmonic sensor has potential for the development of an economical and highly sensitive label-free optical biosensing device for biomedical applications.

  16. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum].

    Science.gov (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin

    2010-05-01

    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  17. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  18. Fano Resonance in an Electrically Driven Plasmonic Device

    Science.gov (United States)

    Vardi, Yuval; Cohen-Hoshen, Eyal; Shalem, Guy; Bar-Joseph, Israel

    Electrically driven plasmonic devices offer unique opportunities as a research tool and for practical applications. In such devices, current that flows across a metallic tunnel junction excites a plasmon, which gives rise to light emission. This local nature of the excitation allows access into ''dark'' modes, which are not easily excited by far field illumination. We present an electrically driven plasmonic device, based on a gold nanoparticle single-electron-transistor, and investigate the light emission due to the tunneling current. The applied voltage determines the emitted spectral lineshape, enables an excellent control of the plasmonic spectrum. We show that the use of this structure allows us to characterize the electrical properties of the two tunnel barriers, and determine their role in the light emission process. Furthermore, we find a Fano resonance, resulting from interference between the nanoparticle and electrodes dipoles. This resonance is seen due to the local nature of the excitation, and is manifested as a sharp asymmetrical spectral dip. We show that the spectral position of this resonance can be conveniently controlled by the design of the structural parameters. Such devices may be a step toward the realization of an on-chip nano-optical emitters and sensors.

  19. Plasmon resonances in nanoparticles, their applications to magnetics and relation to the Riemann hypothesis

    Science.gov (United States)

    Mayergoyz, I. D.

    2012-05-01

    The review of the mathematical treatment of plasmon resonances as an eigenvalue problem for specific boundary integral equations is presented and general properties of plasmon spectrum are outlined. Promising applications of plasmon resonances to magnetics are described. Interesting relation of eigenvalue treatment of plasmon resonances to the Riemann hypothesis is discussed.

  20. Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement

    Science.gov (United States)

    Liu, Feifei; Zhang, Xinping; Fang, Xiaohui

    2017-01-01

    Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding resonance modes located at different spectral positions. This led to strong local field enhancement and confinement in the plano-concave nanocavites. Narrow-band optical extinction with an amplitude as high as 1.5 OD, corresponding to 97% reduction in the transmission, was achieved in the visible spectrum. The resonance spectra of this hybrid device can be extended from the visible to the near infrared by adjusting the structural parameters. PMID:28074853

  1. Plasmon excitations in the dimers formed by atom chains

    Science.gov (United States)

    Xue, Hong-jie; Hao, Da-peng; Zhang, Ming; Wang, Xiao-mei

    2017-02-01

    Based on the linear response theory in the random-phase approximation and the free-electron gas model, we study the plasmon excitations in the dimers formed by atom chains. With the help of energy absorption spectrum and charge distribution, the evolutions of longitudinal and transverse plasmon, and the effect of the system parameters such as size, atomic separation and electron filling on plasmon are obtained. In addition, the dipole, quadrupole, end and central plasmon are observed.

  2. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...... and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...

  3. Screening and collective modes in disordered graphene antidot lattices

    DEFF Research Database (Denmark)

    Yuan, Shengjun; Jin, Fengping; Roldan, Rafael

    2013-01-01

    , such as geometric and chemical disorder, are included in our calculations. We highlight the main differences of GALs with respect to single-layer graphene (SLG). Our results show that, in addition to the well-understood bulk plasmon in doped samples, interband plasmons appear in GALs. We further show......The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a π-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random-phase approximation. The effect of different kinds of disorder...... that the static screening properties of undoped and doped GALs quantitatively differ from SLG....

  4. Plasmonic Metamaterials

    CERN Document Server

    Yao, Kan

    2013-01-01

    Plasmonics and metamaterials have attracted considerable attention over the past decade, owing to the revolutionary impacts that they bring to both the fundamental physics and practical applications in multiple disciplines. Although the two fields initially advanced along their individual trajectories in parallel, they started to interfere with each other when metamaterials reached the optical regime. The dynamic interplay between plasmonics and metamaterials has generated a number of innovative concepts and approaches, which are impossible with either area alone. This review presents the fundamentals, recent advances and future perspectives in the emerging field of plasmonic metamaterials, aiming to open up new exciting opportunities for nanoscience and nanotechnology.

  5. Bloch oscillations in the presence of plasmons and phonons

    Science.gov (United States)

    Ghosh; Jonsson; Wilkins

    2000-07-31

    The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].

  6. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies

    Science.gov (United States)

    Zhang, Tian; Chen, Lin; Wang, Bing; Li, Xun

    2015-06-01

    We investigate optical field enhancement for a wide mid-infrared range, originating from the excitation of graphene plasmons, by introducing a graded dielectric grating of varying period underneath a graphene monolayer. Excitation of the plasmonic mode can be achieved by illuminating a normal-incidence plane wave on the gratings due to guided-mode resonance. The gratings of varying period enable the excitation of the plasmonic mode with a very high field enhancement factor (to the order of magnitude of 1000) within a wide spectral band, which leads to the frequency-dependent spatially separated localization of the infrared spectrum modes. We also demonstrate that the excitation position of the plasmonic mode can be freely tuned by varying the thickness of the interlayer as well as the chemical potential of the graphene monolayer. This structure enables the design of two-dimensional plasmonic photonic circuits and metamaterials targeted towards numerous potential applications including optoelectronic detectors, light-harvest devices, on-chip optical interconnects, biosensors, and light-matter interactions.

  7. Graphene active plasmonic metamaterials for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  8. Nanostructures graphene plasmon works close to near-infrared window

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Almdal, Kristoffer

    concepts with existing mature technologies in the near-infrared region. We investigate localized graphene plasmons supported by graphene nanodisks and experimentally demonstrated graphene plasmon working at 2 μm with the aid of a fully scalable block copolymer selfassembly method. Our results show......Due to strong mode-confinement, long propagation-distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter wavelengths in order to integrate graphene plasmon...... a promising way to promote graphene plasmons for both fundamental studies and potential applications in the near-infrared window....

  9. Photon tunneling via surface plasmon coupling

    Science.gov (United States)

    Passian, A.; Wig, A.; Lereu, A. L.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2004-10-01

    The measurement of a photonic signal via plasmon-plasmon coupling in curved thin metal films is presented. In domains of subwavelength dimension, we calculate the resonant dispersion relations by modeling the curved thin film as a single sheeted hyperboloid of revolution. We show that several such surface modes are accessible optically at frequencies below the plasma frequency of the metal.

  10. Plasmonic materials for energy: From physics to applications

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2013-10-01

    Full Text Available Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP modes – propagating surface plasmon polaritons (SPPs and localized surface plasmons (LSPs – as collective photon–electron oscillations makes them attractive candidates for energy applications. A high density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. The advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified.

  11. Plasmonic materials for energy: from physics to applications

    CERN Document Server

    Boriskina, Svetlana V; Chen, Gang

    2013-01-01

    Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes - propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) - as collective photon-electron oscillations makes them attractive candidates for energy applications. High density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. Advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvement...

  12. Plasmon-assisted optical vias for photonic ASICS

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna

    2017-03-21

    The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.

  13. Graphene Plasmons in Triangular Wedges and Grooves

    CERN Document Server

    Gonçalves, P A D; Xiao, Sanshui; Vasilevskiy, M I; Mortensen, N Asger; Peres, N M R

    2016-01-01

    The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we propose an alternative solution to conventional metal-based plasmonics by exploiting the deep subwavelength confinement and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential and electric field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmons counterparts, but now scaled by a (purely) geometric factor in which all the information about the system's geometry is contained. We believe our results pave the way for the development of novel custom-tailored photonic devices for subwavelength waveg...

  14. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  15. Quantum Plasmonics

    OpenAIRE

    Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.

    2014-01-01

    Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...

  16. High-density array of Au nanowires coupled by plasmon modes%基于表面等离子体耦合的高密度金纳米线阵列

    Institute of Scientific and Technical Information of China (English)

    闫红丹; Meinhard Schilling; Peter Lemmens; Johannes Ahrens; Martin Broring; Sven Burger; Winfried Daum; Gerhard Lilienkamp; Sandra Korte; Aidin Lak

    2012-01-01

    利用电化学沉积法在阳极氧化铝模板中制备了高长径比(20-100)金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征.紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinalmode),具有很强的各向异性特征.纵向吸收峰的强度与入射光的偏振方向和入射角度有关,随着长径比的增加纵向吸收峰位置向高能方向移动.将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较,认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移.利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.%Au nanowire arrays with high aspect ratios are prepared in anode aluminum oxide templates by electrochemical deposition. The obtained structures are investigated by scanning Auger microscopy. Surface plasmon resonances of Au nanowire arrays induce a transverse mode (T mode) and a longitudinal mode (L mode) in the optical absorption, which indicates the strong anisotropy of the Au nanowires. The L mode intensity is related to the angle and polarization of the incident light. The L mode position shows a shift with the increase of aspect ratio of the nanowires. The plasmon coupling between Au nanowires is compared with the H-aggregation of organic chromophores. The blue shift of the L mode in the arrays compared with a single nanowire is induced by multi-coupling of the electromagnetic field between neighbouring nanowires. A finite element method is used to simulate the electric field distributions of a single Au nanowire and an array of plasmonically coupled wires.

  17. Dependence of surface plasmon-phonon-polariton in 4 H-SiC on free carrier concentration

    Science.gov (United States)

    Karakachian, H.; Kazan, M.

    2017-03-01

    In this paper, we present a thorough study of the characteristics of the surface modes that result from coupling between plasmon electronic oscillation modes, phonon modes, and electromagnetic modes. The Fourier transform of p-polarized reflectivity measurements were carried out on different 4 H-SiC epilayers differing in their free carrier concentration. The reflectivity measurements were performed with appropriate care to record reflectivity spectra averaged over a wide range of incidence angles. The complex infrared dielectric functions of the measured samples were determined by correcting the values obtained from the conventional Kramers-Kronig conversion technique with reference to Fresnel equations for reflectivity. The obtained dielectric functions were used to compute the effect of the free carrier concentration and the resulting plasmon electronic oscillation on the dispersion spectrum, lifetime, mean propagation length of the bulk, and surface plasmon-phonon-polariton modes. The effect of the free carrier concentration on the temporal coherence of surface plasmon-phonon-polariton is investigated, showing a potential practical method for enhancing the temporal coherence of SiC based thermal sources.

  18. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  19. Photoluminescence of a Plasmonic Molecule.

    Science.gov (United States)

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption.

  20. Plasmon ruler with gold nanorod dimers: utilizing the second-order resonance

    CERN Document Server

    Le, Anton T; Dubrovina, Natalia; Lupu, Anatole; Fedyanin, Andrey A

    2014-01-01

    The idea of utilizing the second-order plasmon resonance of the gold nanorod {\\pi}-dimers for plasmon rulers is introduced. We report on a qualitatively different dependence of the plasmon resonance shift on the interparticle distance for the first- and second-order longitudinal modes, extending the working range of plasmon rulers up to the distance values of 400 nm.

  1. A Moiré Cavity Plasmonic Dye Laser

    Science.gov (United States)

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2015-03-01

    From its first conception to its first demonstration, plasmonic lasers have been an intriguing topic of research. In this work, Moiré gratings which manifest a cavity state in the SPP dispersion curve. We used a reverse Kretschmann setup to decouple the amplified light component of SPPs. We employed a Moiré cavity with 250 +256 nm periodicity together with a Styryl 7 laser dye dissolved in ethylene glycol in 5 mM concentration and obtained a lasing at 718 nm. Pumping threshold was 1.5 mJ/cm2 with FWHM of 2.8 nm. Furthermore, periodicities of 242 +248 nm and 260 +266 nm resulted in proportional shift of the lasing peak. We did not observe any lasing action on samples with Au and Ti coatings, although solely Au coated samples showed plasmonic modes in the spectrum. Resulting lasing peak is highly TM polarized. Reflection map measurements confirm that lasing mode is supported with the cavity state of the metallic Moiré cavity and simulations support reflection map measurements. Thus, we demonstrated, to our knowledge, the first plasmonic dye laser on a Moiré cavity. TUBITAK 110T790, 110T589, 112T091.

  2. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jinna He

    2012-01-01

    Full Text Available The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR of Ag stripes, and surface plasmon polaritons (SPP arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.

