WorldWideScience

Sample records for plasmoid flux rope

  1. ISEE 3 observations of plasmoids with flux rope magnectic topologies

    OpenAIRE

    Slavin, J.; Owen, C.; KUZNETSOVA, M.

    1995-01-01

    This paper reports new evidence for the existence of plasmoids with force‐free flux rope magnetic topologies. Motivated by the fact that force‐free magnetic flux ropes have intense axial fields at their centers, the ISEE 3 observations have been searched for plasma sheet intervals in which the magnetic field intensity exceeds that in the lobes by ≥10% for a minute or longer. A total of 39 “high field regions” were found which met this simple criterion. Further examination showed that they nea...

  2. Method for inferring the axis-orientation of cylindrical flux rope or plasmoid based on single-point measurement

    Science.gov (United States)

    Rong, Z.; Wan, W.; Shen, C.; Zhang, T.; Lui, A.; Dunlop, M.; Zhang, Y.; Zong, Q.

    2012-12-01

    We develop a new simple method for inferring the orientation of flux rope or plasmoid (FoP) which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model test demonstrate that, for the cylindrical FoP no matter it is force-free or non-force-free, the method can consistently yield the axis-orientation of FoP with higher accuracy and stability than the minimum variance analysis of magnetic field and the technique of Grad-Shafranov(GS) reconstruction. Moreover, the radial distance to the axis-center and the current density can be also estimated consistently. The application to two actual flux transfer events observed by the four satellites of Cluster mission demonstrate that the method is more appropriate to be used for the inner part of FoP which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal GS reconstruction and the least squares technique of Faraday's law (Sonnerup and Hasegawa, 2005), but fails to produce such agreement for the outer satellite that grazes FoP. Therefore the method must be used with caution.; The interior structure of flux rope or plasmoid (adapted from Russell and Elphic, 1979). ; Sketched diagram to show the helical handedness of flux rope or plasmoid and the variation of field direction along the path of S/C on the cross-section. Panel-a is for the right-handed structure while panel-b is for the left-handed structure. The red arrow is the projection of S/C path, while the black arrow is the perpendicular direction of unit magnetic field vector to the axis-orientation.

  3. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    Boris Filippov; Olesya Martsenyuk; Abhishek K. Srivastava; Wahab Uddin

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  4. A Reconnecting Flux Rope Dynamo

    OpenAIRE

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined in thin flux ropes advected by a multi-scale flow modeling turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. We investigate the kinetic energy release into heat, mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux rope dynamo is an order of magnitude more efficient at converting mechanical energy into...

  5. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  6. A Reconnecting Flux Rope Dynamo

    CERN Document Server

    Baggaley, Andrew W; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined in thin flux ropes advected by a multi-scale flow modeling turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. We investigate the kinetic energy release into heat, mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3, consistent with the Solar corona heating by nanoflares.

  7. Reconnecting flux-rope dynamo

    Science.gov (United States)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  8. Reconnecting flux-rope dynamo.

    Science.gov (United States)

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  9. MESSENGER observations of flux ropes in Mercury's magnetotail

    Science.gov (United States)

    DiBraccio, Gina A.; Slavin, James A.; Imber, Suzanne M.; Gershman, Daniel J.; Raines, Jim M.; Jackman, Caitriona M.; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; McNutt, Ralph L.; Solomon, Sean C.

    2015-09-01

    We report an investigation of magnetic reconnection in Mercury's magnetotail conducted with MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer measurements during seven "hot seasons" when the periapsis of the spacecraft orbit is on Mercury's dayside. Flux ropes are formed in the cross-tail current sheet by reconnection. We have analyzed 49 flux ropes observed between 1.7 RM and 2.8 RM (where RM is Mercury's radius, or 2440 km) down the tail from the center of the planet, for which minimum variance analysis indicates that the spacecraft passed near the central axis of the structure. An average Alfvén speed of 465 km s-1 is measured in the plasma sheet surrounding these flux ropes. Under the assumption that the flux ropes moved at the local Alfvén speed, the mean duration of 0.74±0.15 s determined for these structures implies a typical diameter of ~345 km, or ~0.14 RM, which is comparable to a proton gyroradius in the plasma sheet of ~380 km. We successfully fit the magnetic signatures of 16 flux ropes to a force-free model. The mean radius and core field determined in this manner were ~450 km, or ~0.18 RM, and ~40 nT, respectively. A superposed epoch analysis of the magnetic field during these events shows variations similar to those observed at Earth, including the presence of a post-plasmoid plasma sheet, filled with disconnected magnetic flux, but the timescales are 40 times shorter at Mercury. The results of this flux rope survey indicate that intense magnetic reconnection occurs frequently in the cross-tail current layer of this small but extremely dynamic magnetosphere.

  10. Multi-year investigation of flux ropes in the Martian ionosphere

    Science.gov (United States)

    Cartwright, M. L.; Brain, D.; Halekas, J. S.; Eastwood, J. P.

    2011-12-01

    A magnetic flux rope is a collection of twisted magnetic field lines capable of transporting plasma from one region to another. Several studies report the occurrence of magnetic flux ropes in the Martian ionosphere [Cloutier et al., 1999; Vignes et al., 2004; Eastwood et al., 2008; Brain et al., 2010; Morgan et al., 2011]. Observations of a flux rope transporting ionospheric plasma away from Mars indicate that flux ropes could be an important means of atmospheric loss. Interestingly, there are at least three suggested flux rope formation mechanisms at Mars; the first is similar to Venus type events where the flux rope is formed via a shear related instability that occurs by interaction with the solar wind [Cloutier et al., 1999; Vignes et al., 2004]. The second mechanism is similar to plasmoid creation in the Earth's magnetotail, where the flux rope is created when the crustal fields stretch and shear due to interaction with the solar wind [Brain et al., 2010; Morgan et al., 2011]. The third flux rope formation mechanism is based on the identification of flux ropes near current sheets on the night side of Mars and likely created via collisionless magnetic reconnection [Eastwood et al., 2008]. Previous statistical surveys suggest that all three of these formation mechanisms are continuously active at Mars, but have had difficulty differentiating the three populations of flux ropes due to the spacecraft orbit or lack of events. We conducted a larger statistical study of the Martian flux ropes using two years of the MGS magnetic field and suprathermal electron datasets in the circular mapping orbit at ~400km. The purpose of this study is to collect a large dataset of events to characterize the flux rope formation mechanisms and study the relationship to solar cycle.

  11. Self-organization in magnetic flux ropes

    Science.gov (United States)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You

  12. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.

  13. Cool and hot flux ropes, their helicity

    Science.gov (United States)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  14. Numerical Simulations of a Flux Rope Ejection

    Indian Academy of Sciences (India)

    P. Pagano; D. H. Mackay; S. Poedts

    2015-03-01

    Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of flux

  15. A helically distorted MHD flux rope model

    Science.gov (United States)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  16. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  17. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...... of the magnetic flux ropes interact with the magnetic field in the atmosphere in a manner that depends, among other things, on the polarity and strength of the atmospheric field. The results include limits on the necessary and possible twist and polarity of solar magnetic flux ropes....

  18. Simulating Idealized Flux Ropes with the Flux Rope Insertion Method: A Parameter Space Exploration of Currents and Topology

    Science.gov (United States)

    Savcheva, Antonia; Tassev, Svetlin; DeLuca, Edward E.; Gibson, Sarah; Fan, Yuhong

    2016-05-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital to the understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from aFan & Gibson emerging flux rope simulation. The goal is to study the effect of of different input flux rope parameters on the geometry of currents, field line connectivity, and topology, in a controled setting. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. We create synthetic images of these flux ropes in AIA passbands with the FORWARD forward-fitting code. The present parametric study will later be used to get a better handle on the initial condition for magnetofrictional and MHD simulations of observed regions containing flux ropes, such as sigmoids and polar-crown filaments.

  19. Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper ana lyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope,including the height of the rope axis, the half-width of the rope, and the length of the vertical current sheet below the rope, are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity.The implication of this result in solar active phenomena is briefly discussed.

  20. Downward catastrophe of solar magnetic flux ropes

    CERN Document Server

    Zhang, Quanhao; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5D time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free. The system still experiences an upward catastrophe with an increase in each control parameter. Secondly, under the force-free approximation, there also exists a downward catastrophe, characterized by a jump of a solution from the u...

  1. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  2. Synthetic radio views on simulated solar flux ropes

    CERN Document Server

    Kuznetsov, Alexey; Xia, Chun

    2016-01-01

    In this paper, we produce synthetic radio views on simulated flux ropes in the solar corona, where finite-beta magnetohydrodynamic (MHD) simulations serve to mimic the flux rope formation stages, as well as their stable endstates. These endstates represent twisted flux ropes where balancing Lorentz forces, gravity and pressure gradients determine the full thermodynamic variation throughout the flux rope. The obtained models are needed to quantify radiative transfer in radio bands, and allow us to contrast weak to strong magnetic field conditions. Field strengths of up to 100 G in the flux rope yield the radio views dominated by optically thin free-free emission. The forming flux rope shows clear morphological changes in its emission structure as it deforms from an arcade to a flux rope, both on disk and at the limb. For an active region filament channel with a field strength of up to 680 G in the flux rope, gyroresonance emission (from the third-fourth gyrolayers) can be detected and even dominates over free-...

  3. Coronal Magnetic Flux Ropes in Quadrupolar Magnetic Fields

    Science.gov (United States)

    Zhang, Yingzhi; Hu, Youqiu; Wang, Jingxiu

    Using a 2.5-D, time-dependent ideal MHD model in spherical coordinates, we carry out a numerical study of the equilibrium properties of coronal magnetic flux ropes in a quadrupolar background magnetic field. For such a flux rope system, a catastrophic occurs: the flux rope is detached from the photosphere and jumps to a finite altitude with a vertical current sheet below. There is a transversal current sheet formed above the rope, and the whole system stays in quasi-equilibrium. We argue that the additional Lorentz force provided by the transversal current sheet on the flux rope plays an important role in keeping the system in quasi-equilibrium in the corona.

  4. Studying the Formation and Evolution of Eruptive Magnetic Flux Ropes

    Science.gov (United States)

    Linton, Mark

    2017-08-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics.

  5. Unsteady wandering magnetic field lines, turbulence and laboratory flux ropes

    Science.gov (United States)

    Intrator, T.; Sears, J.; Weber, T.; Liu, D.; Pulliam, D.; Lazarian, A.

    2011-12-01

    We describe earth bound laboratory experiment investigations of patchy, unsteady, bursty, patchy magnetic field structures that are unifying features of magnetic reconnection and turbulence in helio, space and astro physics. Macroscopic field lines occupy cross sectional areas, fill up three dimensional (3D) volumes as flux tubes. They contain mass with Newtonian dynamics that follow magneto-hydro-dynamic (MHD) equations of motion. Flux rope geometry can be ubiquitous in laminar reconnection sheet geometries that are themselves unstable to formation of secondary "islands" that in 3D are really flux ropes. Flux ropes are ubiquitous structures on the sun and the rest of the heliosphere. Understanding the dynamics of flux ropes and their mutual interactions offers the key to many important astrophysical phenomena, including magnetic reconnection and turbulence. We describe laboratory investigations on RSX, where 3D interaction of flux ropes can be studied in great detail. We use experimental probes inside the the flux ropes to measure the magnetic and electric fields, current density, density, temperatures, pressure, and electrostatic and vector plasma potentials. Macroscopic magnetic field lines, unsteady wandering characteristics, and dynamic objects with structure down to the dissipation scale length can be traced from data sets in a 3D volume. Computational approaches are finally able to tackle simple 3D systems and we sketch some intriguing simulation results that are consistent with 3D extensions of typical 2D cartoons for magnetic reconnection and turbulence.

  6. Plasma Flows Associated with Two Kink-Unstable Flux Ropes

    Science.gov (United States)

    DeHaas, Timothy; Gekelman, W.; Van Compernolle, B.

    2013-07-01

    Magnetic flux ropes are self-organized, magnetized plasma structures embedded in an ambient medium. Their structure consists of helical field lines which vary in pitch due to the electric current flowing along a background magnetic field.1 Multiple braided flux ropes have been observed in the solar corona, and their unraveling is theorized to be the signature of magnetic reconnection.2 Two flux ropes (L=10 m, A=7 cm2, J=10 amp/cm2) were created in the Large Plasma Device (LAPD) at UCLA (Bo=330 G, no = 1012 cm-3, Te=4eV, Ar). The flux ropes are highly kink unstable, which cause the ropes to twist and oscillate at frequencies associated with shear Alfven waves. Through the use of a six-faced Mach probe, volumetric data was taken to determine the three-dimensional plasma flow. Volumetric b-field information was also obtained through use of a three-axis magnetic probe. The data collected from these probes is laden with Lorentzian pulses, a characteristic of deterministic chaos.3 The flux ropes are shown to twist, interact, then merge; while the plasma flows are shown to spiral around the two flux ropes in a singular O-point. A quasi-separatrix layer (QSL) forms as the flux ropes collide and the magnetic field lines reconnect. The relationship between flow and reconnection sites is explored. 1Gekelman, W. et al. ApJ 753, 131 2Cirtain, J.W. et al. Nature 493, 501-503 (2013) 3Maggs, J.E. et al. Phys. Rev. Lett. 107, 185003 (2011)

  7. Determining the axis orientation of cylindrical magnetic flux rope

    Science.gov (United States)

    Rong, Zhaojin; Wan, Weixing; Shen, Chao; Zhang, Tielong; Lui, Anthony; Wang, Yuming; Dunlop, malcolm; Zhang, Yongcun; Zong, Qiugang

    2013-04-01

    We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.

  8. Coronal Flux Rope Equilibria in Closed Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; You-Qiu Hu

    2003-01-01

    Using a 2.5-dimensional ideal MHD model in Cartesian coordinates, weinvestigate the equilibrium properties of coronal magnetic flux ropes in backgroundmagnetic fields that are completely closed. The background fields are produced by adipole, a quadrupole, and an octapole, respectively, located below the photosphereat the same depth. A magnetic flux rope is then launched from below the photo-sphere, and its magnetic properties, i.e., the annular magnetic flux φp and the axialmagnetic flux φz, are controlled by a single emergence parameter. The whole sys-tem eventually evolves into equilibrium, and the resultant flux rope is characterizedby three geometrical parameters: the height of the rope axis, the half-width of therope, and the length of the vertical current sheet below the rope. It is found thatthe geometrical parameters increase monotonically and continuously with increasingφ p and φz: no catastrophe occurs. Moreover, there exists a steep segment in theprofiles of the geometrical parameters versus either φp or φz, and the faster thebackground field decays with height, the larger both the gradient and the growthamplitude within the steep segment will be.

  9. Magnetic Flux Ropes from the Sun to 1 AU*

    Science.gov (United States)

    Krall, J.; Yurchyshyn, V. B.; St. Cyr, O. C.; Chen, J.

    2004-12-01

    Any practical model of the dynamics of a coronal mass ejection (CME) and its interplanetary counterpart (ICME) must conform to available observational constraints from sun and to the earth; the upcoming STEREO mission will add significantly to those constraints. We present model/data comparisons for specific CME/ICME events near the sun (using coronagraph image data) and in the heliosphere (using in situ measurements) to show that the flux rope model of Chen and Krall[1-2] provides an accurate physics-based characterization of flux-rope CMEs over this range. We further show that quantitative results, such as the field energy required for eruption, depend on specific aspects of the flux rope geometry, such as the ratio (length/width) of the elliptical shape traced out by the flux-rope axis. It is this geometry that will be determined, for the first time, by STEREO. [1] Chen, J. 1996, JGR, 101, 27499 [2] Krall, J. et al., 2000, ApJ, 539, 964 *Work supported by ONR, NASA and NSF

  10. A HOT FLUX ROPE OBSERVED BY SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Aparna, V.; Tripathi, Durgesh, E-mail: aparnav@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag—4, Ganeshkhind, Pune 411007 (India)

    2016-03-01

    A filament eruption was observed on 2010 October 31 in the images recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) in its Extreme Ultra-Violet (EUV) channels. The filament showed a slow-rise phase followed by a fast rise and was classified to be an asymmetric eruption. In addition, multiple localized brightenings which were spatially and temporally associated with the slow-rise phase were identified, leading us to believe that the tether-cutting mechanism initiated the eruption. An associated flux rope was detected in high-temperature channels of AIA, namely 94 and 131 Å, corresponding to 7 and 11 MK plasma respectively. In addition, these channels are also sensitive to cooler plasma corresponding to 1–2 MK. In this study, we have applied the algorithm devised by Warren et al. to remove cooler emission from the 94 Å channel to deduce only the high-temperature structure of the flux rope and to study its temporal evolution. We found that the flux rope was very clearly seen in the clean 94 Å channel image corresponding to Fe xviii emission, which corresponds to a plasma at a temperature of 7 MK. This temperature matched well with that obtained using Differential Emission Measure analysis. This study provides important constrains in the modeling of the thermodynamic structure of the flux ropes in coronal mass ejections.

  11. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    Science.gov (United States)

    Ebrahimi, F.; Raman, R.

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  12. Measurements of Magnetic Helicity within Two Interacting Flux Ropes

    Science.gov (United States)

    Dehaas, Timothy; Gekelman, Walter

    2016-10-01

    Magnetic helicity (HM) has become a useful tool in the exploration of astrophysical plasmas. Its conservation in the MHD limit (and even some fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a rope-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed extending from the solar surface and can be found in the near-earth environment. In this well-diagnosed experiment (3D measurements of ne, Te, Vp, B, J, E, uflow) , two magnetic flux ropes were generated in the Large Plasma Device at UCLA. These ropes were driven kink-unstable, commencing complex motion. As they interact, helicity conservation is broken in regions of reconnection, turbulence, and instabilities. The changes in helicity can be visualized as 1) the transport of helicity (ϕB +E × A) and 2) the dissipation of the helicity (-2EB). Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These qualities oscillate 8% peak-to-peak. As the ropes move and the topology of the field lines change, a quasi-separatrix layer (QSL) is formed. The volume averaged HM and the largest value of Q both oscillate but not in phase. In addition to magnetic helicity, similar quantities such as self-helicity, mutual-helicity, vorticity, and canonical helicity are derived and will be presented. This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  13. Are There Different Populations of Flux Ropes in the Solar Wind?

    OpenAIRE

    Janvier, Miho; Démoulin, Pascal; Dasso, Sergio

    2014-01-01

    Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different populations of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free fi...

  14. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  15. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  16. Magnetic field generation from shear flow in flux ropes

    Science.gov (United States)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  17. Cassini Observations of Plasmoid Structure and Dynamics: Implications for the Role of Magnetic Reconnection in Magnetospheric Circulation at Saturn

    Science.gov (United States)

    Jackman, C. M.; Slavin, J. A.; Cowley, S. W. H.

    2011-01-01

    We survey the Cassini magnetometer data during the deep tail orbits in 2006, and find 34 direct encounters with plasmoids. They occur as single, isolated events but also in groups of two or more plasmoids as is frequently observed at Earth . We show a case study example of three such plasmoids over three hours, where we estimate an upper limit of 5.68 GWb of flux closure, and derive a reconnection rate over this interval of 526 kV. We show the results of a superposed epoch analysis of al1 34 plasmoids indicating that, on average, plasmoids at Saturn are approix.8 min in duration and they tend toward a loop-like, as opposed to flux rope-like topology, with little or no axial core magnetic field. Our analysis shows that plasmoids at Saturn are followed by an extended interval of the post-plasmoid plasma sheet (PPPS) lasting approx.58 min. The average open magnetic flux disconnected by the continued reconnet:tion following plasmoid formation that creates the PPPS is approx.3 GWb. We calculate expected recurrence rates for plasmoids, and compare these with a derived observational recurrence rate of one plasmoid every approx.2.4 days, explaining the reasons why the spacecraft has not observed as many plasmoids as we predict will be released. We conclude that the Cassini magnetometer measurements require a combination of Vasyliunas-type closed-flux plasma sheet and Dungey-type open-flux lobe reconnection to account for the observed properties of the plasmoids and PPPS in Saturn's magnetotail.

  18. Cassini Observations of Plasmoid Structure and Dynamics: Implications for the Role of Magnetic Reconnection in Magnetospheric Circulation at Saturn

    Science.gov (United States)

    Jackman, C. M.; Slavin, J. A.; Cowley, S. W. H.

    2011-01-01

    We survey the Cassini magnetometer data during the deep tail orbits in 2006, and find 34 direct encounters with plasmoids. They occur as single, isolated events but also in groups of two or more plasmoids as is frequently observed at Earth . We show a case study example of three such plasmoids over three hours, where we estimate an upper limit of 5.68 GWb of flux closure, and derive a reconnection rate over this interval of 526 kV. We show the results of a superposed epoch analysis of al1 34 plasmoids indicating that, on average, plasmoids at Saturn are approix.8 min in duration and they tend toward a loop-like, as opposed to flux rope-like topology, with little or no axial core magnetic field. Our analysis shows that plasmoids at Saturn are followed by an extended interval of the post-plasmoid plasma sheet (PPPS) lasting approx.58 min. The average open magnetic flux disconnected by the continued reconnet:tion following plasmoid formation that creates the PPPS is approx.3 GWb. We calculate expected recurrence rates for plasmoids, and compare these with a derived observational recurrence rate of one plasmoid every approx.2.4 days, explaining the reasons why the spacecraft has not observed as many plasmoids as we predict will be released. We conclude that the Cassini magnetometer measurements require a combination of Vasyliunas-type closed-flux plasma sheet and Dungey-type open-flux lobe reconnection to account for the observed properties of the plasmoids and PPPS in Saturn's magnetotail.

  19. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    Science.gov (United States)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  20. Do the legs of magnetic clouds contain twisted flux-rope magnetic fields?

    OpenAIRE

    Owens, Mathew

    2016-01-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The tim...

  1. Effect of Finite Larmor Radius on the Cosmic Ray Penetration into an Interplanetary Magnetic Flux Rope

    OpenAIRE

    Kubo, Yuki; Shimazu, Hironori

    2010-01-01

    We discuss a mechanism for cosmic ray penetration into an interplanetary magnetic flux rope, particularly the effect of the finite Larmor radius and magnetic field irregularities. First, we derive analytical solutions for cosmic ray behavior inside a magnetic flux rope, on the basis of the Newton-Lorentz equation of a particle, to investigate how cosmic rays penetrate magnetic flux ropes under an assumption of there being no scattering by small-scale magnetic field irregularities. Next, we pe...

  2. Are There Different Populations of Flux Ropes in the Solar Wind?

    Science.gov (United States)

    Janvier, M.; Démoulin, P.; Dasso, S.

    2014-07-01

    Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius Rlaw distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.

  3. Do the Legs of Magnetic Clouds Contain Twisted Flux-rope Magnetic Fields?

    Science.gov (United States)

    Owens, M. J.

    2016-02-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  4. The force‐free configuration of flux ropes in geomagnetotail: Cluster observations

    National Research Council Canada - National Science Library

    Yang, Y. Y; Shen, C; Zhang, Y. C; Rong, Z. J; Li, X; Dunlop, M; Ma, Y. H; Liu, Z. X; Carr, C. M; Rème, H

    2014-01-01

    Unambiguous knowledge of magnetic field structure and the electric current distribution is critical for understanding the origin, evolution, and related dynamic properties of magnetic flux ropes (MFRs...

  5. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  6. Are There Different Populations of Flux Ropes in the Solar Wind?

    CERN Document Server

    Janvier, Miho; Dasso, Sergio

    2014-01-01

    Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different populations of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free field model, which provides an estimation of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a large dynamic range, we go beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations over the radius range. By doing so, we find that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distributio...

  7. DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?

    Energy Technology Data Exchange (ETDEWEB)

    Owens, M. J. [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2016-02-20

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  8. High-Resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Li, Ting; Zhang, Jun

    2015-10-01

    We report the observations of a flux rope at transition region temperatures with the Interface Region Imaging Spectrograph (IRIS) on 30 August 2014. Initially, magnetic flux cancellation continually took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 Å, with a total twist of about 4π. Afterwards, the flux rope underwent a counterclockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C ii 1335.71 Å at the southern leg of the flux rope revealed Doppler redshifts of 6 - 24 km s^{-1} at the western side of the axis, which is consistent with the counterclockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transported into the upper atmosphere by the unwinding motion in the late stage. The small-scale flux rope (width of 8.3^'') had a cylindrical shape with helical field lines, similar to the morphology of the large-scale CME core (width of 1.54 {R}_{⊙}) on 2 June 1998. This similarity shows the presence of flux ropes of different scales on the Sun.

  9. MICROWAVE IMAGING OF A HOT FLUX ROPE STRUCTURE DURING THE PRE-IMPULSIVE STAGE OF AN ERUPTIVE M7.7 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Chen, Yao; Song, Hongqiang; Chandrashekhar, Kalugodu; Jiao, Fangran [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Huang, Guangli [Purple Mountain Observatory, Chinese Academy of Sciences (CAS), Nanjing, 210008 (China); Nakajima, Hiroshi [Nobeyama Radio Observatory, NAOJ, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Melnikov, Victor [Central Astronomical Observatory at Pulkovo, Russian Academy of Sciences, Saint Petersburg 196140 (Russian Federation); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-04-01

    Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 Å. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures (T{sub B}) varying from ∼10,000 K to ∼20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large-scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2 minute period of the microwave T{sub B} variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2 minute timescale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.

  10. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    Science.gov (United States)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  11. Reconnection Experiments with Flux Ropes near 3D Magnetic Nulls

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Le, A.

    2012-12-01

    Magnetic reconnection has been predominantly investigated in two dimensions. However, depending on the topology and geometry of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in 3D including reconnection at magnetic nulls. Nulls have been reported in the solar corona [1] and in Earth's magnetosphere [2], yet there are a limited number of laboratory observations. At the Versatile Toroidal Facility (VTF) we have implemented a new magnetic geometry with a pair of 3D null points in the background toroidal field. We form a flux rope along the background field and observe it to rapidly restructure and rewire as the nulls develop. We can adjust the topology of the configuration from one where a field line connects the nulls to one where the nulls are no longer linked. A suit of diagnostics will be deployed and results presented for the dynamics of the flux rope. [1] Fletcher et al., Astrophys. J. 554, 451(2001) [2] Xiao et al., Nat. Phys. 2, 478 (2006)

  12. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    CERN Document Server

    Green, L M

    2009-01-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  13. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15–2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  14. Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    X.-Z. Zhou

    2006-07-01

    Full Text Available Another approach (Multiple Triangulation Analysis, MTA is presented to determine the orientation of magnetic flux rope, based on 4-point measurements. A 2-D flux rope model is used to examine the accuracy of the MTA technique in a theoretical way. It is found that the precision of the estimated orientation is dependent on both the spacecraft separation and the constellation path relative to the flux rope structure. However, the MTA error range can be shown to be smaller than that of the traditional MVA technique. As an application to real Cluster data, several flux rope events on 26 January 2001 are analyzed using MTA, to obtain their orientations. The results are compared with the ones obtained by several other methods which also yield flux rope orientation. The estimated axis orientations are shown to be fairly close, suggesting the reliability of the MTA method.

  15. Catastrophe of coronal magnetic flux ropes in fully open magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI; Guoqiang(李国强); HU; Youqiu(胡友秋)

    2002-01-01

    The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.

  16. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    OpenAIRE

    Li, Ting; ZHANG, JUN

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Af...

  17. A plasma β transition within a propagating flux rope

    Energy Technology Data Exchange (ETDEWEB)

    Savani, N. P. [George Mason University, Faifax, VA (United States); Vourlidas, A.; Linton, M. G. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Shiota, D. [Computational Astrophysics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kusano, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Lugaz, N. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Rouillard, A. P. [Institut de Recherche en Astrophysique et Plantologie, Universit de Toulouse (UPS) (France)

    2013-12-20

    We present a 2.5 dimensional magnetohydrodynamic simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma β transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma β is significantly lower in the FR than in the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g., from space weather simulations like Enlil) of a pancake-shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR, can demarcate a boundary layer where there is a sharp transition in the plasma β. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region that maintains a quasi-cylindrical structure. We quantitatively investigate a locus of points where the kinetic energy density of the relative inflow field is equal to the energy density of the transverse magnetic field (i.e., effective tension force). The simulation provides compelling evidence that at all heliocentric distances the distribution of toroidal magnetic flux away from the FR axis is not linear, with 80% of the toroidal flux occurring within 40% of the distance from the FR axis. Thus, our simulation displays evidence that the competing ideas of a pancaking structure observed remotely can coexist with a quasi-cylindrical magnetic structure seen in situ.

  18. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-11-20

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R {sub ☉} away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  19. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    CERN Document Server

    Li, Ting

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Afterwards, the flux rope underwent a counter-clockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C {\\sc ii} 1335.71 {\\AA} at the southern leg of the flux rope showed that Doppler redshifts of 6$-$24 km s$^{-1}$ appeared at the western side of the axis, which is consistent with the counter-clockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and some activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transpor...

  20. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    Science.gov (United States)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  1. The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds

    Directory of Open Access Journals (Sweden)

    M. J. Owens

    2009-10-01

    Full Text Available Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.

  2. The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds

    OpenAIRE

    Owens, Mathew James; Crooker, N. U.; Horbury, T. S.

    2009-01-01

    Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons...

  3. Hooked flare ribbons and flux-rope related QSL footprints

    CERN Document Server

    Zhao, Jie; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-01-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare which begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by SDO/AIA can be well reproduced from a Grad-Rubin non linear force free field extrapolation method. Various inverse-S and -J shaped magnetic field lines, that surround a coronal flux rope, coincide with the sigmoid as observed in different extreme ultraviolet wavelengths, including its multi-threaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and set-up of the Grad-Rubin method. The modeled double inverse-J shaped Quasi-Separatrix Layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latt...

  4. Flux rope proxies and fan-spine structures in active region NOAA 11897

    CERN Document Server

    Hou, Y J; Zhang, J

    2016-01-01

    Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigate flux rope proxies in NOAA AR 11897 from 14-Nov-2013 to 19-Nov-2013 and display two fan-spine structures in this AR. For the first time, we detect flux rope proxies of NOAA 11897 for total 30 times in 4 different locations. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. Specially, none of these flux rope proxies was observed to erupt, but just faded away gradually. In addition to these flux rope proxies, we firstly detect a secondary fan-spine structure. It was covered by dome-shaped magnetic fields which belong to a larger fan-spine topology. These new observations imply that considerable amounts of flux ropes can exist in an AR and the complexity of AR magnetic configuration is far beyond our imagination.

  5. A Comparative Examination of Plasmoid Structure and Dynamics at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The circulation of plasma and magnetic flux within planetary magnetospheres is governed by the solar wind-driven Dungey and planetary rotation-driven cycles. The Dungey cycle is responsible for all circulation at Mercury and Earth. Jupiter and Saturn's magnetospheres are dominated by the Vasyliunas cycle, but there is evidence for a small Dungey cycle contribution driven by the solar wind. Despite these fundamental differences, all well-observed magnetospheres eject relatively large parcels of the hot plasma, termed plasmoids, down their tails at high speeds. Plasmoids escape from the restraining force of the planetary magnetic field through reconnection in the equatorial current sheet separating the northern and southern hemispheres of the magnetosphere. The reconnection process gives the magnetic field threading plasmoids a helical or flux rope-type topology. In the Dungey cycle reconnection also provides the primary tailward force that accelerates plasmoids to high speeds as they move down the tail. We compare the available observations of plasmoids at Mercury, Earth, Jupiter, and Saturn for the purpose of determining the relative role of plasmoids and the reconnection process in the dynamics these planetary magnetic tails.

  6. Slow Rise and Partial Eruption of a Double-Decker Filament. II. Modeling by a Double Flux Rope Equilibrium

    CERN Document Server

    Kliem, Bernhard; Titov, Viacheslav S; Lionello, Roberto; Linker, Jon A; Liu, Rui; Liu, Chang; Wang, Haimin

    2014-01-01

    Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & D\\'emoulin (1999) and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically being unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold...

  7. Multiple flux rope events at the magnetopause observations by TC-1 on 18 March 2004

    Directory of Open Access Journals (Sweden)

    C. J. Xiao

    2005-11-01

    Full Text Available From 23:10 to 23:50 UT on 18 March 2004, the Double Star TC-1 spacecraft detected eight flux ropes at the outbound crossing of the southern dawnside magnetopause. A notable guide field existed inside all ropes. In the mean time the Cluster spacecraft were staying in the magnetosheath and found that the events occurred under the condition of southward IMF Bz and dominant negative IMF By. There are six ropes that appeared quasi-periodically, with a repeated period being approximately 1-4 min. The last flux rope lasts for a longer time interval with a larger peak in the BN variations; it can thus be referred to as a typical FTE. The 18 March 2004 event is quite similar to the multiple flux rope event observed by Cluster on 26 January 2001 at the northern duskside high-latitude magnetopause. A detailed comparison of these two events is made in the paper. Preliminary studies imply that both of these multiple flux ropes events seem to be produced by component reconnection at the dayside low-latitude magnetopause.

  8. Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement

    Science.gov (United States)

    Teh, W.-L.; Nakamura, T. K. M.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Pollock, C.; Lindqvist, P.-A.; Ergun, R. E.; Burch, J. L.; Torbert, R. B.; Giles, B. L.

    2017-02-01

    With high time-resolution field and plasma measurements by the Magnetospheric Multiscale spacecraft, interior fine structures of two ion-scale magnetic flux ropes ( 5 and 11 ion inertial length radius) separated by 14 s are resolved. These two ion-scale flux ropes (FR1 and FR2) show non-frozen-in ion behavior and consist of a strong axial magnetic field at the reversal of the negative-then-positive bipolar field component. The negative bipolar field component of the FR2 is found to be depressed, where magnetic pressure and total pressure decrease, but ion and electron thermal pressures increase, a feature akin to a crater-like flux rope. The pressure enhancement is due to the magnetosheath plasma feeding into the flux rope along the field lines. Magnetic field draping and energetic electrons are also observed in the trailing part of the FR2. The ratio of perpendicular and parallel currents indicates that the FR1 appears force-free but the FR2 seems not. Moreover, the FR2 is time-dependent as a result of a low correlation coefficient (CC = 0.75) for the derivation of the deHoffmann-Teller frame using the direct measured electric fields, while the FR1 is in quasi-steady conditions (CC = 0.94). It is concluded that the crater formation within the FR2 can be interpreted by the analytical flux rope simulation as the evolution of typical flux rope to crater-like one due to the thermal pressure enhancement, which could be induced by the depression of transverse magnetic fields of the flux rope.

  9. Slipping Magnetic Reconnection of Flux-rope Structures as a Precursor to an Eruptive X-class Solar Flare

    Science.gov (United States)

    Li, Ting; Yang, Kai; Hou, Yijun; Zhang, Jun

    2016-10-01

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30-40 km s-1, with an average period of 130 ± 30 s. The Si iv λ1402.77 line showed a redshift of 10-30 km s-1 and a line width of 50-120 km s-1 at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  10. Temperature evolution of magnetic flux rope in a failed solar eruption

    CERN Document Server

    Song, Hongqiang; Cheng, Xin; Chen, Yao; Liu, Rui; Wang, Yuming; Li, Bo

    2014-01-01

    In this presentation, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurred on January 05, 2013, the flux rope was impulsively accelerated to a speed of ~ 400 km/s in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (~ 100 Mm above the surface) high-temperature "fire ball" sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ~ 5 MK to ~ 10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope be heated by the ...

  11. Three-Dimensional Turbulent Reconnection Induced by the Plasmoid Instability

    Science.gov (United States)

    Bhattacharjee, A.; Huang, Y. M.