  3. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  4. Towards solving QCD in light-cone quantization on the spectrum of the transverse zero modes for SU(2)

    CERN Document Server

    Pauli, H C; Pauli, Hans Christian; Bayer, Rolf

    1996-01-01

    The formalism for a non-abelian pure gauge theory in (2+1) dimensions has recently been derived within Discretized Light-Cone Quantization, restricting to the lowest {\\it transverse} momentum gluons. It is argued why this model can be a paradigm for full QCD. The physical vacuum becomes non-trivial even in light-cone quantization. The approach is brought here to tractable form by suppressing by hand both the dynamical gauge and the constraint zero mode, and by performing a Tamm-Dancoff type Fock-space truncation. Within that model the Hamiltonian is diagonalized numerically, yielding mass spectra and wavefunctions of the glue-ball states. We find that only color singlets have a stable and discrete bound state spectrum. The connection with confinement is discussed. The structure function of the gluons has a shape like [{x(1-x)}] ^{1\\over 3} . The existence of the continuum limit is verified by deriving a coupled set of integral equations.

  5. Vibrational spectrum, ab initio calculations, conformational equilibria and torsional modes of 1,3-dichloropropane

    Science.gov (United States)

    Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.

    2004-02-01

    Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.

  6. Quantum theory of plasmons in nanostructures

    DEFF Research Database (Denmark)

    Winther, Kirsten Trøstrup

    . For a theoretical description of plasmon in such materials, where the electrons are heavily confined in one or more directions, a quantum mechanical description of the electrons in the material is necessary. In this thesis, the ab initio methods Density functional theory (DFT) and linear response time-dependent DFT......In this thesis, ab initio quantum-mechanical calculations are used to study the properties of plasmons in nanostructures that involve atomic length-scales. The plasmon is an electronic excitation that corresponds to oscillations in the electron charge density in metals, often visualized as water...... are applied to calculate the properties of plasmons in nanostructures in different dimensions. In order to identify and visualize localized plasmon modes, a method for calculating plasmon eigenmodes within the ab initio framework has been developed. In the studied materials, quantum mechanical effects...

  7. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    -compatible materials, both passive and active plasmonic waveguide components are important. Among other proposed plasmonic waveguides and modulators, the structures where the dielectric core is sandwiched between metal plates have been shown as one of the most compact and efficient layout. Because of the tight mode...... confinement that can be achieved in metal-insulator-metal structures, they provide a base for extremely fast and efficient ultracompact plasmonic devices, including modulators, photodetectors, lasers and amplifiers. The main result of this thesis is a systematic study of various designs of plasmonic......Metal-dielectric interfaces can support the waves known as surface plasmon polaritons, which are tightly coupled to the interface and allow manipulation of light at the nanoscale. Plasmonics as a subject which studies such waves enables the merge between two major technologies: nanometer...

  8. Ultralow-Loss CMOS Copper Plasmonic Waveguides.

    Science.gov (United States)

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S

    2016-01-13

    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.

  9. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    Science.gov (United States)

    Melentev, G. A.; Shalygin, V. A.; Vorobjev, L. E.; Panevin, V. Yu.; Firsov, D. A.; Riuttanen, L.; Suihkonen, S.; Korotyeyev, V. V.; Lyaschuk, Yu. M.; Kochelap, V. A.; Poroshin, V. N.

    2016-03-01

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2-20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of the reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.

  10. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.; Panevin, V. Yu.; Firsov, D. A. [Department of Physics of Semiconductors and Nanoelectronics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251 (Russian Federation); Riuttanen, L.; Suihkonen, S. [School of Electrical Engineering, Aalto University, Espoo 02150 (Finland); Korotyeyev, V. V.; Lyaschuk, Yu. M.; Kochelap, V. A. [Department of Theoretical Physics, Institute of Semiconductor Physics NASU, Kyiv 03028 (Ukraine); Poroshin, V. N. [Department of Solid State Electronics, Institute of Physics NASU, Kyiv 03028 (Ukraine)

    2016-03-07

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of the reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.

  11. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  12. Superradiance and subradiance in plasmonic nanochannels

    CERN Document Server

    Li, Ying

    2016-01-01

    We demonstrate a plasmonic route to superradiance and subradiance effects over distances comparable to the operating wavelength. Superradiant and subradiant modes are excited by a collection of two-level quantum emitters inside plasmonic nanochannels. These channels can provide an effective epsilon-near-zero operation in their cut-off frequency and Fabry-P\\'erot resonances at higher frequencies. The related plasmonic resonant modes are found to efficiently enhance the constructive (superradiance) or destructive (subradiance) interference between different quantum emitters located inside the nanochannels. By increasing the number of emitters located in the elongated plasmonic channel, the superradiance effect is enhanced at the epsilon-near-zero operation, leading to a strong increase in the collective spontaneous emission rate. In addition, the separation distance between neighboring emitters and their emission wavelengths can be changed to dynamically control the collective emission properties of the plasmon...

  13. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein.

    Science.gov (United States)

    Gomis-Cebolla, Joaquín; Ruiz de Escudero, Iñigo; Vera-Velasco, Natalia Mara; Hernández-Martínez, Patricia; Hernández-Rodríguez, Carmen Sara; Ceballos, Tomás; Palma, Leopoldo; Escriche, Baltasar; Caballero, Primitivo; Ferré, Juan

    2017-01-01

    The Vip3Ca protein, discovered in a screening of Spanish collections of Bacillus thuringiensis, was known to be toxic to Chrysodeixis chalcites, Mamestra brassicae and Trichoplusia ni. In the present study, its activity has been tested with additional insect species and we found that Cydia pomonella is moderately susceptible to this protein. Vip3Ca (of approximately 90kDa) was processed to an approximately 70kDa protein when incubated with midgut juice in all tested species. The kinetics of proteolysis correlated with the susceptibility of the insect species to Vip3Ca. The activation was faster to slower in the following order: M. brassicae (susceptible), Spodoptera littoralis (moderately susceptible), Agrotis ipsilon and Ostrinia nubilalis (slightly susceptible). Processing Vip3Ca by O. nubilalis or M. brassicae midgut juice did not significantly changed its toxicity to either insect species, indicating that the low susceptibility of O. nubilalis is not due to a problem in the midgut processing of the toxin. M. brassicae larvae fed with Vip3Ca showed binding of this toxin to the apical membrane of the midgut epithelial cells. Histopathological inspection showed sloughing of the epithelial cells with further disruption, which suggests that the mode of action of Vip3Ca is similar to that described for Vip3Aa. Biotin-labeled Vip3Ca and Vip3Aa bound specifically to M. brassicae brush border membrane vesicles and both toxins competed for binding sites. This result suggests that insects resistant to Vip3A may also be cross-resistant to Vip3C, which has implications for Insect Resistance Management (IRM).

  14. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.

    Science.gov (United States)

    Huang, Hao; Zhang, Lei; Lv, Zhiheng; Long, Ran; Zhang, Chao; Lin, Yue; Wei, Kecheng; Wang, Chengming; Chen, Lu; Li, Zhi-Yuan; Zhang, Qun; Luo, Yi; Xiong, Yujie

    2016-06-01

    Harnessing surface plasmon of metal nanostructures to promote catalytic organic synthesis holds great promise in solar-to-chemical energy conversion. High conversion efficiency relies not only on broadening the absorption spectrum but on coupling the harvested energy into chemical reactions. Such coupling undergoes hot-electron transfer and photothermal conversion during the decay of surface plasmon; however, the two plasmonic effects are unfortunately entangled, making their individual roles still under debate. Here, we report that in a model system of bimetallic Au-Pd core-shell nanostructures the two effects can be disentangled through tailoring the shell thickness at atomic-level precision. As demonstrated by our ultrafast absorption spectroscopy characterizations, the achieved tunability of the two effects in a model reaction of Pd-catalyzed organic hydrogenation offers a knob for enhancing energy coupling. In addition, the two intrinsic plasmonic modes at 400-700 and 700-1000 nm in the bar-shaped nanostructures allow for utilizing photons to a large extent in full solar spectrum. This work establishes a paradigmatic guidance toward designing plasmonic-catalytic nanomaterials for enhanced solar-to-chemical energy conversion.

  15. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  16. Mushroom plasmonic metamaterial infrared absorbers

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  17. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  18. Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

    Science.gov (United States)

    Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew

    2013-01-01

    Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single

  19. Surface-plasmon-polariton-assisted dissipative backaction cooling and amplification

    Science.gov (United States)

    Hassani nia, Iman; Mohseni, Hooman

    2015-11-01

    We evaluate a method, based on the near-field properties of surface-plasmon polaritons, to significantly enhance the dissipative optomechanical backaction mechanism. Although the large momentum of the surface-plasmon-polariton modes leads to the enhanced sensitivity of the scattering to the mechanical displacement, the overall efficiency will not improve unless an optical antenna efficiently couples the plasmonic modes to the far field. The predicted improvements in both efficiency and bandwidth make this approach uniquely suitable for many new applications.

  20. Finite element modeling of plasmon based single-photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;

    2011-01-01

    A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...... waveguides with different geometries, as long as only one guided plasmonic mode is predominantly excited....

  1. Deficient visuospatial working memory functions and neural correlates of the default-mode network in adolescents with autism spectrum disorder.

    Science.gov (United States)

    Chien, Hsiang-Yun; Gau, Susan Shur-Fen; Isaac Tseng, Wen-Yih

    2016-10-01

    In addition to the essential features of autism spectrum disorder (ASD), namely social communication deficits and repetitive behaviors, individuals with ASD may suffer from working memory deficits and an altered default-mode network (DMN). We hypothesized that an altered DMN is related to working memory deficits in those with ASD. A total of 37 adolescents with ASD and 36 age- and IQ-matched typically developing (TD) controls were analyzed. Visuospatial working memory performance was assessed using pattern recognition memory (PRM), spatial recognition memory (SRM), and paired-associates learning (PAL) tasks. The intrinsic functional connectivity (iFC) of the DMN was indexed by the temporal correlations between the resting-state functional magnetic resonance imaging signals of pairs of DMN regions, including those between the posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC) and between the PCC and parahippocampi (PHG). The corresponding structural connectivity of the DMN was indexed by the generalized fractional anisotropy (GFA) of the dorsal and ventral cingulum bundles on the basis of diffusion spectrum imaging data. The results showed that ASD adolescents exhibited delayed correct responses in PRM and SRM tasks and committed more errors in the PAL task than the TD controls did. The delayed responses during the PRM and SRM tasks were negatively correlated with bilateral PCC-mPFC iFCs, and PAL performance was negatively correlated with right PCC-PHG iFC in ASD adolescents. Furthermore, ASD adolescents showed significant lower GFA in the right cingulum bundles than the TD group did; the GFA value was negatively correlated with SRM performance in ASD. Our results provide empirical evidence for deficient visuospatial working memory and corresponding neural correlates within the DMN in adolescents with ASD. Autism Res 2016, 9: 1058-1072. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  2. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides

    Science.gov (United States)

    Hou, Haowen; Teng, Jinghua; Palacios, Tomás; Chua, Soojin

    2016-07-01

    Graphene nano-ribbon waveguides with ultra-short plasmon wavelength are a promising candidate for nanoscale photonic applications. Graphene edge plasmons are the fundamental and lowest losses mode. Through finite element method, edge plasmons show large effective refractive index and strong field confinement on nanoscale ribbons. The edge plasmons follow a k1/2 dispersion relation. The wavelengths of the edge plasmons and center plasmons differ by a fixed factor. The width of edge plasmon is inversely proportional to wave vector of edge plasmon kedge. Edge defects associate with graphene nano-ribbon induce extra losses and reduce the propagation length. Cut-off width of edge plasmons reduces with increasing frequency. Cut-off width of center plasmon is enlarged by edge component but the enlargement effect diminishing with the increase of kedge. The results are important for the application of graphene plasmon towards ultra-compact photonic devices.

  3. Complementary magnetic localized surface plasmons

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2015-01-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field.

  4. Plasmons in nanoscale and atomic-scale systems

    Directory of Open Access Journals (Sweden)

    Tadaaki Nagao, Gui Han, ChungVu Hoang, Jung-Sub Wi, Annemarie Pucci, Daniel Weber, Frank Neubrech, Vyacheslav M Silkin, Dominik Enders, Osamu Saito and Masud Rana

    2010-01-01

    Full Text Available Plasmons in metallic nanomaterials exhibit very strong size and shape effects, and thus have recently gained considerable attention in nanotechnology, information technology, and life science. In this review, we overview the fundamental properties of plasmons in materials with various dimensionalities and discuss the optical functional properties of localized plasmon polaritons in nanometer-scale to atomic-scale objects. First, the pioneering works on plasmons by electron energy loss spectroscopy are briefly surveyed. Then, we discuss the effects of atomistic charge dynamics on the dispersion relation of propagating plasmon modes, such as those for planar crystal surface, atomic sheets and straight atomic wires. Finally, standing-wave plasmons, or antenna resonances of plasmon polariton, of some widely used nanometer-scale structures and atomic-scale wires (the smallest possible plasmonic building blocks are exemplified along with their applications.

  5. A Further Comparison of Manual Signing, Picture Exchange, and Speech-Generating Devices as Communication Modes for Children with Autism Spectrum Disorders

    Science.gov (United States)

    van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff

    2012-01-01

    We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…

  6. Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Ates, Simge; Karademir, Ertugrul; Salihoglu, Omer; Aydinli, Atilla

    2012-12-01

    In this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations.

  7. Plasmon Weyl Degeneracies in Magnetized Plasma

    CERN Document Server

    Gao, Wenlong; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang

    2015-01-01

    In this letter, we report the presence of novel type of plasmon Weyl points in a naturally existing material - magnetized plasma. In such a medium, conventional, purely longitudinal bulk plasma oscillations exists only along the direction of applied magnetic field (z direction). With strong enough magnetic field, there exist helical propagating modes along z direction with circular polarizations. The orthogonality between the longitudinal bulk plasmon mode and the transverse helical propagating modes guarantees their crossing at the bulk plasmon frequency. These crossing points, embedded in the bulk plasmon dispersion line, serve as monopoles in the k space - the so called Weyl points. These Weyl points lead to salient observable features. These include the highly intriguing observation that, at a magnetized plasma surface which is parallel to the applied magnetic field, reflection of an electromagnetic wave with in-plane wave-vector close to the Weyl points exhibits chiral behavior only in half of the k plan...

  8. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R < 5 nm) that can result in a great incr...

  9. Optical and terahertz energy concentration on the nanoscale in plasmonics

    Science.gov (United States)

    Rusina, Anastasia

    We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R0 ≈ lambda0 ≈ 300 microm to the unprecedented final size of R = 100--250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These

  10. On the plasmonic photovoltaic.

    Science.gov (United States)

    Mubeen, Syed; Lee, Joun; Lee, Woo-Ram; Singh, Nirala; Stucky, Galen D; Moskovits, Martin

    2014-06-24

    The conversion of sunlight into electricity by photovoltaics is currently a mature science and the foundation of a lucrative industry. In conventional excitonic solar cells, electron-hole pairs are generated by light absorption in a semiconductor and separated by the "built in" potential resulting from charge transfer accompanying Fermi-level equalization either at a p-n or a Schottky junction, followed by carrier collection at appropriate electrodes. Here we report a stable, wholly plasmonic photovoltaic device in which photon absorption and carrier generation take place exclusively in the plasmonic metal. The field established at a metal-semiconductor Schottky junction separates charges. The negative carriers are high-energy (hot) electrons produced immediately following the plasmon's dephasing. Some of the carriers are energetic enough to clear the Schottky barrier or quantum mechanically tunnel through it, thereby producing the output photocurrent. Short circuit photocurrent densities in the range 70-120 μA cm(-2) were obtained for simulated one-sun AM1.5 illumination with devices based on arrays of parallel gold nanorods, conformally coated with 10 nm TiO2 films and fashioned with a Ti metal collector. For the device with short circuit currents of 120 μA cm(-2), the internal quantum efficiency is ∼2.75%, and its wavelength response tracks the absorption spectrum of the transverse plasmon of the gold nanorods indicating that the absorbed photon-to-electron conversion process resulted exclusively in the Au, with the TiO2 playing a negligible role in charge carrier production. Devices fabricated with 50 nm TiO2 layers had open-circuit voltages as high as 210 mV, short circuit current densities of 26 μA cm(-2), and a fill factor of 0.3. For these devices, the TiO2 contributed a very small but measurable fraction of the charge carriers.

  11. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  12. Coupling of Quantum Emitters in Nanodiamonds to Plasmonic Structures

    DEFF Research Database (Denmark)

    Kumar, Shailesh

    applications such as sensing of the magnetic field. In this work, NV-centers in nanodiamond crystals smaller than 100 nm were used. For enhancing and channeling emission from the NV-centers, metallic waveguides are used in this work. In such waveguides, electromagnetic waves are guided at the interface between...... structure used for the coupling is two nanowires placed in parallel, which supports plasmonic modes in the gap between nanowires. The distribution of electromagnetic field in the plasmonic mode depends on the structure of the waveguide. The coupling between an emitter and the plasmonic mode, in turn...... a plasmonic waveguide and a dielectric waveguide made of silicon nitride suggest that the two waveguides can be coupled with a coupling loss of around 30 percent. Evanescent coupling between two plasmonic waveguides is also studied which can be useful for all integrated quantum plasmonic circuits....

  13. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  14. The Existence of Topological Edge States in Honeycomb Plasmonic Lattices

    CERN Document Server

    Wang, Li; Xiao, Meng; Han, Dezhuan; Chan, C T; Wen, Weijia

    2016-01-01

    In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum $k_{\\parallel}$ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed $k_\\p...

  15. Surface plasmon lifetime in metal nanoshells

    Science.gov (United States)

    Kirakosyan, Arman S.; Stockman, Mark I.; Shahbazyan, Tigran V.

    2016-10-01

    The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics and its applications. In small metal nanostructures, the dominant mechanism of plasmon decay is size-dependent Landau damping. We performed quantum-mechanical calculations of Landau damping for the bright surface plasmon mode in a metal nanoshell with dielectric core. In contrast to the conventional model based on the electron surface scattering, we found that the damping rate decreases as the nanoshell thickness is reduced. The origin of this behavior is traced to the spatial distribution of plasmon local field in the metal shell. We also found that, due to the interference of electron scattering amplitudes from the two nanoshell metal surfaces, the damping rate exhibits pronounced quantum beats with changing shell thickness.

  16. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  17. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  18. Topological collective plasmons in bipartite chains of metallic nanoparticles

    CERN Document Server

    Downing, Charles A

    2016-01-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudo-relativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunnelling. We also show that the system is governed by a nontriv...

  19. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    CERN Document Server

    Lamowski, Simon; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2016-01-01

    We investigate theoretically plasmon polaritons in cubic lattices of interacting spherical metallic nanoparticles. Dipolar localized surface plasmons on each nanoparticle couple through the near field dipole-dipole interaction and form collective plasmons which extend over the whole metamaterial. Coupling these collective plasmons in turn to photons leads to plasmon polaritons. We derive within a quantum model general semi-analytical expressions to evaluate both plasmon and plasmon-polariton dispersions that fully account for nonlocal effects in the dielectric function of the metamaterial. Within this model, we discuss the influence of different lattice symmetries and predict related polaritonic gaps within the near-infrared to the visible range of the spectrum that depend on wavevector direction and polarization.

  20. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory

    Science.gov (United States)

    Sun, Jicheng; Gao, Xinliang; Chen, Lunjin; Lu, Quanming; Tao, Xin; Wang, Shui

    2016-02-01

    Ion Bernstein modes, also known as magnetosonic waves in the magnetospheric community, are considered to play an important role in radiation belt electron acceleration. The detailed properties of perpendicular magnetosonic waves excited in the inner magnetosphere by a tenuous proton ring distribution are investigated in a two series paper with a combination of the linear theory and one-dimensional particle-in-cell simulations. Here, in this paper, we study the properties of the excited magnetosonic waves under different plasma conditions with the linear theory. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is small, the excited magnetosonic waves are prone to having a discrete spectrum with only several wave modes. With the increase of the proton to electron mass ratio or the ratio of the light speed to the Alfven speed, the lower hybrid frequency also increases, which leads to the increase of both the number and frequency of the excited wave modes. Meanwhile, the growth rate of these wave modes also increases. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is sufficiently large, the spectrum of the excited magnetic waves becomes continuous due to the overlapping of the adjacent wave modes. The increase of the density of the protons with the ring distribution can also result in the increase of the growth rate, which may also change the discrete spectrum of the excited waves to a continuous one, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader spectrum, but with a smaller growth rate.

  1. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  2. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  3. Long-range plasmonic waveguides with hyperbolic cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-11-30

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

  4. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic...... waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  5. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are

  6. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  7. Semiconductor plasmonic nanolasers: current status and perspectives

    Science.gov (United States)

    Gwo, Shangjr; Shih, Chih-Kang

    2016-08-01

    Scaling down semiconductor lasers in all three dimensions holds the key to the development of compact, low-threshold, and ultrafast coherent light sources, as well as integrated optoelectronic and plasmonic circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is limited by the diffraction limit. To date, surface plasmon amplification by stimulated emission of radiation (spaser)-based plasmonic nanolaser is the only photon and plasmon-emitting device capable of this remarkable feat. Specifically, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-insulator-semiconductor (MIS) nanostructures can indeed break the diffraction limit in all three dimensions. In this review, we present an updated overview of the current status for plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers. In particular, by using composition-varied indium gallium nitride/gallium nitride core-shell nanorods, it is possible to realize all-color, single-mode nanolasers in the full visible wavelength range with ultralow continuous-wave (CW) lasing thresholds. The lasing action in these subdiffraction plasmonic cavities is achieved via a unique auto-tuning mechanism based on the property of weak size dependence inherent in plasmonic nanolasers. As for the choice of metals in the plasmonic structures, epitaxial silver films and giant colloidal silver crystals have been shown to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible and near-infrared (NIR) spectral regions. In this review, we also provide some perspectives on the challenges and opportunities in this exciting new research frontier.

  8. Imaging standing surface plasmons by photon tunneling

    Science.gov (United States)

    Passian, A.; Lereu, A. L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2005-04-01

    We present a direct method for optically exciting and imaging delocalized standing surface plasmons in thin metal films. We show theoretically that when imaging the field of the plasmons with a photon scanning tunneling microscope, the presence of the dielectric probe has a negligible effect on the surface modes of the metal film. We demonstrate that plasmon interference can be sustained in arbitrarily large regions of the metal film in comparison to the excitation wavelength. This knowledge can be important when seeking the relative distance between two scattering centers such as the presence of micron or submicron structures.

  9. Plasmonic lateral forces on chiral spheres

    CERN Document Server

    Canaguier-Durand, Antoine

    2015-01-01

    We show that the optical force exerted on a finite size chiral sphere by a surface plasmon mode has a component along a direction perpendicular to the plasmon linear momentum. We reveal how this chiral lateral force, pointing in opposite directions for opposite enantiomers, stems from an angular-to-linear crossed momentum transfer involving the plasmon transverse spin angular momentum density and mediated by the chirality of the sphere. Our multipolar approach allows us discussing the inclusion of the recoil term in the force on a small sphere taken in the dipolar limit and observing sign inversions of the lateral chiral force when the size of the sphere increases.

  10. High resolution synchrotron radiation Fourier transform infrared spectrum of the COH-bending mode in methanol-D1 (CH2DOH)

    Science.gov (United States)

    Mukhopadhyay, Indra; Billinghurst, B. E.

    2017-09-01

    In this work the high resolution synchrotron radiation Fourier transform spectrum in the range 1180-1300 cm-1 corresponding to the COH-bending vibrational mode has been recorded and analyzed. The spectrum shows a structure analogous to a parallel band. Since the COH bending motion is one of the main contributors to the asymmetry in the torsional hindering potential barrier, the torsional barrier height in the excited state is expected to be quite different from that of the ground state. This makes the spectrum to spread over a wide region. Although the spectrum corresponding to the P- and R-branch looks very complicated, the Q-branches are well resolved and can be identified without much difficulty. It was possible to assign the spectra for K = 0 to 10 for the trans- (e0) species. The interesting feature of the spectra is the absence of the lines for two other lower lying gauche symmetry species e1 and o1. The spectra due to any perpendicular transitions were absent as well. However some weak c-type transitions from gauche states (o1 and e1) in the ground state to the trans-species (e0) in the COD bending mode for low K-values ΔK = 0 have been seen to be present in the spectra. These along with similar transitions for the OCD vibrational band are under investigation and the results will be communicated elsewhere. In the present work, analysis of the spectrum has been carried out to obtain precise term values and molecular parameters in the excited COH-bending state for the trans-species. The results will be shown valuable to assign similar spectra for the methanol-D2. This work represents the first reported high resolution study of this illusive vibrational mode in methanol-D1.