    2014-12-01

    It has been established that the Sweet-Parker current layer in high-Lundquist-number reconnection is unstable to the super-Alfvenic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime in which the Sweet-Parker current layer evolves into a chain of plasmoids connected by secondary current sheets and the averaged reconnection rate becomes nearly independent of the Lundquist number. In a three-dimensional configuration with a guide field, the additional degree of freedom allows plasmoid instabilities to grow at oblique angles [S. Baalrud et al. Phys. Plasmas 19, 022101 (2012)] and develop the complex dynamics of flux ropes which overlap, cause field-line stochasticization, and self-generate a turbulent state. Three-dimensional simulations in the high-Lundquist-number regime show the formation of cigar-shaped eddies elongated in the direction of the local magnetic field, which is a signature of anisotropic MHD turbulence. Furthermore, the energy fluctuation spectra are found to satisfy power laws in the inertial range. The averaged 3D reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfven speed, which is an order of magnitude lower than the reconnection rate reported in recent studies of externally driven 3D turbulent reconnection. The physical reasons for these differences will be discussed.

  12. Double Star TC-1 observation of the earthward flowing plasmoids in the near magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG YongCun; LIU ZhenXing; SHEN Chao; DUAN SuPing; HE ZhaoHai; C M CARR; H R(E)ME4

    2007-01-01

    We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plasmoids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids in the magnetotail at X >-13 RE. According to the difference of the magnetic field structure in plasmoids,we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magnetic field and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are associated with the high speed earthward flow and the magnetic loop is related to a strong substorm. The ions can escape from the magnetic flux rope along its open field line,but the case of the closed magnetic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the multiple X-line magnetic reconnection occurs beyond the distance of X=-10 RE from the earth.

  13. MHD Forces in Quasi-Static Evolution, Catastrophe, and ``Failed'' Eruption of Solar Flux Ropes

    Science.gov (United States)

    Chen, James

    2017-08-01

    This paper presents the first unified theoretical model of flux rope dynamics---a single set of flux-rope equations in ideal MHD---to describe as one dynamical process the quasi-static evolution, catastrophic transition to eruption, cessation (``failure'') of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial {\\it and} minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure $p_c(Z)$ and an overlying magnetic field $B_c(Z)$. The flux rope is initially force-free, but theevolution is not required to be force- free. A single quasi-static control parameter, the rate of increase in poloidal flux, is used for the entire process. As this parameter is slowly increased, the flux rope rises, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height $Z_{crt}$, it expands on a dynamical (Alfvénic) timescale. The eruption rapidly ceases, as the stored magnetic energy of eruption is exhausted, and a new equilibrium is established at height $Z_1 > Z_{crt}$. The calculated velocity profile resembles the observed velocity profiles in ``failed'' eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications---near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio $R/a$ (e.g., the torus instability equation

  14. Pulsed plasmoid electric propulsion

    Science.gov (United States)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  15. Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection

    Science.gov (United States)

    Priest, E. R.; Longcope, D. W.

    2017-01-01

    The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D "zipper reconnection" propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D "main-phase reconnection" in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.

  16. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  17. Magnetar Giant Flares in Multipolar Magnetic Fields --- I. Fully and Partially Open Eruptions of Flux Ropes

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a catastrophic eruption model for magnetar's enormous energy release during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium point is reached, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole dominated background...

  18. Non-Uniqueness of the Geometry of Interplanetary Magnetic Flux Ropes Obtained from Model-Fitting

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.

    2015-12-01

    Since the early recognition of the important role of interplanetary magnetic flux ropes (IPFRs) to carry the southward magnetic fields to the Earth, many attempts have been made to determine the structure of the IPFRs by model-fitting analyses to the interplanetary magnetic field variations. This paper describes the results of fitting analyses for three selected solar wind structures in the latter half of 2014. In the fitting analysis a special attention was paid to identification of all the possible models or geometries that can reproduce the observed magnetic field variation. As a result, three or four geometries have been found for each of the three cases. The non-uniqueness of the fitted results include (1) the different geometries naturally stemming from the difference in the models used for fitting, and (2) an unexpected result that either of magnetic field chirality, left-handed and right-handed, can reproduce the observation in some cases. Thus we conclude that the model-fitting cannot always give us a unique geometry of the observed magnetic flux rope. In addition, we have found that the magnetic field chirality of a flux rope cannot be uniquely inferred from the sense of field vector rotation observed in the plane normal to the Earth-Sun line; the sense of rotation changes depending on the direction of the flux rope axis. These findings exert an important impact on the studies aimed at the geometrical relationships between the flux ropes and the magnetic field structures in the solar corona where the flux ropes were produced, such studies being an important step toward predicting geomagnetic storms based on observations of solar eruption phenomena.

  19. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations

    Science.gov (United States)

    Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G.

    2017-02-01

    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.

  20. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  1. Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Gibb, G. P. S.; Mackay, D. H.; Meyer, K. A. [University of St Andrews, School of Mathematics and Statistics, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Green, L. M. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2014-02-20

    The modeling technique of Mackay et al. is applied to simulate the coronal magnetic field of NOAA active region AR10977 over a seven day period (2007 December 2-10). The simulation is driven with a sequence of line-of-sight component magnetograms from SOHO/MDI and evolves the coronal magnetic field though a continuous series of non-linear force-free states. Upon comparison with Hinode/XRT observations, results show that the simulation reproduces many features of the active region's evolution. In particular, it describes the formation of a flux rope across the polarity inversion line during flux cancellation. The flux rope forms at the same location as an observed X-ray sigmoid. After five days of evolution, the free magnetic energy contained within the flux rope was found to be 3.9 × 10{sup 30} erg. This value is more than sufficient to account for the B1.4 GOES flare observed from the active region on 2007 December 7. At the time of the observed eruption, the flux rope was found to contain 20% of the active region flux. We conclude that the modeling technique proposed in Mackay et al.—which directly uses observed magnetograms to energize the coronal field—is a viable method to simulate the evolution of the coronal magnetic field.

  2. The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments

    CERN Document Server

    Torok, Tibor; Berger, Mitchell A; Linton, Mark G; Demoulin, Pascal; van Driel-Gesztelyi, Lidia

    2014-01-01

    The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-eruptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially preclu...

  3. Fine-scale Structures of Flux Ropes Tracked by Erupting Material

    CERN Document Server

    Li, Ting

    2013-01-01

    We present the Solar Dynamics Observatory observations of two flux ropes respectively tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 04. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to "peel off" the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are respectively composed of 85$\\pm$12 and 102$\\pm$15 fine-scale structures, with an average width of about 1$\\arcsec$.6. Our observations show that two extreme ends of the flux rope are rooted in the opposite polarity fields and each end is composed of multiple footpoints (FPs) of the fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6$\\times10^{18}$ Mx to 8.6$\\times10^{19}$ Mx. Moreover, almost half of the FPs show converging motion of smaller...

  4. Is flux rope a necessary condition for the progenitor of coronal mass ejections?

    CERN Document Server

    Ouyang, Y; Chen, P F

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or is formed during eruption via magnetic reconnection. The controversy has been continuing because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a ...

  5. Ion‐scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS

    Science.gov (United States)

    Phan, T. D.; Cassak, P. A.; Gershman, D. J.; Haggerty, C.; Malakit, K.; Shay, M. A.; Mistry, R.; Øieroset, M.; Russell, C. T.; Slavin, J. A.; Argall, M. R.; Avanov, L. A.; Burch, J. L.; Chen, L. J.; Dorelli, J. C.; Ergun, R. E.; Giles, B. L.; Khotyaintsev, Y.; Lavraud, B.; Lindqvist, P. A.; Moore, T. E.; Nakamura, R.; Paterson, W.; Pollock, C.; Strangeway, R. J.; Torbert, R. B.; Wang, S.

    2016-01-01

    Abstract New Magnetospheric Multiscale (MMS) observations of small‐scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non‐frozen‐in ion behavior. The data are further compared with a particle‐in‐cell simulation. It is concluded that these small‐scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection. PMID:27635105

  6. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002, Uttarakhand (India); Srivastava, Abhishek K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Filippov, Boris [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Chandra, Ramesh [Department of Physics, D.S.B. Campus, Kumaun University, Nainital 263 002, Uttarakhand (India); Choudhary, Debi Prasad, E-mail: navin@aries.res.in, E-mail: njoshi98@gmail.com [California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ≈2 hr after eruption. From the Global Oscillation Network Group Hα observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ≈105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ≈215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ≈60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  7. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6794--16-9710 Quasi-Static Evolution , Catastrophe, and “Failed” Eruption of Solar Flux...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Quasi-Static Evolution , Catastrophe... evolution of solar flux ropes subject to slowly increasing magnetic energy, encompassing quasi-static evolution , “catastrophic” transition to an eruptive

  8. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  9. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    Science.gov (United States)

    Carley, Eoin P.; Vilmer, Nicole; Gallagher, Peter T.

    2016-12-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ˜5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s-1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  10. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    CERN Document Server

    Petrie, G J D

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For ex...

  11. Particle Acceleration At Small-Scale Flux Ropes In The Heliosphere

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, G.; Webb, G. M.; Khabarova, O.; Cummings, A. C.; Stone, E. C.; Decker, R. B.

    2015-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands or flux roped. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We discuss the basic physics of particle acceleration by single magnetic islands and describe how to incorporate these ideas in a distributed "sea of magnetic islands". We describe briefly some observations, selected simulations, and then introduce a transport approach for describing particle acceleration at small-scale flux ropes. We discuss particle acceleration in the supersonic solar wind and extend these ideas to particle acceleration at shock waves. These models are appropriate to the acceleration of both electrons and ions. We describe model predictions and supporting observations.

  12. Solar prominences embedded in flux ropes: morphological features and dynamics from 3D MHD simulations

    CERN Document Server

    Terradas, J; Luna, M; Oliver, R; Ballester, J L; Wright, A N

    2015-01-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov Demoulin (1999) under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is the responsible for triggering the Kelvin-Helmholtz instability associated to the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a pe...

  13. Observations of Magnetic Flux-rope Oscillation During the Precursor Phase of a Solar Eruption

    Science.gov (United States)

    Zhou, Guiping; Zhang, Jie

    2016-07-01

    What is the pre-cursor of a solar eruption is a key question in solar physics for both understanding the physical mechanism and predicting solar eruptions. In this letter, we present the finding of flux rope oscillation as well as significant plasma heating before the onset of an X1.6 GOES X-ray flare and the eruption of a fast CME on 10 September 2014. This precursor oscillation, lasting for about 13 min and occurring in a sigmoidal structure as seen from SDO/AIA and Hinode XRT, was identified based on the IRIS spectrum observations at the coronal emission line of Fe XXI with wavelength of 1354.08 A and formation temperature of 9.1 MK. The IRIS slit was situated at a fixed position almost vertical to the main axis of the sigmoid, which had a length of about 243 arcsec or 1.8x10^{5} km. The vertical velocity oscillation was in the range from -5 to 11 km s^{-1} with a period T of ˜290 s. Our analysis, based on sigmoid temperature, density, length and magnetic field strength, indicates that the oscillation is best described by the fast magnetoacoustic standing kink mode. We conjecture that the pre-cursor oscillation was caused by the interaction of an unstable magnetic flux rope with the overlaying constraining magnetic field, as manifested by a localized plasma heating. The flux rope was subsequently erupted when the main flare reconnection was triggered in the possible current sheet underneath the magnetic flux rope.

  14. Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations

    Science.gov (United States)

    Sun, W. J.; Fu, S. Y.; Slavin, J. A.; Raines, J. M.; Zong, Q. G.; Poh, G. K.; Zurbuchen, T. H.

    2016-08-01

    We perform a statistical study of flux ropes and reconnection fronts based on MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma observations to study the implications for the spatial distribution of reconnection sites in Mercury's near magnetotail. The results show important differences of temporal and spatial distributions as compared to Earth. We have surveyed the plasma sheet crossings between -2 RM and -3 RM downtail from the planet, i.e., the location of Near-Mercury Neutral Line (NMNL). Plasma sheets were defined to be regions with β ≥ 0.5. Using this definition, 39 flux ropes and 86 reconnection fronts were identified in the plasma sheet. At Mercury, the distributions of flux ropes and reconnection fronts show clear dawn-dusk asymmetry with much higher occurrence rate on the dawnside plasma sheet than on the duskside. This suggests that magnetic reconnection in Mercury's magnetotail occurs more frequently in the dawnside than in the duskside plasma sheet, which is different than the observations in Earth's magnetotail showing more reconnection signatures in the duskside plasma sheet. The distribution of plasma sheet thickness shows that plasma sheet near the midnight is the thinnest part and does not show obvious asymmetry. Thus, the reasons that cause magnetic reconnection to preferentially occur on the dawnside of the magnetotail at Mercury may not be the plasma sheet thickness and require further study. The peak occurrence rates of flux ropes and reconnection fronts in Mercury's plasma sheet are ~ 60 times higher than that of Earth's values, which we interpret to be due to the highly variable magnetospheric conditions at Mercury. Such higher occurrence rate of magnetic reconnection would generate more plasma flows in the dawnside plasma sheet than in the duskside. These plasma flows would mostly brake and initiate the substorm dipolarization on the postmidnight sector at Mercury rather than the

  15. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications

    OpenAIRE

    Hu,Qiang; Linton, M. G.; Wood, B. E.; Riley, P.; Nieves-Chinchilla, T.

    2017-01-01

    This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to a two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchmark study of an analytic solution to the toroidal GS equation with added noise shows deviations in the reconstructed geometry of the flux rope configuration, characterized by the orientation of the rotation axis, the major radius, and the impact p...

  16. On the Characteristics of Footpoints of Solar Magnetic Flux Ropes during the Eruption

    OpenAIRE

    Cheng, X; Ding, M. D.

    2016-01-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperaure passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other in the moss region with a weaker magnetic field. The significant deviation of the axis of the MFRs from t...

  17. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    OpenAIRE

    Song, Hongqiang; Zhang, Jie; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which suppor...

  18. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  19. SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  20. Magnetar Giant Flares in Multipolar Magnetic Fields --- II. Flux Rope Eruptions With Current Sheets

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. Especially, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. The released magnetic energy is sufficient to drive giant flares. The flux rope would go away from the magnetar quasi-statically, which is ...

  1. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    Science.gov (United States)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  2. A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Wu, S. T.; Guo, W. P.

    1997-01-01

    We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.

  3. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    Science.gov (United States)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  4. Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere

    Science.gov (United States)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk; Wang, Haimin

    2017-07-01

    Using high-resolution observations from the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), we report direct evidence of merging and reconnection of cool Hα loops in the chromosphere during two homologous flares (B and C class) caused by a shear motion at the footpoints of two loops. The reconnection between these loops caused the formation of an unstable flux rope that showed counterclockwise rotation. The flux rope could not reach the height of torus instability and failed to form a coronal mass ejection. The HMI magnetograms revealed rotation of the negative and positive (N1/P2) polarity sunspots in the opposite directions, which increased the right- and left-handed twist in the magnetic structures rooted at N1/P2. Rapid photospheric flux cancellation (duration 20-30 min, rate ≈3.44 × 1020 Mx h-1) was observed during and even after the first B6.0 flare and continued until the end of the second C2.3 flare. The RHESSI X-ray sources were located at the site of the loop coalescence. To the best of our knowledge, such a clear interaction of chromospheric loops along with rapid flux cancellation has not been reported before. These high-resolution observations suggest the formation of a small flux rope by a series of magnetic reconnections within chromospheric loops that are associated with very rapid flux cancellation. Movies attached to Figs. 2, 7, 8, and 10 are available at http://www.aanda.org

  5. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    Science.gov (United States)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical

  6. Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.

    Science.gov (United States)

    Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S

    2016-06-10

    The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

  7. Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth's magnetopause.

    Science.gov (United States)

    Øieroset, M; Phan, T D; Eastwood, J P; Fujimoto, M; Daughton, W; Shay, M A; Angelopoulos, V; Mozer, F S; McFadden, J P; Larson, D E; Glassmeier, K-H

    2011-10-14

    We report the direct detection by three THEMIS spacecraft of a magnetic flux rope flanked by two active X lines producing colliding plasma jets near the center of the flux rope. The observed density depletion and open magnetic field topology inside the flux rope reveal important three-dimensional effects. There was also evidence for nonthermal electron energization within the flux rope core where the fluxes of 1-4 keV superthermal electrons were higher than those in the converging reconnection jets. The observed ion and electron energizations differ from current theoretical predictions.

  8. On the Role of Repetitive Magnetic Reconnections in Evolution of Magnetic Flux Ropes in Solar Corona

    Science.gov (United States)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan; Smolarkiewicz, P. K.

    2016-10-01

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  9. Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point measurement

    Science.gov (United States)

    Rong, Z. J.; Wan, W. X.; Shen, C.; Zhang, T. L.; Lui, A. T. Y.; Wang, Yuming; Dunlop, M. W.; Zhang, Y. C.; Zong, Q.-G.

    2013-01-01

    We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.

  10. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  11. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare

    Science.gov (United States)

    Masson, Sophie; Pariat, Étienne; Valori, Gherardo; Deng, Na; Liu, Chang; Wang, Haimin; Reid, Hamish

    2017-08-01

    Context. The dynamics of ultraviolet (UV) emissions during solar flares provides constraints on the physical mechanisms involved in the trigger and the evolution of flares. In particular it provides some information on the location of the reconnection sites and the associated magnetic fluxes. In this respect, confined flares are far less understood than eruptive flares generating coronal mass ejections. Aims: We present a detailed study of a confined circular flare dynamics associated with three UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. Methods: We perform a non-linear force-free field extrapolation of the confined flare observed with the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments on board Solar Dynamics Observatory (SDO). From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA extreme ultraviolet (EUV) light curves and images in order to identify the post-flare loops, and their temporal and thermal evolution. By combining the two analyses we are able to propose a detailed scenario that explains the dynamics of the flare. Results: Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding quasi-separatix layer (QSL) halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match between the footpoints of the separatrices and the EUV 1600 Å ribbons and between the HFT field line footpoints and bright spots observed inside the circular ribbons. We show, for the first time in a confined flare, that magnetic reconnection occurred initially at the HFT below the flux rope. Reconnection at the null point between the flux rope and the

  12. The structure of an earthward propagating magnetic flux rope early in its evolution: comparison of methods

    Directory of Open Access Journals (Sweden)

    C. Möstl

    2009-05-01

    Full Text Available We analyze a magnetic signature associated with the leading edge of a bursty bulk flow observed by Cluster at −19 RE downtail on 22 August 2001. A distinct rotation of the magnetic field was seen by all four spacecraft. This event was previously examined by Slavin et al. (2003b using both linear force-free modeling as well as a curlometer technique. Extending this work, we apply here single- and multi-spacecraft Grad-Shafranov (GS reconstruction techniques to the Cluster observations and find good evidence that the structure encountered is indeed a magnetic flux rope and contains helical magnetic field lines. We find that the flux rope has a diameter of approximately 1 RE, an axial field of 26.4 nT, a velocity of ≈650 km/s, a total axial current of 0.16 MA and magnetic fluxes of order 105 Wb. The field line twist is estimated as half a turn per RE. The invariant axis is inclined at 40° to the ecliptic plane and 10° to the GSM equatorial plane. The flux rope has a force-free core and non-force-free boundaries. When we compare and contrast our results with those obtained from minimum variance, single-spacecraft force-free fitting and curlometer techniques, we find in general fair agreement, but also clear differences such as a higher inclination of the axis to the ecliptic. We further conclude that single-spacecraft methods have limitations which should be kept in mind when applied to THEMIS observations, and that non-force-free GS and curlometer techniques are to be preferred in their analysis. Some properties we derived for this earthward– moving structure are similar to those inferred by Lui et al. (2007, using a different approach, for a tailward-moving flux rope observed during the expansion phase of the same substorm.

  13. The self-similar, non-linear evolution of rotating magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    Full Text Available We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ωcrit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed

  14. What does determine the sign of core in Magnetic Flux Rope structures of the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2014-09-01

    Full Text Available This paper primarily examines the key factors being involved in precisely determining the sign of the core field in a magnetic flux rope (MFR like structure embedded in the tailward plasma flow associated with the Earth's magnetotail. Magnetic flux ropes are frequently detected by satellites moving smoothly northwards (upwards or southwards (downwards and crossing almost the whole plasma sheet; the sign of the rope's core is associated with the local tail's motion: If the tail is bending to an upward or downward direction, then the sign of the rope's core, being essentially an intense By deviation, will be positive or negative correspondingly. On the basis of this observational finding, a major question concerns the mechanism by which the tail's motion is dictated. The reconnection process acting in the tail will obviously produce symmetric structures of MFRs (with respect to the neutral sheet plane; therefore, the detected organized asymmetry may be an additional indication in the whole magnetotail' s dynamics. Moreover, we discuss the issue of the core's sign in cases without any significant magnetotail's motion. A model interpreting the diagnosed behavior is introduced: Once a tailward ion jet is produced in a thinned plasma sheet, it might form clockwise or counterclockwise ion vortices (i.e., loop-like ion currents providing the "magnetic core" with the appropriate sign. The crucial role of the interplanetary By deviation of the magnetic field (IMF is scrutinized and taken into account. The whole model is tested under the condition of long-lasting extraordinary events characterized by a persistent-intense By deviation with a duration up to 34 min. This work, based on Geotail single-satellite measurements, is not a statistical one; it is a first approach allowing the reconstruction of measurements in the whole range of the magnetotail's deflections, from negligible up to stronger significant magnetotail movements, and should be therefore

  15. Current Sheet Structures Observed by the TESIS EUV Telescope During A Flux Rope Eruption on the Sun

    CERN Document Server

    Reva, Anton; Kuzin, Ssergey

    2016-01-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 $R_\\odot$ from the Sun's center in the Fe 171 \\AA\\ line. The Fe 171 \\AA\\ line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed CME had a core with a spiral-flux rope-structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70 000 K, observed in He 304 \\AA\\ line) and a hotter core (0.7 MK, observed in Fe 171 \\AA\\ line). Such structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We...

  16. Slipping Magnetic Reconnection of Flux Rope Structures as a Precursor to an Eruptive X-class Solar Flare

    CERN Document Server

    Li, Ting; Hou, Yijun; Zhang, Jun

    2016-01-01

    We present the quasi-periodic slipping motion of flux rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the \\emph{Interface Region Imaging Spectrograph} (\\emph{IRIS}) and the \\emph{Solar Dynamics Observatory} (\\emph{SDO}). The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30$-$40 km s$^{-1}$, with an average period of 130$\\pm$30 s. The Si {\\sc iv} 1402.77 {\\AA} line showed a redshift of 10$-$30 km s$^{-1}$ and a line width of 50$-$120 km s$^{-1}$ at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 min and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the m...

  17. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    OpenAIRE

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs,...

  18. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    OpenAIRE

    Cheng, X; Ding, M. D.

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot c...

  19. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  20. Dynamos and anti-dynamos as thin magnetic flux ropes in Riemannian spaces

    CERN Document Server

    de Andrade, L Garcia

    2007-01-01

    Two examples of magnetic anti-dynamos in magnetohydrodynamics (MHD) are given. The first is a 3D metric conformally related to Arnold cat fast dynamo metric: ${ds_{A}}^{2}=e^{-{\\lambda}z}dp^{2}+e^{{\\lambda}z}dq^{2}+dz^{2}$ is shown to present a behaviour of non-dynamos where the magnetic field exponentially decay in time. The curvature decay as z-coordinates increases without bounds. Some of the Riemann curvature components such as $R_{pzpz}$ also undergoes dissipation while component $R_{qzqz}$ increases without bounds. The remaining curvature component $R_{pqpq}$ is constant on the torus surface. The other anti-dynamo which may be useful in plasma astrophysics is the thin magnetic flux rope or twisted magnetic thin flux tube which also behaves as anti-dynamo since it also decays with time. This model is based on the Riemannian metric of the magnetic twisted flux tube where the axis possesses Frenet curvature and torsion. Since in this last example the Frenet torsion of the axis of the rope is almost zero, o...

  1. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    CERN Document Server

    Carley, Eoin P; Gallagher, Peter T

    2016-01-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyse a flare and erupting flux rope on 2014-April-18, while observations from the Nancay Radio Astronomy Facility allows us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence for a pre-formed flux rope which slowly rises and becomes destabilised at the time of a C-class flare, plasma jet and the escape of >75 keV electrons from rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ~5 keV occurs above the flux rope for a period over 5 minutes. A...

  2. Eruption of the magnetic flux rope in a quick decaying active region

    Science.gov (United States)

    Yang, Shangbin; Xie, Wenbin; Liu, Jihong

    2015-03-01

    An isolated and quickly decaying active region (NOAA 9729) was observed as it passed across the solar disk. There was only one CME associated with the active region, which provides a good opportunity to investigate the whole process of the CME. A filament in this active region was observed to rise rapidly before stalling and disintegrating into flare loops. The rising filament seen in EIT images separates into two parts just before eruption. A new filament reforms several hours later after the CME; the axis of this new filament is rotated clockwise approximately 22° compared with that of the first filament,due to a changed orientation of the polarity inversion line. We also observed a bright transient slightly S-shaped X-ray sigmoid, which appears immediately after the filament eruption. The X-ray sigmoid quickly develops into a soft X-ray cusp and rises before dropping back down. Two magnetic cancelation regions were observed clearly just before filament eruption. The eruption process of the sigmoid structure in this quick decaying active region could be explained by using the 3D Tether-Cutting model. The magnetic flux rope erupted as the magnetic helicity approached its maximum and the normalized helicity was -0.036 when the magnetic flux rope erupted, which is an order of magnitude smaller than the simulation results of the kink and torus instability, but is close to the predicted value of Zhang et al. (2008) based on the theoretical non-linear force-free model.

  3. Circular-cylindrical flux-rope analytical model for Magnetic Clouds

    Science.gov (United States)

    Nieves-Chinchilla, Teresa; Linton, Mark; Hidalgo, Miguel A.; Vourlidas, Angelos; Savani, Neel P.; Szabo, Adam; Farrugia, Charlie; Yu, Wenyuan

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds ( MCs). The model extends the circular-cylindrical concept of Hidalgo et al. (2000) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation.The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in-situ observations. Four Earth directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic fi eld and plasma in situ observations and with a new parameter (EPP, Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of theplasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical.

  4. A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  5. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    Science.gov (United States)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  6. Measurement of Ohms Law and Transport with Two Interacting Flux Ropes

    Science.gov (United States)

    Gekelman, Walter; Dehaas, Tim; Vincena, Steve; Daughton, Bill

    2016-10-01

    Two flux ropes, which are kink unstable, and repeatedly collide, were generated in a laboratory magnetoplasma. All the electric field terms in Ohms law: - ∇ ϕ -∂/A-> ∂ t ,1/ne , J-> × B-> , -1/ne ∇ P , u-> × B-> were measured at 48,000 spatial locations and thousands of time steps. All quantities oscillate at the flux rope collision frequency. The resistivity was derived from these quantities and could locally be 30 times the classical value. The resistivity, which was evaluated by integrating the electric field and current along 3D magnetic field is not largest at the quasi-seperatrix layer (QSL) where reconnection occurs. The relative size and spatial distribution of the Ohms law terms will be presented. The reconnection rate, Ξ = ∫ E-> . dl-> was largest near the QSL and could be positive or negative. Regions of negative resistivity exists (the volume integrated resistivity is positive) indicating dynamo action or the possibility of a non-local Ohms law. Volumetric temperature and density measurements are used to estimate electron heat transport and particle diffusion across the magnetic field. Work supported by UC office of the President (LANL-UCLA Grant) and done at the BAPSF which is supported by NSF-DOE.

  7. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    CERN Document Server

    Wang, Yuming; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the mod...

  8. Eruption of the magnetic flux rope in a fast decayed active region

    CERN Document Server

    Yang, Shangbin; Liu, Jihong

    2013-01-01

    An isolated and fast decayed active region (NOAA 9729) was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22 degrees comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. Two magnetic cancelation regions have been observed clearly just before filament eruption. Moreover, the magnetic flux rope erupted as the magnetic helicity approach the maximum and the normalized helicity is -0.036 when the magnetic flux rope erupted, which is close to the predic...

  9. Evolution of the Coronal Magnetic Configurations Including a Current-Carrying Flux Rope in Response to the Change in the Background Field

    CERN Document Server

    Wang, Hong-Juan; Gong, Jian-Cun; Lin, Jun

    2014-01-01

    We investigate equilibrium height of the flux rope, and its internal equilibrium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilibrium height of the flux rope is approximately a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms the catastrophe in the magnetic configuration of interest can be triggered by decrease of strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope commences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence o...

  10. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  11. Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov-Demoulin Magnetic Flux Rope Model

    CERN Document Server

    Jiang, Chaowei

    2015-01-01

    In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...

  12. Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist

    CERN Document Server

    Liu, Rui; Titov, Viacheslav S; Chen, Jun; Wang, Yuming; Wang, Haimin; Liu, Chang; Xu, Yan; Wiegelmann, Thomas

    2015-01-01

    We investigate the evolution of NOAA Active Region 11817 during 2013 August 10--12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number $\\mathcal{T}_w$ for each individual field line. The MFR is moderately twisted ($|\\mathcal{T}_w| < 2$) and has a well-defined boundary of high squashing factor $Q$. We found that the field line with the extremum $|\\mathcal{T}_w|$ is a reliable proxy of the rope axis, and that the MFR's peak $|\\mathcal{T}_w|$ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $|\\mathcal{T}_w|$ has li...

  13. A pseudo-magnetic flux rope observed by the THEMIS satellites in the Earth's magnetotail

    Science.gov (United States)

    Sarafopoulos, D. V.

    2011-10-01

    We investigate an extraordinary event showing all the typical magnetic flux rope (MFR) signatures, although it is not really a MFR structure. It occurred on 1 March 2008 in the Earth's magnetotail and was observed by a major tail conjunction of Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. THEMIS B and C being located inside the central plasma sheet and almost symmetrically above and below the neutral sheet observed the same tailward retreating MFR-like structure: they indeed detected strong but oppositely directed cross-tail magnetic field excursions: positive “By core” for TH-C and negative for TH-B; an apparent inconsistency. We finally categorize the case under study as a pseudo-MFR event and we doubt that the previously studied MFR-like structures were really rope structures. We suggest that the By excursions are dictated by Ampere's law; they are produced by filamentary field-aligned currents (FACs) created in front of the “akis structure”, as it is introduced by Sarafopoulos (2008, 2010): In a locally thinned plasma sheet, the akis potentially causes charge separation due to non-adiabatic motion and stochastic scattering of ions. In turn, the newly tailward escaped ions drive field-aligned ionospheric currents in order to neutralize this region. We extensively discuss an additional and extremely rare phenomenon of “irregular MFR” cited in the literature and observed by the Cluster satellites; filamentary FACs suffice to reproduce all the observed magnetic field signatures, too.

  14. On the Characteristics of Footpoints of Solar Magnetic Flux Ropes during the Eruption

    CERN Document Server

    Cheng, X

    2016-01-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperaure passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other in the moss region with a weaker magnetic field. The significant deviation of the axis of the MFRs from the main polarity inversion lines and associated filaments suggests that the MFRs have ascended to a high altitude, thus being distinguishable from the source sigmoidal ARs. The more interesting thing is that, with the eruption of the MFRs, the average inclination angle and direct current at the footpoints with stronger magnetic field tend to decrease, which is suggestive of a straightening and untwisting of the magnetic field in the MFR legs. Moreover, the associated flare ribbons also display an interesting evolution. Th...

  15. Observation and simulation of flux rope structures at the dayside magnetopause

    Institute of Scientific and Technical Information of China (English)

    CUI Hailong; JIN Shuping; LIU Shaoliang; LIU Zhenxing; A. Balogh

    2003-01-01

    The signatures of flux ropes with obvious core magnetic field are detected by ClusterⅡ at the dayside magnetopause during 11: 00-11: 15 UT on Mar. 2, 2001. The similar characteristics can be found from the magnetic field variations recorded by the four spacecrafts (Cluster Ⅱ C1-C4). All the three (-/+) bipolar signatures in the BN component are accompanied with enhancements of BM and magnetic field strength B in the boundary normal coordinates (LMN coordinates). A MHD simulation with two dimensions and three components is performed to explore the reconnection process driven by the incoming flow of solar wind at the dayside magnetopause. The numerical results can illustrate the recurrent formation of magnetic structures with a core magnetic field. The time history of the magnetic field B and three components Bx, By and Bz at a given point of the current sheet can reproduce the observational features of the events mentioned above.

  16. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. A. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Vasko, I. Y.; Petrukovich, A. A.; Zelenyi, L. M. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Artemyev, A. V. [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); University of California, Los Angeles, California 90095 (United States); Yushkov, E. V. [Department of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2016-07-15

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  17. MHD simulations of formation and eruption of a magnetic flux rope in an active region with a delta-sunspot

    Science.gov (United States)

    Yokoyama, Takaaki; Oi, Yoshiaki; Toriumi, Shin

    2017-08-01

    Active regions holding a delta-sunspot are known to produce the largest class of solar flares. How, where, and when such large flares occur above a delta-sunspot are still under debate. For studying this, 3D MHD simulations of the emergence of a subsurface flux tube at two locations in a simulation box modeling the convection zone to the corona were conducted. We found that a flux rope is formed as a consequence of magnetic reconnection of two bipolar loops and sunspot rotation caused by the twist of the subsurface flux tube. Moreover, the flux rope stops ascending when the initial background is not magnetized, whereas it rises up to the upper boundary when a reconnection favorably oriented pre-existing field is introduced to the initial background.

  18. A Tiny Eruptive Filament as a Flux-Rope Progenitor and Driver of a Large-Scale CME and Wave

    CERN Document Server

    Grechnev, V V; Kochanov, A A; Kuzmenko, I V; Prosovetsky, D V; Egorov, Ya I; Fainshtein, V G; Kashapova, L K

    2016-01-01

    A solar eruptive event SOL2010-06-13 observed with SDO/AIA has been discussed in the contexts of the CME gebesis and an associated EUV transient in terms of a shock driven by the apparent CME rim. We have revealed in this event an erupting flux rope, studied its properties, and detected wave signatures inside the developing CME. These findings have allowed us to establish new features in the genesis of the CME and associated EUV wave and to reconcile all of the episodes into a causally-related sequence. (1) A hot 11 MK flux rope developed from a compact filament, accelerated up to 3 km/s$^2$ 1 min before a hard X-ray burst and earlier than other structures, reached 420 km/s, and decelerated to 50 km/s. (2) The CME development was driven by the flux rope. Closed structures above the rope got sequentially involved in the expansion from below upwards, came closer together, and disappeared to reveal their envelope, the rim, which became the outer boundary of the cavity. The rim was associated with the separatrix ...

  19. Flux pileup in collisionless magnetic reconnection: bursty interaction of large flux ropes.

    Science.gov (United States)

    Karimabadi, H; Dorelli, J; Roytershteyn, V; Daughton, W; Chacón, L

    2011-07-08

    Using fully kinetic simulations of the island coalescence problem for a range of system sizes greatly exceeding kinetic scales, the phenomenon of flux pileup in the collisionless regime is demonstrated. While small islands on the scale of λ ≤ 5 ion inertial length (d(i)) coalesce rapidly and do not support significant flux pileup, coalescence of larger islands is characterized by large flux pileup and a weaker time averaged reconnection rate that scales as √(d(i)/λ) while the peak rate remains nearly independent of island size. For the largest islands (λ = 100d(i)), reconnection is bursty and nearly shuts off after the first bounce, reconnecting ~20% of the available flux.

  20. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    Science.gov (United States)

    Cheng, X.; Ding, M. D.

    2016-05-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s-1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.