  11. Transverse optical plasmons in layered superconductors.

    NARCIS (Netherlands)

    vanderMarel, D; Tsvetkov, A

    1996-01-01

    We discuss the possible existance of transverse optical plasma modes in superlattices consisting of Josephson coupled superconducting layers. These modes appear as resonances in the current-current correlation function, as opposed to the usual plasmons which are poles in the density-density channel.

  12. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  13. Plasmon-assisted photoresponse in Ge-coated bowtie nanojunctions

    CERN Document Server

    Evans, Kenneth M; Natelson, Douglas

    2016-01-01

    We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90 degrees, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant "lightning rod" mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the strik...

  14. Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles

    DEFF Research Database (Denmark)

    Wang, Weihua; Christensen, Thomas; Jauho, Antti-Pekka;

    2015-01-01

    mechanically. Compared to the classical plasmonic spectrum which is "blind'' to the edge termination, we find that the quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination of the underlying atomic lattice, while redshifts are found for zigzag edges. Furthermore, we find...

  15. Plasmon Enhanced Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Aleksandr [Univ. of California, Berkeley, CA (United States)

    2012-05-08

    Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5 μJ incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response. Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP). The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity. In

  16. Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer

    CERN Document Server

    Liu, Zhenzhen; Zhang, Qiang; Zhang, Xiaoming; Tao, Keyu

    2015-01-01

    We report collective dark states controlled transmission in metal-dielectric-metal waveguides with a stub coupled to two twin cavities, namely, plasmonic waveguide-stub-dimer systems. In absence of one individual cavity in the dimer, plasmon induced transparency (PIT) is possible when the cavity and the stub have the same resonance frequency. However, it is shown that the hybridized modes in the dimer collectively generate two dark states which make the stub-dimer "invisible" to the straight waveguide, splitting the original PIT peak into two in the transmission spectrum. Simultaneously, the original PIT peak becomes a dip due to dark state interaction, yielding anti-PIT-like modulation of the transmission. With full-wave electromagnetic simulation, we demonstrate that this transition is controlled by the dimer-stub separation and the dimer-stub relative position. All results are analytically described by the temporal coupled mode theory. Our results may be useful in designing densely integrated optical circu...

  17. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  18. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  19. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  20. Plasmon-Polaron Coupling in Conjugated Polymer on Infrared Nanoantennas.

    Science.gov (United States)

    Wang, Zilong; Zhao, Jun; Frank, Bettina; Ran, Qiandong; Adamo, Giorgio; Giessen, Harald; Soci, Cesare

    2015-08-12

    We propose and demonstrate a novel type of coupling between polarons in a conjugated polymer and localized surface plasmons in infrared (IR) nanoantennas. The near-field interaction between plasmons and polarons is revealed by polarized photoinduced absorption measurements, probing mid-IR polaron transitions, and infrared-active vibrational modes of the polymer, which directly gauge the density of photogenerated charge carriers. This work proves the possibility of tuning the polaronic properties of organic semiconductors with plasmonic nanostructures.

  1. Plasmonics based VLSI processes

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2013-04-01

    Full Text Available In continuum to my previous paper titled‘Implementation of plasmonics in VLSI’, this paperattempts to explore further, the actual physicalrealization of an all-plasmonic chip. In this paper,various methods of plasmon-basedphotolithography have been discussed and anobservation is made w.r.t the cost effectiveness andease of adaptability. Also, plasmonics based activeelement has been discussed which would helpunravel further arenas ofapproaches and methodstowards the realization of an all-plasmonic chip.

  2. EIT-like transmission by interaction between multiple Bragg scattering and local plasmonic resonances

    CERN Document Server

    Liu, Z Z; Xiao, J J

    2015-01-01

    We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.

  3. Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities

    CERN Document Server

    Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A

    2016-01-01

    We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.

  4. Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics

    Science.gov (United States)

    Bigelow, Nicholas Walker

    In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced. Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored

  5. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  6. Surface plasmon interference excited by tightly focused laser beams.

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelier, A.; Ignatovich, F.; Bruyant, A.; Huang, C.; Colas des Francs, G.; Weeber, J.-C.; Dereux, A.; Wiederrecht, G. P.; Novotny, L.; Center for Nanoscale Materials; Univ de Bourgogne; Univ. of Rochester; Univ Technologique de Troyes

    2007-09-01

    We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating plasmons or by a two-lobe pattern characteristic of localized surface plasmon excitation. Our experiments can be accurately explained by use of the angular spectrum representation and provide a simple means for locally exciting standing surface plasmon polaritons.

  7. Plasmonic Au islands on polymer nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Knoben, Wout; Brongersma, Sywert H; Crego-Calama, Mercedes, E-mail: wout.knoben@imec-nl.nl [Holst Centre/IMEC, High Tech Campus 31, 5656 AE Eindhoven (Netherlands)

    2011-07-22

    The refractive index sensitivity of localized surface plasmon resonance sensors can be improved by placing the plasmonic metal particles on pillars instead of on a planar substrate. In this paper, a simple and versatile colloidal lithography method for the fabrication of plasmonic Au islands on top of polymer nanopillars is described. The pillar height is controlled by varying the thickness of the initial polymer film. An increased pillar height results in a blue shift of the absorption spectrum of the Au islands. This is explained by a decreased effective refractive index around the islands. For pillars higher than approximately 40 nm no further blue shift is observed, in agreement with the decay length of the electromagnetic field around the islands. Pillar-supported Au islands were also fabricated on a flexible foil, demonstrating the potential of the method described here for the fabrication of flexible plasmonic substrates. Benefits and limitations of the method and of using polymers as the pillar material are discussed.

  8. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  9. Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla

    2011-01-01

    In view of the progress on the confinement of light, we report on the dispersion characteristics of surface plasmon polaritons (SPPs) on two-dimensional Moiré surfaces in the visible part of the electromagnetic spectrum. Polarization dependent spectroscopic reflection measurements show omnidirectional confinement of SPPs. The resonance wavelength of SPP cavity modes can be adjusted by tuning the propagation direction of SPPs. The results may have an impact on the control of spontaneous emission and absorption with applications in light emitting diodes and solar cells, as well as in quantum electrodynamics experiments.

  10. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  11. The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Evlyukhin, Andrey;

    2014-01-01

    ultrashort surface plasmon polariton wave packets and plasmonic nanoantennas is monitored on subfemtosecond time scales. The data reveal real-time insights into dispersion and localization of electromagnetic fields as governed by the elementary modes determining the functionality of plasmonic operation units....

  12. Coupling of individual quantum emitters to channel plasmons

    DEFF Research Database (Denmark)

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution...... of efficient and long distance transfer of energy for integrated solid-state quantum systems...

  13. Coupling of individual quantum emitters to channel plasmons

    DEFF Research Database (Denmark)

    Bermúdez-Urena, E.; Gonzalez-Ballestero, C.; Geiselmann, M.

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution...

  14. Plasmonic waves of a semi-infinite random nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2013-10-15

    The dispersion curves of the plasmonic waves of a semi-infinite random metal-dielectric nanocomposite, consisting of bulk metal embedded with dielectric inclusions, are presented. Two branches of p-polarized surface plasmon-polariton modes are found to exist. The possibility of experimentally observing the surface waves by attenuated total reflection is demonstrated.

  15. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  16. Surface plasmon polaritons in artificial metallic nanostructures

    Science.gov (United States)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  17. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.

    Science.gov (United States)

    Lee, Minah; Kim, Jong Uk; Lee, Ki Joong; Ahn, SooHoon; Shin, Yong-Beom; Shin, Jonghwa; Park, Chan Beum

    2015-06-23

    The practical limits of coinage-metal-based plasmonic materials demand sustainable, abundant alternatives with a wide plasmonic range of the solar energy spectrum. Aluminum (Al) is an emerging alternative, but its instability in aqueous environments critically limits its applicability to various light-harvesting systems. Here, we report a design strategy to achieve a robust platform for plasmon-enhanced light harvesting using Al nanostructures. The incorporation of mussel-inspired polydopamine nanolayers in the Al nanoarrays allowed for the reliable use of Al plasmonic resonances in a highly corrosive photocatalytic redox solution and provided nanoscale arrangement of organic photosensitizers on Al surfaces. The Al-photosensitizer core-shell assemblies exhibited plasmon-enhanced light absorption, which resulted in a 300% efficiency increase in photo-to-chemical conversion. Our strategy enables stable and advanced use of aluminum for plasmonic light harvesting.

  18. Anisotropy and Strong-Coupling Effects on the Collective Mode Spectrum of Chiral Superconductors: Application to Sr2RuO4

    Directory of Open Access Journals (Sweden)

    James Avery Sauls

    2015-06-01

    Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.

  19. Plasmonic external cavity laser refractometric sensor.

    Science.gov (United States)

    Zhang, Meng; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-08-25

    Combining the high sensitivity properties of surface plasmon resonance refractive index sensing with a tunable external cavity laser, we demonstrate a plasmonic external cavity laser (ECL) for high resolution refractometric sensing. The plasmonic ECL utilizes a plasmonic crystal with extraordinary optical transmission (EOT) as the wavelength-selective element, and achieves single mode lasing at the transmission peak of the EOT resonance. The plasmonic ECL refractometric sensor maintains the high sensitivity of a plasmonic crystal sensor, while simultaneously providing a narrow spectral linewidth through lasing emission, resulting in a record high figure of merit for refractometric sensing with an active or passive optical resonator. We demonstrate single-mode and continuous-wave operation of the electrically-pumped laser system, and show the ability to measure refractive index changes with a 3σ detection limit of 1.79 × 10(-6) RIU. The demonstrated approach is a promising path towards label-free optical biosensing with enhanced signal-to-noise ratios for challenging applications in small molecule drug discovery and pathogen sensing.

  20. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  1. Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Saratov Branch, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Otsuji, T. [Tohoku University, Research Institute for Electrical Communication (Japan)

    2015-11-15

    It is shown theoretically that stimulated generation of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator is possible at two different frequencies for each plasmon mode. This behavior may be attributed to the superradiance of the collective plasmon mode, which is associated with superlinear increase in the radiative damping of the plasmons with increase in pumping power. As a result, the curves of the radiative damping and the plasmon gain as a function of the pumping power intersect at two points corresponding to different generation conditions.

  2. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons.

    Science.gov (United States)

    Sun, Qi-C; Ding, Yuchen; Goodman, Samuel M; Funke, Hans H; Nagpal, Prashant

    2014-11-07

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.

  3. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    Science.gov (United States)

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  4. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.

  5. Enhancement of surface phonon modes in the Raman spectrum of ZnSe nanoparticles on adsorption of 4-mercaptopyridine

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed K.; Lombardi, John R. [Department of Chemistry, The City College of New York, New York, New York 10031 (United States)

    2014-02-21

    By chemically etching a thin film of crystalline ZnSe with acid, we observe a strong Raman enhancement of the surface phonon modes of ZnSe on adsorption of a molecule (4-mercaptopyridine). The surface is composed of oblate hemi-ellipsoids, which has a large surface-to-bulk ratio. The assignment of the observed modes (at 248 and 492 cm{sup −1}) to a fundamental and first overtone of the surface optical mode is consistent with observations from high-resolution electron energy loss spectroscopy as well as calculations.

  6. Nonlinear graphene plasmonics (Conference Presentation)

    Science.gov (United States)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  7. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... of quantum dots in proximity to semiconductor/air and semiconductor/metal interfaces, were fabricated. We measured the decay dynamics of quantum dots near plasmonic gap waveguides and observed modied decay rates. The obtainable modications with the fabricated structures are calculated to be too small...... for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect...

  8. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  9. Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy

    Science.gov (United States)

    Elsayed, Mohamed Y.; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    In this paper, we take a novel approach in on-chip optical sensing of gases. Gases have conventionally been optically sensed using refractive index, which is a non-ideal method because of the difficulty in differentiating gases with very similar refractive indices. Infrared (IR) absorption spectra on the other hand have characteristic peaks in the fingerprint region that allow identifying the analyte. Highly doped n-type Indium Arsenide was used to design a plasmonic slot waveguide, and a dispersion analysis was carried out using the finite element method to study the effect of dopant concentration and waveguide geometry on the guided modes. Finite-difference time domain was used to simulate the transmission spectrum of the waveguide with air, methane and octane and the characteristic peaks in the IR spectra showed up strongly. This is a promising versatile method that can sense any IR-active gas.