  1. Suprathermal Ion Acceleration in Multiple Contracting and Reconnecting Inertial-scale Flux Ropes in the Supersonic Solar Wind.

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.

    2014-12-01

    3D and 2D MHD turbulence simulations with a strong large-scale magnetic field show that the turbulence is filled with quasi-2D inertial-scale flux ropes that intermittently reconnect, while test particle simulations stress how suprathermal particles can be efficiently accelerated to produce power law spectra (kappa distributions) when traversing multiple flux ropes. Solar wind observations indicate that the statistical properties of the turbulence agree well with the MHD turbulence simulation. In addition, recent observations show the presence of different size inertial-scale magnetic islands in the slow solar wind near the heliospheric current sheet, evidence of island merging, and of heating of ions and electrons in their vicinity. At the same time, observations in the supersonic solar wind suggest the existence of suprathermal ion spectra in the solar wind frame where the distribution function is a power law in momentum with a -5 exponent. We present a new statistical transport theory to model the acceleration of superthermal ions traversing multiple contracting and reconnecting inertial-scale quasi-2D flux ropes in the supersonic solar wind. Steady-state analytical solutions for the accelerated suprathermal particle spectrum in a radially expanding solar wind will be explored to show under what conditions one can reproduce the observed superthermal power-law slope.

  2. Superthermal Ion Transport and Acceleration in Multiple Contracting and Reconnecting Inertial-scale Flux Ropes in the Solar Wind

    Science.gov (United States)

    Le Roux, Jakobus; Zank, Gary; Webb, Gary

    2014-10-01

    MHD turbulence simulations with a strong large-scale magnetic field show that the turbulence is filled with quasi-2D inertial-scale flux ropes that intermittently reconnect. Solar wind observations indicate that the statistical properties of the turbulence agree well with the MHD turbulence simulations, while particle simulations stress how ions can be efficiently accelerated to produce power law spectra when traversing multiple flux ropes. Recent observations show the presence of different size inertial-scale magnetic islands in the slow solar wind near the heliospheric current sheet, evidence of island merging, and of heating of ions and electrons in the vicinity. We will present a new statistical transport theory designed to model the acceleration and transport of superthermal ions traversing multiple contracting and reconnecting inertial-scale quasi-2D flux ropes in the supersonic slow solar wind. A steady-state solution for the accelerated particle spectrum in a radially expanding solar wind will discussed, showing that the theory potentially can explain naturally the existence of superthermal power-law spectra observed during quiet solar wind conditions.

  3. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  4. Initiation and Eruption Process of Magnetic Flux Rope from Solar Active Region NOAA 11719 to Earth Directed-CME

    CERN Document Server

    Vemareddy, P

    2014-01-01

    An eruption event launched from solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from Solar Dynamic Observatory. The AR consists of a filament channel originating from major sunspot and its south section is associated with inverse-S sigmoidal system as observed in AIA passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution which has correspondence with rise motion of the FR. The emission measure and temperature along the FR exhibits increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR evaluated at north and south polarities showed decreasing behavior whereas the net current in these fluxes exhibits increasing trend. As the negative (positive) flux is having dominant positive (n...

  5. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    CERN Document Server

    Cheng, X; Zhang, J; Sun, X D; Guo, Y; Wang, Y M; Kliem, B; Deng, Y Y

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field s...

  6. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    CERN Document Server

    Cheng, X

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe XXI 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe XXI forbidden line requires a critical temperature ($\\sim$11.5 MK) and dens...

  7. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    CERN Document Server

    Song, Hongqiang; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this letter, we present an intriguing observation of a solar eruptive event occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the \\textit{Solar Dynamic Observatory}, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-fo...

  8. Quantifying the Topology and Evolution of a Magnetic Flux Rope Associated with Multi-flare Activities

    CERN Document Server

    Yang, Kai; Ding, M D

    2016-01-01

    Magnetic flux rope (MFR) plays an important role in solar activities. A quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and the associated activities. In this paper, we investigate the magnetic field of active region 12017 from 2014 March 28 to 29, where 12 flares were triggered by the intermittent eruptions of a filament (either successful or confined). Using the vector magnetic field data from the Helioseismic and Magnetic Imager on board the \\textit{Solar Dynamics Observatory}, we calculate the magnetic energy and helicity injection in the active region, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR by a closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The re...

  9. Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics

    Science.gov (United States)

    Jackman, C. M.; Slavin, J. A.; Kivelson, M. G.; Southwood, D. J.; Achilleos, N.; Thomsen, M. F.; DiBraccio, G. A.; Eastwood, J. P.; Freeman, M. P.; Dougherty, M. K.; Vogt, M. F.

    2014-07-01

    show a localized decrease in field magnitude as the spacecraft passes through the structure. We take the trajectory of Cassini into account, as, during 2006, the spacecraft's largely equatorial position beneath the hinged current sheet meant that it rarely traversed the center of plasmoids. We present an innovative method of optimizing the window size for minimum variance analysis (MVA) and apply this MVA across several plasmoids to explore their interior morphology in more detail, finding that Saturn's tail contains both loop-like and flux rope-like plasmoids. We estimate the mass lost downtail through reconnection and suggest that the apparent imbalance between mass input and observed plasmoid ejection may mean that alternative mass loss methods contribute to balancing Saturn's mass budget. We also estimate the rate of magnetic flux closure in the tail and find that when open field line closure is active, it plays a very significant role in flux cycling at Saturn.

  10. Formation and Eruption of a Small Flux Rope in the Chromosphere Observed by NST, IRIS, and SDO

    CERN Document Server

    Kumar, Pankaj; Wang, Haimin; Cho, Kyung-Suk

    2015-01-01

    Using high-resolution images from 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), we report the direct evidence of chromospheric reconnection at the polarity inversion line (PIL) between two small opposite polarity sunspots. Small jet-like structures (with velocities of ~20-55 km/s) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (~10 km/s) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool H$\\alpha$ loops causes the formation of a small twisted flux rope (S shaped) in the chromosphere. In addition, Helioseismic and Magnetic Imager (HMI) magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux ro...

  11. On the role of repetitive magnetic reconnections in evolution of magnetic flux-ropes in solar corona

    CERN Document Server

    Kumar, Sanjay; Joshi, Bhuwan; Smolarkiewicz, P K

    2016-01-01

    Parker's magnetostatic theorem extended to astrophysical magnetofluids with large magnetic Reynolds number supports ceaseless regeneration of current sheets and hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux-rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process, including onset and ascent of the rope, reconnection locations and the associated topology of the magnetic field lines, agrees with observations, and thus substantiates physical realisability of the advocated mechanism.

  12. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  13. The Characteristics of the Footpoints of Solar Magnetic Flux Ropes during Eruptions

    Science.gov (United States)

    Cheng, X.; Ding, M. D.

    2016-07-01

    We investigate the footpoints of four erupted magnetic flux ropes (MFRs) that appear as sigmoidal hot channels prior to the eruptions in the Atmospheric Imaging Assembly high temperature passbands. The simultaneous Helioseismic and Magnetic Imager observations disclose that one footpoint of the MFRs originates in the penumbra or penumbra edge with a stronger magnetic field, while the other originates in the moss region with a weaker magnetic field. The significant deviation of the axes of the MFRs from the main polarity inversion lines and associated filaments suggests that the MFRs have ascended to a high altitude, thus becoming distinguishable from the source sigmoidal active regions. Further, with the eruption of the MFRs, the average inclination angle and direct current at the footpoints with stronger magnetic fields tend to decrease, which is suggestive of a straightening and untwisting of the magnetic field in the MFR legs. Moreover, the associated flare ribbons also display an interesting evolution. They initially appear as sporadic brightenings at the two footpoints of the MFRs and in the regions below, and then quickly extend to two slender sheared J-shaped ribbons with the two hooks corresponding to the two ends of the MFRs. Finally, the straight parts of the two ribbons separate from each other, evolving into two widened parallel ones. These features mostly conform to and support the recently proposed three-dimensional standard coronal mass ejection/flare model, i.e., the twisted MFR eruption stretches and leads to the reconnection of the overlying field that transits from a strong to weak shear with increasing height.

  14. A Kinetic Transport Theory for Particle Acceleration and Transport in Regions of Multiple Contracting and Reconnecting Inertial-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.

    2015-03-01

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  15. A KINETIC TRANSPORT THEORY FOR PARTICLE ACCELERATION AND TRANSPORT IN REGIONS OF MULTIPLE CONTRACTING AND RECONNECTING INERTIAL-SCALE FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J. A.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Khabarova, O., E-mail: jar0013@uah.edu [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation)

    2015-03-10

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  16. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    Science.gov (United States)

    Yan, X. L.; Jiang, C. W.; Xue, Z. K.; Wang, J. C.; Priest, E. R.; Yang, L. H.; Kong, D. F.; Cao, W. D.; Ji, H. S.

    2017-08-01

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observaotry, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  17. Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind

    Science.gov (United States)

    Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.

    2016-12-01

    CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.

  18. MMS observations of oblique small-scale magnetopause flux ropes near the ion diffusion region during weak guide-field reconnection

    Science.gov (United States)

    Teh, W.-L.; Denton, R. E.; Sonnerup, B. U. Ã.-.; Pollock, C.

    2017-07-01

    We report Magnetospheric Multiscale observations of a series of five small-scale magnetic flux ropes (FR1-5) embedded in the southward reconnection outflow during a magnetopause reconnection event with a small guide field ( 2.2 nT). These small-scale flux ropes (diameter 3-11 ion inertial lengths) are found inside or near the ion diffusion region on the magnetosheath side of the magnetopause boundary layer. A consistent result for determining the axis orientation of the flux ropes is achieved using two different methods, namely, minimum variance analysis of the axial electric field and constrained minimum variance analysis of the magnetic field. Our results show that the axes of these flux ropes (FR1-4) form a large angle (53°-66°) to the guide-field orientation and are tilted toward the direction of the reconnecting field. These observations provide evidence for the presence of oblique ion-scale flux ropes near the ion diffusion region during reconnection with a weak guide field. Our findings are similar to those obtained from a 3-D kinetic simulation of turbulent reconnection.

  19. Fast magnetic reconnection in the plasmoid-dominated regime.

    Science.gov (United States)

    Uzdensky, D A; Loureiro, N F; Schekochihin, A A

    2010-12-03

    A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.

  20. Modeling the Initiation of the 2006 December 13 Coronal Mass Ejection in AR 10930: The Structure and Dynamics of the Erupting Flux Rope

    Science.gov (United States)

    Fan, Yuhong

    2016-06-01

    We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ-sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east-west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km s-1 and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.

  1. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare

    CERN Document Server

    Wu, Z; Huang, G; Nakajima, H; Song, H; Melnikov, V; Liu, W; Li, G; Chandrashekhar, K; Jiao, F

    2016-01-01

    Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 \\AA\\. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_...

  2. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  3. On the Origin of Coronal Mass Ejections: How Does the Emergence of a Magnetic Flux Rope Reorganize the Solar Corona?

    Science.gov (United States)

    Roussev, I. I.; Galsgaard, K.; Lugaz, N.; Sokolov, I.

    2010-12-01

    The physical causes leading to the occurrence of Coronal Mass Ejections (CMEs) on the Sun have been debated for almost four decades now. One of the leading mechanisms suggests that a CME may occur as the result of the emergence of a twisted magnetic flux rope from the convection zone into the solar corona. This process have been investigated by a number of researchers over the years, and it has been demonstrated that an eruption of the coronal magnetic field can in principle occur. The majority of these studies, however, involve some ad-hoc prescription of the electric field at the photosphere resembling flux emergence, and they neglect the ambient coronal magnetic field. In addition, most of these flux-emergence simulations are performed in a Cartesian domain, which extends only to a few dozen pressure scale-heights into the corona. Thus, it is difficult to assess the role of boundary driving and limited computational domain on the resulting evolution of the erupting coronal magnetic field. In this paper, we present a new model of CMEs that mitigates these two effects. To achieve this, we couple the "local" magnetic-flux-emergence (MFE) model of Archontis et al. (2004) with a global MHD model of the solar corona and solar wind. The model coupling is performed using the Space Weather Modeling Framework. In the coupled model, the MFE simulation provides time-dependent boundary conditions for all MHD quantities into the global model, where the physical coupling is done at the photospheric boundary. The physical evolution of the system is followed using the BATS-R-US "ideal" MHD code well beyond the complete emergence of the magnetic flux from the convection zone. We discuss the dynamics of the flux emergence process and the related response of the pre-existing coronal magnetic field in the context of CME production.

  4. A Full Study on the Sun-Earth Connection of an Earth-Directed CME Magnetic Flux Rope

    CERN Document Server

    Vemareddy, P

    2015-01-01

    We present an investigation of an eruption event of coronal mass ejection (CME) magnetic flux rope (MFR) from source active region (AR) NOAA 11719 on 11 April 2013 utilizing observations from SDO, STEREO, SOHO, and WIND spacecraft. The source AR consists of pre-existing sigmoidal structure stacked over a filament channel which is regarded as MFR system. EUV observations of low corona suggest a further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of sigmoid under the influence of continuous slow flux motions during past two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink-instability and further driven by torus-instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with orientation aligning with magnetic neutral line in the source AR. This MFR expands self-similarly and is found to...

  5. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  6. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models

    Directory of Open Access Journals (Sweden)

    K. Marubashi

    2007-11-01

    Full Text Available We identified 17 magnetic clouds (MCs with durations longer than 30 h, surveying the solar wind data obtained by the WIND and ACE spacecraft during 10 years from 1995 through 2004. Then, the magnetic field structures of these 17 MCs were analyzed by the technique of the least-squares fitting to force-free flux rope models. The analysis was made with both the cylinder and torus models when possible, and the results from the two models are compared. The torus model was used in order to approximate the curved portion of the MCs near the flanks of the MC loops. As a result, we classified the 17 MCs into 4 groups. They are (1 5 MC events exhibiting magnetic field rotations through angles substantially larger than 180° which can be interpreted only by the torus model; (2 3 other MC events that can be interpreted only by the torus model as well, though the rotation angles of magnetic fields are less than 180°; (3 3 MC events for which similar geometries are obtained from both the torus and cylinder models; and (4 6 MC events for which the resultant geometries obtained from both models are substantially different from each other, even though the observed magnetic field variations can be interpreted by either of the torus model or the cylinder model. It is concluded that the MC events in the first and second groups correspond to those cases where the spacecraft traversed the MCs near the flanks of the MC loops, the difference between the two being attributed to the difference in distance between the torus axis and the spacecraft trajectory. The MC events in the third group are interpreted as the cases where the spacecraft traversed near the apexes of the MC loops. For the MC events in the fourth group, the real geometry cannot be determined from the model fitting technique alone. Though an attempt was made to determine which model is more plausible for each of the MCs in this group by comparing the characteristics of associated bidirectional electron

  7. Formation of Magnetic Flux Ropes during Confined Flaring Well Before the Onset of a Pair of Major Coronal Mass Ejections

    CERN Document Server

    Chintzoglou, Georgios; Vourlidas, Angelos

    2015-01-01

    NOAA Active Region (AR) 11429 was the source of twin super-fast Coronal Mass Ejections (CMEs). The CMEs took place within a hour from each other, with the onset of the first taking place in the beginning of March 7, 2012. This AR fulfills all the requirements for a "super active region"; namely, Hale's law incompatibility and a $\\delta$-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ($D_{st}=-143$ nT) was associated with one of these events. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in $\\sim$10 MK hot plasma emission and are often considered the core of erupting structures. However, their "dormant" existence in the solar atmosphere (i.e. prior to eruptions), is an open question. Aided by multi-wavelength observations (SDO/HMI/AIA and STEREO EUVI B) and a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work uncovers two separate, weakly-twisted magnetic flux systems which suggest the existence of pre-eruption MF...

  8. Characterization of a double flux-rope magnetic cloud observed by ACE spacecraft on August 19-21, 1998

    Science.gov (United States)

    Ojeda González, A.; Mendes, O.; Domingues Oliveira, M.; Moestl, C.; Farrugia, C. J.; Gonzalez, W. D.

    2013-05-01

    Investigations have studied MC cases of double flux rope configuration with apparent asymmetry. Grad-Shafranov reconstruction technique allows deriving the local magnetic structure from data of a single spacecraft. The results obtained show two cylindrical flux ropes next to each other, where a single X point forms between them. In all possible combinations of two bipolar MCs, the magnetic field between them is antiparallel in eight cases SWN-SWN, SWN-SEN, SEN-SWN, SEN-SEN, NWS-NWS, NWS-NES, NES-NWS, NES-NWS. If clouds are under magnetic coupling, reconnection evidences are expected from the interaction between them. In this work, we examine the event that occurred at Aug. 19-21, 1998 using solar wind measurements collected by ACE. In Fig. 1 a) presents the recovered cross-section of the two bipolar MCs (SEN-SWN). The black contour lines show the transverse magnetic field lines (calculated as the contours of the magnetic potential function A(x,y)), and the colors show the axial magnetic field Bz distribution. The yellow arrows along y=0 denote measured transverse magnetic field vectors, direction and magnitude measurements at ACE utilized as initial input into the numerical solver. The green arrows are residual velocities in the deHoffmann-Teller frame at ACE. The spacecraft crosses the X point and observes the exact moment of the magnetic reconnection, from 0.13 to 0.15 AU in x axis. In the opposite corners of the X point, the magnetic fields are antiparallel (see yellow arrows in this region). The residual velocity (green arrow in y=0) in the deHoffmann-Teller frame at ACE is perpendicular to the magnetic field line in the reconnection region. In principle, it is possible to adjust a two-dimension model considering the most common separator reconnection, in which four separate magnetic domains exchange magnetic field lines. In Fig. 1 b), the cross-section through four magnetic domains undergoing separator reconnection is represented. The green array in the top

  9. A FULL STUDY ON THE SUN–EARTH CONNECTION OF AN EARTH-DIRECTED CME MAGNETIC FLUX ROPE

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, Panditi [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore-560 034 (India); Mishra, Wageesh, E-mail: vemareddy@iiap.res.in, E-mail: wageesh@ustc.edu.cn [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei-230026 (China)

    2015-11-20

    We present an investigation of an eruption event of a coronal mass ejection (CME) magnetic flux rope (MFR) from the source active region (AR) NOAA 11719 on 2013 April 11 utilizing observations from the Solar Dynamic Observatory, the Solar Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and the WIND spacecraft. The source AR consists of a pre-existing sigmoidal structure stacked over a filament channel which is regarded as an MFR system. EUV observations of low corona suggest further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of the sigmoid under the influence of continuous slow flux motions for two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink instability and further driven by torus instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with a Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with its orientation aligning with a magnetic neutral line in the source AR. This MFR expands self-similarly and is found to have source AR twist signatures in the associated near-Earth magnetic cloud (MC). We further derived the kinematics of this CME propagation by employing a plethora of stereoscopic as well as single-spacecraft reconstruction techniques. While stereoscopic methods perform relatively poorly compared to other methods, fitting methods worked best in estimating the arrival time of the CME compared to in situ measurements. Supplied with the values of constrained solar wind velocity, drag parameter, and three-dimensional kinematics from the GCS fit, we construct CME kinematics from the drag-based model consistent with in situ MC arrival.

  10. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  11. MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015

    Science.gov (United States)

    Hara, Takuya; Luhmann, Janet G.; Halekas, Jasper S.; Espley, Jared R.; Seki, Kanako; Brain, David A.; Hasegawa, Hiroshi; McFadden, James P.; Mitchell, David L.; Mazelle, Christian; Harada, Yuki; Livi, Roberto; DiBraccio, Gina A.; Connerney, John E. P.; Andersson, Lailla; Jakosky, Bruce M.

    2016-05-01

    We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (>5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes.

  12. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  13. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  14. Three-dimensional evolution of flux rope CMEs and its relation to the local orientation of the heliospheric current sheet

    CERN Document Server

    Isavnin, Alexey; Kilpua, Emilia K J

    2013-01-01

    Flux ropes (FRs) ejected from the Sun may change their geometrical orientation during their evolution which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar FRs evolve in the heliosphere to improve our space weather forecasting tools. We analyze 15 coronal mass ejections (CMEs), with clear FR signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. We estimate initial orientations of the FRs at the origin using extreme ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multiviewpoint coronagraph observations of the CMEs from ~2 to 30 Rs with a three-dimensional geometric representation of a FR to determine their geometrical parameters. Finally, we propagate the FRs from ~30 Rs to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. These methodology allows us to estimate the FR or...

  15. Pressure enhancement associated with meridional flow in high-speed solar wind: possible evidence for an interplanetary magnetic flux rope

    Directory of Open Access Journals (Sweden)

    C.-Y. Tu

    Full Text Available A sizable total-pressure (magnetic pressure plus kinetic pressure enhancement was found within the high-speed wind stream observed by Helios 2 in 1976 near 0.3 AU. The proton density and temperature and the magnetic magnitude simultaneously increased for about 6 h. This pressure rise was associated with a comparatively large southward flow velocity component (with Vz ≈ –100 km · s–1 and magnetic-field rotation. The pressure enhancement was associated with unusual features in the electron distribution function. It shows a wide angular distribution of electron counting rates in the low-energy (57.8 eV channel, while previous to the enhancement it exhibits a wide angular distribution of electron count rate in the high-energy (112, 221 and 309 eV channels, perhaps indicating the mirroring of electrons in the converging field lines of the background magnetic field. These fluid and kinetic phenomena may be explained as resulting from an interplanetary magnetic flux rope which is not fully convected by the flow but moves against the background wind towards the Sun.

  16. Plasmoid Instability in High-Lundquist-Number Magnetic Reconnection

    CERN Document Server

    Huang, Yi-Min

    2013-01-01

    Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in laminar high Lundquist ($S$) plasmas, constrained by the scaling of the reconnection rate predicted by Sweet-Parker theory. However, recent studies have shown that when $S$ exceeds a critical value $\\sim10^{4}$, the Sweet-Parker current sheet is unstable to a super-Alfv\\'enic plasmoid instability, with a linear growth rate that scales as $S^{1/4}$. In the fully developed statistical steady state of two-dimensional resistive magnetohydrodynamic simulations, the normalized average reconnection rate is approximately 0.01, nearly independent of $S$, and the distribution function $f(\\psi)$ of plasmoid magnetic flux $\\psi$ follows a power law $f(\\psi)\\sim\\psi^{-1}$. When Hall effects are included, the plasmoid instability may trigger onset of Hall reconnection even when the conventional criterion f...

  17. Generating buoyant magnetic flux ropes in solar-like convective dynamos

    CERN Document Server

    Nelson, Nicholas J

    2014-01-01

    Our Sun exhibits strong convective dynamo action which results in magnetic flux bundles emerging through the stellar surface as magnetic spots. Global-scale dynamo action is believed to generate large-scale magnetic structures in the deep solar interior through the interplay of convection, rotation, and shear. Portions of these large-scale magnetic structures are then believed to rise through the convective layer, forming magnetic loops which then pierce the photosphere as sunspot pairs. Previous global simulations of 3D MHD convection in rotating spherical shells have demonstrated mechanisms whereby large-scale magnetic wreaths can be generated in the bulk of the convection zone. Our recent simulations have achieved sufficiently high levels of turbulence to permit portions of these wreaths to become magnetically buoyant and rise through the simulated convective layer through a combination of magnetic buoyancy and advection by convective giant cells. These buoyant magnetic loops are created in the bulk of the...

  18. IMAGING AND SPECTROSCOPIC DIAGNOSTICS ON THE FORMATION OF TWO MAGNETIC FLUX ROPES REVEALED BY SDO/AIA AND IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Fang, C., E-mail: xincheng@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2015-05-10

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  19. EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    SONG, H. Q.; CHEN, Y.; Wang, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); ZHANG, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); CHENG, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); HU, Q.; LI, G. [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); WANG, Y. M., E-mail: hqsong@sdu.edu.cn [Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences (CAS), Hefei, Anhui 230026 (China)

    2015-07-20

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  20. Physics of erupting solar flux ropes: Coronal mass ejections (CMEs)—Recent advances in theory and observation

    Science.gov (United States)

    Chen, James

    2017-09-01

    Solar eruptions, observed as flares and coronal mass ejections (CMEs), are the most energetic visible plasma phenomena in the solar system. CMEs are the central component of solar eruptions and are detected as coherent magnetized plasma structures expanding in the solar wind (SW). If they reach the Earth, their magnetic fields can drive strong disturbances in the ionosphere, causing deleterious effects on terrestrial technological systems. The scientific and practical importance of CMEs has led to numerous satellite missions observing the Sun and SW. This has culminated in the ability to continuously observe CMEs expanding from the Sun to 1 AU, where the magnetic fields and plasma parameters of the evolved structures ("ejecta") can be measured in situ. Until recently, the physical mechanisms responsible for eruptions were major unanswered questions in solar and by extension stellar physics. New observations of CME dynamics and associated eruptive phenomena are now providing more stringent constraints on models, and quantitative theory-data comparisons are helping to establish the correct mechanism of solar eruptions, particularly the driving force of CMEs and the evolution of their magnetic fields in three dimensions. Recent work has demonstrated that theoretical results can simultaneously replicate the observed CME position-time data, temporal profiles of associated solar flare soft X-ray emissions, and the magnetic field and plasma parameters of CME ejecta measured at 1 AU. Thus, a new theoretical framework with testable predictions is emerging to model eruptions and the coupling of CME ejecta to geomagnetic disturbances. The key physics in CME dynamics is the Lorentz hoop force acting on toroidal "flux ropes," scalable from tokamaks and similar laboratory plasma structures. The present paper reviews the latest advances in observational and theoretical understanding of CMEs with the emphasis on quantitative comparisons of theory and observation.

  1. MHD simulation of solar wind and multiple coronal mass ejections with internal magnetic flux ropes

    Science.gov (United States)

    Shiota, Daiko

    2017-08-01

    Solar wind and CMEs are the main drivers of various types of space weather disturbance. The profile of IMF Bz is the most important parameter for space weather forecasts because various magnetospheric disturbances are caused by the southward IMF brought on the Earth. Recently, we have developed MHD simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields on the basis of observations of photospheric magnetic fields and coronal images. The MHD simulation is therefore capable of predicting the time profile of the IMF at the Earth, in relation to the passage of a magnetic cloud within a CME. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003. The results of a simulation successfully reproduced the arrival at the Earth’s position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm, and provided an implication of the observed complex time profile of the solar wind parameters at the Earth as a result of the interaction of a few specific CMEs.

  2. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies

    Science.gov (United States)

    Hu, Qiang

    2017-09-01

    We develop an approach of the Grad-Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in situ spacecraft measurements. The underlying theory is the GS equation that describes two-dimensional magnetohydrostatic equilibrium, as widely applied in fusion plasmas. The geometry is such that the arbitrary cross-section of the torus has rotational symmetry about the rotation axis, Z, with a major radius, r0. The magnetic field configuration is thus determined by a scalar flux function, Ψ, and a functional F that is a single-variable function of Ψ. The algorithm is implemented through a two-step approach: i) a trial-and-error process by minimizing the residue of the functional F(Ψ) to determine an optimal Z-axis orientation, and ii) for the chosen Z, a χ2 minimization process resulting in a range of r0. Benchmark studies of known analytic solutions to the toroidal GS equation with noise additions are presented to illustrate the two-step procedure and to demonstrate the performance of the numerical GS solver, separately. For the cases presented, the errors in Z and r0 are 9° and 22%, respectively, and the relative percent error in the numerical GS solutions is smaller than 10%. We also make public the computer codes for these implementations and benchmark studies.

  3. On the 3-dimensional structure of plasmoids. [in near-earth plasma sheets

    Science.gov (United States)

    Hughes, W. J.; Sibeck, D. G.

    1987-01-01

    The hypothesis that the IMF penetrates plasmoids causing them to be three- rather than two-dimensional is tested by comparing observations of By within plasmoids and related tail structures to upstream IMF By data. The magnetic topologies that result from the mergings of closed plasma sheet flux tubes and open tail lobe flux tubes at a near-earth neutral line, and merging near the tail flanks are described and studied. The particle signals and isotropic electron distributions are examined. It is observed that the IMF By penetrates plasmoids and that their structure is three-dimensional. In the three-dimensional model of plasmoids the reconnected plasma sheet field lines form a magnetic flux-ropelike structure. The three-dimensional model is utilized to analyze stagnant, slowly moving and earthward moving structures.

  4. Kinetic Simulations of Plasmoid Chain Dynamics

    CERN Document Server

    Markidis, Stefano; Lapenta, Giovanni; Divin, Andrey; Goldman, Martin; Newman, David; Laure, Erwin

    2013-01-01

    The dynamics of a plasmoid chain is studied with three dimensional Particle-in-Cell simulations. The evolution of the system with and without a uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is investigated. The plasmoid chain forms by spontaneous magnetic reconnection: the tearing instability rapidly disrupts the initial current sheet generating several small-scale plasmoids, that rapidly grow in size coalescing and kinking. The plasmoid kink is mainly driven by the coalescence process. It is found that the presence of guide field strongly influences the evolution of the plasmoid chain. Without a guide field, a main reconnection site dominates and smaller reconnection regions are included in larger ones, leading to an hierarchical structure of the plasmoid-dominated current sheet. On the contrary in presence of a guide field, plasmoids have approximately the same size and the hierarchical structure does not emerge, a strong core magnetic field develops in the center of the plasmoid...

  5. A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum

    Science.gov (United States)

    Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

    2011-01-01

    A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

  6. Visco-Resistive Plasmoid Instability

    CERN Document Server

    Comisso, Luca

    2016-01-01

    The plasmoid instability in visco-resistive current sheets is analyzed in both the linear and nonlinear regimes. The linear growth rate and the wavenumber are found to scale as $S^{1/4} {\\left( {1 + {P_m}} \\right)}^{-5/8}$ and $S^{3/8} {\\left( {1 + {P_m}} \\right)}^{-3/16}$ with respect to the Lundquist number $S$ and the magnetic Prandtl number $P_m$. Furthermore, the linear layer width is shown to scale as $S^{-1/8} {(1+P_m)}^{1/16}$. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. In particular, the time-scale of the nonlinear growth of the plasmoids is found to be $\\tau_{NL} \\sim S^{-3/16} {(1 + P_m)^{19/32}}{\\tau _{A,L}}$. The nonlinear growth of the plasmoids is radically different from the linear one and it is shown to be essential to understand the global current sheet disruption. It is also discussed how the plasmoid instability enables fast magnetic reconnection in visco-resistive plasmas. In particular, it is shown t...

  7. Modeling the initiation of the 2006 December 13 coronal mass ejection in AR 10930: the structure and dynamics of the erupting flux rope

    CERN Document Server

    Fan, Yuhong

    2016-01-01

    We carry out a three-dimensional magneto-hydrodynamic (MHD) simulation to model the initiation of the coronal mass ejection (CME) on 13 December 2006 in the emerging {\\delta}-sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan (2011), but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east-west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km/s and undergoes a counter-clockwise rotation of nearly 180 degrees such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, ...

  8. Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

    Science.gov (United States)

    Riley, P.; Richardson, I. G.

    2012-01-01

    In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and

  9. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Wang, S.

    2015-03-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding, and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 62%/17% of MCs underwent a underexpansion/overexpansion at 1 AU and the expansion rate is about 0.6 on average. Third, most interestingly, we find that a significant poloidal motion did exist in some MCs. Three speculations about the cause of the poloidal motion are therefore proposed. These findings advance our understanding of the MC's properties at 1 AU and the dynamic evolution of CMEs from the Sun to interplanetary space.

  10. Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere

    CERN Document Server

    Möstl, C; Kilpua, E K J; Jian, L K; Liu, Y; Eastwood, J; Harrison, R A; Webb, D F; Temmer, M; Odstrcil, D; Davies, J A; Rollett, T; Luhmann, J G; Nitta, N; Mulligan, T; Jensen, E A; Forsyth, R; Lavraud, B; De Koning, C A; Veronig, A M; Galvin, A B; Zhang, T L; Anderson, B J

    2012-01-01

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions (Solar Dynamics Observatory/ Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory) monitored several CMEs originating within tens of degrees from solar disk center. We compare their imprints on four widely separated locations, spanning 120 degree in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE and ARTEMIS near Earth, and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MF...

  11. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    CERN Document Server

    Wang, Yuming; Shen, Chenglong; Liu, Rui; Wang, S

    2015-01-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model, and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 6...

  12. Recovery of an evolving magnetic flux rope in the solar wind: Decomposing spatial and temporal variations from single-spacecraft data

    Science.gov (United States)

    Hasegawa, H.; Sonnerup, B.; Hu, Q.; Nakamura, T.

    2013-12-01

    We present a novel single-spacecraft data analysis method for decomposing spatial and temporal variations of physical quantities at points along the path of a spacecraft in spacetime. The method is designed for use in the reconstruction of slowly evolving two-dimensional, magneto-hydrostatic structures (Grad-Shafranov equilibria) in a space plasma. It is an extension of the one developed by Sonnerup and Hasegawa [2010] and Hasegawa et al. [2010], in which it was assumed that variations in the time series of data, recorded as the structures move past the spacecraft, are all due to spatial effects. In reality, some of the observed variations are usually caused by temporal evolution of the structure during the time it moves past the observing spacecraft; the information in the data about the spatial structure is aliased by temporal effects. The purpose here is to remove this time aliasing from the reconstructed maps of field and plasma properties. Benchmark tests are performed by use of synthetic data taken by a virtual spacecraft as it traverses, at a constant velocity, a slowly growing magnetic flux rope in a two-dimensional magnetohydrodynamic simulation of magnetic reconnection. These tests show that the new method can better recover the spacetime behavior of the flux rope than does the original version, in which time aliasing effects had not been removed. An application of the new method to a solar wind flux rope, observed by the ACE spacecraft, suggests that it was evolving in a significant way during the ~17 hour interval of the traversal. References Hasegawa, H., B. U. Ö. Sonnerup, and T. K. M. Nakamura (2010), Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event, J. Geophys. Res., 115, A11219, doi:10.1029/2010JA015679. Sonnerup, B. U. Ö., and H. Hasegawa (2010), On slowly evolving Grad-Shafranov equilibria, J. Geophys. Res., 115, A11218, doi:10.1029/2010JA015678. Magnetic

  13. Distribution of plasmoids in high-Lundquist-number magnetic reconnection.

    Science.gov (United States)

    Huang, Yi-Min; Bhattacharjee, A

    2012-12-28

    The distribution function f(ψ) of magnetic flux ψ in plasmoids formed in high-Lundquist-number current sheets is studied by means of an analytic phenomenological model and direct numerical simulations. The distribution function is shown to follow a power law f(ψ)∼ψ(-1), which differs from other recent theoretical predictions. Physical explanations are given for the discrepant predictions of other theoretical models.

  14. Blazar flares powered by plasmoids in relativistic reconnection

    Science.gov (United States)

    Petropoulou, Maria; Giannios, Dimitrios; Sironi, Lorenzo

    2016-11-01

    Powerful flares from blazars with short (˜min) variability time-scales are challenging for current models of blazar emission. Here, we present a physically motivated ab initio model for blazar flares based on the results of recent particle-in-cell (PIC) simulations of relativistic magnetic reconnection. PIC simulations demonstrate that quasi-spherical plasmoids filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process. By coupling our PIC-based results (i.e. plasmoid growth, acceleration profile, particle and magnetic content) with a kinetic equation for the evolution of the electron distribution function we demonstrate that relativistic reconnection in blazar jets can produce powerful flares whose temporal and spectral properties are consistent with the observations. In particular, our model predicts correlated synchrotron and synchrotron self-Compton flares of duration of several hours-days powered by the largest and slowest moving plasmoids that form in the reconnection layer. Smaller and faster plasmoids produce flares of sub-hour duration with higher peak luminosities than those powered by the largest plasmoids. Yet, the observed fluence in both types of flares is similar. Multiple flares with a range of flux-doubling time-scales (minutes to several hours) observed over a longer period of flaring activity (days or longer) may be used as a probe of the reconnection layer's orientation and the jet's magnetization. Our model shows that blazar flares are naturally expected as a result of magnetic reconnection in a magnetically dominated jet.