  10. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  11. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials.

    Science.gov (United States)

    Wang, Zhuoxian; Meng, Xiangeng; Choi, Seung Ho; Knitter, Sebastian; Kim, Young L; Cao, Hui; Shalaev, Vladimir M; Boltasseva, Alexandra

    2016-04-13

    Plasmonics has brought revolutionary advances to laser science by enabling deeply subwavelength nanolasers through surface plasmon amplification. However, the impact of plasmonics on other promising laser systems has so far remained elusive. Here, we present a class of random lasers enabled by three-dimensional plasmonic nanorod metamaterials. While dense metallic nanostructures are usually detrimental to laser performance due to absorption losses, here the lasing threshold keeps decreasing as the volume fraction of metal is increased up to ∼0.07. This is ∼460 times higher than the optimal volume fraction reported thus far. The laser supports spatially confined lasing modes and allows for efficient modulation of spectral profiles by simply tuning the polarization of the pump light. Full-field speckle-free imaging at micron-scales has been achieved by using plasmonic random lasers as the illumination sources. Our findings show that plasmonic metamaterials hold potential to enable intriguing coherent optical sources.

  12. Basics of quantum plasmonics

    Science.gov (United States)

    Hieu Nguyen, Van; Nguyen, Bich Ha

    2015-01-01

    The present work is a topical review of the theoretical research on the quantum theory of plasmons and plasmon-photon interaction. The plasmons are defined as the quanta of the quantized plasmonic field. The corresponding classical plasmonic field was constructed on the basis of the study of collective oscillations of the electron gas in the solid. The electron-electron Coulomb interaction is taken into account. The explicit forms of the plasmon-photon interaction Lagrangian in canonical quantum mechanics and the plasmon-photon interaction action functional in the functional integral approach are derived. They all show that the interaction processes are nonlocal ones. The physical origin of the nonlocality is the complex structure of plasmons as composite quasiparticles: they cannot be considered as point particles, as was assumed in all phenomenological theories.

  13. A symmetric terahertz graphene-based hybrid plasmonic waveguide

    Science.gov (United States)

    Chen, Ming; Sheng, Pengchi; Sun, Wei; Cai, Jianjin

    2016-10-01

    A graphene-based hybrid plasmonic waveguide (GHPW) structure, which works on the terahertz frequency and includes two identical cylinder robs symmetrically put on each side of graphene sheet with gaps g, has been proposed and investigated. The present waveguide not only significantly improves the propagation length but also maintains a compact mode area, which is due to the coupling between the dielectric waveguide mode and plasmonic mode. The graphene plasmons particularly differ from plasmons in noble metals of which propagation loss can be tuned by adjusting the Fermi energy level or carrier mobility. With a very good Fermi energy level and carrier mobility, a typical propagation length of 26.7 mm, and mode area of optical field of approximately 4 μm2 at 10 THz are achieved. This waveguide structure shows great promise for designing kinds of functional elements in actively tunable integrated optical devices.

  14. Plasmonics fundamentals and applications

    CERN Document Server

    Maier, Stefan Alexander

    2007-01-01

    Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

  15. Proximity Resonance and Localized Surface Plasmons

    Science.gov (United States)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  16. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.

    Science.gov (United States)

    Wan, Mingli; Song, Yueli; Zhang, Liufang; Zhou, Fengqun

    2015-10-19

    Plasmon-induced transparency (PIT) is a result of destructive interference of different plasmonic resonators. Due to the extreme dispersion within the narrow transparency window, PIT metamaterials are utilized to realize slow light and nonlinear effect. However, other applications such as broadband filtering more desire a broad transmission frequency band at the PIT resonance. In this paper, a broadband PIT effect is demonstrated theoretically in a planar terahertz metamaterial, consisting of a U-shaped ring (USR) supporting electric and magnetic dipole modes as the bright resonator and a cut wire pair (CWP) possessing planar electric quadrupole and magnetic dipole modes as the dark resonator. The dark resonant modes of the CWP can be excited simultaneously via near-field by both the electric and magnetic dipole modes of the USR. When the electric as well as magnetic excitation pathways constructively interact with each other, the enhanced near-field coupling between bright and dark resonators gives rise to an ultra-broad transparency window across a frequency range greater than 0.61 THz in the transmittance spectrum.

  17. Submicron omega-shaped plasmonic polarization rotator

    Science.gov (United States)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  18. Electron polarization function and plasmons in metallic armchair graphene nanoribbons

    DEFF Research Database (Denmark)

    Shylau, A. A.; Badalyan, S. M.; Peeters, F. M.

    2015-01-01

    Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due...... mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing....

  19. Plasmon switching effect based on graphene nanoribbon pair arrays

    Science.gov (United States)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  20. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    CERN Document Server

    Sturman, B; Gorkunov, M

    2012-01-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  1. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    Science.gov (United States)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2013-03-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners with variable curvature: First, the main dipolar plasmonic mode experiences a strong red shift with increasing corner curvature; for large values of the curvature, the resonant frequency is controlled by the apex angle of the corner. Second, the split-off plasmonic mode experiences a strong localization at the corners. Altogether, this paves the way for the tailoring of metal nanostructures providing a wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  2. Efficient channel-plasmon excitation by nano-mirrors

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Stær, Tobias Holmgaard; Han, Zhanghua;

    2011-01-01

    We demonstrate a configuration for efficient channel-plasmon mode excitation using tapered terminations of V-shaped groove waveguides. The plasmon excitation is achieved by directly illuminating tapers of gold V-grooves with a focused laser beam, incident normally onto the sample surface. For near......-infrared wavelengths, we find experimentally as well as numerically, by conducting three-dimensional finite-difference time-domain calculations, that the efficiency of channel-plasmon mode excitation exceeds 10% in the optimum configuration, which is the highest experimentally observed efficiency of coupling from free-propagation...

  3. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  4. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.

    Science.gov (United States)

    He, Meng-Dong; Zhang, Gui; Liu, Jian-Qiang; Li, Jian-Bo; Wang, Xin-Jun; Huang, Zhen-Rong; Wang, Lingling; Chen, Xiaoshuang

    2014-03-24

    We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

  5. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  6. Plasmonic Demultiplexer and Guiding

    CERN Document Server

    Zhao, Chenglong

    2010-01-01

    Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.

  7. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  8. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  9. Reviews in plasmonics 2016

    CERN Document Server

    2017-01-01

    Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  10. Reviews in plasmonics 2015

    CERN Document Server

    2016-01-01

    Reviews in Plasmonics 2015, the second volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  11. Aluminum plasmonic metamaterials for structural color printing.

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  12. Probing of Ehrlich ascites carcinoma cell using in situ aggregates of Au-NPs as SERS label created by plasmon exciting hybrid- TEM*11 laser mode

    Science.gov (United States)

    Kumar, R.; Mehta, D. S.; Saraswati, S.; Shakher, C.

    2012-02-01

    Apart from commonly employed target-specific labeling/adsorption of antibodies over Au-NPs surface for the creation of localized aggregates, an alternative approach using optical tweezers (OT) driven by hybrid-TEM*11 mode has been devised and exploited for in vitro detection of Ehrlich ascites carcinoma cells (EAC) relying on enhanced scattering. Intra-cavity generated spatially featured asymmetric (SFA) laser beam (λ = 532 nm) has effected simultaneous trapping of mice-EAC cells and in-situ crowd/assembly of incubated Au-NPs/small gold nano-aggregates (created from two or more individual Au-NPs). Relatively larger focus spot created by tightly focused SFA beam than frequently employed Gaussian-mode in OT has offered an extended working area and hence dilute heating has taken care of EAC cells. GNA improves significantly the sensitivity of diagnostics relying on scattered light and the safety and efficacy of therapeutic nanotechnologies for the diseases of cancer and vascular system in medicine.

  13. Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and Mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2].

    Science.gov (United States)

    Téllez Soto, C A; Costa, A C; Ramos, J M; Vieira, L S; Rost, N C V; Versiane, O; Rangel, J L; Mondragón, M A; Raniero, L; Martin, A A

    2013-12-01

    Surface-enhanced Raman scattering (SERS) was used to study the interactions of the normal modes of the diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2] on nano-structured mixture silver-gold surfaces and on silver surfaces. The electronic spectrum of this complex was measured and the charge transfer bands were assigned through the TD-PBE1PBE procedure. Natural bond orbital (NBO) were also carried out to study the Cu(II) hybridation leading to the square planar geometry of the framework of the [Cu(DDTC)2] complex, and to study which are the donor NBO and the acceptor NBO in meaningful charge transfer through the Second Order Perturbation Theory Analysis of the Fox Matrix in NBO basis. To see the electronic dispersion, the Mulliken electronic charges (MAC) were calculated for each normal mode and correlated with the SERS effect. Full assignment of the SERS spectra was also supported by carefully analysis of the distorted geometries generated by the normal modes.

  14. Surface plasmon polaritons in topological Weyl semimetals

    Science.gov (United States)

    Hofmann, Johannes; Das Sarma, Sankar

    2016-06-01

    We consider theoretically surface plasmon polaritons in Weyl semimetals. These materials contain pairs of band touching points—Weyl nodes—with a chiral topological charge, which induces an optical anisotropy and anomalous transport through the chiral anomaly. We show that these effects, which are not present in ordinary metals, have a direct fundamental manifestation in the surface plasmon dispersion. The retarded Weyl surface plasmon dispersion depends on the separation of the Weyl nodes in energy and momentum space. For Weyl semimetals with broken time-reversal symmetry, the distance between the nodes acts as an effective applied magnetic field in momentum space, and the Weyl surface plasmon polariton dispersion is strikingly similar to magnetoplasmons in ordinary metals. In particular, this implies the existence of nonreciprocal surface modes. In addition, we obtain the nonretarded Weyl magnetoplasmon modes, which acquire an additional longitudinal magnetic field dependence. These predicted surface plasmon results are observable manifestations of the chiral anomaly in Weyl semimetals and might have technological applications.

  15. Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application as voltage controlled plasmonic switches and frequency demultiplexers

    CERN Document Server

    Forati, Ebrahim

    2013-01-01

    A graphene sheet gated with a ridged ground plane, creating a soft-boundary (SB) graphene nanoribbon, is considered. By adjusting the ridge parameters and bias voltage a channel can be created on the graphene which can guide TM surface plasmon polaritons (SPP). Two types of modes are found; fundemental and higher-order modes with no apparent cutoff frequency and with energy distributed over the created channel, and edge modes with energy concen-trated at the soft-boundary edge. Dispersion curves, electric near-field patterns, and current distributions of these modes are determined. Since the location where energy is concentrated in the edge modes can be easily controlled electronically by the bias voltage and frequency, the edge-mode phenomena is used to propose a novel voltage controlled plasmonic switch and a plasmonic frequency demultiplexer.

  16. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  17. Excitation and Imaging of Resonant Optical Modes of Au Triangular Nano-Antennas Using Cathodoluminescence Spectroscopy

    CERN Document Server

    Kumar, Anil; Mabon, James C; Chow, Edmond; Fang, Nicholas X

    2010-01-01

    Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and very small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations....

  18. Plasmon properties and hybridization effects in silicene

    Science.gov (United States)

    Vacacela Gomez, C.; Pisarra, M.; Gravina, M.; Riccardi, P.; Sindona, A.