  15. MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Moestl, C.; Liu, Y.; Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Kilpua, E. K. J. [Department of Physics, University of Helsinki, FI-00560 Helsinki (Finland); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD (United States); Eastwood, J. P.; Forsyth, R. [The Blackett Laboratory, Imperial College, London (United Kingdom); Harrison, R. A.; Davies, J. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Webb, D. F. [Institute for Scientific Research, Boston College, Newton, MA (United States); Temmer, M.; Rollett, T.; Veronig, A. M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, A-8010 Graz (Austria); Odstrcil, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Nitta, N. [Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Mulligan, T. [Space Science Applications Laboratory, The Aerospace Corporation, El Segundo, CA (United States); Jensen, E. A. [ACS Consulting, Houston, TX (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse (UPS), F-31400 Toulouse (France); De Koning, C. A., E-mail: christian.moestl@uni-graz.at [NOAA/SWPC, Boulder, Colorado (United States); and others

    2012-10-10

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 Degree-Sign in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index ( Almost-Equal-To - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  16. A magnetic boundary layer creating a quasi-cylindrical substructure within a propagating flux rope leading to a plasma beta transition

    CERN Document Server

    Savani, Neel P; Shiota, D; Linton, M G; Kusano, K; Lugaz, N; Rouillard, A P

    2013-01-01

    We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma beta transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma beta is significantly lower in the FR than the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g. from space weather simulations like Enlil) of a `pancake' shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR can demarcate a boundary layer where there is a sharp transition in the plasma beta. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region which maintains a quasi-cylindrical structure. Quantitatively, we investigate a locus of points where the kinetic energy...

  17. Quantitative analysis of bidirectional electron fluxes within coronal mass ejections at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.L.; Gosling, J.T.; McComas, D.J.; Bame, S.J.; Feldman, W.C.

    1991-01-01

    The solar wind electron heat flux is carried primarily by suprathermal halo'' electrons beamed antisunward along the interplanetary magnetic field (IMF), indicating magnetic connection to the Sun only in one direction. However, electron observations at 1 AU show that counterstreaming halo beams, suggesting closed magnetic structures, prevail within coronal mass ejections (CMEs). These structures might be magnetic tongues'', tied to the Sun at both ends, magnetically detached plasmoids, or complex flux rope structures. Here we present first results of analysis of ISEE-3 observations within 39 CMEs, including the asymmetry between the counterstreaming beams and its control by the IMF orientation, and the variation of the electron distributions as CMEs convect past the spacecraft. We find that some CMEs contain nearly symmetric electron beams, while others are strongly asymmetric, and that the antisunward beam is generally dominant. The more nearly radial the IMF, the greater is the asymmetry between outward and inward beams. We present an example of a distinctive strahl-on-strahl'' distribution, suggesting continued magnetic connection to the corona, in which a narrow antisunward beam is superimposed on a broader beam. Taken as a whole, our results appear to favor a tongue or flux rope scenario rather than a fully detached plasmoid. 4 refs., 6 figs.

  18. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  19. Plasmoid instability in high-Lundquist-number magnetic reconnectiona)

    Science.gov (United States)

    Huang, Yi-Min; Bhattacharjee, A.

    2013-05-01

    Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in laminar high Lundquist (S) plasmas, constrained by the scaling of the reconnection rate predicted by Sweet-Parker theory. However, recent studies have shown that when S exceeds a critical value ˜104, the Sweet-Parker current sheet is unstable to a super-Alfvénic plasmoid instability, with a linear growth rate that scales as S1/4. In the fully developed statistical steady state of two-dimensional resistive magnetohydrodynamic simulations, the normalized average reconnection rate is approximately 0.01, nearly independent of S, and the distribution function f(ψ) of plasmoid magnetic flux ψ follows a power law f(ψ)˜ψ-1. When Hall effects are included, the plasmoid instability may trigger onset of Hall reconnection even when the conventional criterion for onset is not satisfied. The rich variety of possible reconnection dynamics is organized in the framework of a phase diagram.

  20. Plasmoid formation in the elongated current sheet during transient CHI on HIST

    Science.gov (United States)

    Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2016-10-01

    The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.

  1. Formation and Eruption of a Flux Rope from the Sigmoid Active Region NOAA 11719 and Associated M6.5 Flare: A Multi-wavelength Study

    Science.gov (United States)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Dhara, Sajal Kumar; Shanmugaraju, A.; Moon, Yong-Jae

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  2. Evidence of the Solar EUV hot channel as a magnetic flux rope from remote-sensing and in-situ observations

    CERN Document Server

    Song, Hongqiang; Zhang, Jie; Cheng, Xin; Wang, Bing; Hu, Qiang; Li, Gang; Wang, Yuming

    2015-01-01

    Hot channels (HCs), high temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to make definitive proof given the fact that there is no direct measurement of magnetic field in the corona. An alternative way is to use the magnetic field measurement in the solar wind from in-situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the AIA high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. In the meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by \\textit{ACE}, showi...

  3. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-rope Structure of CMEs

    CERN Document Server

    Gopalswamy, N; Akiyama, S; Xie, H; Yashiro, S; Reinard, A A

    2012-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within 15 degrees from the central meridian). The ICMEs consisted of 23 magnetic cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge state enhancement is also considerably smaller than that than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational ge...

  4. MMS Observations of Large Guide Field Symmetric Reconnection Between Colliding Reconnection Jets at the Center of a Magnetic Flux Rope at the Magnetopause

    Science.gov (United States)

    Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; hide

    2016-01-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  5. Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    KAUST Repository

    Loureiro, N. F.

    2012-04-13

    A numerical study of magnetic reconnection in the large-Lundquist-number (S), plasmoid-dominated regime is carried out for S up to 10 7. The theoretical model of Uzdensky [Phys. Rev. Lett. 105, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is Ẽ eff ∼ 0.02 independently of S for S ≫ 10 4. The plasmoid flux (ψ) and half-width (w x) distribution functions scale as f (ψ) ∼ - ψ -2 and f (w x) ∼ w x -2. The joint distribution of ψ and w x shows that plasmoids populate a triangular region w x ≲ψ/B 0, where B 0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with w x ∼ 10 % of the system size are shown to emerge in just a few Alfvén times, independently of S, suggesting that large disruptive events are an inevitable feature of large-S reconnection. © 2012 American Institute of Physics.

  6. Dancing the tight rope on the nanoscale—Calibrating a heat flux sensor of a scanning thermal microscope

    Science.gov (United States)

    Kloppstech, K.; Könne, N.; Worbes, L.; Hellmann, D.; Kittel, A.

    2015-11-01

    We report on a precise in situ procedure to calibrate the heat flux sensor of a near-field scanning thermal microscope. This sensitive thermal measurement is based on 1ω modulation technique and utilizes a hot wire method to build an accessible and controllable heat reservoir. This reservoir is coupled thermally by near-field interactions to our probe. Thus, the sensor's conversion relation V th ( QGS ∗ ) can be precisely determined. Vth is the thermopower generated in the sensor's coaxial thermocouple and QGS ∗ is the thermal flux from reservoir through the sensor. We analyze our method with Gaussian error calculus with an error estimate on all involved quantities. The overall relative uncertainty of the calibration procedure is evaluated to be about 8% for the measured conversion constant, i.e., (2.40 ± 0.19) μV/μW. Furthermore, we determine the sensor's thermal resistance to be about 0.21 K/μW and find the thermal resistance of the near-field mediated coupling at a distance between calibration standard and sensor of about 250 pm to be 53 K/μW.

  7. Dancing the tight rope on the nanoscale--Calibrating a heat flux sensor of a scanning thermal microscope.

    Science.gov (United States)

    Kloppstech, K; Könne, N; Worbes, L; Hellmann, D; Kittel, A

    2015-11-01

    We report on a precise in situ procedure to calibrate the heat flux sensor of a near-field scanning thermal microscope. This sensitive thermal measurement is based on 1ω modulation technique and utilizes a hot wire method to build an accessible and controllable heat reservoir. This reservoir is coupled thermally by near-field interactions to our probe. Thus, the sensor's conversion relation V(th)(Q(GS)*) can be precisely determined. V(th) is the thermopower generated in the sensor's coaxial thermocouple and Q(GS)* is the thermal flux from reservoir through the sensor. We analyze our method with Gaussian error calculus with an error estimate on all involved quantities. The overall relative uncertainty of the calibration procedure is evaluated to be about 8% for the measured conversion constant, i.e., (2.40 ± 0.19) μV/μW. Furthermore, we determine the sensor's thermal resistance to be about 0.21 K/μW and find the thermal resistance of the near-field mediated coupling at a distance between calibration standard and sensor of about 250 pm to be 53 K/μW.

  8. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Upendra [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Joshi, Bhuwan; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria)

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  9. Dynamo-driven plasmoid formation from a current-sheet instability

    Science.gov (United States)

    Ebrahimi, F.

    2016-12-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.

  10. 太阳风中小尺度磁通量管边界重联的统计研究%Statistical Studies of Magnetic Reconnections at Boundaries of Interplanetary Small-scale Flux Ropes

    Institute of Scientific and Technical Information of China (English)

    齐羽; 姚硕; 何建森; 田晖; 涂传诒

    2012-01-01

    通过对WIND卫星1995-2005年的数据,利用程序筛选及人工识别两种不同方法确定的小尺度磁通量管进行比较,发现程序筛选法中41%的小尺度磁通量管有边界重联现象,与人工识别法确定的小尺度磁通量管的统计结果接近;通过人工识别和程序筛选两种方法确定的小尺度磁通量管的边界重联特征,包括磁场剪切角、磁场强度以及重联耗散区的持续时间等,也具有相同的统计趋势.结果表明,两种方法确定的小尺度磁通量管在重联特性上没有本质区别,因此采用这两种方法得到的数据作为样本来统计小尺度磁通量管前后边界重联事件.本文共确定了71个重联事件,统计结果显示有50个(70%)重联耗散区磁场的减小超过20%,47个(66%)磁场剪切角大于90°;多数重联事件的磁场剪切角大于90°,表明小尺度磁通量管边界中主要发生的是反平行重联.将小尺度磁通量管的前后边界重联分开进行统计,结果显示其前后边界重联的特征是相似的,与磁云前后边界存在差异的性质不同,这意味着太阳风中的小尺度磁通量管并不具有磁云这种大尺度磁通量管的膨胀特征.%Recently, the improvement on space and time resolution of in-situ instruments makes the small-scale flux ropes the hot point in the study of solar wind. Previous works analyzed the in-situ measurements from WIND between 1995 and 2005, and they reported two different lists of smMl-scMe flux ropes with only 4 cases in common. The two lists were selected by human vision and by computer program, respectively. A recent work surveyed the list from human vision, finding magnetic reconnections in the boundary layers of 42% small-scale flux ropes. In order to reveal the magnetic reconnection properties at small-scale flux ropes' boundaries from both lists, we analyzed the computer selected list, finding magnetic

  11. Dynamo generated field emergence through recurrent plasmoid ejections

    CERN Document Server

    Warnecke, Jörn

    2010-01-01

    Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress--and--relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space--time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.

  12. Estimate of Coronal Magnetic Field Strength Using Plasmoid Acceleration Measurement

    Science.gov (United States)

    Choe, G.; Lee, K.; Jang, M.

    2010-12-01

    A method of estimating the lower bound of coronal magnetic field strength in the neighborhood of an ejecting plasmoid is presented. Based on the assumption that the plasma ejecta is within a magnetic island, an analytical expression for the force acting on the ejecta is derived. A rather simple calculation shows that the vertical force acting on a cylinder-like volume, whose lateral surface is a flux surface and whose magnetic axis is parallel to the horizontal, is just the difference in total pressure (magnetic pressure plus plasma pressure) below and above the volume. The method is applied to a limb coronal mass ejection event, and a lower bound of the magnetic field strength just below the CME core is estimated. The method is expected to provide useful information on the strength of reconnecting magnetic field if applied to X-ray plasma ejecta.

  13. Down-tail mass loss by plasmoids in Jupiter's and Saturn's magnetospheres

    Science.gov (United States)

    Cowley, S. W. H.; Nichols, J. D.; Jackman, C. M.

    2015-08-01

    Recent estimates of the plasma mass-loss rates by the formation and down-tail propagation of plasmoids observed in the plasma sheet in Jupiter's and Saturn's magnetosphere fall short of inner moon source rates by at least an order of magnitude. Here we argue that on the time scale between large-scale disconnection events, ~15 h at Jupiter and ~45 h at Saturn, mass-loaded closed flux tubes will typically have stretched out a few hundred planetary radii down tail at speeds ~100-200 km s-1. Consequently, the "plasmoids" of order ~10 planetary radii in length observed at closer planetary distances represent only a small planetward portion of the overall structure that is disconnected and lost down tail. Plasmoid mass-loss estimates are then revised upward by around an order of magnitude, becoming comparable to the moon source values. Additional "hidden," e.g., small-scale, mass-loss processes of comparable strength may not then be required. The essentially continuous azimuthally flowing source plasma in the dusk sector is shown to correspond to a plasma sheet layer adjacent to the magnetopause of width typically ~10% of the distance to the magnetopause in that local time sector. This physical picture also provides a simple explanation for the asymmetry in the plasmoid bipolar field signature observed at both Jupiter and Saturn and predicts that the apparent plasmoid length will increase with distance down tail to a limit beyond a few hundred planetary radii where the full ~100-200 planetary radii structures will be observed.

  14. Formation of plasmoid chains in magnetic reconnection.

    Science.gov (United States)

    Samtaney, R; Loureiro, N F; Uzdensky, D A; Schekochihin, A A; Cowley, S C

    2009-09-04

    A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (10(4) magnetic-island) chains. The plasmoid number scales as S(3/8) and the instability growth rate in the linear stage as S(1/4), in agreement with the theory by Loureiro et al. [Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, plasmoids continue to grow faster than they are ejected and completely disrupt the reconnection layer. These results suggest that high-Lundquist-number reconnection is inherently time-dependent and hence call for a substantial revision of the standard Sweet-Parker quasistationary picture for S>10(4).

  15. General Theory of the Plasmoid Instability

    CERN Document Server

    Comisso, L; Huang, Y -M; Bhattacharjee, A

    2016-01-01

    A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $\\left({\\hat w}_0\\right)$, the characteristic rate of current sheet evolution $\\left(1/\\tau\\right)$, and the Lundquist number $\\left(S\\right)$. They are not simple power laws, and are proportional to $S^{\\alpha} \\tau^{\\beta} \\left[\\ln f(S,\\tau,{\\hat w}_0)\\right]^\\sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.

  16. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease...

  17. Initiation of CMEs by Magnetic Flux Emergence

    Indian Academy of Sciences (India)

    Govind Dubey; Bart van der Holst; Stefaan Poedts

    2006-06-01

    The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field. The flux rope is in equilibrium due to an image current below the photosphere. An emerging flux triggering mechanism is used to make this equilibrium system unstable. When the magnetic flux emerges within the filament below the flux rope, this results in a catastrophic behavior similar to previous models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs.We have done a parametric study of the emerging flux rate.

  18. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  19. Sub-ion scale plasmoids during collisionless reconnection on TREX

    Science.gov (United States)

    Olson, Joseph; Egedal, Jan; Myers, Rachel; Greess, Sam; Clark, Mike; Wallace, John; Forest, Cary; Wisconsin Plasma Astrophysics Laboratory Collaboration

    2016-10-01

    The Terrestrial Reconnection Experiment (TREX), operating at the Wisconsin Plasma Astrophysics Laboratory, is able to explore a collisionless regime inaccessible to previous reconnection experiments. To date, TREX has already achieved Lundquist numbers up to 104 where kinetic effects, such as electron pressure anisotropy, become important to the reconnection dynamics. During a recent run campaign in this collisionless regime, the spontaneous formation of magnetic islands (plasmoids) inside the ion diffusion region was observed. It is known that long current layers are susceptible to tearing, leading to the formation of plasmoids, and that these plasmoids have strong effects on the reconnection rate and particle energization. However, contrary to theoretical and numerical predictions, the TREX experiments show that the plasmoid instability is active even when the current layer is less than one di long. Analysis of these events shows that smaller plasmoids occur at a higher rate than larger ones, suggesting that magnetic islands could be seeded in plasmas more effectively than previously thought.

  20. Magnetic topology of coronal mass ejections based on ISEE-3 observations of bidirectional electron fluxes at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.L.; Gosling, J.T.; McComas, D.J.; Bame, S.J.; Feldman, W.C.

    1991-01-01

    The solar wind electron heat flux is carried primarily by superthermal halo'' electrons with energies at 1 AU of {approximately}80 eV and greater. These halo electrons typically are beamed antisunward along the IMF, indicating effective magnetic connection to the Sun only in one direction. However, ISEE-3 electron observations at 1 AU show that counterstreaming halo beams, suggesting closed magnetic structures, prevail within CMEs. These structures might be magnetic tongues,'' tied to the Sun at both ends, magnetically detached plasmoids, or perhaps complex flux rope structures. We present the results of analysis of ISEE-3 electron observations within 39 CMEs. Parameters analyzed include: the asymmetry between the counterstreaming beams, control by the IMF orientation, and the variation of the electron distributions as a particular CME convects past the spacecraft. We find that some CMEs contain nearly symmetric electron beams, while others are strongly asymmetric, and that beam propagating most nearly antisunward is generally dominant. The more nearly radial the IMF the greater is the symmetry between outward and inward beams. Trends observed as CMEs propagate past the spacecraft probably result primarily from the compression of the leading edge. We present examples of a previously unreported strahl-on-strahl'' distribution, suggesting continued magnetic connection to the corona, in which a narrow antisunward beam is superimposed on a broader beam. Preliminary results show that such spectra are present in a substantial fraction of the observed CMEs. Taken as a whole, our results appear to favor a tongue or flux rope scenario rather than a detached plasmoid.

  1. Quasi-stagnant plasmoid in the middle tail - A new preexpansion phase phenomenon

    Science.gov (United States)

    Nishida, A.; Terasawa, T.; Scholer, M.; Bame, S. J.; Zwickl, R. D.; Gloeckler, G.; Smith, E. J.

    1986-04-01

    From the analysis of ISEE 3 data it is found that a plasmoid is sometimes formed in the middle tail outside the intervals of the substorm expansion phase. This plasmoid is produced by reconnection at the X-type neutral line, which is located earthward of the distant neutral line but beyond the substorm-associated near-tail neutral line, and it is almost stagnant in that the associated flow speed is less than 300 km/s. The blocking effect of the distant neutral line is the most probable reason for the slow movement. The quasi-stagnant plasmoid is observed at x = -60 to - 100 earth radii for a duration of a few tens of minutes, and in about one half of the cases it is followed by the fast tailward streaming. The onset of this streaming tends to coincide with the onset of the substorm expansion phase, and this probably occurs when the reconnection at the middle-tail neutral line comes close to processing the last closed field line. Intensification of the dawn-to-dusk electric field that causes the mantle plasma to reach the plasma sheet boundary closer to the earth is suggested as the reason for the formation of the middle-tail neutral line earthward of the distant neutral line. The effects on the energetic particle flux and relation to the near-tail reconnection are also discussed.

  2. Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets

    Science.gov (United States)

    Karlsson, Tomas; Liljeblad, Elisabet; Kullen, Anita; Raines, Jim M.; Slavin, James A.; Sundberg, Torbjörn

    2016-09-01

    We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.

  3. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    Science.gov (United States)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  4. The energy balance of plasmoids in the solar atmosphere

    Science.gov (United States)

    Cargill, P. J.; Pneuman, G. W.

    1986-01-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  5. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease in...

  6. Dynamo-driven plasmoid formation from a current-sheet instability

    CERN Document Server

    Ebrahimi, F

    2016-01-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from 1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and 2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetic fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time a dynamo poloidal flux amplification is observed at the reconnetion site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplificatio...

  7. Numerical Simulation of Fast-mode Magnetosonic Waves Excited by Plasmoid Ejections in the Solar Corona

    Science.gov (United States)

    Yang, Liping; Zhang, Lei; He, Jiansen; Peter, Hardi; Tu, Chuanyi; Wang, Linghua; Zhang, Shaohua; Feng, Xueshang

    2015-02-01

    The Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory has directly imaged the fast-propagating magnetosonic waves (FMWs) successively propagating outward along coronal magnetic funnels. In this study we perform a numerical investigation of the excitation of FMWs in the interchange reconnection scenario, with footpoint shearing flow being used to energize the system and drive the reconnection. The modeling results show that as a result of magnetic reconnection, the plasma in the current sheet is heated up by Joule dissipation to ~10 MK and is ejected rapidly, developing the hot outflows. Meanwhile, the current sheet is torn into plasmoids, which are shot quickly both upward and downward. When the plasmoids reach the outflow regions, they impact and collide with the ambient magnetic field there, which consecutively launches FMWs. The FMWs propagate outward divergently away from the impact regions, with a phase speed of the Alfvén speed of ~1000 km s-1. In the k - ω diagram of the Fourier wave power, the FMWs display a broad frequency distribution with a straight ridge that represents the dispersion relation. With the WKB approximation, at the distance of 15 Mm from the wave source region, we estimate the energy flux of FMWs to be E ~ 7.0 × 106 erg cm-2 s-1, which is ~50 times smaller than the energy flux related to the tube-channeled reconnection outflow. These simulation results indicate that energetically and dynamically the outflow is far more important than the waves.

  8. Mechanical Rope and Cable

    Science.gov (United States)

    1975-04-01

    factors, singly or in combinations. These factors may include tensile load, bend radius, crushing load, bearing pressure, dynamic conditions, fatigue... bearing pressures imposed upon rope in service generally are not determined readily and the few systems available for measuring these parameters are of...C111ARACTcs-V13COUS (normal); gummy ; caked 1. Good Normal amount as in new lope. A. Good C.rrasy and flrxihle. Well lubricated. 2. Fair Lubricant

  9. Bursty emission of whistler waves in association with plasmoid collision

    Directory of Open Access Journals (Sweden)

    K. Fujimoto

    2017-07-01

    Full Text Available A new mechanism to generate whistler waves in the course of collisionless magnetic reconnection is proposed. It is found that intense whistler emissions occur in association with plasmoid collisions. The key processes are strong perpendicular heating of the electrons through a secondary magnetic reconnection during plasmoid collision and the subsequent compression of the ambient magnetic field, leading to whistler instability due to the electron temperature anisotropy. The emissions have a bursty nature, completing in a short time within the ion timescales, as has often been observed in the Earth's magnetosphere. The whistler waves can accelerate the electrons in the parallel direction, contributing to the generation of high-energy electrons. The present study suggests that the bursty emission of whistler waves could be an indicator of plasmoid collisions and the associated particle energization during collisionless magnetic reconnection.

  10. Blazar flares powered by plasmoids in relativistic reconnection

    CERN Document Server

    Petropoulou, Maria; Sironi, Lorenzo

    2016-01-01

    Powerful flares from blazars with short ($\\sim$ min) variability timescales are challenging for current models of blazar emission. Here, we present a physically motivated ab initio model for blazar flares based on the results of recent particle-in-cell (PIC) simulations of relativistic magnetic reconnection. PIC simulations demonstrate that quasi-spherical plasmoids filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process. By coupling our PIC-based results (i.e., plasmoid growth, acceleration profile, particle and magnetic content) with a kinetic equation for the evolution of the electron distribution function we demonstrate that relativistic reconnection in blazar jets can produce powerful flares whose temporal and spectral properties are consistent with the observations. In particular, our model predicts correlated synchrotron and synchrotron self-Compton flares of duration of several hours--days powered by the largest and slowest moving plasmoids th...

  11. Formation of Plasmoid Chains in Fusion Relevant Plasmas

    CERN Document Server

    Comisso, Luca; Waelbroeck, François L

    2014-01-01

    The formation of plasmoid chains is explored for the first time within the context of the Taylor problem, in which magnetic reconnection is driven by a small amplitude boundary perturbation in a tearing-stable slab plasma equilibrium. Numerical simulations of a magnetohydrodynamical model of the plasma show that for very small plasma resistivity and viscosity, the linear inertial phase is followed by a nonlinear Sweet-Parker evolution, which gives way to a faster reconnection regime characterized by a chain of plasmoids instead of a slower Rutherford phase.

  12. Fermi Acceleration in Plasmoids interacting with Fast Shocks of Reconnection via Fractal Reconnection

    CERN Document Server

    Nishizuka, N

    2013-01-01

    We propose the particle acceleration model coupled with multiple plasmoid ejections in a solar flare. Unsteady reconnection produces plasmoids in a current sheet and ejects them out to the fast shocks, where particles in a plasmoid are reflected upstream the shock front by magnetic mirror effect. As the plasmoid passes through the shock front, the reflection distance becomes shorter and shorter driving Fermi acceleration, until it becomes proton Larmor radius. The fractal distribution of plasmoids may also have a role in naturally explaining the power-law spectrum in nonthermal emissions.

  13. Pulsating Reconnection in the interaction of Two Magnetic Fux Ropes.

    Science.gov (United States)

    Gekelman, W. N.; DeHaas, T.; Daughton, W. S.; Van Compernolle, B.

    2015-12-01

    Two flux ropes (dia = 7 cm, ds= 3 cm, L = 10m, Irope = 300 A/rope) are generated by using a mask in front of a high emissivity cathode (n = 4X1012 cm3, Te-rope = 8.5 eV) in a background magnetoplasma (He, Boz= 330 G, n=1.0X1012 cm3, Te = 4 eV) in the LAPD device at UCLA. The ropes are kink unstable ( I > 250 A) but not violently so. All three components of the magnetic field were measured with small (1 mm dia) 3-axis probes sensitive to and the plasma potential measured with an emissive probe. These were measured at over 42,000 locations in the volume containing the ropes and 7000 time steps (δτ = .33 μs). The total electric field and parallel resistivity as well as the Quasi Seperatrix layer (QSL) were derived from the data. The flux ropes periodically collide as they rotate about when another and kink. Each time this happens a strong QSL (Q<400) forms and the resistivity jumps to over a hundred times the classical value at locations within the QSL and also on the gradient of the rope current. The QSL formation and 3D electric fields are presented as a function of space and time. The reconnection rate is directly evaluated by integrating the electric field along field lines as well as the energy deposition . The data indicate that there is more than one process causing the enhanced resistivity. The reconnection rate cannot be explained by conventional 2D theories.

  14. Team Sports--Jump Roping.

    Science.gov (United States)

    Nebraska State Dept. of Education, Lincoln.

    Rope skipping contributes to the development of agility, coordination, rhythm, and endurance. It is practical and fun for both sexes. A high degree of motor ability, excellent timing, precision of movement, cooperation, perseverance, and concentration are required. This guide describes rope skipping variations and games, including chants and songs…

  15. Wire ropes tension, endurance, reliability

    CERN Document Server

    Feyrer, Klaus

    2015-01-01

    The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.

  16. Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-min [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-21

    After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.

  17. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  18. Explosive Instability of Prominence Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O; Fong, R H L; Cowley, S C

    2002-09-04

    The rapid, Alfvenic, time scale of erupting solar-prominences has been an enigma ever since they where first identified. Investigators have proposed a variety of different mechanisms in an effort to account for the abrupt reconfiguration observed. No one mechanism clearly stands out as the single cause of these explosive events. Recent analysis has demonstrated that field lines in the solar atmosphere are metastable to ballooning type instabilities. It has been found previously that in ideal MHD plasmas marginally unstable ballooning modes inevitably become ''explosive'' evolving towards a finite time singularity via a nonlinear 3D instability called ''Nonlinear Magnetohydrodynamic Detonation.'' Thus, this mechanism is a good candidate to explain explosive events observed in the solar atmosphere of our star or in others.

  19. Safe use of mine winding ropes, volume 3: rope terminations.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-04-01

    Full Text Available and evaluating a less labour intensive, less skill dependent termination with better efficiencies. The work carried out here investigated the applicability of resin and white metal cappings as rope terminations on South African mines....

  20. CONDITION MONITORING AND FAULT DIAGNOSIS FOR TENSION UNBALANCE OF ROPES IN MULTI-ROPE FRICTION WINDER

    Institute of Scientific and Technical Information of China (English)

    杨兆建; 王勤贤; 任芳

    1997-01-01

    This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope friction winder, introduces the method of an on-line monitoring rope tensions with a testing device developed by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.

  1. On sphere-filling ropes

    CERN Document Server

    Gerlach, Henryk

    2010-01-01

    What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

  2. TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Min; Bhattacharjee, A., E-mail: yiminh@princeton.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-02-10

    It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.

  3. A Numerical Investigation of Unsheared Flux Cancelation

    Science.gov (United States)

    Karpen, J. T.; Antiochos, S. K.; DeVore, C. R.; Linton, M. G.

    Cancelation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity phenomena, from filament channel formation to CME initiation. Because cancelation is typically measured at only a single layer in the atmosphere and only in the radial (line of sight) component of the magnetic field, the actual processes behind its observational signature are not fully understood. We have used our 3D MHD code with adaptive mesh refinement, ARMS, to investigate numerically the physics of flux cancelation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field in a gravitationally stratified atmosphere. Cancelation is driven by a two-cell circulation pattern imposed in the convection zone, in which the flows converge and form a downdraft at the polarity inversion line (PIL). We present and compare the results of 2D and 3D simulations of cancelation of initially unsheared flux - to our knowledge, these are the first such calculations in which the computational domain extends below the photosphere. The 2D simulation produces a flattened flux rope (plasmoid) whose axis remains centered along the PIL about 1650km above the photosphere, without rising higher into the corona by the end of the run (10,000 s). Our calculations also show that 3D cancelation in an arcade geometry does not produce a fully disconnected flux tube in the corona, in contrast to the 2D results. Rather, most of the reconnected field stays rooted in the photosphere and is gradually submerged by the downdrafts at the PIL. An interchange-like instability develops above the region where the converging flows are driven, breaking the horizontal symmetry along the PIL. This generates an alternating pattern of magnetic shear (magnetic field component aligned with the PIL), which ultimately produces systematic footpoint shuffling through reconnection across the folds of the

  4. Discard criteria for mine winder ropes.

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-09-01

    Full Text Available to be able to establish and propose proper discard criteria for broken wires in non-spin ropes. The discard criteria for broken wires in SABS0293 were based on a 10% reduction in strength of a rope. An expectation was therefore created that by complying... with these discard criteria, a rope would not fail as long as the rope loads did not exceed 90% of the new rope breaking strength. However, it is shown in this report that rope strands with "allowable" broken wires could fail at loads considerably lower than 90...

  5. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    Science.gov (United States)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  6. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... Hoisting Wire Ropes § 77.1431 Minimum rope strength. At installation, the nominal strength (manufacturer's published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load...

  7. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... Hoisting Wire Ropes § 57.19021 Minimum rope strength. At installation, the nominal strength (manufacturer's published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static...

  8. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Nalewajko, Krzysztof [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uzdensky, Dmitri A.; Werner, Gregory R. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Cerutti, Benoit [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Begelman, Mitchell C., E-mail: knalew@stanford.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  9. Experimental Snap Loading of Synthetic Ropes

    Directory of Open Access Journals (Sweden)

    C.M. Hennessey

    2005-01-01

    Full Text Available Large tensile forces, known as snap loads, can occur when a slack rope becomes taut. Such forces may damage the rope or masses connected to it. Experiments are described in which one end of a rope is attached to the top of a drop tower and the bottom end is attached to a weight. The weight is raised to a certain height and then released. The force at the top of the rope and the acceleration of the weight are recorded during the first snap load that occurs. Repeated drop tests are performed on each rope. The effects of the type of rope, drop height, drop weight, whether the rope has been subjected to static precycling, and the number of previous dynamic tests are examined. A mathematical model is proposed for the rope force as a function of the displacement and velocity of the weight.

  10. Multiple Plasmoid Ejections and Associated Hard X-ray Bursts in the 2000 November 24 Flare

    CERN Document Server

    Nishizuka, N; Asai, A; Shibata, K; 10.1088/0004-637X/711/2/1062

    2013-01-01

    The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of the flare. In this paper we present an examination of the GOES X 2.3 class flare that occurred at 14.51 UT on 2000 November 24. In the SXT images we found multiple plasmoid ejections with velocities in the range of 250-1500 km/s, which showed blob-like or loop-like structures. Furthermore, we also found that each plasmoid ejection is associated with an impulsive burst of hard X-ray emission. Although some correlation between plasmoid ejection and hard X-ray emission has been discussed previously, our observation shows similar behavior for multiple plasmoid ejection such that each plasmoid ejection occurs during the strong energy release of the solar flare. As a result of temperature-emission measure analysis of such plasmoids, it was revealed that the apparent veloc...

  11. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  12. Strawberry Shortcake and Other Jumping Rope Ideas.

    Science.gov (United States)

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  13. The mechanics of trick roping

    Science.gov (United States)

    Brun, Pierre-Thomas

    2014-03-01

    Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).

  14. Dynamics of the Plasmoid-unstable Regime in Different Multiple-current Plasmas

    Science.gov (United States)

    Nemati, M. J.; Wang, Zheng-Xiong; Wei, Lai

    2017-02-01

    The dynamics of plasmoid instability in multiple-current plasmas with different system sizes is investigated by means of resistive magnetohydrodynamic simulations. As the system size is increased, the secondary current sheets become very long, producing more plasmoids. It is found that the dependence on resistivity η of the number of plasmoids changes from no clear scaling for small system size, to scaling in ∼ {η }-1 for large system size. Moreover, increasing the current length of the system weakens the negative dependence of the early growth rate of the monster plasmoid on η. This is qualitatively different from the reconnection rate for a single-current sheet, where it usually has a positive dependence on η or is independent of η. In addition, increasing the current length significantly increases the maximum width of the monster plasmoid in the low-η regime, manifesting a scaling ∼ {η }-0.4.

  15. Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft

    Science.gov (United States)

    Jasinski, Jamie M.; Slavin, James A.; Arridge, Christopher S.; Poh, Gangkai; Jia, Xianzhe; Sergis, Nick; Coates, Andrew J.; Jones, Geraint H.; Waite, J. Hunter

    2016-07-01

    We present the first observation of a flux rope at Saturn's dayside magnetopause. This is an important result because it shows that the Saturnian magnetopause is conducive to multiple X-line reconnection and flux rope generation. Minimum variance analysis shows that the magnetic signature is consistent with a flux rope. The magnetic observations were well fitted to a constant-α force-free flux rope model. The radius and magnetic flux content of the rope are estimated to be 4600-8300 km and 0.2-0.8 MWb, respectively. Cassini also observed five traveling compression regions (remote signatures of flux ropes), in the adjacent magnetosphere. The magnetic flux content is compared to other estimates of flux opening via reconnection at Saturn.

  16. Large plasmoids in global MHD simulations: Solar wind dependence and ionospheric mapping

    Science.gov (United States)

    Honkonen, Ilja; Palmroth, Minna; Pulkkinen, T.; Janhunen, Pekka

    The energy from the solar wind drives magnetospheric dynamics. An important, but the most difficult to measure, factor is the energy released in plasmoids. Plasmoids are large magnetic structures that form in the Earth's magnetotail during substorms, which are the main mecha-nism of extracting and releasing solar wind energy from the magnetosphere. During plasmoid formation the 3-d structure of the magnetotail becomes complicated, with spatially alternating closed and open magnetic topologies. While the formation and the release of plasmoids are unresolved, they are classically thought to detach from the magnetotail at the substorm onset. Using our global magnetohydrodynamic (MHD) simulation GUMICS-4, we investigate how different parameters of the solar wind affect the formation of plasmoids. Specifically we con-centrate on the role of the solar wind magnetic field parameters. We also investigate the solar wind dependence of plasmoid foot points, which are the end points of the plasmoid magnetic field in the ionosphere. Preliminary results suggest that plasmoid formation and plasmoid foot point location in the ionosphere strongly depend on the solar wind magnetic field param-eters. Our work may be of importance when interpreting some observed, but unexplained, ionospheric phenomena. We also present an operational definition of plasmoids, which enables their automatic detection in simulations. The project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Starting Grant agree-ment number 200141-QuESpace. The work of IH and MP is supported by the Academy of Finland.

  17. Plasmoid-induced turbulence in collisionless magnetic reconnection.

    Science.gov (United States)

    Fujimoto, Keizo; Sydora, Richard D

    2012-12-28

    The dissipation mechanism in collisionless magnetic reconnection in a quasisteady period is investigated for the antiparallel field configuration. A three-dimensional simulation in a fully kinetic system reveals that a current-aligned electromagnetic mode produces turbulent electron flow that facilitates the transport of the momentum responsible for the current density. It is found that the electromagnetic turbulence is drastically enhanced by plasmoid formations and has a significant impact on the dissipation at the magnetic x-line. The linear analyses confirm that the mode survives in the real ion-to-electron mass ratio, which assures the importance of the turbulence in collisionless reconnection.

  18. Plasmoid ejections driven by dynamo action underneath a spherical surface

    CERN Document Server

    Warnecke, Jörn; Mitra, Dhrubaditya

    2010-01-01

    We present a unified three-dimensional model of the convection zone and upper atmosphere of the Sun in spherical geometry. In this model, magnetic fields, generated by a helically forced dynamo in the convection zone, emerge without the assistance of magnetic buoyancy. We use an isothermal equation of state with gravity and density stratification. Recurrent plasmoid ejections, which rise through the outer atmosphere, is observed. In addition, the current helicity of the small--scale field is transported outwards and form large structures like magnetic clouds.

  19. Learning the Ropes with Electricity

    Science.gov (United States)

    Carrier, Sarah; Rex, Ted

    2013-01-01

    This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…

  20. Learning the Ropes with Electricity

    Science.gov (United States)

    Carrier, Sarah; Rex, Ted

    2013-01-01

    This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…

  1. 30 CFR 75.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1431 Minimum rope... used for hoisting shall meet the minimum rope strength values obtained by the following formulas in...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For...

  2. Key technique of a detection sensor for coal mine wire ropes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-yao; XU Zhao; HUA Gang; TIAN Jie; ZHOU Bing-bing; LU Yan-hong; CHEN Feng-jun

    2009-01-01

    Wire ropes, employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue. The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments. Magnetic flux leakage detection method (MFL), as an effective method, is these days widely used in detection of bro-ken strands of wire ropes. In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage (MFL), the effect of the distance between a sensor and the surface of a wire rope (i.e., lift-off) on detection by magnetic flux leakage was in-vestigated. An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the struc-ture of the detector is proposed from the point of view of the design of a magnetic circuit, to restrain the impact of fluctuations of sensor lift-off. The effect of this kind of method is validated by simulation and computation. The results show that the detection sensitivity is markedly increased by this method. Furthermore, the signal-to-noise ratio (SNR) can be increased by over 28%. This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accu-racy of MFL detection.

  3. MECHANICAL CHARACTERISTICS OF DYNAMIC CLIMBING ROPES

    Directory of Open Access Journals (Sweden)

    Stojan Burnik

    2011-08-01

    Full Text Available Climbing rope is certainly one of the most important pieces of climbing equipment. On market there are many manufacturers of dynamic climbing ropes and even more of their products. All the ropes meet the requirements of the standards, which ensure that the ropes are safe enough for use in climbing. However the requirements are set only under certain conditions. In reality climbing ropes are exposed to various conditions that are many times different to those set by the standards. Consequently there are many different falls, which lead to very different loads of impact. By using appropriate method of testing rope samples made by three different manufacturers we discovered that there are differences between all three manufacturers. This leads us to a suggestion that standards should be improved.

  4. The ancient art of laying rope

    CERN Document Server

    Bohr, Jakob

    2010-01-01

    We describe a hitherto overlooked geometrical property of helical structures and show how it accounts for the early art of ropemaking. Helices have a maximum number of rotations that can be added to them - and we show that it is a geometrical feature, not a material property. This geometrical insight explains why nearly identically appearing rope can be made from very different materials and it is also the reason behind the unyielding nature of ropes. The necessity for the rope to be stretched while being laid, known from Egyptian tomb scenes, follows straightforwardly, as does the function of the top, an old tool for laying ropes.

  5. Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go

    CERN Document Server

    Sironi, L; Petropoulou, M

    2016-01-01

    Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale two-dimensional particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids that are continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor r...

  6. Optical Measurements of Dense Hypervelocity Plasmoids from Coaxial and Railgun Plasma Accelerators

    Science.gov (United States)

    Case, Andrew; Messer, Sarah; Bomgardner, Richard; Brockington, Samuel; Witherspoon, Douglas; Elton, Ray

    2009-11-01

    High velocity dense plasma jets are under continued experimental development for fusion applications including refueling, disruption mitigation, momentum injection/rotation drive, and magnetized target fusion. We present measurements taken on the plasmoids produced by a half-scale coaxial plasmoid accelerator, a full scale coaxial plasmoid accelerator, and a novel minirailgun accelerator. The data presented includes spectroscopic measurements of velocity and density, two point interferometric measurements of line integrated density and velocity, and fast framing camera imaging. Results from these measurements are in agreement with each other and with time of flight measurements taken using photodiodes, as well as total plasmoid momentum measurements taken using a ballistic pendulum technique. Plasma density is greater than 5 x10^15 cm-3, and velocities range up to 100 km/s, with a small component in some cases exceeding 120 km/s.

  7. Optical diagnostic and electrical analysis in dusty RF discharges containing plasmoids

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, J. F.; Géraud-Grenier, I.; Massereau-Guilbaud, V., E-mail: Veronique.massereau@univ-orleans.fr [GREMI, Groupe de Recherche sur l' Energétique des Milieux Ionisés, UMR 7344 CNRS/Université d' Orléans, Site de l' IUT de Bourges, 63 avenue de Lattre de Tassigny, 18020 Bourges Cedex (France); Faubert, F. [IUT de Bourges, Département Mesures Physiques, 63 avenue de Lattre de Tassigny, 18020 Bourges Cedex (France)

    2015-10-28

    The presence of hydrogenated carbon nitride a-CN{sub x}:H particles confined in an argon dusty discharge induces the appearance of instabilities. Those instabilities, also called plasmoids, are luminous regions which move through the plasma and rotate around the biased electrode circumference. Electrical characteristics of the plasma have been used to evidence the presence of dust particles and to demonstrate that plasmoid appearance is triggered by particles. The light emitted by the plasma is analysed by optical emission spectroscopy. This paper presents the spatial distribution of excited species, such as CN, Ar I… between electrodes both inside plasmoids and in the surrounding dusty plasma. Obtained results allow to get information for the electron energy distribution function. Moreover, the interplay between plasmoid behaviour and particle presence in the plasma is shown.

  8. Modeling of the merging of two colliding field reversed configuration plasmoids

    Science.gov (United States)

    Wang, Guanqiong; Wang, Xiaoguang; Li, Lulu; Yang, Xianjun

    2016-06-01

    The field reversed configuration (FRC) is one of the candidate plasma targets for the magneto-inertial fusion, and a high temperature FRC can be formed by using the collision-merging technology. Although the merging process and mechanism of FRC are quite complicated, it is thinkable to build a simple model to investigate the macroscopic equilibrium parameters including the density, the temperature and the separatrix volume, which may play an important role in the collision-merging process of FRC. It is quite interesting that the estimates of the related results based on our simple model are in agreement with the simulation results of a two-dimensional magneto-hydrodynamic code (MFP-2D), which has being developed by our group since the last couple of years, while these results can qualitatively fit the results of C-2 experiments by Tri-alpha energy company. On the other hand, the simple model can be used to investigate how to increase the density of the merged FRC. It is found that the amplification of the density depends on the poloidal flux-increase factor and the temperature increases with the translation speed of two plasmoids.

  9. Advanced signal processing methods applied to guided waves for wire rope defect detection

    Science.gov (United States)

    Tse, Peter W.; Rostami, Javad

    2016-02-01

    Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of

  10. Exploring ISEE-3 magnetic cloud polarities with electron heat fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S.W. [Air Force Research Laboratory, 29 Randolph Rd, Hanscom AFB, Massachusetts 01731 (United States); Crooker, N.U. [Center for Space Physics, Boston University, 725 Commonwealth Ave., Boston, Massachusetts 02215 (United States); Gosling, J.T. [Los Alamos National Laboratory, MS D 466, Los Alamos, New Mexico 87545 (United States)

    1999-06-01

    We have used solar wind electron heat fluxes to determine the magnetic polarities of the interplanetary magnetic fields (IMF) during the ISEE-3 observations in 1978{endash}1982. That period included 14 magnetic clouds (MCs) identified by Zhang and Burlaga. The MCs have been modeled as single magnetic flux ropes, and it is generally assumed that they are magnetically closed structures with each end of the flux rope connected to the Sun. The flux rope model is valid only if the magnetic polarity of each MC does not change during the passage of ISEE-3 through the MC. We test this model with the heat flux data, using the dominant heat flux in bidirectional electron heat fluxes to determine the MC polarities. The polarity changes within at least 2, and possibly 6, of the 14 MCs, meaning that those MCs can not fit the model of a single flux rope. {copyright} {ital 1999 American Institute of Physics.}

  11. Exploring ISEE-3 magnetic cloud polarities with electron heat fluxes

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1999-06-01

    We have used solar wind electron heat fluxes to determine the magnetic polarities of the interplanetary magnetic fields (IMF) during the ISEE-3 observations in 1978-1982. That period included 14 magnetic clouds (MCs) identified by Zhang and Burlaga. The MCs have been modeled as single magnetic flux ropes, and it is generally assumed that they are magnetically closed structures with each end of the flux rope connected to the Sun. The flux rope model is valid only if the magnetic polarity of each MC does not change during the passage of ISEE-3 through the MC. We test this model with the heat flux data, using the dominant heat flux in bidirectional electron heat fluxes to determine the MC polarities. The polarity changes within at least 2, and possibly 6, of the 14 MCs, meaning that those MCs can not fit the model of a single flux rope.

  12. Visco-resistive plasmoid instability in Sweet-Parker current sheets

    Science.gov (United States)

    Grasso, Daniela; Comisso, Luca

    2016-10-01

    The linear analysis by Loureiro et al. is generalized to investigate the plasmoid instability in visco-resistive Sweet-Parker sheets. We cover both the linear and nonlinear growth of the plasmoids. The linear growth rate and the wavenumber scale as S 1 / 4 (1 +Pm)- 5 / 8 and S 3 / 8 (1 +Pm)- 3 / 16 with respect to the Lundquist number S and the magnetic Prandtl number Pm. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. The time-scale of the nonlinear growth of the plasmoids is found to be τNL S - 3 / 16 (1 +Pm)19/32τA , L . We also discuss how the plasmoid instability can enable fast magnetic reconnection in visco-resistive plasmas. In this regime, the global reconnection rate is shown to be 0.01vA , uBu (1 +Pm)- 1 / 2. The same author will present another poster in a closely related topic: ``Generalized Plasmoid Instability in Time Evolving Current Sheets''. Hence, we request the committee to ensure that these 2 posters are placed alongside each other.

  13. The theory of motion of quantum electromechanical plasmoid nanobots in a condensed-state medium

    Science.gov (United States)

    Beznosyuk, S. A.; Zhukovskii, M. S.; Potekaev, A. I.

    2013-10-01

    The theory of motion of quantum electromechanical plasmoid nanobots in a condensed-state medium is presented. The mechanism of a nanobot functioning is shown to be related to the quantum exchange between a nanoparticle and the quantum-field condensed-state system realized by a tangled ( e - e +)-plasmoid pair. The operation of an ( e - e +)-plasmoid is interpreted as a quantum analog of a fuel cell based on the nanoelectromechanical systems (NEMS) of a nanobot. It is the electrical and magnetic fields of force of the ( e - e +)-plasmoid which control the quantum motion of the NEMS-based nanobot. This ensures its response to an external action and allows the respective physical tools to be designed in order to control self-motion of the NEMS-based nanobot in a material medium. Two available mechanisms of the relaxational self-motion of a nanobot in the condensed matter are shown: conversion of the internal quantum-mechanical energy of the nanobot into the electrical energy of a quantum ( e - e +)-plasmoid and conversion of the electrical energy of a quantum ( e - e +)-plasmoid into the mechanical energy of the nanobot's motion in a material. These mechanisms prescribe a discrete manipulation of the NEMS-based nanobot in a material medium. The time, displacement, forces and power involved in the NEMS-based nanobot transportation are estimated.

  14. Rope Jumping: A Preliminary Developmental Study.

    Science.gov (United States)

    Wickstrom, Ralph L.

    The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…

  15. DNA analysis of natural fiber rope.

    Science.gov (United States)

    Dunbar, Mignon; Murphy, Terence M

    2009-01-01

    When rope is found at a crime scene, the type of fiber is currently identified through its microscopic characteristics. However, these characteristics may not always unambiguously distinguish some types of rope from others. If rope samples contain cells from the plants of origin, then DNA analysis may prove to be a better way to identify the type of rope obtained from a crime scene. The objective of this project was to develop techniques of DNA analysis that can be used to differentiate between ropes made from Cannabis sativa L. (hemp), Agave sisalana Perrine (sisal), Musa textilis Née (abaca, "Manila hemp"), Linum usitatissimum L. (flax), and Corchorus olitorus L. (jute). The procedures included extracting the DNA from the rope, performing polymerase chain reaction (PCR) using the extracted DNA as a template, and analyzing the DNA products. A primer pair for PCR, chosen from within a chloroplast gene for the large subunit of ribulose bisphosphate carboxylase/oxygenase, was designed to be specific for plant DNA and complementary to the genes from all five plants. The resulting PCR fragments were approximately 771 base pairs long. The PCR fragments, distinguished through base sequence analysis or restriction enzyme analysis, could be used to identify the five different rope types. The procedure provides a useful addition to visual methods of comparing rope samples.

  16. The aerodynamics of jumping rope

    Science.gov (United States)

    Aristoff, Jeffrey; Stone, Howard

    2011-03-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.

  17. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting... published catalog strength) of wire ropes used for hoisting shall meet the minimum rope strength values...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load...

  18. The "Owl Trail"--A Sensory Awareness Rope Trail

    Science.gov (United States)

    Kauffman, Robert B.

    1978-01-01

    Constructed and experienced by students engaged in an outdoor education class at East Stroudsburg State College in Pennsylvania, the "Owl Trail" is a self guided rope trail (600 yards in length) employing such devices as sensory corrals, bridges, and "go to" ropes (ropes attached to the main rope which provide side trip…

  19. Emission Spectroscopy of Atmospheric-Pressure Ball Plasmoids: Higher Energy Reveals a Rich Chemistry

    Science.gov (United States)

    Dubowsky, Scott E.; Rose, Amber Nicole; Glumac, Nick; McCall, Benjamin J.

    2017-06-01

    Ball plasmoids (self-sustaining spherical plasmas) are a particularly unique example of a non-equilibrium air plasma. These plasmoids have lifetimes on the order of hundreds of milliseconds without an external power source, however, current models dictate that a ball plasmoid should recombine in a millisecond or less. Ball plasmoids are considered to be a laboratory analogue of natural ball lightning, a phenomenon that has eluded scientific explanation for centuries. We are searching for the underlying physicochemical mechanism(s) by which ball plasmoids and (by extension) ball lightning are stabilized using a variety of diagnostic techniques. This presentation will focus on optical emission spectroscopy (OES) of ball plasmoid discharges between 190-850 nm. The previous generation of OES measurements of this system showed emission from only a few atomic and molecular species, however, the energy available for the discharges in these experiments was limited by the size of the capacitor banks and voltages to which the capacitor banks were charged. We are capable of generating plasmoids at much higher energies, and as a result we are the first to report a very rich chemistry previously not observed in ball plasmoids. We have identified signals from species including NO A^{2}Σ^{+}→X^{2}Π, OH A^{2}Σ^{+}→X^{2}Π, NH A^{3}Π→X^{3}Σ^{-}, AlO A^{2}Π→X^{2}Σ^{+}, NH^{+} B^{2}Δ→X^{2}Π, W I, Al I, Cu I, and H_{α}, all of which have not yet been reported for this system. Analysis of the emission spectra and fitting procedures will be discussed, rotational temperatures of constituent species will be reported, and theories of ball plasmoid stabilization based upon these new results will be presented. Versteegh, A.; Behringer, K.; Fantz, U.; Fussman, G.; Jüttner, B.; Noack, S. Plas. Sour. Sci. Technol. 2008, 17(2), 024014 Stephan, K. D.; Dumas, S.; Komala-Noor, L.; McMinn, J. Plas. Sour. Sci. Technol. 2013, 22(2), 025018

  20. Magnetic field and quadruple Langmuir probe measurements in the plume of the plasmoid thruster experiment

    Science.gov (United States)

    Koelfgen, Syri Jo

    The development of high specific impulse rocket engines is essential for fast and efficient space travel. The plasmoid thruster, a novel propulsion concept with the potential for producing a high specific impulse, was investigated in light of this need. This pulsed inductive rocket utilizes the Lorentz force to accelerate plasmoids and produce thrust. The Plasmoid Thruster Experiment (PTX) was designed to experimentally evaluate the thruster concept. PTX operates by producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. Measurements of the plasmoid magnetic fields, electron temperature (Te), electron number density (n e) and Mach number (M) were taken in the PTX plume with a B˙ probe array and a quadruple Langmuir probe. The measurements were used for calculating exit velocity and Isp. High-speed photographs were also obtained for capturing images of the plasmoids and estimating their velocity. The magnetic field data showed behavior characteristic of plasmoids, such as the occurrence of the maximum axial magnetic field on axis and magnetic field reversal. The quadruple Langmuir probe data revealed several factors that influence thruster operation, including propellant choice, supply pressure and propellant injection timing (tpuff). For Ar propellant at supply pressures of 14--34 psig and tpuff = 2200 mus, Te ranged from 2--7 eV, ne ranged from 1.5 x 1020 m-3 to 3.5 x 1020 m-3, and M ranged from 3.3--3.8 in PTX. For H2 propellant, T e ranged from 15--27 eV, ne ranged from 0.8 x 1020 m-3 to 1.5 x 1020 m-3, and M ranged from 1.4--2.6, for supply pressures of 9--38 psig and tpuff = 1200--2400 mus. Analysis of the plume measurements yielded high thruster exit velocities, indicating that the plasmoid thruster can produce a high Isp. Velocities of 24 km/s, 35 km/s and 46 km/s were calculated for supply pressures of 38 psig, 24 psig and 9 psig of H2 propellant, respectively. These exit velocities deliver Isp values of 2,400 s, 3,500 s and 4

  1. Extended theory of the Taylor problem in the plasmoid-unstable regime

    Energy Technology Data Exchange (ETDEWEB)

    Comisso, L., E-mail: luca.comisso@polito.it; Grasso, D. [Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Istituto dei Sistemi Complessi - CNR, Via dei Taurini 19, 00185 Roma (Italy); Waelbroeck, F. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1203 (United States)

    2015-04-15

    A fundamental problem of forced magnetic reconnection has been solved taking into account the plasmoid instability of thin reconnecting current sheets. In this problem, the reconnection is driven by a small amplitude boundary perturbation in a tearing-stable slab plasma equilibrium. It is shown that the evolution of the magnetic reconnection process depends on the external source perturbation and the microscopic plasma parameters. Small perturbations lead to a slow nonlinear Rutherford evolution, whereas larger perturbations can lead to either a stable Sweet-Parker-like phase or a plasmoid phase. An expression for the threshold perturbation amplitude required to trigger the plasmoid phase is derived, as well as an analytical expression for the reconnection rate in the plasmoid-dominated regime. Visco-resistive magnetohydrodynamic simulations complement the analytical calculations. The plasmoid formation plays a crucial role in allowing fast reconnection in a magnetohydrodynamical plasma, and the presented results suggest that it may occur and have profound consequences even if the plasma is tearing-stable.

  2. Observations of Ball-Lightning-Like Plasmoids Ejected from Silicon by Localized Microwaves

    Directory of Open Access Journals (Sweden)

    Michael Sztucki

    2013-09-01

    Full Text Available This paper presents experimental characterization of plasmoids (fireballs obtained by directing localized microwave power (<1 kW at 2.45 GHz onto a silicon-based substrate in a microwave cavity. The plasmoid emerges up from the hotspot created in the solid substrate into the air within the microwave cavity. The experimental diagnostics employed for the fireball characterization in this study include measurements of microwave scattering, optical spectroscopy, small-angle X-ray scattering (SAXS, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS. Various characteristics of these plasmoids as dusty plasma are drawn by a theoretical analysis of the experimental observations. Aggregations of dust particles within the plasmoid are detected at nanometer and micrometer scales by both in-situ SAXS and ex-situ SEM measurements. The resemblance of these plasmoids to the natural ball-lightning (BL phenomenon is discussed with regard to silicon nano-particle clustering and formation of slowly-oxidized silicon micro-spheres within the BL. Potential applications and practical derivatives of this study (e.g., direct conversion of solids to powders, material identification by breakdown spectroscopy (MIBS, thermite ignition, and combustion are discussed.

  3. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

  4. Reconnection events in Saturn's magnetotail: Dependence of plasmoid occurrence on planetary period oscillation phase

    Science.gov (United States)

    Jackman, C. M.; Provan, G.; Cowley, S. W. H.

    2016-04-01

    During its exploration of Saturn's magnetotail the Cassini magnetometer has detected many in situ examples of magnetic reconnection, in the form of plasmoids, traveling compression regions (TCRs), and dipolarizations. Meanwhile, many magnetospheric phenomena have been shown to be organized with particular regularity by planetary period oscillation systems driven separately from the Northern and Southern Hemispheres of the planet. Here we examine the relationship between the occurrence of plasmoids and TCRs and the magnetic phases of the northern and southern systems. We find a striking degree of organization of the events by both northern and southern phases, with events linked preferentially to intervals in which the magnetospheric plasma and field lines are displaced outward from the planet and the current sheet thinned, both effects being likely to favor the occurrence of reconnection and plasmoid-related mass loss. Little evidence is found for significant visibility effects associated with north-south motions of the plasma sheet.

  5. The finite element modeling of spiral ropes

    Institute of Scientific and Technical Information of China (English)

    Juan Wu

    2014-01-01

    Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.

  6. Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go

    Science.gov (United States)

    Sironi, Lorenzo; Giannios, Dimitrios; Petropoulou, Maria

    2016-10-01

    Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids, continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ˜0.2 w; the plasmoids grow in size at ˜0.1 of the speed of light, with most of the growth happening while they are still non-relativistic (`first they grow'); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to the Alfvén speed (`then they go'). The largest plasmoids reach a width wmax ˜ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and contain the highest energy particles, whose Larmor radius is ˜0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.

  7. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  8. Simulations of a plasmoid penetrating a magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gunell, H; Koepke, M [Department of Physics, West Virginia University, Morgantown, WV 26506-6315 (United States); Hurtig, T [Swedish Defence Research Agency, Grindsjoen Research Centre, SE-147 25 Tumba (Sweden); Nilsson, H [Swedish Institute of Space Physics, PO Box 812, SE-981 28 Kiruna (Sweden); Brenning, N [Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)], E-mail: herbert.gunell@physics.org

    2008-07-15

    Plasma structures, here typified by the term 'plasmoids', in the solar wind impacting on the magnetopause, i.e. the boundary between the solar wind and the Earth's magnetosphere, can penetrate this boundary and be injected into the magnetosphere. This can happen either by expulsion of the magnetic field from the structure and subsequent diffusion of the magnetic field into the structure or by the formation of a polarization electric field that lets the plasma structure E x B-drift into the earth's magnetic field. In both cases a collisionless resistivity is required at some stage of the process. While magnetic expulsion requires electromagnetic models for its description, polarization can be modelled electrostatically and both processes can be, and have been, studied in laboratory experiments. We present three-dimensional electrostatic particle-in-cell simulations that reproduce large-amplitude waves, in the lower-hybrid range, that have been observed in laboratory experiments. Lower-hybrid waves have also been seen at the magnetopause of the earth. We consider the implications for spacecraft-based studies of magnetopause penetration, and suggest that the search for penetrating plasma structures should emphasize cases in which the interplanetary magnetic field is oriented northwards, as this configuration is less likely for reconnection. The application of theoretical predictions to the magnetopause environment shows that a plasma structure penetrating via polarization needs to be small, i.e. less than 10-100 km wide for typical parameters, and that wave processes at the magnetopause are needed to create such small structures. A larger structure can penetrate by means of magnetic expulsion.

  9. The initiation of coronal mass ejections by magnetic flux emergence

    Science.gov (United States)

    Dubey, G.; van der Holst, B.; Poedts, S.

    2006-12-01

    Aims.The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of computational Magneto-Hydro-Dynamics (MHD). Methods: .The initial configuration includes a magnetic flux rope that is embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field in spherical, axi-symmetric geometry. The flux rope is in equilibrium due to an image current below the photosphere. An emerging magnetic flux triggering mechanism is used to make this equilibrium configuration unstable. Results: . When the magnetic flux emerges within the filament below the flux rope this results in a catastrophic behavior similar to earlier, more simple models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parameter study of the effect of the flux emergence rate on the velocity and the acceleration of the resulting CMEs.

  10. Wire rope improvement program. Final report. [For draglines

    Energy Technology Data Exchange (ETDEWEB)

    Alzheimer, J.M.; Anderson, W.E.; Beeman, G.H.; Dudder, G.B.; Erickson, R.; Glaeser, W.A.; Jentgen, R.L.; Rice, R.R.; Strope, L.A.

    1981-09-01

    Activities in five major areas were undertaken during the WRIP: experiments using PNL-developed bend-over-sheave fatigue test machines to generate data on which to base a model for predicting large-diameter rope performance from that of small-diameter ropes; bend-over-sheave fatigue testing to determine differences in rope failure rates at varying rope loads; analyses to determine how wire ropes actually fail; development of a load sensor to record and quantity operational loads on drag and hoist ropes; and technology transfer activities to disseminate useful program findings to coal mine operators. Data obtained during the 6-year program support are included. High loads on wire ropes are damaging. As an adjunct, however, potentially useful countermeasures to high loads were identified. Large-diameter rope bend-over-sheave performance can be predicted from small-diameter rope test behavior, over some ranges.

  11. Safe use of mine winding rope, volume 2: recommendations for changes in rope safety factors.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available The steering committee on factors of safety of winder ropes has appointed a working group to draw up a set of proposals for changing the regulations governing the required rope strength in the Minerals Act. Certain research projects have been...

  12. Three-dimensional simulation study of compact toroid plasmoid injection into magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Watanabe, T.-H.; Sato, T.; Hayashi, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    Three-dimensional dynamics of a compact toroid (CT) plasmoid, which is injected into a magnetized target plasma region is investigated by using magnetohydrodynamic (MHD) numerical simulations. It is found that the process of the CT penetration into this region is much more complicated than what has been analyzed so far by using a conducting sphere (CS) model. The injected CT suffers from a tilting instability, which grows with the similar time scale as the CT penetration. The instability is accompanied by magnetic reconnection between the CT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the CT. Magnetic reconnection plays a role to supply the high density plasma initially confined in the CT magnetic field into the target region. Also, the penetration depth of the CT high density plasma is examined. It is shown to be shorter than that estimated from the CS model. The CT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the CT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, that is the deceleration of the CT plasmoid. (author)

  13. Patterns of Flux Emergence

    Science.gov (United States)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  14. Knots, splices and rope-work an illustrated handbook

    CERN Document Server

    Verrill, A Hyatt

    2006-01-01

    This treasury of practical and ornamental knots ranges from easy half-hitches and bow-lines to intricate rope-work projects, such as rope buckles and cask slings. Detailed instructions accompany the 148 drawings.

  15. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  16. Develop discard criteria for non-spin wire ropes

    CSIR Research Space (South Africa)

    Hecker, GFK

    2004-01-01

    Full Text Available The initial project objective was to correlate the level of internal broken wire indications, obtained using a magnetic rope test instrument, with rope strength loss and then to propose a given indication level at which non-spin ropes...

  17. Rope culture of the kelp Laminaria groenlandica in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  18. Roping in uncertainty – measuring the tensile strength of steel wire ropes

    CSIR Research Space (South Africa)

    Bergh, Riaan

    2016-09-01

    Full Text Available stream_source_info Bergh_2016.pdf.txt stream_content_type text/plain stream_size 3019 Content-Encoding UTF-8 stream_name Bergh_2016.pdf.txt Content-Type text/plain; charset=UTF-8 Roping in uncertainty – measuring... the tensile strength of steel wire ropes Riaan Bergh 27 September 2016 2Presentation outline The test environment Why test? The detail The outcome The process 3Why do we test new ropes? Riaan Bergh - September 2016 - rbergh@csir.co.za - 011-482 1300 Theory...

  19. Jumping Rope at Day of Play

    Science.gov (United States)

    2005-01-01

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  20. Technology transfer of winder ropes research

    CSIR Research Space (South Africa)

    Van Zyl, M

    2002-07-01

    Full Text Available been produced. These reports either had some bearing on the new rope load factors that were included in the South African regulations, or were produced as a result of the changes introduced to the regulations. In total, the reports consist of more than...

  1. Technology transfer of winder ropes research

    CSIR Research Space (South Africa)

    Van Zyl, M

    2002-07-01

    Full Text Available on these "privately" sponsored investigations were made available to the research effort. By the year 2000, more than 100 research reports had been produced. These reports either had some bearing on the new rope load factors that were included in the regulations...

  2. The ancient art of laying rope

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2011-01-01

    We describe a geometrical property of helical structures and show how it accounts for the early art of rope-making. Helices have a maximum number of rotations that can be added to them — and it is shown that this is a geometrical feature, not a material property. This geometrical insight explains...

  3. Kinematic analysis of rope skipper's stability

    Science.gov (United States)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  4. Description of Pinch Plasmoids Within the Framework of General Relativity Theory

    Science.gov (United States)

    Bogdanovich, B. Yu.; Nestorovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.

    2017-02-01

    Pinch plasmoids, observed in experiments with periodic discharges in a fluid flow, are represented as unclosed wormholes with two throats in 4-spacetime on the basis of exact solutions of the nonstationary spherically-symmetric Einstein-Maxwell equations. It is proven that the gravitational interaction, i.e., the curvature of spacetime, is necessary for the existence of compact long-lived objects consisting of charged particles in their own electromagnetic field. It is shown that the gravitational interaction is universal and that it is manifested on arbitrary length scales. With the help of the given model, an estimate is made of the parameters of pinch plasmoids for different particle densities, up to solid-state. The given estimates show themselves to be in agreement with the experimental data.

  5. Experimental Demonstration of the Collisionless Plasmoid Instability below the Ion Kinetic Scale during Magnetic Reconnection.

    Science.gov (United States)

    Olson, J; Egedal, J; Greess, S; Myers, R; Clark, M; Endrizzi, D; Flanagan, K; Milhone, J; Peterson, E; Wallace, J; Weisberg, D; Forest, C B

    2016-06-24

    The spontaneous formation of magnetic islands is observed in driven, antiparallel magnetic reconnection on the Terrestrial Reconnection Experiment. We here provide direct experimental evidence that the plasmoid instability is active at the electron scale inside the ion diffusion region in a low collisional regime. The experiments show the island formation occurs at a smaller system size than predicted by extended magnetohydrodynamics or fully collisionless simulations. This more effective seeding of magnetic islands emphasizes their importance to reconnection in naturally occurring 3D plasmas.

  6. Magnetic reconnection: from the Sweet-Parker model to stochastic plasmoid chains

    Science.gov (United States)

    Loureiro, N. F.; Uzdensky, D. A.

    2016-01-01

    Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perhaps the most popular example. Other fascinating processes where reconnection plays a key role include the magnetic dynamo, geomagnetic storms and the sawtooth crash in tokamaks. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for  ˜50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e. independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the realization that SP-like current layers are violently unstable to the plasmoid (tearing) instability—implying, therefore, that such current sheets are super-critically unstable and thus can never form in the first place. This suggests that the formation of a current sheet and the subsequent reconnection process cannot be decoupled, as is commonly assumed. This paper provides an introductory-level overview of the recent developments in reconnection theory and simulations that led to this essentially new framework. We briefly discuss the role played by the plasmoid instability in selected applications, and describe some of the outstanding challenges that remain at the frontier of this subject. Amongst these are the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-magnetohydrodynamics (MHD

  7. Experimental Demonstration of the Collisionless Plasmoid Instability below the Ion Kinetic Scale during Magnetic Reconnection

    Science.gov (United States)

    Olson, J.; Egedal, J.; Greess, S.; Myers, R.; Clark, M.; Endrizzi, D.; Flanagan, K.; Milhone, J.; Peterson, E.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2016-06-01

    The spontaneous formation of magnetic islands is observed in driven, antiparallel magnetic reconnection on the Terrestrial Reconnection Experiment. We here provide direct experimental evidence that the plasmoid instability is active at the electron scale inside the ion diffusion region in a low collisional regime. The experiments show the island formation occurs at a smaller system size than predicted by extended magnetohydrodynamics or fully collisionless simulations. This more effective seeding of magnetic islands emphasizes their importance to reconnection in naturally occurring 3D plasmas.

  8. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)

    2015-01-20

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

  9. Catalogue of best practices for the ropes and winders of deep shaft sinking operations

    CSIR Research Space (South Africa)

    Van Zyl, M

    1998-11-01

    Full Text Available The primary purpose of the catalogue of best practices is to ensure the safety of the winding ropes. It therefore addresses aspects that will influence rope loads, rope strength, rope deterioration and the condition assessment of the winding ropes...

  10. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  11. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  12. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets.

    Science.gov (United States)

    Loureiro, N F; Schekochihin, A A; Uzdensky, D A

    2013-01-01

    A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas 14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k(max)L(CS)~S(3/8), where k(max) is the wave number of fastest growing mode, S=L(CS)V(A)/η is the Lundquist number, L(CS) is the length of the sheet, V(A) is the Alfvén speed, and η is the plasma resistivity), which grows super Alfvénically fast (γ(max)τ(A)~S(1/4), where γ(max) is the maximum growth rate, and τ(A)=L(CS)/V(A)). For typical background profiles, the growth rate and the wave number are found to increase in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability γ(max)τ(A)~k(max)L(CS)~S(1/2). The effect of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers Pm=ν/η, it is found that γ(max)~S(1/4)Pm(-5/8) and k(max)L(CS)~S(3/8)Pm(-3/16), leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm>1 regime is S(crit)~10(4)Pm(1/2). These results are verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.

  13. Rope Climbing Robot with Surveillance Capability

    Directory of Open Access Journals (Sweden)

    Kanza Zafar

    2013-08-01

    Full Text Available In the past different engineers and researcher developed robots capable of climbing for various purposes. In this paper we have developed a robot capable of rope climbing in both horizontal and vertical direction. Furthermore, the robot has the ability to perform surveillance using a camera mounted on top of the robot. The quality of the transmitted video from the camera to the computer is clear and stable. Hence the developed robot is a good choice for surveillance purposes. In addition, it can be used to traverse floors of a building. It uses an IR sensor to sense strips attached at each floor. Once the strips are sensed, a dropping mechanism is activated in which a specific object is dropped to the targeted floor or location. The robot can work in automatic mode or manual through RF signals from an RF transmitter. Finally the robot is cost effective compared to many other developed robots for rope climbing.