    2017-02-01

    The plasmonic character of monolayer silicene is investigated by time-dependent density functional theory in the random phase approximation. Both the intrinsic (undoped) and several extrinsic (carrier doped or gated) conditions are explored by simulating injection of a probe particle (i.e., an electron or a photon) of energy below 20 eV and in-plane momentum smaller than 1.1 Å -1 . The energy-loss function of the system is analyzed, with particular reference to its induced charge-density fluctuations, i.e., plasmon resonances and corresponding dispersions, occurring in the investigated energy-momentum region. At energies larger than 1.5 eV, two intrinsic interband modes are detected and characterized. The first one is a hybridized π -like plasmon, which is assisted by competing one-electron processes involving s p2 and s p3 states, and depends on the slightest changes in specific geometric parameters, such as nearest-neighbor atomic distance and buckling constant. The second one is a more conventional π -σ plasmon, which is more intense than the π -like plasmon and more affected by one-electron processes involving the σ bands with respect to the analogous collective oscillation in monolayer graphene. At energies below 1 eV, two extrinsic intraband modes are predicted to occur, which are generated by distinct types of Dirac electrons (associated with different Fermi velocities at the so-called Dirac points). The most intense of them is a two-dimensional plasmon, having an energy-momentum dispersion that resembles that of a two-dimensional electron gas. The other is an acoustic plasmon that occurs for specific momentum directions and competes with the two-dimensional plasmon at mid-infrared energies. The strong anisotropic character of this mode cannot be explained in terms of the widely used Dirac-cone approximation. As in mono-, bi-, and few-layer graphene, the extrinsic oscillations of silicene are highly sensitive to the concentration of injected or ejected

  19. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    Science.gov (United States)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  20. Wavelength-selective plasmonics for enhanced cultivation of microalgae

    Science.gov (United States)

    Ooms, Matthew D.; Jeyaram, Yogesh; Sinton, David

    2015-02-01

    Optimal photon management is a key challenge for photobioreactor design, since light gradients and varying spectral sensitivities between organisms result in uneven illumination and unused photons. This paper demonstrates wavelength specific scattering from plasmonic nano-patterned surfaces as a means of addressing the challenge of photon management in photobioreactors. Modular photobioreactors were constructed with different reflective substrates including arrays of plasmonic nanodisks, broadband reflectors, and untreated glass. It was found that the growth rate of cyanobacterium S. elongatus in photobioreactors equipped with a plasmonic substrate (R623 nm ˜ 35%) was enhanced by 6.5% compared to photobioreactors equipped with untreated glass. Furthermore, plasmonic reflectors showed a normalized power efficiency improvement of 52% over broadband reflectors. Wavelength-specific reflection from plasmonic reflectors increases the flux of useful light to cultures without sacrificing the full spectrum.

  1. Ubiquitous electron-plasmon coupling in doped semiconductors

    Science.gov (United States)

    Caruso, Fabio; Giustino, Feliciano

    The interplay between electrons and bosonic excitations [as, e.g., phonons, collective charge-density fluctuations (plasmons), and magnons] is pervasive in matter and underlies an extremely broad spectrum of physical phenomena, as, for instance, current dissipation, superconductivity, hot-carrier thermalisation, and band structure replicas. At variance with phonons, however, questions pertaining the strength of electron-plasmon coupling in solids are still awaiting further investigations. We developed and implemented a first-principles theory of electron-plasmon coupling based on many-body perturbation theory. Our first-principles calculations reveal that electron-plasmon coupling alters ubiquitously the dynamical and optical properties of semiconductors at high doping concentrations. This behaviour stems from the emergence of low-energy extrinsic plasmons which may couple electronic states in the vicinity of the Fermi energy

  2. Wavelength-selective plasmonics for enhanced cultivation of microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Jeyaram, Yogesh; Sinton, David, E-mail: sinton@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, and Institute for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2015-02-09

    Optimal photon management is a key challenge for photobioreactor design, since light gradients and varying spectral sensitivities between organisms result in uneven illumination and unused photons. This paper demonstrates wavelength specific scattering from plasmonic nano-patterned surfaces as a means of addressing the challenge of photon management in photobioreactors. Modular photobioreactors were constructed with different reflective substrates including arrays of plasmonic nanodisks, broadband reflectors, and untreated glass. It was found that the growth rate of cyanobacterium S. elongatus in photobioreactors equipped with a plasmonic substrate (R{sub 623 nm} ∼ 35%) was enhanced by 6.5% compared to photobioreactors equipped with untreated glass. Furthermore, plasmonic reflectors showed a normalized power efficiency improvement of 52% over broadband reflectors. Wavelength-specific reflection from plasmonic reflectors increases the flux of useful light to cultures without sacrificing the full spectrum.

  3. Plasmons on the edge of MoS2 nanostructures

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2014-01-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis...... of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially...... resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles....

  4. Lommel pulses: an analytic form for localized waves of the focus wave mode type with bandlimited spectrum.

    Science.gov (United States)

    Sheppard, Colin J R; Saari, Peeter

    2008-01-07

    A criticism of the focus wave mode (FWM) solution for localized pulses is that it contains backward propagating components that are difficult to generate in many practical situations. We describe a form of FWM where the strength of the backward propagating components is identically zero and derive special cases where the field can be written in an analytic form. In particular, a free-space version of "backward light" pulse is considered, which moves in the opposite direction with respect to all its spectral constituents.

  5. Photons, phonons, and plasmons with orbital angular momentum in plasmas

    CERN Document Server

    Chen, Qiang; Liu, Jian

    2016-01-01

    Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasma are studied. Three exact eigen modes with OAM are discovered, i.e., photons, phonons, and plasmons. It is found that an OAM photon can be excited by two familiar Bessel modes without OAM. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for various potential applications in plasma physics and accelerator physics.

  6. Transverse spin with coupled plasmons

    CERN Document Server

    Mukherjee, Samyobrata

    2016-01-01

    We study theoretically the transverse spin associated with the eigenmodes of a thin metal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short- range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more 'structured' nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  7. Transverse spin with coupled plasmons

    Indian Academy of Sciences (India)

    SAMYOBRATA MUKHERJEE; A V GOPAL; S DUTTA GUPTA

    2017-08-01

    We study theoretically the transverse spin associated with the eigenmodes of a thinmetal film embedded in a dielectric. We show that the transverse spin has a direct dependence on the nature and strength of the coupling leading to two distinct branches for the long- and short-range modes. We show that the short-range mode exhibits larger extraordinary spin because of its more ‘structured’ nature due to higher decay in propagation. In contrast to some of the earlier studies, calculations are performed retaining the full lossy character of the metal. In the limit of vanishing losses, we present analytical results for the extraordinary spin for both the coupled modes. The results can have direct implications for enhancing the elusive transverse spin exploiting the coupled plasmon structures.

  8. Polarization-Directed Surface Plasmon Polariton Launching

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-01-05

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges also show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.

  9. Experimental demonstration of graphene plasmons working close to the near-infrared window

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Almdal, Kristoffer;

    2016-01-01

    Due to strong mode confinement, long propagation distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter wavelengths to integrate graphene plasmon concepts...... with existing mature technologies in the near-infrared region. We investigate localized graphene plasmons supported by graphene nanodisks and experimentally demonstrate graphene plasmon working at 2 μm with the aid of a fully scalable block copolymer self-assembly method. Our results show a promising way...

  10. Acceleration of Flare Protons by Langmuir Plasmons

    Institute of Scientific and Technical Information of China (English)

    李晓卿; 张航

    2002-01-01

    We analytically study the turbulent acceleration of solar protons by strong Langmuir plasmons in Cerenkov processes. It is shown that among the wave spectra with self-retained source only the Pelletier spectrum (Wk ∝ k-7/2) can result in the energy spectrum of non-relativistic protons, which gives a good fit to that observed from solarflare events. It is quite possible that strong Langmuir turbulence presents in coronal active region, with three-dimensional, isotropic and stationary spectrum proportional to k-7/2, and is responsible for the acceleration offlare protons.

  11. Quantum optical properties in plasmonic systems

    Science.gov (United States)

    Ooi, C. H. Raymond

    2015-04-01

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  12. Compositional arrangement of rod/shell nanoparticles: an approach to provide efficient plasmon waveguides

    Science.gov (United States)

    Ahmadivand, A.; Golmohammadi, S.

    2014-06-01

    In this work, we investigated the optical properties of a novel compositional configuration of gold nanorod and silver nanoshell which is embedded in a SiO2 substance. The proper geometrical sizes for compositional rod/shell arrangement have been obtained based on the position and peak of plasmon resonance at λ ˜1550 nm. Adjusting the plasmon resonance position at declared spectrum helps us to provide an arrangement which shows high efficiency and minimum losses. The influence of destructive components such as internal damping and scattering on the rod/shell combination is demonstrated by corresponding diagrams. Moreover, we proposed a nano-array based on examined configuration and the quality of light transmission along the array is studied. We figured out and depicted optical properties of the array such as transmission loss factors, group velocities, transmitted power, transmission quality, and two-dimensional snapshots of surface plasmons (SPs) coupling between nanoparticles arrangements under transverse and longitudinal modes excitations. Ultimately, it is shown that the suggested nanostructure based on studied nanoparticles configuration has a potential to utilize in designing nanophotonic devices such as splitters, couplers, and routers. Finite-difference time-domain method (FDTD) as a major simulation model has been employed to study the features of the waveguide.

  13. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  14. Plasmonic-photonic crystal coupled nanolaser

    CERN Document Server

    Zhang, Taiping; Jamois, Cecile; Chevalier, Celine; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

  15. Plasmonic waveguides with hyperbolic multilayer cladding

    CERN Document Server

    Babicheva, Viktoriia E; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2014-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  16. Nonlocal study of ultimate plasmon hybridization.

    Science.gov (United States)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger

    2015-03-01

    Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.

  17. Formaldehyde sensing with plasmonic near-infrared optical fiber grating sensors

    Science.gov (United States)

    González-Vila, Á.; Debliquy, M.; Lahem, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    A tilted fiber Bragg grating is photo-inscribed in the core of a single-mode optical fiber, leading to the coupling of cladding mode resonances all along a wide region of the near-infrared spectrum. The grating is then coated with a thin film of gold in order to create a metal-dielectric interface. This way, light propagating through the cladding of the optical fiber is able to excite a surface plasmon wave on the outer interface. As sensitive element, a molecularly imprinted polymer is deposited by electropolymerization as a thin film around the previous gold coating. The thickness of the polymer is controlled by means of the surface plasmon resonance signature in order to preserve a correct surrounding refractive index sensitivity when used in a gaseous environment. The chosen polymer has an affinity to formaldehyde, which is a volatile organic compound worth to detect, especially because of its toxicity for the human being. We report a global wavelength shift of the grating cladding mode resonances in the presence of formaldehyde in gaseous state. This shift is due to a change in the refractive index of the polymer when it bounds to the target molecules. The sensor exhibits a linear response, together with a low limit of detection.

  18. Plasmon cross transmission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzynski, Leonard; Akjouj, Abdellatif; Li, Changsheng, E-mail: Abdellatif.Akjouj@univ-lille1.fr [Centre National de la Recherche Scientifique, Universite Lille Nord de France, Lille1, Institut d' Electronique, de Microelectronique et de Nanotechnologie, Unite de Physique, Batiment P5, 59655 Villeneuve d' Ascq Cedex (France)

    2011-09-14

    Plasmon cross transmission avoids the frontal collision between two plasmons traveling in opposite directions along a guide. The guide is made out of equidistant identical metal dots. Thanks to two resonator dots, the plasmon frontal impact is avoided by transmission of the two plasmons from the input guide to an output one. The resonator and guide dots are identical in size and metal composition. The dipole-dipole interactions are restricted to first nearest neighbors. A convenient metal doping is assumed to compensate exactly all attenuations. The parameters are the nearest neighbor distances between the dots. These distances are rescaled to the chain nearest neighbor distance d. The system has two symmetry mirror planes. This simple model enables us to obtain two analytic tuning relations for the plasmon cross transmission. The intensities of the transmitted signals versus kd, where k is the plasmon propagation vector, are also given. (paper)

  19. Topological collective plasmons in bipartite chains of metallic nanoparticles

    Science.gov (United States)

    Downing, Charles A.; Weick, Guillaume

    2017-03-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudorelativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunneling. We also show that the system is governed by a nontrivial Zak phase, which predicts the manifestation of edge states in the chain. When two dimerized chains with different topological phases are connected, we find the appearance of the bosonic version of a Jackiw-Rebbi midgap state. We further investigate the radiative and nonradiative lifetimes of the collective plasmonic excitations and comment on the challenges for experimental realization of the topological effects found theoretically.

  20. Nano-plasmonic antennas in the near infrared regime.

    Science.gov (United States)

    Berkovitch, N; Ginzburg, P; Orenstein, M

    2012-02-22

    Plasmonic nano-antennas constitute a central research topic in current science and engineering with an enormous variety of potential applications. Here we review the recent progress in the niche of plasmonic nano-antennas operating in the near infrared part of the spectrum which is important for a variety of applications. Tuning of the resonance into the near infrared regime is emphasized in the perspectives of fabrication, measurement, modeling, and analytical treatments, concentrating on the vast recent achievements in these areas.

  1. Trapping and guiding surface plasmons in curved graphene landscapes

    CERN Document Server

    Smirnova, Daria; Wang, Zheng; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasmons near curved areas such as bumps, humps and wells. We derive the governing equation for describing such localized channel plasmons guided by curved graphene and validate our theory by the first-principle numerical simulations. The proposed confinement mechanism enables plasmon guiding by the regions of maximal curvature, and it offers a versatile platform for manipulating light in planar landscapes. In addition, isolated deformations of graphene such as bumps are shown to support localized surface modes and resonances suggesting a new way to engineer plasmonic metasurfaces.