  14. Distribution of wire deformation within strands of wire ropes

    Institute of Scientific and Technical Information of China (English)

    MA Jun; GE Shi-rong; ZHANG De-kun

    2008-01-01

    Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6x19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deformation of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions.At the end, a tensile test of the 6x19 IWS wire rope was carried out and the results of simulation and experiment compared.

  15. Structural ropes development for the E-ELT structure

    Science.gov (United States)

    Pajuelo, Eugenio; Gómez, José Ramón; Ronquillo, Bernardo; Brunetto, Enzo; Koch, Franz

    2008-07-01

    The European Extremely Large Telescope (E-ELT) structural rope system will be integrated in a mechanical structure, which can be made of mild steel and/or composite material. The following critical problems shall be solved by the rope system: matching of differential thermal expansion and tensioning forces calibration and control. The structural rope system consists of ropes, thermal compensation and tension control devices, and mechanical interfaces with the telescope structure. The objective of this study is to provide solutions to stabilize slender structural elements located in the upper part of the E-ELT Altitude Structure and increase global mode frequencies of the upper part of the E-ELT Altitude Structure. An appropriate rope system is developed to avoid local mode shapes and loss of stiffness that could lead to the failure of the whole structure under operational loads. The pre-tension level of the ropes needs to be controlled before operation to reach that objective.

  16. The sagging rope sign: a critical appraisal.

    Science.gov (United States)

    Clarke, N M; Harrison, M H; Keret, D

    1983-05-01

    Certain features of the sagging rope sign recently analysed by Apley and Weintroub (1981) are examined in detail. Evidence is presented to show that the line is a radiological shadow cast by the lateral edge of a severely deformed femoral head rather than a condensation of the spongiosa within the neck. An explanation is offered to explain the common association of the presence of this radiological sign with premature epiphysial fusion.

  17. New constructions of wire ropes for the industry

    Directory of Open Access Journals (Sweden)

    ŠŠaderová Jana

    1996-03-01

    Full Text Available The wire ropes are used in different industrial fields. Their construction depends on the type of equipment and its purpose. Most frequently we meet with ropes at different transport and hoisting equipments and very freqently in the civil industry. For users characteristics are important which must meet requirements of the individual regulations and standards of the selection of wire ropes for the concrete equipment. The most important is the factor of safety being safeguarded by the corresponding bearing capacity of the rope. The service life of rope is interesting for the user, too, because of having an influence on the economy of the equipment on which the rope is working. These problems are solved by the grant project at our department . We are aimed at questions of the optimization of construction of wire rope with regard to their geometric construction and service life. Respectively on the basis of elaborated computer software eightstrand ropes of parallel construction were disigned and produced at the Drôtov ň a Hlohovec. The results of the fatigue tests confirmed their better qualitative properties, longer service life and economy advantages for users, too. Their using is possible and suitable on the new hoisting eguipment on the surface, in the undeground and in the hole drilling industry. By the application of the computer technique is also possible to improve the parametres of six-strands` construction of rope, the classic and parallel constructions, especially their bearing capacity. This fact follows from the knowledge that for the production of rope we use calculated diameters of wires, which secure better utilization of the metal cross-section of the wire ropes.

  18. Long-living plasmoids generation by high-voltage discharge through thin conducting layers

    CERN Document Server

    Pirozerski, A L

    2006-01-01

    A new type of pulse high voltage electric discharge through a thin conducting layer on the surface of glass plate has been investigated. The afterglow plasma of this discharge forms quasi-spherical object with a lifetime about 0.2-0.3 s. Electric properties of the objects were studied by electric probe method. Measurements of plasma radiation spectra kinetics at visible and near ultraviolet spectral ranges have been carried out. Comparative analysis of the physical properties of the plasmoids appearing in this discharges and of ones generated via thin metal wires burning is given. Possible mechanism of the plasma metastability are discussed.

  19. Comparative Training Responses to Rope Skipping and Jogging.

    Science.gov (United States)

    Buyze, Michael T.; And Others

    1986-01-01

    This study compared physiological adaptations of 26 sedentary volunteers to six-week programs of jogging and rope skipping in order to test whether 10 minutes of rope skipping is equal to 30 minutes of jogging for improved cardiovascular efficiency. Results are discussed. (Author/MT)

  20. POST OBSTRUCTIVE PULMONARY EDEMA AFTER ATTEMPTED NYLON ROPE SUICIDAL HANGING

    Directory of Open Access Journals (Sweden)

    Rakesh

    2015-06-01

    Full Text Available Survival after nylon rope suicidal hanging is a rare occurance . We describe here a patient who attempted suicide by nylon rope hanging and developed post obstructive pulmonary edema was managed successfully . Patient recovered completely with ventilatory support in next 60 hours without any neurological deficit.This case highlights an unusual complication of hanging and its recovery.

  1. Kinematic characteristics of motor patterns in rope skipping

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva

    2009-09-01

    Full Text Available Rope skipping seems to be an easy task to be performed. However, careful analysis of this motor skill shows how complex the execution of this task is. The objective of this study was to examine kinematic variables of jump patterns as a function of skipping frequency. Eight male university students performed a sequence of 30 rope jumps using two jump patterns (alternating support of the feet and simultaneous support of the feet at three skipping frequencies (1.5, 1.7,1.9 Hz. Frequencies were determined with a digital metronome and the rope was turned by the student himself. Rope jumping performance was recorded with two digital cameras for 3Danalysis. Passive markers were attached to the rope and to the ankle, knee and hip joints forcollection of the following dependent variables: continuous relative phase, time interval betweenthe loss of contact of the feet with the ground and cross of the rope under the feet of the volunteer,jump height, and rope height. ANOVA showed that for the pattern with alternating support ofthe feet the jump is executed at a lower height. In addition, analysis of the time interval revealeda delay in the withdrawal of the feet for crossing the rope in the case of the jump pattern with simultaneous support of the feet.

  2. Muscle Activity during Unilateral Vs. Bilateral Battle Rope Exercises

    DEFF Research Database (Denmark)

    Calatayud, J.; Martin, F.; Colado, J. C.

    2015-01-01

    Calatayud, J, Martin, F, Colado, JC, Benitez, JC, Jakobsen, MD, and Andersen, LL. Muscle activity during unilateral vs. bilateral battle rope exercises. J Strength Cond Res 29(10): 2854-2859, 2015High training intensity is important for efficient strength gains. Although battle rope training is m...

  3. Deterioration mechanisms of drum winder ropes

    CSIR Research Space (South Africa)

    Van Zyl, M

    2000-12-01

    Full Text Available degradation will not increase the susceptibility of wires to fatigue crack initiation, it is postulated that high contact stresses will generate their own problems (like split wires) if left unchecked. An alternative approach to the pulling in of back ends... is proposed in the section on contact stresses to minimise the adverse effects of contact stresses: Pull in back ends much more frequent in the beginning of the service life of a rope. The analysis and measurement of bending stresses in triangular strand...

  4. The modelling and analysis of the mechanics of ropes

    CERN Document Server

    Leech, C M

    2014-01-01

    This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the p...

  5. Mechanical properties of steel rope wires -– quality test assurance

    Directory of Open Access Journals (Sweden)

    Jaroslava Dečmanová

    2010-02-01

    Full Text Available We investigate the mechanical properties of wires of steel ropes by tests in accordance with rule in operation and valid regulation.There are specified values of minimal and maximum capacity or strenghts and values of minimal bendings and torsion in them. Minimalvalues of bendings and torsion are rated wire strenght, diameter and surface treatment dependent. It is suitable to use the calculationof irregularity coefficient of steel wires strenght for quality assessment of steel ropes which put into practice soviet authors Žitkovand Pospechov. Statistical methods make possible to review the quality of steel ropes from the test results of their wires on capacity,bending and torsion. In the paper we evaluate and compare the quality of two steel ropes with triangular strands, we appear fromprotocols about their tests in the accredited testing station of steel ropes of our workstation.

  6. Safe use of mine winding ropes, volume 4: studies towards a code of practice for rope condition assessment.

    CSIR Research Space (South Africa)

    Borrello, M

    1996-06-01

    Full Text Available The aim of this investigation was the verification of the code of Practice for Rope Condition Assessment. Ropes were meant to be discarded according to the discard criteria as outlined in the code and then tested by the CSIR. The results...

  7. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets

    CERN Document Server

    Loureiro, N F; Uzdensky, D A

    2012-01-01

    A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al, Phys. Plasmas {\\bf 14}, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids ($k_{\\rm max}\\Lsheet \\sim S^{3/8}$, where $k_{\\rm max}$ is the wave-number of fastest growing mode, $S=\\Lsheet V_A/\\eta$ is the Lundquist number, $\\Lsheet$ is the length of the sheet, $V_A$ is the Alfv\\'en speed and $\\eta$ is the plasma resistivity), which grows super-Alfv\\'enically fast ($\\gmax\\tau_A\\sim S^{1/4}$, where $\\gmax$ is the maximum growth rate, and $\\tau_A=\\Lsheet/V_A$). For typical background profiles, the growth rate and the wave-number are found to {\\it increase} in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability...

  8. ROPE: Recoverable Order-Preserving Embedding of Natural Language

    Energy Technology Data Exchange (ETDEWEB)

    Widemann, David P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Eric X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thiagarajan, Jayaraman J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-11

    We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE maps natural language passages from sparse concatenated one-hot representations to distributed vector representations of predetermined fixed length. We use Euclidean distance to return search results that are both grammatically and semantically similar. ROPE is based on a series of random projections of distributed word embeddings. We show that our technique typically forms a dictionary with sufficient incoherence such that sparse recovery of the original text is possible. We then show how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s COCO dataset and the IMDB Movie Review dataset.

  9. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players.

    Science.gov (United States)

    Ozer, D; Duzgun, I; Baltaci, G; Karacan, S; Colakoglu, F

    2011-06-01

    The aim was to assess the effects of a 12-week "rope jumping" and "weighted rope jumping" training programs on functional parameters including multi-joint coordination and proprioception, strength, endurance in adolescent female volleyball players. Pretest posttest experimental design. Weighted Rope Training group (N.=9; 15±1 years), Rope Training group (N.=9; 14.1±1.3 years) and Controls (N.=7; 14.4±1.3 years). Motor coordination, proprioception, strength and endurance of the lower extremities with concentric and eccentric performances in closed kinetic chain on multi joint system assessed by the Monitorized Squat system. Absolute average error (cm) and the standard deviation for coordination and proprioception, Peak Force (N), Total Work (Nm), Average Power (Nm/s), Maximal Speed for strength and endurance tests were calculated. Kruskal-Wallis and Mann Whitney U test were utilized. Weighted rope jump group had significant decrease for the deviation results of coordination on the concentric and eccentric phases for both legs (PRope jump and weighted rope jump groups had significantly lower results on non visible second movement deviation (PRope Training group in comparison to controls (PRope Training and control groups improved in concentric maximal speed (PRope Training group (Prope jump to training programs improves joint repositioning and coordination. Weighted Rope Training group got greater gains for coordination and eccentric endurance parameters for lower extremities in a closed kinetic chain.

  10. Evaluation of international and local magnetic rope testing instrument defect detection capabilities and resolution, particularly in respect of low rotation, multi-layer rope constructions.

    CSIR Research Space (South Africa)

    Dohm, M

    1999-05-01

    Full Text Available which in turn resulted in safer hoisting practices. Unfortunately in-service rope failures still occurred. This report describes the evaluation of international and local magnetic rope testing instrument defect detection capabilities and resolutions....

  11. The photospheric energy and helicity budgets of the flux-injection hypothesis

    CERN Document Server

    Schuck, P W

    2010-01-01

    The flux-injection hypothesis for driving coronal mass ejections (CMEs) requires the transport of substantial magnetic energy and helicity flux through the photosphere concomitant with the eruption. Under the magnetohydrodynamics approximation, these fluxes are produced by twisting magnetic field and/or flux emergence in the photosphere. A CME trajectory, observed 2000 September 12th and fitted with a flux-rope model constrains energy and helicity budgets for testing the flux-injection hypothesis. Optimal velocity profiles for several driving scenarios are estimated by minimizing the photospheric plasma velocities for a cylindrically symmetric flux-rope magnetic field subject to the flux budgets required by the flux-rope model. Ideal flux-injection, involving only flux-emergence, requires hypersonic up-flows in excess of the solar escape velocity 617 km/s over an area of 6\\times10^8 km^2 to satisfy the energy and helicity budgets of the flux-rope model. These estimates are compared with magnetic field and Dop...

  12. Pre-Stressed Rope Reinforced Anti-Sliding Pile

    Institute of Scientific and Technical Information of China (English)

    XU Jun; WANG Chenghua

    2006-01-01

    Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti-sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.

  13. Magnetic reconnection: from the Sweet-Parker model to stochastic plasmoid chains

    CERN Document Server

    Loureiro, N F

    2015-01-01

    (abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perhaps the most popular example. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for ~50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e., independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the real...

  14. Anomalous Heating and Plasmoid Formation in a Driven Magnetic Reconnection Experiment

    CERN Document Server

    Hare, J D; Lebedev, S V; Loureiro, N F; Ciardi, A; Burdiak, G C; Chittenden, J P; Clayson, T; Garcia, C; Niasse, N; Robinson, T; Smith, R A; Stuart, N; Suzuki-Vidal, F; Swadling, G F; Ma, J; Wu, J; Yang, Q

    2016-01-01

    We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields $(B=3$ T), advected by supersonic, sub-Alfv\\'enic carbon plasma flows $(V_{in}=50$ km/s), are brought together and mutually annihilate inside a thin current layer ($\\delta=0.6$ mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures $(T_e=100$ eV, $T_i=600$ eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, which we interpret as evidence of two-fluid effects in our experiment.

  15. Effect of Tension on Friction Coefficient Between Lining and Wire Rope with Low Speed Sliding

    Institute of Scientific and Technical Information of China (English)

    PENG Yu-xing; ZHU Zhen-cai; CHEN Guo-an; CAO Guo-hua

    2007-01-01

    In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which proves the validity of the theoretical model.

  16. Investigating the Dynamics of Canonical Flux Tubes

    Science.gov (United States)

    von der Linden, Jens; Sears, Jason; Intrator, Thomas; You, Setthivoine

    2016-10-01

    Canonical flux tubes are flux tubes of the circulation of a species' canonical momentum. They provide a convenient generalization of magnetic flux tubes to regimes beyond magnetohydrodynamics (MHD). We hypothesize that hierarchies of instabilities which couple disparate scales could transfer magnetic pitch into helical flows and vice versa while conserving the total canonical helicity. This work first explores the possibility of a sausage instability existing on top of a kink as mechanism for coupling scales, then presents the evolution of canonical helicity in a gyrating kinked flux rope. Analytical and numerical stability spaces derived for magnetic flux tubes with core and skin currents indicate that, as a flux tube lengthens and collimates, it may become kink unstable with a sausage instability developing on top of the kink. A new analysis of 3D magnetic field and ion flow data on gyrating kinked magnetic flux ropes from the Reconnection Scaling Experiment tracks the evolution of canonical flux tubes and their helicity. These results and methodology are being developed as part of the Mochi experiment specifically designed to observe the dynamics of canonical flux tubes. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697161.

  17. IMP-8 observations of traveling compressions regions: New evidence for near-earth plasmoids and neutral lines

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, J.A.; Lepping, R.P.; Baker, D.N. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-06-01

    An examination of IMP-8 tail lobe magnetic field measurements has been conducted to determine whether the traveling compressions region (TCR) phenomena detected by ISEE-3 in the distant geotail, and believed to be caused by tailward moving plasmoids, are present closer to the earth. The study produced 16 examples of TCRs at distances of X = {minus}31 to {minus}37 R{sub E}. For two events considered in detail TCRs were observed in close association with substorm growth phase signatures in the lobes. The lengths of these TCRs are estimated to be 8-12 R{sub E}. It is their conclusion that the IMP-8 TCR observations provide new evidence that small plasmoids and, hence, multiple reconnection neutral lines can sometimes exist earthward of X = {minus}35 R{sub E}.

  18. Geotail observations of energetic ion species and magnetic field in plasmoid-like structures in the course of an isolated substorm event

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Q.; Wilken, B. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany); Reeves, G.D. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Daglis, I.A. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany)]|[Institute of Ionospheric and Space Research, National Observatory of Athens (Greece); Doke, T. [Department of Physics, Nagoya University, Nagoya (Japan); Iyemori, T. [WDC-C2 for Geomagnetism, Faculty of Science, Kyoto University, Kyoto (Japan); Livi, S. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany); Maezawa, K. [Advanced Research Center for Science and Engineering, Waseda University, Tokyo (Japan); Mukai, T. [Institute of Space Astronautical and Science, Kanagawa (Japan); Kokubun, S. [Solar-Terrestrial Environment Laboratory, Nagoya University, Toyokawa (Japan); Pu, Z. [Department of Geophysics, Peking University, Beijing (China); Ullaland, S. [University of Bergen, Bergen (Norway); Woch, J. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany); Lepping, R. [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Yamamoto, T. [Institute of Space Astronautical and Science, Kanagawa (Japan)

    1997-06-01

    On January 15, 1994, the ion spectrometer high energy particle{endash}low energy particle detector (HEP-LD) on the Japanese spacecraft Geotail observed five quasi-periodic energetic ion bursts in the deep tail (X={minus}96R{sub E}). These bursts were associated with plasmoid-like structures in the magnetic field components. In addition, three multiple TCR groups were identified in the interval. The observations in the distant tail occurred during a time interval of substorm activity which also produced multiple injections in the geosynchronous orbit region. The HEP-LD observations show that B{sub z} bipolar plasmoid-like structures are associated with tailward flowing particle bursts. However, earthward flowing particle bursts are predominantly associated with bipolar signatures in B{sub y}. In addition, an oxygen burst was seen in the back of a plasmoid (postplasmoid) which showed both B{sub y} and B{sub z} bipolar magnetic field signatures. The oxygen burst lasted for 23 min, and the density ratio (O/H) reached 15{percent} for the HEP-LD energy range (in the same plasmoid, this ratio was approximately 1{percent} before the oxygen burst). The oxygen burst exhibited a strong beam-like structure which occupied only 6{approximately}7{percent} of the full solid angle (4{pi}). We suggest that energized oxygen ions of ionospheric origin travel downtail in the narrow postplasmoid-plasma sheet which trails the plasmoid. Furthermore, we suggest that the magnetosphere dissipated larger quantities of energy during this very intense substorm event by ejecting multiple relatively small plasmoids rather than through the formation and ejection of a single large plasmoid.{copyright} 1997 American Geophysical Union

  19. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Jonathan D. Tonkin

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  20. Stellar Coronal Response to Differential Rotation and Flux Emergence

    CERN Document Server

    Gibb, G P S; Jardine, M M; Yeates, A R

    2016-01-01

    We perform a numerical parameter study to determine what effect varying differential rotation and flux emergence has on a star's non-potential coronal magnetic field. In particular we consider the effects on the star's surface magnetic flux, open magnetic flux, mean azimuthal field strength, coronal free magnetic energy, coronal heating and flux rope eruptions. To do this, we apply a magnetic flux transport model to describe the photospheric evolution, and couple this to the non-potential coronal evolution using a magnetofrictional technique. A flux emergence model is applied to add new magnetic flux onto the photosphere and into the corona. The parameters of this flux emergence model are derived from the solar flux emergence profile, however the rate of emergence can be increased to represent higher flux emergence rates than the Sun's. Overall we find that flux emergence has a greater effect on the non-potential coronal properties compared to differential rotation, with all the aforementioned properties incr...

  1. Sagging rope sign in achondroplasia is different from Perthes disease.

    Science.gov (United States)

    Oh, Chang-Wug; Shingade, Viraj Uttamrao; Song, Hae-Ryong; Suh, Seung-Woo; Hong, Jun-Seok; Lee, Seok-Hyun

    2005-01-01

    The "sagging rope" sign is a radiopaque line seen on radiographs of hips with Perthes disease. The main purpose of this study was to determine the incidence, cause, and importance of this sign in achondroplasia and to reveal how it differs from in Perthes disease. Serial radiograms, along with two- and three-dimensional CT images were studied in 42 patients with achondroplasia. The sign was observed bilaterally in all patients. Evaluation of CT images revealed spherical heads with the presence of circumferential overhang in all hips. This circumferential overhang seen on three-dimensional CT images corresponded to the sagging rope sign on plain radiographs. The presence of the sagging rope sign in bilateral hips is a characteristic feature of achondroplasia. It usually appears before epiphyseal closure. Its cause, incidence, and nature differ from in Perthes disease, and its presence does not carry a negative prognosis in achondroplasia.

  2. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  3. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction.

    Science.gov (United States)

    Dong, Quan-Li; Wang, Shou-Jun; Lu, Quan-Ming; Huang, Can; Yuan, Da-Wei; Liu, Xun; Lin, Xiao-Xuan; Li, Yu-Tong; Wei, Hui-Gang; Zhong, Jia-Yong; Shi, Jian-Rong; Jiang, Shao-En; Ding, Yong-Kun; Jiang, Bo-Bin; Du, Kai; He, Xian-Tu; Yu, M Y; Liu, C S; Wang, Shui; Tang, Yong-Jian; Zhu, Jian-Qiang; Zhao, Gang; Sheng, Zheng-Ming; Zhang, Jie

    2012-05-25

    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

  4. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  5. Kinematic characteristics of motor patterns in rope skipping

    OpenAIRE

    Luiz Henrique da Silva; Ana Maria Pellegrini

    2009-01-01

    Rope skipping seems to be an easy task to be performed. However, careful analysis of this motor skill shows how complex the execution of this task is. The objective of this study was to examine kinematic variables of jump patterns as a function of skipping frequency. Eight male university students performed a sequence of 30 rope jumps using two jump patterns (alternating support of the feet and simultaneous support of the feet) at three skipping frequencies (1.5, 1.7,1.9 Hz). Frequencies were...

  6. Active flow control of the vortex rope and pressure pulsations in a swirl generator

    Directory of Open Access Journals (Sweden)

    Ardalan Javadi

    2017-01-01

    Full Text Available The vortex rope and pressure pulsations caused by a radial pressure gradient in the conical diffuser of a swirl generator is controlled using continuous slot jets with different momentum fluxes and angles injected from the runner crown. The swirl apparatus is designed to generate flows similar to those in the different operating conditions of a Francis turbine. The study is done with numerical modelling using the hybrid URANS-LES (Unsteady Reynolds-Averaged Navier–Stokes–Large Eddy Simulation method with the rotor–stator interaction. The comprehensive studies of Javadi and Nilsson [Time-accurate numerical simulations of swirling flow with rotor–stator interaction. Flow, Turbulence and Combustion, Vol. 95, pp. 755–774], and Javadi, Bosioc, Nilsson, Muntean and Susan-Resiga [Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME Journal of Fluids Engineering, doi:10.1115/1.4033416] are considered as the bench mark, and the capabilities of the technique is studied in the present work with the validated numerical results presented in those studies. The pressure pulsations caused by the pressure gradient generated by the swirl, present at off-design conditions, are cumbersome for hydropower structures. The investigation shows that the pressure pulsation, velocity fluctuations and the size of the vortex rope decrease when the jet is injected from the runner crown. The flow rate of the jet is less than 3% of the flow rate of the swirl generator. The momentum flux, angle of injection of the jet and the position of the slot are important factors for the effectiveness of the flow control technique.

  7. Role of steel wire ropes in mine safety

    CSIR Research Space (South Africa)

    Peake, A

    2008-11-01

    Full Text Available Today there are an estimated 2 300 steel wire ropes installed in roughly 200 underground mines in South Africa. These mines employ more than 280 000 workers underground and hoist several millions of tonnes of rock to the surface every month...

  8. Safe use of mine winding rope, volume 1: executive summary.

    CSIR Research Space (South Africa)

    Hecker, GFK

    1996-04-01

    Full Text Available The current South African regulations for sizing of mine winder ropes were introduced during 1956, based mainly on circumstantial evidence. A more rational approach was required to meet the demands for improved guarantees of safety and for more...

  9. Thermoelectric power of a single-walled carbon nanotubes rope.

    Science.gov (United States)

    Yu, Fang; Hu, Lijun; Zhou, Haiqing; Qiu, Caiyu; Yang, Huaichao; Chen, Minjiang; Lu, Jianglei; Sun, Lianfeng

    2013-02-01

    In this work, a rope of single-walled carbon nanotubes is prepared by using a diamond wire drawing die. At atmospheric condition, the electrical conductance and the thermoelectric voltage of single-walled carbon nanotubes rope have been investigated with the hot-side temperature ranging from 292 to 380 K, and cold-side temperature at 292 K. For different temperatures in the range of 292 to 380 K at hot-side, the current-voltage curves are almost parallel to each other, indicating that the electrical conductance does not change. The dynamic characteristics of voltage at positive, zero and negative current bias demonstrate that a thermoelectric voltage is induced with a direction from hot- to cold-side. The induced thermoelectric voltage shows linear dependence on the temperature difference between hot- and cold-side. The thermoelectric power of single-walled carbon nanotubes rope is found to be positive and has a value about 17.8 +/- 1.0 microV/K. This result suggests the hole-like carriers in single-walled carbon nanotubes rope. This study will pave the way for single-walled carbon nanotubes based thermoelectric devices.

  10. Pull-pull position control of dual motor wire rope transmission

    Science.gov (United States)

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  11. Dynamic Response of Parallel Hoisting System under Drive Deviation between Ropes with Time-Varying Length

    Directory of Open Access Journals (Sweden)

    Guohua Cao

    2017-01-01

    Full Text Available The dynamic responses of parallel hoisting system with time-varying length and rigid guidance under drive deviation are investigated considering tension and torsion characteristics of the ropes. The variable-domain three-node elements of rope are employed and the corresponding differential algebraic equations (DAEs are derived using Lagrange’s equations of the first kind. The slack situation of the rope is considered, and the dynamic equations which are systems of DAEs are transformed to ordinary differential equations (ODEs. The dynamic responses of tension, torsion, and acceleration are analyzed considering radius’ error of the drums, which indicates that the drive deviation between ropes can cause large influence on the tension difference and even cause one of the ropes to slack. However, the torsion of the corresponding rope is active. And unreasonable discordance between ropes should be controlled for the design and manufacture of drum on super deep parallel hoisting system.

  12. Basic properties of magnetic flux tubes and restrictions on theories of solar activity

    Science.gov (United States)

    Parker, E. N.

    1976-01-01

    It is shown that the mean longitudinal field in a magnetic flux tube is reduced, rather than enhanced, by twisting the tube to form a rope. It is shown that there is no magnetohydrostatic equilibrium when one twisted rope is wound around another. Instead there is rapid line cutting (neutral point annihilation). It is shown that the twisting increases, and the field strength decreases, along a flux tube extending upward through a stratified atmosphere. These facts are at variance with Piddington's (1975) recent suggestion that solar activity is to be understood as the result of flux tubes which are enormously concentrated by twisting, which consist of several twisted ropes wound around each other, and which came untwisted where they emerge through the photosphere.

  13. Wire rope improvement program. Fiscal years 1979 to 1980. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, M.H.; Alzheimer, J.M.; Anderson, W.E.; Beeman, G.H.; Rice, R.C.; Strope, L.A.; Werry, E.V.

    1980-08-01

    This report describes the work performed by the Pacific Northwest Laboratory and its subcontractor Battelle Columbus Laboratories on the Wire Rope Improvement Program during FY-1979 and the first half of FY80. The program, begun in 1975 by the US Bureau of Mines, was transferred to the US Department of Energy (DOE) on October 1, 1978. Since that time, the DOE's Division of Solid Fuels Mining and Preparation has sponsored the program. To address identified problems and provide information from which behavior of large-diameter wire rope could be better understood, efforts in the following areas were undertaken: large-diameter rope testing, small-diameter rope testing, data analysis and evaluation, wear and failure analysis, load sensor development, and technology transfer. Wire ropes 3/4 in., 1-1/2 in., and 3 in. in diameter were tested in bend-over sheave fatigue. Attempts were made to correlate fatigue life of these ropes. Limited field rope data were available to compare with test results. The modes of failure and wear in laboratory ropes were compared with those seen previously in field ropes. A load sensor was designed and ordered in FY79. It will be connected to the drag rope and jewelry of working draglines during the summer of FY80. Technology transfer was achieved through disseminating written materials, conducting seminars, holding a national symposium, and filming of selected field operations.

  14. Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments

    Institute of Scientific and Technical Information of China (English)

    Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang

    2013-01-01

    The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.

  15. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  16. Design aspects of a deployable tensegrity-hollow-rope footbridge

    OpenAIRE

    Rhode-Barbarigos, Landolf; BEL HADJ ALI, Nizar; Motro, René; Smith, Ian F. C.

    2012-01-01

    International audience; Tensegrity structures are composed of cables and struts in a pre-stressed self-equilibrium. Although tensegrity first appeared in the 1950s, it is seldom used in civil engineering. This paper focuses on the design aspects of a deployable tensegrity-hollow-rope footbridge. Deployment is usually not a critical design case for traditional deployable structures. However, for tensegrity systems deployment may be critical due to the actuation required. In this paper, deploym...

  17. The sagging rope sign in Perthes' disease and allied disorders.

    Science.gov (United States)

    Apley, A G; Wientroub, S

    1981-02-01

    The sagging rope sign is the term used to describe the radiographic appearances which sometimes occur after Perthes' disease. It is severe examples of that disease and indicates damage to the growth plate with a marked metaphysial reaction. The same appearance follows severe epiphysitis after forcible reduction of a congenitally dislocated hip, and certain rare epiphysial dysplasias. The origin and significance of the sign are discussed.

  18. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    Science.gov (United States)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  19. Signal Acquisition and Processing in the Magnetic Defectoscopy of Steel Wire Ropes

    Directory of Open Access Journals (Sweden)

    N. S. Jovičić

    2012-11-01

    Full Text Available The system that resolves the problem of wire rope defects using a magnetic method of inspection is presented in this paper. Implementation of the system should provide for full monitoring of wire rope condition, according to the prescribed international standards. The purpose of this system, in addition to identifying defects in the rope, is to determine to what extent damage has been done. The measurement procedure provides for a better understanding of the defects that occur, as well as the rejection criteria of used ropes, that way increasing their security. Hardware and software design of appliance for recording defects and test results are presented in this paper.

  20. Iris si iv line profiles: An indication for the plasmoid instability during small-scale magnetic reconnection on the sun

    CERN Document Server

    Innes, Davina; Huang, YiMin; Bhattacharjee, Amitava

    2015-01-01

    Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism that invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profiles observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma h...

  1. Feeling the Tug: Creative Use of Ropes and Felt Board to Promote Family Change

    Science.gov (United States)

    Bruhn, Rick A.; Lykke, Debra B.; Duhl, Bunny S.

    2006-01-01

    Experiential metaphor has been used in marriage and family therapy for many years. One example of metaphor application involves the use of ropes and felt board to identify and explore relationships in families. In this case, the mother of a son who was socially isolated is treated by a marriage and family therapy intern, using ropes and felt board…

  2. Jump Rope Skills for Fun and Fitness in Grades K-12

    Science.gov (United States)

    Michiels Hernandez, Barbara L.; Gober, Donna; Boatwright, Douglas; Strickland, George

    2009-01-01

    A jump rope is a remarkable piece of exercise equipment. It is inexpensive and easy to store, and it can be used by a wide variety of age groups to improve cardiovascular fitness, increase agility, and tone the body's muscles all at the same time. Consequently, the teaching of jump rope skills is highly suitable for physical education classes in…

  3. Relating to Older People Evaluation (ROPE): A Measure of Self-Reported Ageism

    Science.gov (United States)

    Cherry, Katie E.; Palmore, Erdman

    2008-01-01

    The Relating to Older People Evaluation (ROPE) is a 20-item questionnaire that measures positive and negative ageist behaviors that people may engage in during everyday life. In this article, we report the first findings from several administrations of the ROPE along with initial psychometric information on the instrument. Respondents were college…

  4. Theoretical coupling longitudinal-transverse model and experimental verification of transverse vibration of rope for multi-rope friction hoisting system

    National Research Council Canada - National Science Library

    Juan Wu Ziming Kou

    2016-01-01

    Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle...

  5. Deterioration of Synthetic Fiber Rope during Marine Usage

    Science.gov (United States)

    1981-12-31

    essential to establish such changes and to 3.27 determine their effect on subsequent constitutive behavior of the filaments involved. Future Plans Further...explore the fatigue behavior of higher order rope structures, both in theory and in experiment, The approach being taken is to consider fatigue failure...of Pneumatic Tires, Edited by S. Clark, N.B.S. Monograp 12,2, Washington, D.C. (1971). 6.3 Treloar , L.R.G. and Riding, G., A Theory of the Stresm

  6. The structure of flux transfer events recovered from Cluster data

    Directory of Open Access Journals (Sweden)

    H. Hasegawa

    2006-03-01

    Full Text Available The structure and formation mechanism of a total of five Flux Transfer Events (FTEs, encountered on the equatorward side of the northern cusp by the Cluster spacecraft, with separation of ~5000 km, are studied by applying the Grad-Shafranov (GS reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assumption that the structure is two-dimensional (2-D and time-independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggesting that multiple X-line reconnection was involved in generating the observed FTEs. The dimension of the flux ropes in the direction normal to the magnetopause ranges from about 2000 km to more than 1 RE. The orientation of the flux rope axis can be determined through optimization of the GS map, the result being consistent with those from various single-spacecraft methods. Thanks to this, the unambiguous presence of a strong core field is confirmed, providing evidence for component merging. The amount of magnetic flux contained within each flux rope is calculated from the map and, by dividing it by the time interval between the preceding FTE and the one reconstructed, a lower limit of the reconnection electric field during the creation of the flux rope can be estimated; the estimated value ranges from ~0.11 to ~0.26 mV m-1, with an average of 0.19 mV m-1. This can be translated to the reconnection rate of 0.038 to 0.074, with an average of 0.056. Based on the success of the 2-D model in recovering the observed FTEs, the length of the X-lines is estimated to be at least a few RE.

  7. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  8. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  9. Degradation of common polymer ropes in a sublittoral marine environment.

    Science.gov (United States)

    Welden, Natalie A; Cowie, Phillip R

    2017-05-15

    Contamination by microplastic particles and fibres has been observed in sediment and animals sampled from the Firth of Clyde, West Scotland. In addition to microplastics released during clothes washing, a probable source is polymer ropes in abandoned, lost and discarded fishing and recreational sailing gear. The fragmentation of polypropylene, polyethylene, and nylon exposed to benthic conditions at 10m depth over 12months was monitored using changes in weight and tensile properties. Water temperature and light levels were continuously monitored. The degree of biofouling was measured using chlorophyll a, the weight of attached macroalgae, and colonising fauna. Results indicate microplastic fibres and particles may be formed in benthic environments despite reduced photodegradation. Polypropylene, Nylon, and polyethylene lost an average of 0.39%, 1.02%, and 0.45% of their mass per month respectively. Microscope images of the rope surface revealed notable surface roughening believed to be caused by abrasion by substrate and the action of fouling organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Research on wire rope deformation distribution of WR-CVT

    Science.gov (United States)

    Zhang, Wu; Guo, Wei; Zhang, Chuanwei; Lu, Zhengxiong; Xu, Xiaobin

    2017-07-01

    A wire rope continuously variable transmissions (WR-CVT) has been introduced in the paper, in view of its less research, this paper mainly studied the deformation distribution of 6×7+IWS bending wire rope. The results shown that in the same section, half of the side strands are in a stretched state and half are in a compressed state. When the transmission ratio i=2.35, the maximum deformation and the minimum deformation are decrease when section U1 to U2, U3 transition. Wire deformation distribution when the transmission ratio i=0.42 is similar to that of i=0.2.35. Wire deformation amount and the deformation difference decrease as the transmission ratio decreases, this shows that the increase in the bending radius of the wire will make the wire deformation more uniform, and the reduction of the deformation difference will also reduce the wear. This study provides a basis for the study of fatigue and wears failure of WR-CVT components.

  11. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  12. Dynamic field of elastic displacements in a rope which is reeled up on the drum at lifting of loads

    Directory of Open Access Journals (Sweden)

    V. A. Ostapenko

    2011-11-01

    Full Text Available The boundary-value problem about construction of the displacement waves and the strain waves arising in ropes of elevating devices, such as lifts, mine lifts and so on is considered. The rope at lifting of loads is reeled up on a drum. In a case when the friction coefficient of a rope about a drum is not too big, occurs frictional sliding a rope on a drum. Therefore the behavior of a rope on a drum is described by the telegraph equation. The behavior of a hanging part of a rope is described by the wave equation. It means, that in different parts of a rope the displacements are solutions of the different equations. That is from this point of view the rope is shared on two zones. Thus owing to reeling of a rope on a drum the border which shares these two zones is a variable. In such model the waves not only reflect from ending points of a rope. There is also their reflection and refraction on moving border of the sharing of zones. Is developed methods for obtaining of exact solutions for the boundary-value problems with mobile borders for both the wave and telegraph equations. They are based on maintenance of a continuity of the displacements in points of reflection of waves. The exact solution of such problem is obtained for the case of sagging a rope prior to the beginning of rise.

  13. Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation

    Directory of Open Access Journals (Sweden)

    Shoichiro Takehara

    2016-01-01

    Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.

  14. Damage-Induced Stresses and Remaining Service Life Predictions of Wire Ropes

    Directory of Open Access Journals (Sweden)

    Goran Vukelic

    2017-01-01

    Full Text Available Wire ropes in marine applications often encounter relatively fast and noticeable wear, a result of the fatigue to which they are exposed coupled with harsh operational conditions. This paper addresses some of the aspects of fatigue damage that occur in wire ropes. Using the finite element method, stress and fatigue analysis of three different design types (6 × 7, 7 × 7, 8 × 7 of wire rope is performed. The size of the wire rope cross-section area is varied in order to simulate the progressive damage of the wires so that consequential stress levels and remaining fatigue life can be numerically predicted. The aim was to provide a better understanding of the mechanical behavior of damaged wire ropes under various conditions, since an appropriate choice of wire rope design could then be made from engineering and economic points of view. Additionally, potential failures can be predicted, resulting in effective maintenance and the avoidance of potential risks of rope failure, especially important regarding economical and safety aspects of transportation in the marine industry.

  15. Finite element analysis on the wire breaking rule of 1×7IWS steel wire rope

    Directory of Open Access Journals (Sweden)

    Wenzheng Du

    2017-01-01

    Full Text Available Taking the wire rope of 1×7+IWS structure as the research object, the influences of the number of broken wires on the stress distribution under the same axial load were simulated and analysed, and it also explored the rule of wire breaking of steel wire ropes. Based on the SolidWorks software, the three-dimensional model of the wire rope was established. Importing the model into the ABAQUS, the finite element model of the steel wire rope was established. Firstly 5000 N axial tension was placed on the rope, the stress distribution was simulated and analysed, and the steel wire with the largest stress distribution was found out. Then one steel wire was truncated with the load unchanged, and the finite element simulation was carried out again, and repeated the steps several times. The results show that, with the increase of the number of broken wires, the Von-Mises stress of the wire rope increases sharply, and the stress distribution is concentrated on the rest of the unbroken wires, which brings great challenges to the safety of the wire rope.

  16. Sigmoid-to-Flux-Rope Transition Leading to A Loop-Like Coronal Mass Ejection

    CERN Document Server

    Liu, Rui; Wang, Shuo; Deng, Na; Wang, Haimin

    2010-01-01

    Sigmoids are one of the most important precursor structures for solar eruptions. In this Letter, we study a sigmoid eruption on 2010 August 1 with EUV data obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). In AIA 94 \\AA\\ (Fe XVIII; 6 MK), topological reconfiguration due to tether-cutting reconnection is unambiguously observed for the first time, i.e., two opposite J-shaped loops reconnect to form a continuous S-shaped loop, whose central portion is dipped and aligned along the magnetic polarity inversion line (PIL), and a compact loop crossing the PIL. A causal relationship between photospheric flows and coronal tether-cutting reconnections is evidenced by the detection of persistent converging flows toward the PIL using line-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board SDO. The S-shaped loop remains in quasi-equilibrium in the lower corona for about 50 minutes, with the central dipped portion rising slowly at ~10 km s-1. ...

  17. Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet

    Science.gov (United States)

    Engelhardt, Max; Ries, Stefan; Hermanns, Patrick; Bibinov, Nikita; Awakowicz, Peter

    2017-09-01

    A smooth layer of hard aluminium film is deposited onto a glass substrate with a multi-frequency CCP discharge and then treated in the effluent of a non-equilibrium atmospheric pressure plasma jet (N-APPJ) operated with Ar flow. A thin filament is formed in the argon N-APPJ through contraction of a diffuse feather-like discharge. The aluminium surface treated in the effluents of the N-APPJ is significantly modified. Erosion tracks of different forms and micro-balls composed of aluminium are observed on the treated surface. Based on CCD images of active plasma discharge channels, SEM images of the treated surface and current-voltage characteristics, these surface modifications are interpreted as traces of plasma spots and plasmoids. Plasma spots are focused plasma channels, which are characterized by an intense emission in CCD images at the contact point of a plasma channel with the treated metal surface and by deep short tracks on the aluminium surface, observed in SEM images. Plasmoids are plasma objects without contact to any power supply which can produce long, thin and shallow traces, as can be observed on the treated surface using electron microscopy. Based on observed traces and numerous transformations of plasma spots to plasmoids and vice versa, it is supposed that both types of plasma objects are formed by an extremely high axial magnetic field and differ from each other due to the existence or absence of contact to a power supply and the consequential transport of electric current. The reason for the magnetic field at the axis of these plasma objects is possibly a circular current of electron pairs in vortices, which are formed in plasma by the interaction of ionization waves with the substrate surface. The extremely high magnetic field of plasma spots and plasmoids leads to a local destruction of the metal film and top layer of the glass substrate and to an attraction of paramagnetic materials, namely aluminium and oxygen. The magnetic attraction of

  18. Behavioral and Physiological Responses of Calves to Marshalling and Roping in a Simulated Rodeo Event

    Science.gov (United States)

    Sinclair, Michelle; Keeley, Tamara; Lefebvre, Anne-Cecile; Phillips, Clive J. C.

    2016-01-01

    Simple Summary Rodeos often include a calf roping event, where calves are first lassoed by a rider on a horse, who then dismounts, ties the calves’ legs, lifts it from the ground and releases it back to the floor. We tested whether calves that were familiar to the roping experience stress during the roping event, and found increased concentrations of stress hormones in their blood after the roping. We also found increased concentrations of stress hormones in the blood of calves that had never been roped before but were just marshelled across the arena by the horse and rider. We conclude that the roping event in rodeos is stressful for both experienced and naïve calves. Abstract Rodeos are public events at which stockpeople face tests of their ability to manage cattle and horses, some of which relate directly to rangeland cattle husbandry. One of these is calf roping, in which a calf released from a chute is pursued by a horse and rider, who lassoes, lifts and drops the calf to the ground and finally ties it around the legs. Measurements were made of behavior and stress responses of ten rodeo-naïve calves marshalled by a horse and rider, and ten rodeo-experienced calves that were roped. Naïve calves marshalled by a horse and rider traversed the arena slowly, whereas rodeo-experienced calves ran rapidly until roped. Each activity was repeated once after two hours. Blood samples taken before and after each activity demonstrated increased cortisol, epinephrine and nor-epinephrine in both groups. However, there was no evidence of a continued increase in stress hormones in either group by the start of the repeated activity, suggesting that the elevated stress hormones were not a response to a prolonged effect of the initial blood sampling. It is concluded that both the marshalling of calves naïve to the roping chute by stockpeople and the roping and dropping of experienced calves are stressful in a simulated rodeo calf roping event. PMID:27136590

  19. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bialek, A., E-mail: abialek@snolab.ca [University of Alberta, Edmonton (Canada); Chen, M. [Queen' s University, Kingston (Canada); Cleveland, B. [SNOLAB, Lively (Canada); Gorel, P.; Hallin, A. [University of Alberta, Edmonton (Canada); Harvey, P.J.; Heise, J. [Queen' s University, Kingston (Canada); Kraus, C. [Laurentian University, Sudbury (Canada); Krauss, C.B. [University of Alberta, Edmonton (Canada); Lawson, I. [SNOLAB, Lively (Canada); Ng, C.J.; Pinkney, B. [University of Alberta, Edmonton (Canada); Rogowsky, D.M. [Rogowsky Engineering Ltd, AECOM Canada Ltd (Canada); Sibley, L.; Soluk, R.; Soukup, J. [University of Alberta, Edmonton (Canada); Vázquez-Jáuregui, E. [SNOLAB, Lively (Canada); Laurentian University, Sudbury (Canada)

    2016-08-11

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  20. Design of strain tension sensor of steel wire rope used in the coal mine

    Science.gov (United States)

    Zhang, Xin; Jin, Huawei

    2016-01-01

    According to the dynamic tension testing requirements of the multi-rope winder rope, this paper designs the sensor used to measure the tension of steel wire rope directly. The sensor uses the strain shear measuring principle, and has many features with small size, big measuring range, easy to install, don't change the structure of connected devices and so on. Application of the finite element analysis software makes the structure of the sensor optimized, and then enhance the static and dynamic performance of the sensor.

  1. Movement analysis on steel wire rope of continuous conveyor with disc-tube assembly

    Institute of Scientific and Technical Information of China (English)

    LUAN Li-jun; SHI Shu-lin; REN Li-yi

    2004-01-01

    The steel wire rope of continuous conveyor with disc-tube assembly is droved by the driving wheel. When the driving wheel rotates, the gear is combined to the connection disc in turn, promoting the connection disc to move in succession. Turning the whirling torque of driving wheel into the straight-line traction force. When the steel wire rope is winded by the driving wheel some winded along the circumference, others winded along the straight line. Used motion subject law, this article analyses the change of the velocity and the acceleration of the steel wire rope in the straight movement, and observe the mathematics' model of velocity and acceleration.

  2. Hydroelectric System Response to Part Load Vortex Rope Excitation

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.

    2016-11-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.

  3. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20’s

    Science.gov (United States)

    Seo, KyoChul

    2017-01-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20’s. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index. PMID:28878460

  4. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  5. Flux emergence in a magnetized convection zone

    CERN Document Server

    Pinto, R F

    2013-01-01

    We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux-ropes, and their influence on the global external magnetic field. We ran 3D MHD numerical simulations using the ASH code and analysed the dynamical evolution of such buoyant flux-ropes from the bottom of the convection zone until the post-emergence phases. The global nature of this model represents very crudely and inaccurately the local dynamics of the buoyant rise, but allows to study the influence of global effects such as self-consistently generated differential rotation, meridional circulation and Coriolis forces. Although motivated by the solar context, this model cannot be thought of as a realistic model of the rise of magnetic structures and their emergence in the Sun where the local dynamics are completely different. The properties of initial phases of the buoyant rise in good agreement with previous studies. However, the effects of the interaction of the background dynamo field become increas...

  6. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  7. Interpretation of damages in hoisting ropes based on the testing device with three sensors

    Energy Technology Data Exchange (ETDEWEB)

    Langebrake, F.; Fuchs, D.; Sindern, W.; Spas, W. [DMT-Gesellschaft fuer Foerderung und Transport, Bochum (Germany)

    1996-12-31

    The compulsion for cost-effective hoisting led to the concentration of few heavy-loaded Koepe hoists. The heavy load demands a lot of operational safety of the component parts that are subjected to high-level static and dynamic stresses. The DMT-Institute of Hoisting and Transport has developed suitable test methods to record reliably damage of the ropes. Apart from the visual inspection, non-destructive test methods are used to obtain information about wire breaks, cross section losses by corrosion or wear and the rope diameter. The assessment of the test results considers the rope stresses, operational conditions and damage developments that were derived from previous running ropes. 3 refs., 11 figs.

  8. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    National Research Council Canada - National Science Library

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-01-01

    ... to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines...

  9. Computational fluid dynamics modeling of rope-guided conveyances in two typical kinds of shaft layouts.

    Directory of Open Access Journals (Sweden)

    Renyuan Wu

    Full Text Available The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.

  10. Dynamic High-speed Knotting of a Rope by a Manipulator

    Directory of Open Access Journals (Sweden)

    Yuji Yamakawa

    2013-10-01

    Full Text Available In this paper we suggest an entirely new strategy for the dexterous manipulation of a linear flexible object, such as rope or a cable, with a high-speed manipulator. We deal with a flexible rope as one example of the linear flexible object. The strategy involves manipulating the object at high-speed. By moving the robot at high-speed, we can assume that the dynamic behaviour of the flexible rope can be obtained by performing algebraic calculations of the high- speed robot motion. Based on this assumption, we derive a dynamic deformation model of the flexible rope and confirm the validity of the proposed model. Then we perform a simulation of dynamic, high-speed knotting based on the proposed model. We also discuss the possibility of forming the knot based on a simple analysis model. Finally, we show experimental results demonstrating dynamic, high-speed knotting with a high-speed manipulator.

  11. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so...... the shear capacity of wire loop connections. Tests have shown that the shear capacity of such joints – due to the relatively high tensile strength of the wire ropes - is more prone to be governed by fracture of the joint mortar in combination with yielding of the locking bar. To model this type of failure...

  12. Timing perception and motor coordination on rope jumping in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Chen, Ying-Yi; Liaw, Lih-Jiun; Liang, Jing-Min; Hung, Wei-Tso; Guo, Lan-Yuen; Wu, Wen-Lan

    2013-05-01

    To evaluate timing perception ability and motor coordination in children with ADHD (Attention Deficit Hyperactivity Disorder) while rope jumping at different rates. Rope jumping at (1) a constant tempo of 100 for 15 s (RJ-C) and (2) two randomly permutated tempos (80, 100, or 120) for 15 s (RJ-V). The "timing variation while jumping", "timing variation while whirling", and "hand-foot deviation time" in each rope jumping cycle were recorded, to assess the time estimation ability. 10 children with ADHD (9.65 ± 1.27 years) and 10 children without ADHD (9.93 ± 1.54 years) were recruited. The ADHD group showed greater variation in time between the foot jumping and the rope whirling tasks. Also, the median value of hand-foot deviation time was greater in the ADHD group (3.34 ms) than in the control group (1.75 ms). In RJ-V, the control group was able to modify their pace and respond to the target speed in the post-phase, while the ADHD group could not. Impaired timing perception leads to less accurate performance during rope jumping for ADHD children. The findings also reveal that poor hand-foot coordination results in poor control of simultaneous movements of the upper and lower limbs during rope jumping. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Tensile Property Analysis and Prediction Model Building for Coir Rope Reinforced Unsaturated Polyester Composite

    Directory of Open Access Journals (Sweden)

    Jia Yao

    2014-12-01

    Full Text Available Because of the light weight and environmental advantages of natural fibers, an increasing amount of natural fibers have been used to replace synthetic fibers in reinforced unsaturated polyester (UPE. Because of the impact property advantage of coir fibers, coir toughened UPE composites can achieve excellent impacting toughness, but at the cost of a lower tensile performance. In order to get the better comprehensive performance, the tensile strength must be maintained in a higher level, so coir ropes as an appropriate reinforced form were added to UPE matrix. The different weight-percent contents for the coir rope addition were set to achieve coir rope reinforced UPE composites with different coir contents. The tensile test results showed increasing tensile strength with the increased content of coir ropes. To reasonably and accurately predict the composite performance, taking the original performance prediction model based on a continuous reinforced fiber composite (using the Classical Mixed Law as a reference and assuming each coir rope was ideally continuous fiber, the destructive principle of coir rope reinforced UPE composite under the action of tensile load was analyzed and the tensile failure mechanics model was improved. According to the experimental proof, the new model can be proven to have higher precision accuracy, which can provide new train of thought for the building of the theoretical models for natural fiber reinforced composites, thus guiding the actual production application.

  14. Behavioral and Physiological Responses of Calves to Marshalling and Roping in a Simulated Rodeo Event

    Directory of Open Access Journals (Sweden)

    Michelle Sinclair

    2016-04-01

    Full Text Available Rodeos are public events at which stockpeople face tests of their ability to manage cattle and horses, some of which relate directly to rangeland cattle husbandry. One of these is calf roping, in which a calf released from a chute is pursued by a horse and rider, who lassoes, lifts and drops the calf to the ground and finally ties it around the legs. Measurements were made of behavior and stress responses of ten rodeo-naïve calves marshalled by a horse and rider, and ten rodeo-experienced calves that were roped. Naïve calves marshalled by a horse and rider traversed the arena slowly, whereas rodeo-experienced calves ran rapidly until roped. Each activity was repeated once after two hours. Blood samples taken before and after each activity demonstrated increased cortisol, epinephrine and nor-epinephrine in both groups. However, there was no evidence of a continued increase in stress hormones in either group by the start of the repeated activity, suggesting that the elevated stress hormones were not a response to a prolonged effect of the initial blood sampling. It is concluded that both the marshalling of calves naïve to the roping chute by stockpeople and the roping and dropping of experienced calves are stressful in a simulated rodeo calf roping event.

  15. A Markov chain analysis of the effectiveness of drum-buffer-rope material flow management in job shop environment

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2015-09-01

    Full Text Available The theory of constraints is an approach for production planning and control, which emphasizes on the constraints in the system to increase throughput. The theory of constraints is often referred to as Drum-Buffer-Rope developed originally by Goldratt. Drum-Buffer-Rope uses the drum or constraint to create a schedule based on the finite capacity of the first bottleneck. Because of complexity of the job shop environment, Drum-Buffer-Rope material flow management has very little attention to job shop environment. The objective of this paper is to apply the Drum-Buffer-Rope technique in the job shop environment using a Markov chain analysis to compare traditional method with Drum-Buffer-Rope. Four measurement parameters were considered and the result showed the advantage of Drum-Buffer-Rope approach compared with traditional one.

  16. Changing the functional state of the pupils of high classes during the passage of obstacles rope park

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2012-03-01

    Full Text Available The influence of training in rope parks on parameters of heart rate and reaction rate high school students. A measurement of heart rate monitor using the continuous recording of heart rate «Polar» during the rope obstacles Park students. Also, the reaction rate was measured before and after passing obstacles rope park students on the program "Psychodiagnostics". In the study involved 42 student of 10th class of the Kharkiv school N140. Research conducted at the park Kharkov «S-Park." Found that the passage of rope barriers provides functional load, which corresponds to the average load of aerobic capacity. Heart rate during the obstacle is in the range 130-150 beatsmin-1. Passing the rope stages has stimulating effect on the functional status of school children, as evidenced by the increasing speed of complex reactions. Classes in rope parks can be used more widely in the system of physical education.

  17. The numerical research of runner cavitation effects on spiral vortex rope in draft tube of Francis turbine

    Science.gov (United States)

    Yang, J.; Zhou, L. J.; Wang, Z. W.

    2015-12-01

    The spiral cavitating vortex rope developed in the draft tube of Francis turbine under part load condition maybe causes serious pressure fluctuations and power swings, which threatens the safety and stability of the power plant operations. Many works have been performed to explore the mechanisms of it. In this paper, the runner cavitation and spiral vortex rope under part load conditions were studied to investigate the relations of runner cavitation and the spiral vortex rope. The results proved the existence of obvious interaction between them. The swirl flow at the runner outlet plays an important role in the formation of vortex rope. And the periodic procession of vortex rope in turn intensifies the uneven pressure distribution near the runner outlet and causes the asymmetric cavitation on the runner blades, which then give rise to the modification of swirl flow at the runner blades and thereby affects the characteristics of vortex rope.

  18. Mussel Spat Ropes Assist Redfin Bully Gobiomorphus huttoni Passage through Experimental Culverts with Velocity Barriers

    Directory of Open Access Journals (Sweden)

    Liam A.H. Wright

    2012-09-01

    Full Text Available The application of mussel spat rope for enabling the passage of redfin bully Gobiomorphus huttoni through culverts, which create velocity barriers, was trialled in the laboratory. No fish were able to access the un-roped control pipes whereas 52% successfully negotiated the pipes in the rope treatments. The success of fish ascending treatment pipes suggests mussel spat rope may be effective for enabling the passage of this and other similar fish species through otherwise impassable culverts with velocity barriers.

  19. Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes

    Science.gov (United States)

    Otto, A.

    1995-01-01

    During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.

  20. Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux

    CERN Document Server

    Kosovichev, A G

    2009-01-01

    Magnetic fields emerging from the Sun's interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy's law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appe...

  1. Shear behavior of concrete beams externally prestressed with Parafil ropes

    Directory of Open Access Journals (Sweden)

    A.H. Ghallab

    2013-03-01

    Full Text Available Although extensive work has been carried out investigating the use of external prestressing system for flexural strengthening, a few studies regarding the shear behavior of externally prestressed beams can be found. Five beams, four of them were externally strengthened using Parafil rope, were loaded up to failure to investigate the effect of shear span/depth ratio, external prestressing force and concrete strength on their shear behavior. Test results showed that the shear span to depth ratio has a significant effect on both the shear strength and failure mode of the strengthened beams and the presence of external prestressing force increased the ultimate load of the tested beams by about 75%. Equations proposed by different codes for both the conventional reinforced concrete beams and for ordinary prestressed beams were used to evaluate the obtained experimental results. In general, codes equations showed a high level of conservatism in predicting the shear strength of the beams. Also, using the full strength rather than half of the concrete shear strength in the Egyptian code PC-method improves the accuracy of the calculated ultimate shear strength.

  2. Effects of fishing rope strength on the severity of large whale entanglements.

    Science.gov (United States)

    Knowlton, Amy R; Robbins, Jooke; Landry, Scott; McKenna, Henry A; Kraus, Scott D; Werner, Timothy B

    2016-04-01

    Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80-39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89-53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤ 7.56 kN (≤ 1700 lbsf) could reduce the number of life-threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries.

  3. Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation

    CERN Document Server

    Wong, Cheuk-Yin

    2015-01-01

    In the semi-classical description of the flux-tube fragmentation process, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in the flux-tube fragmentation in event-by-event exclusive measurements of produced hadrons. Besides testing the contents of the flux tube fragmentation mechanism, additional interesting problems that may be opened up for examination by these measurements include the stochastic and quantum fluctuations in flux-tube fragmentation, the effects of multiple collisions in $pA$ and light $AA$ collisions, the interaction between flux tubes and between produced particles from different flux tubes, the effect of the merging of the flux tubes, and the occurrence of the fragmentation of ropes in $AA$ collisions, if they ever occur.

  4. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  5. Load carrying capacity of keyed joints reinforced with high strength wire rope loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Hoang, Linh Cao

    2015-01-01

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  6. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  7. ARTHROSCOPIC TREATMENT OF ACROMIOCLAVICULAR JOINT DISLOCATION BY TIGHT ROPE TECHNIQUE (ARTHREX®)

    Science.gov (United States)

    GÓmez Vieira, Luis Alfredo; Visco, Adalberto; Daneu Fernandes, Luis Filipe; GÓmez Cordero, Nicolas Gerardo

    2015-01-01

    Presenting the arthroscopic treatment by Tight Rope - Arthrex® system for acute acromioclavicular dislocation and to evaluate results obtained with this procedure. Methods: Between August 2006 and May 2007, 10 shoulders of 10 patients with acute acromioclavicular dislocation were submitted to arthroscopic repair using the Tight Rope - Arthrex® system. Minimum follow-up was 12 months, with a mean of 15 months. Age ranged from 26 to 42, mean 34 years. All patients were male. Radiology evaluation was made by trauma series x-ray. The patients were assisted in the first month weekly and after three months after the procedure. Clinical evaluation was based on the University of California at Los Angeles (UCLA) criteria. Results: All patients were satisfied after the arthroscopic procedure and the mean UCLA score was 32,5. Conclusion: The arthroscopic treatment by Tight Rope – Arthrex® system for acute acromioclavicular dislocation showed to be an efficient technique. PMID:26998453

  8. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    Science.gov (United States)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  9. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  10. Investigation into the effects of steel wire rope specimen length on breaking force

    CSIR Research Space (South Africa)

    O'Brien, TM

    2004-03-01

    Full Text Available rope Table 2 summarizes the results of the tests conducted on ropes with no cut wires. Note that of the ten specimens tested, three results were discarded due to end cap failures. Similarly, certificate number 225888 was conducted in the 15 MN... the general trend in the data. It is interesting to note that the line through the specimens that failed at the end cap suggest a similar decrease in strength of the specimen with length to the acceptable tests. 19 BF = -2.143L + 1951.149 R2 = 0.791 BF...

  11. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    OpenAIRE

    Xiang-dong Chang; Yu-xing Peng; Zhen-cai Zhu; Xian-sheng Gong; Zhang-fa Yu; Zhen-tao Mi; Chun-ming Xu

    2017-01-01

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increas...

  12. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    OpenAIRE

    Kulkarni, R K; S.P.S. Rajput

    2014-01-01

    Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to ...

  13. Inhomogeneous superconductivity in quasi-one dimensional organic conductors and ropes of carbon nanotubes

    Science.gov (United States)

    Bellafi, B.; Haddad, S.; Sfar, I.; Charfi-Kaddour, S.

    2009-03-01

    It has been reported that, in quasi-one dimensional organic conductors, superconductivity may coexist macroscopically with non-superconducting states giving rise to an inhomogeneous phase. We investigate, based on the time-dependent Ginzburg-Landau theory, the effect of disorder on the stability of the superconducting phase in such a mixed state. We also focus on the interplay between superconductivity and disorder in ropes of carbon nanotubes. We show that the superconducting transition temperature in quasi-one organic conductors is reduced by disorder but does not obey the Abrikosov-Gorkov law. However, and contrary to what is expected, disorder can further superconductivity in ropes of carbon nanotubes.

  14. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    Science.gov (United States)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  15. Scented guide ropes as a method to enhance brown treesnake (Boiga irregularis) trap capture success on Guam

    Science.gov (United States)

    Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.

    2011-01-01

    Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.

  16. MESSENGER Observations of Large Flux Transfer Events at Mercury

    Science.gov (United States)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; McClintock, William E.; McNutt, Ralph L., Jr.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  17. An analytical study on the static vertical stiffness of wire rope isolators

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. S.; Rahman, M. E.; Ho, Lau Hieng [Curtin University Sarawak, Miri (Malaysia); Moussa, Leblouba [University of Sharjah, Sharjah (United Arab Emirates)

    2016-01-15

    The vibrations caused by earthquake ground motions or the operations of heavy machineries can affect the functionality of equipment and cause damages to the hosting structures and surrounding equipment. A Wire rope isolator (WRI), which is a type of passive isolator known to be effective in isolating shocks and vibrations, can be used for vibration isolation of lightweight structures and equipment. The primary advantage of the WRI is that it can provide isolation in all three planes and in any orientation. The load-supporting capability of the WRI is identified from the static stiffness in the loading direction. Static stiffness mainly depends on the geometrical and material properties of the WRI. This study develops an analytical model for the static stiffness in the vertical direction by using Castigliano's second theorem. The model is validated by using the experimental results obtained from a series of monotonic loading tests. The flexural rigidity of the wire ropes required in the model is obtained from the transverse bending test. Then, the analytical model is used to conduct a parametric analysis on the effects of wire rope diameter, width, height, and number of turns (loops) on vertical stiffness. The wire rope diameter influences stiffness more than the other geometric parameters. The developed model can be accurately used for the evaluation and design of WRIs.

  18. Different buckling regimes in direct electrospinning: A comparative approach to rope buckling

    NARCIS (Netherlands)

    Shariatpanahi, S.P.; Etesami, Z.; Iraji zad, A.; Bonn, D.; Ejtehadi, M.R.

    2015-01-01

    Understanding the dynamics of direct electrospinning is the key to control fiber morphologies that are critical for the development of new electrospinning methods and novel materials. Here, we propose the theory for direct electrospinning based on theories for (liquid) "rope coiling" and experimenta

  19. Female recreational athletes demonstrate different knee biomechanics from male counterparts during jumping rope and turning activities.

    Science.gov (United States)

    Tanikawa, Hidenori; Matsumoto, Hideo; Harato, Kengo; Kiriyama, Yoshimori; Suda, Yasunori; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-01

    A variety of athletic exercises are performed in sports training or rehabilitation after knee injuries. However, it remains unclear whether males and females exhibit similar joint loading during the various athletic motions. The purpose of this study was to identify gender differences in knee biomechanics during the athletic motions. Three-dimensional knee kinematics and kinetics were investigated in 20 recreational athletes (10 males and 10 females) while jumping rope, backward running, side running, side-to-side running, side-to-forward running, inside turning, and outside turning. The strengths of the quadriceps and hamstring muscles, the knee joint force, the knee joint angle, and the knee joint moment were compared between males and females using one-tailed t tests. Peak knee anterior force was greater in female recreational athletes than in their male counterparts during jumping rope, side-to-forward running, inside turning, and outside turning. Female subjects displayed greater peak knee abduction angles and greater peak knee flexion moments while jumping rope compared to their male counterparts. There were no significant differences between the sexes in knee kinematics and kinetics in the frontal and transverse planes during running and turning motions. Female recreational athletes exhibited significantly different knee biomechanics compared with male counterparts during jumping rope and turning motions.

  20. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    Science.gov (United States)

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  1. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  2. Extending "the Rubber Rope": Convergent Series, Divergent Series and the Integrating Factor

    Science.gov (United States)

    McCartney, Mark

    2013-01-01

    A well-known mathematical puzzle regarding a worm crawling along an elastic rope is considered. The resulting generalizations provide examples for use in a teaching context including applications of series summation, the use of the integrating factor for the solution of differential equations, and the evaluation of definite integrals. A number of…

  3. Evaluation of arthroscopic stabilization of acute acromioclavicular joint dislocation using the TightRope system.

    Science.gov (United States)

    El Sallakh, Sameh A

    2012-01-16

    The purpose of this study was to evaluate the results of the arthroscopic treatment of acute acromioclavicular dislocation using the TightRope system (Arthrex, Naples, Florida). Between January 2006 and May 2007, ten shoulders in 10 patients with acute acromioclavicular joint dislocation (Rockwood types IV and V) underwent arthroscopic acromioclavicular joint stabilization using the TightRope. Average patient age was 30 years (range, 22-42 years), and mean follow-up was 24 months (range, 18-30 months). Follow-up occurred at 2 and 6 weeks, 3 months, and then every 6 months postoperatively. The shoulders were evaluated radiologically by comparing the acromioclavicular joint with the normal side and clinically by assessing the pain, function, and range of joint motion using the Constant score.Ten patients returned to work without pain 10 to 12 weeks postoperatively. Average Constant score was 96.3 (range, 94-99) at last follow-up. Because of technical error, 1 patient experienced TightRope fixation failure on the coracoid side, and the acromioclavicular joint was redislocated, which was treated by an open technique. The 10 patients were satisfied with their functional results and cosmetic appearance.The arthroscopic treatment of acute acromioclavicular dislocation using the TightRope is a minimally invasive surgical technique that has been proven effective for the treatment of these lesions. It is characterized by less morbidity, less hospitalization, excellent cosmoses, and early rehabilitation. Copyright 2012, SLACK Incorporated.

  4. Chronic acromioclavicular joint dislocations treated by the GraftRope device.

    Science.gov (United States)

    Nordin, Jonas S; Aagaard, Knut E; Lunsjö, Karl

    2015-04-01

    Surgical treatment of chronic acromioclavicular joint dislocations is challenging, and no single procedure can be considered to be the gold standard. In 2010, the GraftRope method (Arthrex Inc., Naples, FL) was introduced in a case series of 10 patients, showing good clinical results and no complications. We wanted to evaluate the GraftRope method in a prospective consecutive series. 8 patients with chronic Rockwood type III-V acromioclavicular joint dislocations were treated surgically using the GraftRope method. The patients were clinically evaluated and a CT scan was performed to assess the integrity of the repair. In 4 of the 8 patients, loss of reduction was seen within the first 6 weeks postoperatively. A coracoid fracture was the reason in 3 cases and graft failure was the reason in 1 case. In 3 of the 4 patients with intact repairs, the results were excellent with no subjective shoulder disability 12 months postoperatively. It was our intention to include 30 patients in this prospective treatment series, but due to the high rate of complications the study was discontinued prematurely. Based on our results and other recent reports, we cannot recommend the GraftRope method as a treatment option for chronic acromioclavicular joint dislocations.

  5. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    Science.gov (United States)

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  6. Research of Broken Wire Rope Detection System Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Jing-ge Gao

    2014-04-01

    Full Text Available In this study, we introduce how to detect broken wires in steel rope based on wavelet transform and virtual instrument technology. By means of the powerful data analysis function of virtual instrument and wavelet transform, the singularity of wires can be found and it could help to improve ability of locating broken wires and determining breakage grade.

  7. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    Science.gov (United States)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  8. Through The Ring Of Fire: $\\gamma$-Ray Variability In Blazars By A Moving Plasmoid Passing A Local Source Of Seed Photons

    CERN Document Server

    MacDonald, Nicholas R; Jorstad, Svetlana G; Joshi, Manasvita

    2015-01-01

    Blazars exhibit flares across the electromagnetic spectrum. Many $\\gamma$-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appears to occur in isolation, with little or no variability detected at longer wavelengths. These "orphan" $\\gamma$-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time-variable emission of a blazar based on a proposal by Marscher et al. (2010) to explain such events. In this model, a plasmoid ("blob") propagates relativistically along the spine of a blazar jet and passes through a synchrotron-emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. The model includes the effects of radiative cooling, a spatially varying magnetic field, and acceleration of the blob's bulk velocity. Synthetic...

  9. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)

    Science.gov (United States)

    Falendysz, Elizabeth; Lopera, Juan G.; Doty, Jeffrey B.; Nakazawa, Yoshinori J.; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N.; Ronderos, Monica; Meija, Andres; Malekani, Jean M.; Karem, Kevin L.; Caroll, Darrin; Osorio, Jorge E.; Rocke, Tonie E.

    2017-01-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  10. Predicting changes in high-intensity intermittent running performance with acute responses to short jump rope workouts in children

    National Research Council Canada - National Science Library

    Buchheit, Martin; Rabbani, Alireza; Beigi, Hamid Taghi

    2014-01-01

    The aims of the present study were to 1) examine whether individual HR and RPE responses to a jump rope workout could be used to predict changes in high-intensity intermittent running performance in young athletes, and 2...

  11. Optimisation of testing cycles in heavy-duty mine haulage ropes, especially three-layered flattened wire ropes; Optimierung von Pruefzyklen bei hochbelasteten Bergbau-Foerderseilen, insbesondere bei dreilagigen Flachlitzenseilen

    Energy Technology Data Exchange (ETDEWEB)

    Gronau, O. [Deutsche Montan Technologie GmbH, Bochum (Germany). Car Synergies Division

    2003-07-01

    In three-layered flattened wire ropes, which are common in mine haulage systems in coal mines, only part of the wires can be inspected by the visual method, so magnetic induction testing is employed as well. The project aimed at reducing inspection requirements without impairing the safety standard. Random sampling of flattened wire ropes have shown that this is possible, provided that fatigue and corrosion curves of the cable can be made comparable with the diagrams of magnetic induction tests. Monitoring of the strength reduction of these ropes must be possible throughout the whole rope life. The project focused on the following tasks: Assessment and description of the haulage systems and operating conditions (haulage equipment, mine climate, number of hoists per day, etc.); Inspection of the geometries of new and worn-out ropes and calculation of rupture forces and residual rupture forces; Modification of existing measuring and storage instruments, if possible in explosion-proof construction; Development of software for assessing the residual fracture force of haulage ropes.