  2. Optical Sensitivity Gain in Silica-Coated Plasmonic Nanostructures.

    Science.gov (United States)

    Floris, Francesco; Figus, Cristiana; Fornasari, Lucia; Patrini, Maddalena; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni; Marabelli, Franco; Quochi, Francesco

    2014-09-04

    Ultrathin films of silica realized by sol-gel synthesis and dip-coating techniques were successfully applied to predefined metal/polymer plasmonic nanostructures to spectrally tune their resonance modes and to increase their sensitivity to local refractive index changes. Plasmon resonance spectral shifts up to 100 nm with slope efficiencies of ∼8 nm/nm for increasing layer thickness were attained. In the ultrathin layer regime (<10 nm), which could be reached by suitable dilution of the silica precursors and optimization of the deposition speed, the sensitivity of the main plasmonic resonance to refractive index changes in aqueous solution could be increased by over 50% with respect to the bare plasmonic chip. Numerical simulations supported experimental data and unveiled the mechanism responsible for the optical sensitivity gain, proving an effective tool in the design of high-performance plasmonic sensors.

  3. Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays.

    Science.gov (United States)

    Tok, Rüştü Umut; Sendur, Kürşat

    2013-08-15

    We demonstrate theoretically that by embedding plasmonic honeycomb nanoantenna arrays into the active layers of inorganic (c-Si) and organic (P3HT:PCBM/PEDOT:PSS) thin film solar cells, absorption efficiency can be improved. To obtain the solar cell absorption spectrum that conforms to the solar radiation, spectral broadening is achieved by breaking the symmetry within the Wigner-Seitz unit cell on a uniform hexagonal grid. For optimized honeycomb designs, absorption efficiency enhancements of 106.2% and 20.8% are achieved for c-Si and P3HT:PCBM/PEDOT:PSS thin film solar cells, respectively. We have demonstrated that the transverse modes are responsible for the enhancement in c-Si solar cells, whereas both the longitudinal and transverse modes, albeit weaker, are the main enhancement mechanisms for P3HT:PCBM/PEDOT:PSS solar cells. For both inorganic and organic solar cells, the absorption enhancement is independent of polarization.

  4. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  5. Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.

    Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... averaging through both HDM and the recent Generalized Nonlocal Optical Response (GNOR) theory, which apart from the resonance frequency shifts accounts successfully for size-dependent damping as well. We examine NPs made of either ideal Drude-like metals [of plasmon frequency (wavelength) ωp (λp...

  6. Resolving nanophotonic spectra with quasi-normal modes (Conference Presentation)

    Science.gov (United States)

    Powell, David A.

    2016-09-01

    Many nanophotonic systems are strongly coupled to radiating waves, or suffer significant dissipative losses. Furthermore, they may have complex shapes which are not amenable to closed form calculations. This makes it challenging to determine their modes without resorting to quasi-static or point dipole approximations. To solve this problem, the quasi-normal modes (QNMs) are found from an integral equation model of the particle. These give complex frequencies where excitation can be supported without any incident field. The corresponding eigenvectors yield the modal distributions, which are non-orthogonal due to the non-Hermitian nature of the system. The model based on quasi-normal modes is applied to plasmonic and dielectric particles, and compared with a spherical multipole decomposition. Only with the QNMs is it possible to resolve all features of the extinction spectrum, as each peak in the spectrum can be attributed to a particular mode. In contrast, many of the multipole coefficient have multiple peaks and dips. Furthermore, by performing a multipolar decomposition of each QNM, the spectrum of multipole coefficients is explained in terms of destructive interference between modes of the same multipole order.

  7. Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action.

    Science.gov (United States)

    Tebbets, Brad; Yu, Zhiguo; Stewart, Douglas; Zhao, Li-Xing; Jiang, Yi; Xu, Li-Hua; Andes, David; Shen, Ben; Klein, Bruce

    2013-04-01

    Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an attractive drug target since they are conserved in fungi and absent in mammals. We used a Saccharomyces cerevisiae reporter strain that conditionally expresses HHK to establish a high-throughput bioassay to screen microbial extracts natural products for antifungals. We identified macrotetrolides, a group of related ionophores thought to exhibit restricted antifungal activity. In addition to confirming the use of this bioassay for the discovery of antifungal natural products, we demonstrated broader, more potent fungistatic activity of the macrotetrolides against multiple Candida spp., Cryptococcus spp., and Candida albicans in biofilms. Macrotetrolides were also active in an animal model of C. albicans biofilm, but were found to have inconsistent activity against fluconazole-resistant C. albicans, with most isolates resistant to this natural product. The macrotetrolides do not directly target HHKs, but their selective activity against S. cerevisiae grown in galactose (regardless of Drk1 expression) revealed potential new insight into the role of ion transport in the mode of action of these promising antifungal compounds. Thus, this simple, high-throughput bioassay permitted us to screen microbial extracts, identify natural products as antifungal drugs, and expand our understanding of the activity of macrotetrolides.

  8. Plasmonic Coupled Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  9. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2016-05-01

    Full Text Available Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes.

  10. Mass spectrum of spin-1/2 pentaquarks with a c anti c component and their anticipated discovery modes in b-baryon decays

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ahmed, Ishtiaq; Rehman, Abdur [Quaid-i-Azam University Campus, Islamabad (Pakistan). National Centre for Physics; Aslam, M. Jamil [Quaid-i-Azam University, Islamabad (Pakistan). Physics Dept.

    2017-04-15

    The LHCb discovery of the two baryonic states P{sub c}{sup +}(4380) and P{sub c}{sup +}(4450), having J{sup P}=3/2{sup -} and J{sup P}=5/2{sup +}, respectively, in the process pp → b anti b → Λ{sub b}X, followed by the decay Λ{sub b}→J/ψpK{sup -}, has motivated a number of theoretical models. Interpreting them as compact { anti c[cu][ud]; L_P=0,1} objects, the mass spectroscopy of the J{sup P}=3/2{sup -} and J{sup P}=5/2{sup +} pentaquarks was worked out by us for the pentaquarks in the SU(3){sub F} multiplets, using an effective Hamiltonian based on constituent diquarks and quarks. Their possible discovery modes in b-baryon decays were also given using the heavy quark spin symmetry. In this paper, we calculate the mass spectrum of the hidden c anti c pentaquarks having J{sup P}=(1)/(2){sup ±} for the SU(3){sub F} multiplets and their anticipated discovery modes in b-baryon decays. Some of the P{sub c}{sup +}(J{sup P}=1/2{sup ±}) pentaquarks, produced in the Λ{sub b} decays may have their masses just below the J/ψ p threshold, in which case they should be searched for in the modes P{sub c}{sup +}(J{sup P}=1/2{sup ±})→η{sub c}p,μ{sup +}μ{sup -}p,e{sup +}e{sup -}p.

  11. Biomedical Plasmonics

    Science.gov (United States)

    Halas, Naomi

    2010-03-01

    The near infrared region of the optical spectrum provides a window into the human body that can be exploited for diagnostics and therapeutics, offering an opportunity to merge these concepts. We have shown that the strong light-absorbing and light-scattering properties of noble metal nanoparticles can be controlled by manipulating their shape: in a core-shell geometry, the metallic shell layer can be easily tuned to this spectral region. This `nanoshell' geometry has proven to be ideal for enhancing both diagnostic and therapeutic modalities for cancer. Nanoshells can serve as light scattering beacons, strong enhancers of fluorescent markers for optical tomography, and impart a highly effective, targeted therapeutic response via their unparalleled light-to-heat conversion properties. This latter effect has been used to induce cell death and tumor remission in animals at greater than 90% efficacy, and is currently in clinical trials. This nanoparticle platform can be combined with MRI contrast agents for the enhancement of dual imaging modalities, and also shows promise as a light-controlled nonviral vector for intracellular gene delivery.

  12. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.

    Science.gov (United States)

    Koch, R J; Fryska, S; Ostler, M; Endlich, M; Speck, F; Hänsel, T; Schaefer, J A; Seyller, Th

    2016-03-11

    Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.

  13. Dark Field Imaging of Plasmonic Resonator Arrays

    Science.gov (United States)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  14. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    Science.gov (United States)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  15. Control and mapping ultrafast plasmons with PEEM

    Science.gov (United States)

    Ji, Boyu; Qin, Jiang; Lang, Peng; Koya, Alemayehu Nana; Hao, Zuoqiang; Song, Xiaowei; Lin, Jingquan

    2016-11-01

    We report the direct imaging of plasmon on the tips of nano-prisms in a bowtie structure excited by 7 fs laser pulses and probing of ultrafast plasmon dynamics by combining the pump-probe technology with three-photon photoemission electron microscopy. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interference of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies. On the other hand, control of the near-field distribution was realized by variation of the phase delay of two orthogonally polarized 200fs laser pulses. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, an independent shift of the excitation position or the phase of the near-field can be realized by coherent control of two orthogonally polarized fs laser pulses.

  16. Leaky wave lenses for spoof plasmon collimation.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2016-06-27

    We theoretically demonstrate the feasibility of collimating radiating spoof plasmons using a leaky wave lens approach. Spoof plasmons are surface waves excited along reactance surfaces realized through metallic corrugations. By employing a periodic perturbation to the geometric profile of this type of reactance surface, it becomes feasible to convert the excited spoof plasmons into free-space radiating leaky wave modes. It is demonstrated that by structurally modifying such a corrugated surface through the introduction of a non-uniform sinusoidally modulated reactance profile, then a tapered wavenumber, with a real part less than that of free space, can be established along the surface. In this way the radiating properties of the structure (amplitude and phase) can be locally controlled thereby creating a radiating effect similar to that of a non-uniform current distribution. By properly engineering the space dependent wavenumber along the corrugated surface, different regions of the structure will emit spoof plasmon energy at different angles with varying intensity. The combined effect is the emission of an electromagnetic wave exhibiting a converging wave-front that eventually collimates spoof plasmon energy at some desired focal point.

  17. Coupling of individual quantum emitters to channel plasmons

    CERN Document Server

    Bermúdez-Ureña, Esteban; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  18. Terahertz plasmonic laser radiating in an ultra-narrow beam

    CERN Document Server

    Wu, Chongzhao; Reno, John L; Kumar, Sushil

    2016-01-01

    Plasmonic lasers (spasers) generate coherent surface-plasmon-polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed-feedback (DFB) that is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the ...

  19. Adiabatic Amplification of Plasmons and Demons in 2D Systems.

    Science.gov (United States)

    Sun, Zhiyuan; Basov, D N; Fogler, M M

    2016-08-12

    We theoretically investigate charged collective modes in a two-dimensional conductor with hot electrons where the instantaneous mode frequencies gradually increase or decrease with time. We show that the loss compensation or even amplification of the modes may occur. We apply our theory to two types of collective modes in graphene, the plasmons and the energy waves, which can be probed in optical pump-probe experiments.

  20. Plasmonic rack-and-pinion gear with chiral metasurface

    Science.gov (United States)

    Gorodetski, Yuri; Karabchevsky, Alina

    2016-04-01

    The effect of circularly polarized beaming excited by traveling surface plasmons, via chiral metasurface is experimentally studied. Here we show that the propagation direction of the plasmonic wave, evanescently excited on the thin gold film affects the handedness of the scattered beam polarization. Nanostructured metasurface leads to excitation of localized plasmonic modes whose relative spatial orientation induces overall spin-orbit interaction. This effect is analogical to the rack-and-pinion gear: the rotational motion into the linear motion converter. From the practical point of view, the observed effect can be utilized in integrated optical circuits for communication systems, cyber security and sensing.

  1. Plasmonic Bloch oscillations in monolayer graphene sheet arrays.

    Science.gov (United States)

    Fan, Yang; Wang, Bing; Huang, He; Wang, Kai; Long, Hua; Lu, Peixiang

    2014-12-15

    We investigate the spatial plasmonic Bloch oscillations (BOs) in the monolayer graphene sheet arrays (MGSAs) as the surface plasmon polaritons (SPPs) between graphene in the arrays experience weak coupling. In order to realize BOs, linear gradient of the potential is introduced by changing the chemical potentials of individual graphene sheets or the interlayer space between graphene. Numerical simulations show that the complete plasmonic BOs can be observed in the former MGSAs. However, only harmonic oscillations occur in the latter of varying interlayer space. Theoretical analysis based on the coupled-mode theory agrees well with the numerical simulations.

  2. Adjustable subwavelength localization in a hybrid plasmonic waveguide

    CERN Document Server

    Belan, S A; Vorobev, P E

    2012-01-01

    The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber embedded in a low-permittivity dielectric near a metal surface. This architecture is considered as one of the most perspective candidates for long-range subwavelength guiding. We present qualitative analysis and numerical results which reveal advantages of the special waveguide design when dielectric constant of the cylinder is greater than the absolute value of the dielectric constant of the metal. In this case the arbitrary subwavelength mode size can be achieved by controlling the gap width. Our qualitative analysis is based on consideration of sandwich-like conductor-gap-dielectric system. The numerical solution is obtained by expansion of the hybrid plasmonic mode over single cylinder modes and the surface plasmon-polariton modes of the metal screen and matching the boundary conditions.

  3. Looking into meta-atoms of plasmonic nanowire metamaterial

    KAUST Repository

    Tsai, Kuntong

    2014-09-10

    Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.

  4. Photons, phonons, and plasmons with orbital angular momentum in plasmas

    Science.gov (United States)

    Chen, Qiang; Qin, Hong; Liu, Jian

    2017-01-01

    Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for potential applications in plasma physics and accelerator physics. PMID:28164998

  5. Plasmon-assisted optoelectrofluidics

    DEFF Research Database (Denmark)

    Ndukaife, Justus C.; Kildishev, Alexander V.; Agwu Nnanna, A. G.

    2015-01-01

    By harnessing the photo-induced heating of a single plasmonic nanostructure and AC E-field in our research at the interface between plasmonics and optofluidics we demonstrate on-demand fluid flow control with unparalleled micron per second-scale velocities. © 2015 OSA....

  6. Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Solis, David [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Electrical and Computer Engineering; Chang, Wei-Shun [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Chemistry; Khanal, Bishnu P. [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Chemistry; Bao, Kui [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Physics and Astronomy; Nordlander, Peter [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Physics and Astronomy, Dept. of Electrical and Computer Engineering; Zubarev, Eugene R. [Rice Univ., Houston, TX (United States). Lab. for Nanophotonics, Dept. of Chemistry, Dept. of Electrical and Computer Engineering; Link, Stephan

    2010-08-13

    Here, we present a novel approach to visualize propagating surface plasmon polaritons through plasmon-exciton interactions between single gold nanowires and a thin film of a fluorescent polymer. A plasmon polariton was launched by exciting one end of a single gold nanowire with a 532 nm laser. The local near-field of the propagating plasmon modes caused bleaching of the polymer emission. The degree of photobleaching along the nanowire could be correlated with the propagation distance of the surface plasmon polaritons. Using this method of bleach-imaged plasmon propagation (BlIPP), we determined a plasmon propagation distance of 1.8 ± 0.4 μm at 532 nm for chemically grown gold nanowires. Our results are supported by finite difference time domain electromagnetic simulations.

  7. Broadband metasurfaces for anomalous transmission and spectrum splitting at visible frequencies

    Directory of Open Access Journals (Sweden)

    Li Zhongyang

    2015-01-01

    Full Text Available The emergent ultrathin metasurfaces are promising optical materials to enable novel photonic functionality and miniature optical devices. By elaborately design the interfacial phase shift from discrete nanoantennas with distinctive geometries, metasurfaces have the potential to shape desired wavefronts and arbitrary steer light propagation. However, the realization of broadband transmission-mode metasurfaces that operates at visible frequencies have still been significant challenging. Because it is difficult to achieve drastic broadband optical response depending on discrete plasmonic resonators and the fabrication of such subwavelength-size resonators with high uniformity is also challenging. Here, we propose an efficient yet a simple transmission-mode metasurface design comprising of a single, quasi-continuous nanoantenna as the build block. Each nanoantenna consist of a trapezoid-shaped triple-layered (Ag-SiO2-Ag plasmonic resonator which could induce drastic gradient phase shifts for transmitted light. We numerically demonstrated broadband (500–850 nm anomalous transmitted propagation and spectrum splitting at visible frequencies and beyond. The average power ratio of anomalous transmission mode to the first-order diffraction mode was calculated to be ~1000. Such proposed metasurface design is a clear departure from conventional metasurfaces utilizing multiple discrete resonators, and suggests applications for achieving ultrathin lenses, high SNR spectrometers, directional emitters and spectrum splitting surfaces for photovoltaics.

  8. Efficiency Enhancement in Plasmonic IBC Solar Cells

    OpenAIRE

    Christian Chaverri-Ramos; J. Ayúcar; L. Bellières; Guillermo Sánchez Plaza; James Connolly

    2012-01-01

    Silicon solar cells dominate photovoltaics but suffer from poor interaction with light. This work reports on progress regarding both spectral conversion and improved light interaction with the LIMA design [1]. This combines an efficient interdigitated back-contact (IBC) solar cell [2] with a silicon quantum dot (Si-QD) [3] to optimize the spectral distribution of the incident spectrum, and finally a front-side plasmon layer to optimize light interaction. Reflectivity after thickness and proce...

  9. Dynamic plasmonic colour display

    Science.gov (United States)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  10. Simultaneously plasmon lasing and spasing behavior in a silver grating-film geometry

    CERN Document Server

    Shi, Lina; Jin, Feng; Niu, Jiebin; Hua, Yilei; Xie, Changqing

    2014-01-01

    By using a self-consistent Maxwell-Bloch method, we demonstrate the simultaneously lasing and spasing behavior in a simple metal grating-film nanostructure, which can be attributed to spatial hole burning and the gain competition of different modes at the band edge and in the plasmonic band gap. We show three modes: one spaser mode in gap with quality factor as high as 248.54, one plasmon lasing mode at band edge which emit vertically from the grating surface, and the other plasmon lasing mode at band edge which is suppressed by the spaser mode. This method may find significant applications in coherent light and surface plasmon sources with low threshold, surface enhanced Raman scattering, solid-state lighting emission, etc.

  11. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  12. Plasmon reflections by topological electronic boundaries in bilayer graphene.

    Science.gov (United States)

    Jiang, Bor-Yuan; Ni, Guangxin; Addison, Zachariah; Shi, Jing K; Liu, Xiaomeng; Zhao, Shu-Yang; Kim, Philip; Mele, Eugene J; Basov, Dimitri N; Fogler, Michael M

    2017-10-02

    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contains additional confined bands which produce a structure-specific contrast of the local conductivity, in agreement with the experiment. The coupling between the confined modes and the surface plasmon scattering unveiled in this work is expected to be common to other topological electronic boundaries found in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling plasmons in nanostructures.

  13. Observation of quantum tunneling between two plasmonic nanoparticles.

    Science.gov (United States)

    Scholl, Jonathan A; García-Etxarri, Aitzol; Koh, Ai Leen; Dionne, Jennifer A

    2013-02-13

    The plasmon resonances of two closely spaced metallic particles have enabled applications including single-molecule sensing and spectroscopy, novel nanoantennas, molecular rulers, and nonlinear optical devices. In a classical electrodynamic context, the strength of such dimer plasmon resonances increases monotonically as the particle gap size decreases. In contrast, a quantum mechanical framework predicts that electron tunneling will strongly diminish the dimer plasmon strength for subnanometer-scale separations. Here, we directly observe the plasmon resonances of coupled metallic nanoparticles as their gap size is reduced to atomic dimensions. Using the electron beam of a scanning transmission electron microscope (STEM), we manipulate pairs of ~10-nm-diameter spherical silver nanoparticles on a substrate, controlling their convergence and eventual coalescence into a single nanosphere. We simultaneously employ electron energy-loss spectroscopy (EELS) to observe the dynamic plasmonic properties of these dimers before and after particle contact. As separations are reduced from 7 nm, the dominant dipolar peak exhibits a redshift consistent with classical calculations. However, gaps smaller than ~0.5 nm cause this mode to exhibit a reduced intensity consistent with quantum theories that incorporate electron tunneling. As the particles overlap, the bonding dipolar mode disappears and is replaced by a dipolar charge transfer mode. Our dynamic imaging, manipulation, and spectroscopy of nanostructures enables the first full spectral mapping of dimer plasmon evolution and may provide new avenues for in situ nanoassembly and analysis in the quantum regime.

  14. A method for reduction of propagation loss of surface plasmons. Experimental demonstration of the loss reduction for Fe/MgO/AlGaAs plasmonic structure integrated with AlGaAs/GaAs optical waveguide

    CERN Document Server

    Zayets, V; Ando, K; Yuasa, S

    2015-01-01

    A method for the substantial reduction of propagation loss of surface plasmons was proposed and experimentally demonstrated. The method is based on the fact that the propagation loss of the surface plasmons depends significantly on the optical confinement of the plasmon. A plasmonic structure, which contains a metal and two dielectric layers of different refractive indexes, is proposed in order to optimize optical confinement and to reduce propagation loss of the surface plasmons. A low propagation loss of 0.17 dB/um for a surface plasmon in a Fe/MgO/AlGaAs plasmonic structure was achieved. A good coupling efficiency of 2.2 dB/facet between a surface plasmon in Fe/MgO/AlGaAs and a waveguide mode in AlGaAs/GaAs optical waveguide was demonstrated.

  15. Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit

    Science.gov (United States)

    Marae-Djouda, Joseph; Caputo, Roberto; Mahi, Nabil; Lévêque, Gaëtan; Akjouj, Abdellatif; Adam, Pierre-Michel; Maurer, Thomas

    2017-01-01

    The regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon resonances. This is the case when the single-particle localized surface plasmon resonance (λLSP) is very close in value to the Rayleigh anomaly wavelength (λRA) of the nanoparticles array. In this paper, we performed angle-resolved extinction measurements on a 2D array of gold nano-cylinders designed to fulfil the condition λRA<λLSP. Varying the angle of excitation offers a unique possibility to finely modify the value of λRA, thus gradually approaching the condition of coupling between diffracted waves and plasmon modes. The experimental observation of a collective dipolar resonance has been interpreted by exploiting a simplified model based on the coupling of evanescent diffracted waves with plasmon modes. Among other plasmon modes, the measurement technique has also evidenced and allowed the study of a vertical plasmon mode, only visible in TM polarization at off-normal excitation incidence. The results of numerical simulations, based on the periodic Green's tensor formalism, match well with the experimental transmission spectra and show fine details that could go unnoticed by considering only experimental data.

  16. Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit

    Directory of Open Access Journals (Sweden)

    Marae-Djouda Joseph

    2017-01-01

    Full Text Available The regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon resonances. This is the case when the single-particle localized surface plasmon resonance (λLSP is very close in value to the Rayleigh anomaly wavelength (λRA of the nanoparticles array. In this paper, we performed angle-resolved extinction measurements on a 2D array of gold nano-cylinders designed to fulfil the condition λRA<λLSP. Varying the angle of excitation offers a unique possibility to finely modify the value of λRA, thus gradually approaching the condition of coupling between diffracted waves and plasmon modes. The experimental observation of a collective dipolar resonance has been interpreted by exploiting a simplified model based on the coupling of evanescent diffracted waves with plasmon modes. Among other plasmon modes, the measurement technique has also evidenced and allowed the study of a vertical plasmon mode, only visible in TM polarization at off-normal excitation incidence. The results of numerical simulations, based on the periodic Green’s tensor formalism, match well with the experimental transmission spectra and show fine details that could go unnoticed by considering only experimental data.

  17. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons

    Science.gov (United States)

    Rahman, Sk. Shaid-Ur; Klein, Thorsten; Klembt, Sebastian; Gutowski, Jürgen; Hommel, Detlef; Sebald, Kathrin

    2016-10-01

    We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.

  18. Long-range hybrid wedge plasmonic waveguide.

    Science.gov (United States)

    Zhang, Zhonglai; Wang, Jian

    2014-11-03

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

  19. Optical nano-imaging of gate-tunable graphene plasmons.

    Science.gov (United States)

    Chen, Jianing; Badioli, Michela; Alonso-González, Pablo; Thongrattanasiri, Sukosin; Huth, Florian; Osmond, Johann; Spasenović, Marko; Centeno, Alba; Pesquera, Amaia; Godignon, Philippe; Elorza, Amaia Zurutuza; Camara, Nicolas; García de Abajo, F Javier; Hillenbrand, Rainer; Koppens, Frank H L

    2012-07-05

    The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.

  20. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.