  12. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  13. INFLUENCE ANALYSIS OF ELASTIC DEFORMATIONS OF THE TRACK CABLE ON EFFORTS IN THE HAULING ROPE OF AERIAL ROPEWAY

    Directory of Open Access Journals (Sweden)

    S. V. Raksha

    2013-10-01

    Full Text Available Purpose. To estimate influence of elastic deformations of the track cable arising at movement of cars, on effort in a hauling rope of the aerial ropeway. Methodology. The method of consecutive approaches was used for research influence of elastic deformations of a track cable on effort in a hauling rope. Thus, definition of a tension of a track cable was carried out with use of the technique based on principles of modular configuration, the essence of which consists in formation of mathematical model by a combination of blocks of the formulas describing balance of the track cable on supports. Findings. The research has shown that influence of elastic deformations of a track cable on effort in a hauling rope was insignificant (less than 1 %. That points to possibility not to consider change of the track cable length, caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device». Also it has been found that use of the tension device of a track cable increased influence of its elastic properties on loading of rope system elements. At the same time the elastic component of the track cable tension in the test flight does not depend on a car position in the adjacent span, but only determines by the parameters of the rope system. Originality. The possibility of excluding the changes of track cable length caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device» was proved. Practical value. The use of these techniques and the results will simplify the mathematical model of loading of elements of the cable system and the system «drive – traction rope – tension device» as a whole.

  14. Self-concept responses of children to participation in an eight-week precision jump-rope program.

    Science.gov (United States)

    Hatfield, B D; Vaccaro, P; Benedict, G J

    1985-12-01

    Two measures of self-concept were administered to 11 children, aged from 9 to 11 yr., before and after 8 wk. of participation in a guided exercise program of precision rope jumping. Despite the fact that the children evidenced as a group high self-concept at the outset, a significant improvement on this measure appeared after the jump-rope regimen. This psychological change was noted while there was no alteration in the physiological indices of body composition and cardiovascular fitness.

  15. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    Science.gov (United States)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  16. Investigation of the Plunging Pressure Pulsation in a Swirling Flow with Precessing Vortex Rope in a Straight Diffuser

    Science.gov (United States)

    Muntean, S.; Tănasă, C.; Bosioc, A. I.; Moş, D. C.

    2016-11-01

    The paper investigates an unexpected feature of the unsteady pressure field resulting from the self-induced instability of the decelerated swirling flow in a straight diffuser. Firstly, the self-induced instability is experimentally investigated on the swirl generator test rig. As a result, the asynchronous (rotating) pressure pulsation associated with the rotating vortex rope of 15 Hz and it second harmonic are discriminated. Also, a low frequency synchronous (plunging) pulsation around of 2.5 Hz is identified based on unsteady pressure field measured at the wall and LDV measurement of the velocity components in the flow. The low frequency plunging pressure fluctuations is superimposed on the rotating pressure pulsations associated with the vortex rope. The numerical simulations are performed to explore the vortex rope dynamics. The numerical results are compared against experimental data to assess the accuracy of the models. Next, the pressure pulsation dynamics is correlated with the time evolution of the vortex rope. The main conclusion emerging from the analysis of the vortex rope evolution in time is that the cycle with low frequency is responsible for the plunging (synchronous) pressure fluctuations superimposed over the rotating (asynchronous) pressure field associated with the precession of the vortex rope.

  17. The modified forced-swim test in rats: influence of rope- or straw-suspension on climbing behavior.

    Science.gov (United States)

    Nishimura, H; Tsuda, A; Ida, Y; Tanaka, M

    1988-01-01

    We modified Porsolt's forced-swim test by suspending ropes or straws above the water in order to investigate a possible relationship between immobility and perceived escape responses from water. In this modified test, it was demonstrated clearly that rats reduced their duration of immobility and attempted to climb up the suspended ropes or straws. Most rats which had remained immobile during a 5-min test period in the forced-swim test, exhibited such climbing responses within 5-10 min of rope-suspension. Despite the suspension of ropes, however, some rats showed immobile postures and did not respond to the rope. On the other hand, straws were used in order to produce sliding and prevent climbing when the animals attempted to climb. There were no differences in immobility during either rope- or straw-suspension. It seems that the climbing behavior displayed by forced-swimming rats is due to a "pseudo-escape" effect produced by the suspension of an object above the water. The present findings were interpreted as further evidence for the notion that immobility in forced-swimming rats does not necessarily imply "behavioral despair," but rather an emotional reaction to an inescapable stressor.

  18. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    Science.gov (United States)

    Moore, Cherice; Svetlik, Randall; Williams, Antony

    2017-01-01

    As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.

  19. THE EFFECT OF ROPE JUMPING TRAINING OF DIFFERENT SPEEDS ON ANAEROBIC POWER

    OpenAIRE

    ŞAHİN, Gülşah

    2017-01-01

    The objective of this study was to compare the effect of rope jumpingtraining on anaerobic vertical, horizontal, mean and peak power of rope jumpingat different speeds in trained females. The study was comprised of 20 trainedfemales as the low-speed jumping group (n=10, mean age 21.4±2.3 years, body weight54.30±6.03 kg, height 161.30±6.99 cm) and the high-speed jumping group (n=10,mean age 21±1.8 years, body weight: 56.50±5.91 kg, height 163.20±7.02 cm). Thejumping speed was adjusted using a ...

  20. New Catalytic Proportions for Syntheses of SWNT Bundles (Ropes) and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    DAI Tong; DAI Jian-feng

    2006-01-01

    The single-walled carbon nanotube(SWNT) bundles and ropes have been prepared by using the anode arc discharge plasma to evaporate the graphite rods which contain Fe,Co and Ni powders as catalyst in He atmosphere. Many purifying methods are used for the products. It indicates that the synthesis of SWNTs has been greatly affected by the preparation parameters of catalyzer,the buffer gas and its pressure,the arc current intensity,etc. The optimal condition for preparing SWNTs in our case has been proposed. The forming mechanism of the SWNTs bundles and ropes is also studied qualitatively. The evaporated single graphite sheet tends to reduce its active energy.

  1. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  2. Advanced Fibers, Anti-Friction Materials and Jackets for Navy Ropes

    Science.gov (United States)

    2005-01-20

    Zylon (polybenzoxazole or PBO) and Vectran (a liquid crystal polymer or LCP). Single fibers have been tested extensively, using a custom designed device...important since we want to use the BOB rope from Cortland Cable and apply a single treatment to a mix of Vectran and Spectra. Zylon : - few results, but no...on Vectran, Spectra and Zylon using equivalent testing parameters. Even though a large amount of data was collected on Kevlar fibers with various

  3. Biometric hoof evaluation of athletic horses of show jumping, barrel, long rope and polo modalities

    OpenAIRE

    Sampaio,Breno Fernandes Barreto; Zúccari,Carmem Estefânia Serra Neto; Shiroma,Monica Yurie Machado; Bertozzo,Beatriz Ramos; Leonel,Ellen Cristina Rivas; Surjus,Ricardo da Silva; Gomes,Monique Maitê Malho; Costa e Silva,Eliane Vianna da

    2013-01-01

    This study aimed to evaluate, through biometry, the forelimb hoof of horses participating in show jumping, barrel, long rope and polo competitions. Thirty subjects were assessed in relation to each competition (total of 120 animals). The linear measurements (cm) included the dorsal length of the toe; medial and lateral lengths of the quarter; medial and lateral heights of the quarter; lateral and medial lengths of the heel; medial and lateral heights of the heel; hoof length; hoof width; frog...

  4. Possibility of stretch-shortening cycle movement training using a jump rope.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Sugiura, Hiroki; Demura, Shinichi

    2014-03-01

    Although jumping rope has been said to be a typical stretch-shortening cycle movement (SSC) from the dynamic analysis of muscle contraction, there are few research reports that focus on this point. Recently, the function of SSC of the legs with respect to the jumping movement has been evaluated using the rebound jump index (RJ-index). This study aimed to examine the possibility of using rope jumping in SSC training by comparing the RJ-index of the rebound jump (standard value) and the 2 different methods of rope jumping. The subjects included 76 healthy young men. Most subjects were involved in routine sports training 2-3 times per week. They performed the rebound jump (5 consecutive vertical jumps) and both a basic and a double-under jump with the jump rope, according to each participant's individual style (rhythm or timing). The RJ-index was calculated using the ground contact time and the jump height. The reliabilities of the RJ-index in the basic (intraclass correlation coefficient: 0.85) and double-under jump (0.92) were high, and the RJ-index of the latter (1.34 ± 0.24) was significantly higher than that of the former (0.60 ± 0.21). In the case of a group with inferior SSC ability, the RJ-index of the rebound jump only showed a significant correlation with the double-under but not with the basic jump. When using the RJ-index (1.97 ± 0.38) of the rebound jump as a criterion, the double-under-using about 70% of the SSC ability-may be effective for reinforcement of SSC ability.

  5. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    OpenAIRE

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-01-01

    General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol incl...

  6. Relationship Between Jump Rope Double Unders and Sprint Performance in Elementary Schoolchildren.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinichi; Omoya, Masashi

    2015-11-01

    According to dynamic analyses of muscle contraction, jump rope is a typical stretch-shortening cycle (SSC) movement. It has been reported that the relationship with SSC is higher in double unders than in single unders (basic jumps); however, the relationship between jump rope and sprint performances has not been extensively studied. To clarify this relationship in elementary schoolchildren, we compared the sprint speed and SSC ability of children who were grouped according to gender and ability. The subjects were 143 elementary fifth and sixth graders (78 boys, 65 girls). The consecutive maximal number of double unders, reactivity index (index of SSC ability) by Myotest, and 20-m sprint time were measured. According to the mean of jump rope records, the children were divided into a superior ability group (more than average + 0.5 SD) and an inferior ability group (less than average - 0.5 SD) for each gender. In both genders, a significant difference was found in the 20-m sprint time between the inferior and superior ability groups. The times for the superior ability groups (boys, 3.75 ± 0.23 seconds; girls, 4.02 ± 0.24 seconds) were excellent compared with the inferior ability groups (boys, 4.17 ± 0.32 seconds; girls, 4.23 ± 0.21 seconds). This effect size was higher in boys (1.44) than in girls (0.93). The reactivity index in the superior ability group was excellent compared with that in the inferior ability group. In conclusion, children who perform better in double unders are also faster during a 20-m sprint run. This tendency may be higher in boys. Classic jump rope training, such as double unders, should be effective as elementary plyometrics for improving the sprint ability of children.

  7. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    Science.gov (United States)

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  8. Adaptive fuzzy sliding mode control for gantry crane as varying rope length

    Directory of Open Access Journals (Sweden)

    TRINH LUONG MIEN

    2016-08-01

    Full Text Available Gantry crane is used quite commonly in hazardous areas, which increasingly requires strict conrol of the gantry crane operation process to improve efficiency and ensure safe gantry crane opeartion. Automated the gantry crane operating process is being applied pupular currently. Gantry crane is often affected by large noise, having the varying- model parameters, so that proposed a apdaptive fuzzy combining sliding mode controller for the gantry crane in this article. This control method derived from combining the sliding surfaces of three subsystem of the gantry crane (trolley position, rope length, anti-swing to draw out two system sliding surfaces: the trolley positon with the anti-swing and the rope length and the anti-swing. On the based of the sliding mode control principle,drawn out the equivalent controller and the switching controller for gantry crane. But due to the uncertain parameters - nonlinear model of gantry crane with the bound disturbances, combining the fuzzy approximate method, defined the fuzzy controller (used to minic the equivalent controller and the compensation controller for the difference between the equivalent controller and the fuzzy controller (used as the switching controller for two system control inputs: trolley position and rope length The adaptive control laws for these controllers were deduced from Lyapunov’s stable criteria to asymptotically stabilize the sliding surfaces. Simulation results demonstrated the feasibility of the suggested method through grantry crane in the hazard areas.

  9. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    Directory of Open Access Journals (Sweden)

    R.K.Kulkarni

    2014-12-01

    Full Text Available Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to 34.5 0C dry bulb temperature and 32 % relative humidity. Outlet temperature of air is measured and saturation efficiency and cooling capacity are calculated. The outlet dry bulb temperature is obtained between 25.8 0C and 26.2 0C.The saturation efficiencies range from 69 % to 59 % and the cooling capacity is obtained between 6173 kJ/h and 11979 kJ/h. Thus jute fiber ropes prove to be a good alternative cooling media in evaporative cooler

  10. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    Science.gov (United States)

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  11. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    Science.gov (United States)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  12. [Vehicle-assisted suicide with a nylon rope causing complete decapitation].

    Science.gov (United States)

    Blässer, Katharina; Tatschner, Thomas; Bohnert, Michael

    2013-01-01

    The present case deals with the unusual suicide method of a 36-year-old man who fastened one end of a nylon rope to a tree, guided the other end into a van through the open tailgate and placed the loop round his neck. Then he stepped on the accelerator. Before, he had marked the point on the ground where the rope would tighten. As the rope tightened complete decapitation occurred at a speed of about 35 km/h. Autopsy showed a nearly circular abrasion zone around the site of transection slightly ascending towards the nape, a fracture of the cervical spine between the 3rd and 4th vertebra and a fracture of the thoracic spine between the 7th and 8th vertebra. The test for air embolism of the heart was positive. Macroscopically, no evidence of blood aspiration was found. Histological investigation showed general anaemia and minor blood aspiration in the lungs. Wound morphology was largely in line with the injury patterns described after decapitation in the literature. However, our results differed in that blood aspiration was discernible only under the microscope and there was a second fracture of the spine. Decapitation as a suicide method is an expression of enormous autoaggression and is categorized as a "hard" suicide method. It is used predominantly by men and its occurrence in the spectrum of suicidal actions is rare. Police investigations revealed that the man had led a sort of double life with a sexually motivated background and had suffered from depressive episodes.

  13. Surface Flux Emergence and Coronal Eruption

    Science.gov (United States)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  14. Ropes parks as a way of increase of the motor activity of students [Verevochnye parki kak sredstvo povysheniia dvigatel'noj aktivnosti uchashchejsia molodezhi

    Directory of Open Access Journals (Sweden)

    Kozіna Zh.L.

    2011-11-01

    Full Text Available Psychological and physiological reasons of attractiveness of rope parks are considered for studying young people. 25 sources of network are analysed in the Internet. The questionnaire of 52 visitors of rope park is conducted (youths in age 16-19 years. It is set that overcoming of rope obstacles helps to get the necessary physical loading. Also to get feelings, characteristic for the extreme types of sport. It is found out that overcoming of rope obstacles helps people to be delivered from fear before difficulties and agitation before important events.

  15. 基于霍尔阵列传感器的钢丝绳缺陷定量检测技术的研究%The Research on Quantitative Inspection Technology to Wire Rope Defect Based on Hall Sensor Array

    Institute of Scientific and Technical Information of China (English)

    赵敏; 张东来; 周智慧

    2012-01-01

    The induction coil sensor is traditionally used in the wire rope nondestructive inspection.As the output of coil sensor is related to the velocity of the wire rope,the signal will be compressed or stretched in different velocities.The impact of the velocity can be effectively overcome with Hall sensors.In this paper,a wire rope non-destructive system that is based on Hall sensor array is designed.This system achieves not only the accurate axial positioning of the defect,but also the circumferential distribution of the defect.The dimension for defect detection is improved in more details.Meanwhile,local pixel sum of magnetic flux leakage binary image is utilized to implement the quantitative measurement of defects.The result shows the good performance of the system.%传统的钢丝绳无损检测装置采用感应线圈作为传感器,但由于线圈传感器的输出与钢丝绳的运动速度相关,使用霍尔传感器可有效地克服钢丝绳运动速度的影响。设计了一种基于霍尔阵列传感器的钢丝绳无损检测系统,系统不仅可实现缺陷在钢丝绳轴向的准确定位,且可实现对不同周向位置的缺陷的检测,提高了钢丝绳缺陷检测的维度,并通过二值化漏磁图像的局部像素和来实现缺陷大小的定量,取得了良好的检测效果。

  16. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players.

    Science.gov (United States)

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-12-01

    General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant's motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children's motor skills. Key pointsPerforming jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination.The performance improvement in the

  17. Model measurement based identification of Francis turbine vortex rope parameters for prototype part load pressure and power pulsation prediction

    Science.gov (United States)

    Manderla, M.; Weber, W.; Koutnik, J.

    2016-11-01

    Pressure and power fluctuations of hydro-electric power plants in part-load operation are an important measure for the quality of the power which is delivered to the electrical grid. It is well known that the unsteadiness is driven by the flow patterns in the draft tube where a vortex rope is present. However, until today the equivalent vortex rope parameters for common numerical 1D-models are a major source of uncertainty. In this work, a new optimization-based grey box method for experimental vortex rope modelling and parameter identification is presented. The combination of analytical vortex rope and test rig modelling and the usage of dynamic measurements allow the identification of the unknown vortex rope parameters. Upscaling from model to prototype size is achieved via existing nondimensional parameters. In this work, a new experimental setup and system identification method is proposed which are suitable for the determination of the full set of part load vortex rope parameters in the lab. For the vortex rope, a symmetric model with cavity compliance, bulk viscosity and two pressure excitation sources is developed and implemented which shows the best correspondence with available measurement data. Due to the non-dimensional parameter definition, scaling is possible. This finally provides a complete method for the prediction of prototype part-load pressure and power oscillations. Since the proposed method is based on a simple limited control domain, limited modelling effort and also small modelling uncertainties are some major advantages. Due to the generality of the approach, a future application to other operating conditions such as full load will be straightforward.

  18. Flux-P: Automating Metabolic Flux Analysis

    OpenAIRE

    Ebert, Birgitta E.; Anna-Lena Lamprecht; Bernhard Steffen; Blank, Lars M.

    2012-01-01

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in ...

  19. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  20. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls.

    Science.gov (United States)

    Arnett, Mark G; Lutz, Bob

    2002-12-01

    The specific aims of the study were to 1) determine what effects dose-dependent rope jumping had on os calcis stiffness index (OCSI) and 2) determine whether OCSI values measured by quantitative ultrasound (QUS) were dependent or independent of the values of bone mineral content (BMC) determined by dual energy x-ray absorptiometry (DXA) at the lumbar spine and proximal femur (femoral neck; greater trochanter). Upon study entry, girls were randomly assigned to either one of two treatment groups (high volume; low volume) or a control group. Thirty-seven high school girls were recruited to participate in the study. QUS and DXA measurements were made at baseline and at 4-month follow-up. Students in the high-volume and low-volume groups jumped rope for 10 and 5 min, respectively. The follow-up mean OCSI values for the high-volume, low-volume, and control conditions were 103.95 +/- 12.55, 102.09 +/- 12.70, and 99.05 +/- 9.84, respectively. A statistically significant difference (P = 0.033) was identified between the high-volume and control groups. Baseline and follow-up OCSI values were significantly correlated with baseline and follow-up BMC measures of the femoral neck (r = 0.60, r = 0.59), greater trochanter (r = 0.47, r = 0.40), and lumbar spine (r = 0.56, r = 0.56). High-volume rope jumping increases the OCSI more than the control condition in postpubescent girls. Furthermore, the OCSI measured by QUS is moderately related to proximal femur and lumbar spine BMC measured by DXA.

  1. 防扭钢丝绳用单股钢丝绳生产中存在的问题和对策%Problems and countermeasures in production of single strand wire rope for torsionproof wire rope

    Institute of Scientific and Technical Information of China (English)

    邵永清; 刘红芳; 许铭锋; 马水国

    2013-01-01

    To analyze the factors affecting service life of single strand wire rope for torsionproof wire rope,aiming at the problems existing in production to give out countermeasures:(1) to control steel wire tensile strength scatter difference fluctuation,adopting wet wire drawing machine to strictly control tolerance range of semi-finished steel wire and eliminate steel wire cold drawn forming residual stress; (2) to control galvanizing,adopting electro galvanizing for diameter less than 0.50 mm steel wire with more than 95% reduction of area,hot dipping galvanizing for others; outer layer steel wire in single strand rope adopt hot dipping galvanizing steel wire,inner wire is produced in electro galvanizing way; (3) to control wire rope length and linear density,in wire drawing course to control pass diameters and tolerance strictly,adopt electric meter counter to detect rope length in lay process,ensure wire rope length precision.Strengthening production process control of single strand rope for torsionproof wire rope can improve product quality,raise production efficiency,and decrease production cost.%分析影响防扭钢丝绳用单股钢丝绳使用寿命的因素,针对生产中存在的问题给出对策:(1)钢丝抗拉强度散差波动控制.拉拔过程采用水箱湿式拉拔,严格控制半成品钢丝的公差范围并消除钢丝冷拉变形的残余应力.(2)镀锌控制.水箱拉拔压缩率大于95%且出线直径小于0.50 mm的钢丝全部采用电镀锌生产,其余则用热镀锌生产;单股钢丝绳外层钢丝采用热镀锌生产,内层钢丝采用电镀锌生产.(3)钢丝绳长度和线密度的控制.严格控制拉丝工序各道次钢丝直径及公差,捻制工序采用电子计米器检测钢丝绳的长度,保证钢丝绳长度精确率.加强防扭钢丝绳用单股钢丝绳生产过程控制,可提高产品质量,提升生产效率,降低生产成本.

  2. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  3. Evolving Playable Content for Cut the Rope through a Simulation-Based Approach

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    -based agent can be used to suggest all sensible moves at each state, which allows us to restrict the search space so that depth-first search for solutions become viable. This agent is successfully used to test playability in Ropossum, a level generator based on grammatical evolution. The method proposed...... and such an agent is not always readily available. We discuss this prob- lem in the context of the physics-based puzzle game Cut the Rope, which features continuous time and state space, mak- ing several approaches such as exhaustive search and reactive agents inefficient. We show that a deliberative Prolog...

  4. Ropossum: An Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    We present a demonstration of Ropossum, an authoring tool for the generation and testing of levels of the physics-based game, Cut the Rope. Ropossum integrates many features: (1) automatic design of complete solvable content, (2) incorporation of designer’s input through the creation of complete...... or partial designs, (3) automatic check for playability and (4) optimization of a given design based on playability. The system includes a physics engine to simulate the game and an evolutionary framework to evolve content as well as an AI reasoning agent to check for playability. The system is optimised...

  5. Evolving Playable Content for Cut the Rope through a Simulation-Based Approach

    DEFF Research Database (Denmark)

    Shaker, Mohammad; Shaker, Noor; Togelius, Julian

    2013-01-01

    -based agent can be used to suggest all sensible moves at each state, which allows us to restrict the search space so that depth-first search for solutions become viable. This agent is successfully used to test playability in Ropossum, a level generator based on grammatical evolution. The method proposed...... and such an agent is not always readily available. We discuss this prob- lem in the context of the physics-based puzzle game Cut the Rope, which features continuous time and state space, mak- ing several approaches such as exhaustive search and reactive agents inefficient. We show that a deliberative Prolog...

  6. Current-voltage characteristics of an individual helical CdS nanowire rope

    Institute of Scientific and Technical Information of China (English)

    Long Yun-Ze; Wang Wen-Long; Bai Feng-Lian; Chen Zhao-Jia; Jin Ai-Zi; Gu Chang-Zhi

    2008-01-01

    This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleacls are attached by focused-ion beam deposition. The current-voltage (Ⅰ - Ⅴ ) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the Ⅰ - Ⅴ curves and oscillation peaks in the differential conductance (dⅠ/dⅤ - Ⅴ) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.

  7. Safety assessment of heavy-duty multilayer flattened strand haulage ropes by means of life calculations. Parts 1 and 2; Beurteilung der sicheren Verwendbarkeit von hochbeanspruchten mehrlagigen Flachlitzen-Foerderseilen durch Berechnung der Lebensdauer. T. 1 und 2

    Energy Technology Data Exchange (ETDEWEB)

    Spas, W. [Deutsche Montan Technologie GmbH, Bochum (Germany). Car Synergies Division

    2003-07-01

    The life of multilayer flattened strand ropes was calculated. Based on the operating parameters of the mine shafts and the characteristic data of the ropes, a correlation between the life of single wires under variable dynamic tensile stress on the one hand and the real stress variation during operation of flattened strand ropes in mine shafts was to be established.

  8. Development of three dimensional Eulerian numerical procedure toward plate-mantle simulation: accuracy test by the fluid rope coiling

    Science.gov (United States)

    Furuichi, M.; Kameyama, M.; Kageyama, A.

    2007-12-01

    Reproducing a realistic plate tectonics with mantle convection simulation is one of the greatest challenges in computational geophysics. We have developed a three dimensional Eulerian numerical procedure toward plate-mantle simulation, which includes a finite deformation of the plate in the mantle convection. Our method, combined with CIP-CSLR (Constrained Interpolation Profile method-Conservative Semi-Lagrangian advection scheme with Rational function) and ACuTE method, enables us to solve advection and force balance equations even with a large and sharp viscosity jump, which marks the interface between the plates and surrounding upper mantle materials. One of the typical phenomena represented by our method is a fluid rope coiling event, where a stream of viscous fluid is poured onto the bottom plane from a certain height. This coiling motion is due to delicate balances between bending, twisting and stretching motions of fluid rope. In the framework of the Eulerian scheme, the fluid rope and surrounding air are treated as a viscosity profile which differs by several orders of magnitude. Our method solves the complex force balances of the fluid rope and air, by a multigrid iteration technique of ACuTE algorithm. In addition, the CIP-CSLR advection scheme allows us to obtain a deforming shape of the fluid rope, as a low diffusive solution in the Eulerian frame of reference. In this presentation, we will show the simulation result of the fluid rope coiling as an accuracy test for our simulation scheme, by comparing with the simplified numerical solution for thin viscous jet.

  9. Replacement of steel cable with synthetic rope in mountain logging operations in Castanea sativa Mill. coppice stands

    Directory of Open Access Journals (Sweden)

    Elena Canga

    2014-12-01

    Full Text Available Aim of the study: The objective of this study was to evaluate skidding from stump area to roadside with a tracked skidder (Caterpillar 3DG XL using two different types of cable (steel or synthetic.Area of study: NW of Spain.Material and methods: A time study was performed to calculate productivity for the two types of cable and two regression models were fitted to predict the productive and cycle time of the tracked skidder.Research highlights: An increase of 12.53% in productivity (m3/SMH and improvements in working conditions using synthetic rope were found.Keywords: Chestnut; synthetic rope; time study; tracked skidder.

  10. Rotating Solar Jets in Simulations of Flux Emergence with Thermal Conduction

    CERN Document Server

    Fang, Fang; McIntosh, Scott W

    2014-01-01

    We study the formation of coronal jets through numerical simulation of the emergence of a twisted magnetic flux rope into a pre-existing open magnetic field. Reconnection inside the emerging flux rope in addition to that between the emerging and pre-existing fields give rise to the violent eruption studied. The simulated event closely resembles the coronal jets ubiquitously observed by Hinode/XRT and demonstrates that heated plasma is driven into the extended atmosphere above. Thermal conduction implemented in the model allows us to qualitatively compare simulated and observed emission from such events. We find that untwisting field lines after the reconnection drive spinning outflows of plasma in the jet column. The Poynting flux in the simulated jet is dominated by the untwisting motions of the magnetic fields loaded with high-density plasma. The simulated jet is comprised of spires of untwisting field that are loaded with a mixture of cold and hot plasma and exhibit rotational motion of order 20 km/s and m...

  11. Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux

    Science.gov (United States)

    Kosovichev, A. G.

    2009-04-01

    Magnetic fields emerging from the Sun’s interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy’s law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appearance a large-scale magnetic structure. Local helioseismology provides important tools for mapping perturbations of the wave speed and mass flows below the surface. Initial results from SOHO/MDI and GONG reveal strong diverging flows during the flux emergence, and also localized converging flows around stable sunspots. The wave speed images obtained during the process of formation of a large active region, NOAA 10488, indicate that the magnetic flux gets concentrated in strong field structures just below the surface. Further studies of magnetic flux emergence require systematic helioseismic observations from the ground and space, and realistic MHD simulations of the subsurface dynamics.

  12. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    Directory of Open Access Journals (Sweden)

    Xiang-dong Chang

    2017-06-01

    Full Text Available Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact. Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  13. Mechanical discrete simulator of the electro-mechanical lift with n:1 roping

    Science.gov (United States)

    Alonso, F. J.; Herrera, I.

    2016-05-01

    The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.

  14. Study of kefir grains application in sourdough bread regarding rope spoilage caused by Bacillus spp.

    Science.gov (United States)

    Mantzourani, I; Plessas, S; Saxami, G; Alexopoulos, A; Galanis, A; Bezirtzoglou, E

    2014-01-15

    Sourdough breads prepared with kefir grains resulted in appearance of rope spoilage at the 15th day of bread storage, while the control samples (sourdough breads prepared with wild microflora) were spoiled approximately at the 7th day. Denaturing Gradient Gel Electrophoresis (DGGE) analysis confirmed the above macroscopic observation since Bacillus spp. were detected on sourdough breads prepared with kefir grains at the 15th day of bread storage. The content of organic acids that play synergistic role regarding the enhancement of bread self life was also determined. Lactic acid concentration of sourdough breads prepared with kefir grains were approximately 41-82% higher than the control samples, while acetic acid concentration was about 0.5-1-fold higher respectively. The concentration of some other organic acids studied was also found in higher levels (up to 0.06μg/g) than the control samples. These findings could probably explain the stability of breads prepared with kefir grains against rope spoilage.

  15. A preliminary exploration of the mechanism for the occur rence of two types of various magnetic structures in the magnetotail

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As well known, the magnetic cross-tail component B y in the magnetotail is in direct proportion to the interplanetary magnetic field (IMF) B y component. And the polarity of IMF and plasmoid / flux rope B y components do indeed agree. This results indicate that the IMF B y pene-trates plasmoids and the magnetic structures must therefore be three-dimensional. In this note, the dynamical processes of magnetotail in the course of a substorm are studied using a MHD code with two-dimensions and three components on the basis of two types of initial equilibrium solutions of the quiet magnetotail. The numerical results of two cases illus-trate various features of time evolution of B y component that correspond to two kinds of plasmoid-like structures: one is associated with a flux rope core and the other resembles a "closed loop" plamoid. Therefore, the occurrence of various magnetic structures in the magnetotail might be related to nonsteady driven reconnection with different distributions of the B y component.

  16. Propagation of a spheromak 1. Some comparisons of cylindrical and spherical magnetic clouds

    Science.gov (United States)

    Vandas, M.; Fischer, S.; Pelant, P.; Dryer, M.; Smith, Z.; Detman, T.

    1997-10-01

    A series of our papers in the Journal of Geophysical Research, 1995-1996, was devoted to simulations of propagation of cylindrical magnetic clouds (flux ropes) having different orientation of their axes to the ecliptic plane and initial parameters. In this paper we supplement our study with the case of detached spherical plasmoids. By varying the velocity, density, temperature, and the magnetic field strength inside clouds, we simulate a number of plasmoid scenarios that can be compared with observations and with existing models and simulations of flux ropes. Initially, the spherical clouds have a poloidal magnetic field configuration within a sphere. During the propagation they evolve into toroids (i.e., closed flux ropes). Radial profiles of magnetic field and plasma quantities in these toroids are similar to cylindrical magnetic clouds. However, they are different in the central (now external) part of the cloud, where the poloidal axis was originally situated, that is, in the toroid's hole. Here the magnetic field is greatly enhanced but does not rotate, and the temperature decrease is absent. The deceleration and transit time to 1 AU is comparable between spherical and cylindrical clouds. The shock wave ahead of a spherical cloud is about 2 times closer than for a corresponding cylindrical cloud.

  17. Evaluation of rope shovel operators in surface coal mining using a Multi-Attribute Decision-Making model

    Institute of Scientific and Technical Information of China (English)

    Vukotic Ivana; Kecojevic Vladislav

    2014-01-01

    Rope shovels are used to dig and load materials in surface mines. One of the main factors that influence the production rate and energy consumption of rope shovels is the performance of the operator. This paper presents a method for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) model. Data used in this research were collected from an operating surface coal mine in the southern United States. The MADM model consists of attributes, their weights of importance, and alter-natives. Shovel operators are considered the alternatives. The energy consumption model was developed with multiple regression analysis, and its variables were included in the MADM model as attributes. Preferences with respect to min/max of the defined attributes were obtained with multi-objective opti-mization. Multi-objective optimization was conducted with the overall goal of minimizing energy con-sumption and maximizing production rate. Weights of importance of the attributes were determined by the Analytical Hierarchy Process (AHP). The overall evaluation of operators was performed by one of the MADM models, i.e., PROMETHEE II. The research results presented here may be used by mining professionals to help evaluate the performance of rope shovel operators in surface mining.

  18. How Roebling did it: Building the world's first wire-rope suspension aqueduct in 1840s Pittsburgh

    Science.gov (United States)

    Gibbon, Donald L.

    2006-05-01

    The noted bridge designed John Roebling introduced his wire-rope suspension concept in Pittsburgh on a wooden aqueduct. His design was later implemented in bridges in Pittsburgh and elsewhere, including New York's Brooklyn Bridge. This article describes Roebling's work based on reviews of his notes and other historical documents.

  19. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Shandarova, E. B.; Kuleshova, E. O.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A modeling problem of the power system, which provides an AC power transmission to a submersible device over the conducting rope, was considered. The power supply system units and their parameters are described. The system multi-dimensional mathematical model in the variables state space with regard to the nonlinear characteristic of system elements is proposed.

  20. Loads Acting on the Mine Conveyance Attachments and Tail Ropes during the Emergency Braking in the Event of an Overtravel

    Science.gov (United States)

    Wolny, Stanisław

    2016-09-01

    It has now become the common practice among the design engineers that in dimensioning of structural components of conveyances, particularly the load bearing elements, they mostly use methods that do not enable the predictions of their service life, instead they rely on determining the safety factor related to the static loads exclusively. In order to solve the problem, i.e. to derive and verify the key relationships needed to determine the fatigue endurance of structural elements of conveyances expressed in the function of time and taking into account the type of hoisting gear, it is required that the values of all loads acting upon the conveyance should be determined, including those experienced under the emergency conditions, for instance during the braking phase in the event of overtravel. This study relies on the results of dynamic analysis of a hoisting installation during the braking phase when the conveyance approaches the topmost or lowermost levels. For the assumed model of the system, the equations of motion are derived for the hoisting and tail rope elements and for the elastic strings. The section of the hoisting rope between the full conveyance approaching the top station and the Keope pulley is substituted by a spring with the constant elasticity coefficient, equal to that of the rope section at the instant the conveyance begins the underwind travel. Recalling the solution to the wave equation, analytical formulas are provided expressing the displacements of any cross-profiles of hoisting and tail ropes, including the conveyance attachments and tail ropes, in the function of braking forces applied to conveyances in the overtravel path and operational parameters of the hoisting gear. Besides, approximate formulas are provided yielding: loading of the hoisting rope segment between the conveyance braking in the headgear tower and the Keope pulley deceleration of the conveyance during the braking phase. The results will be utilised to derive the function

  1. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  2. Design and Weaving of Rope Woven Fabric%绳带机织物的设计与织制

    Institute of Scientific and Technical Information of China (English)

    张萍; 王克清

    2012-01-01

    探讨绳带机织物的设计与织造要点.通过对绳带机织物原料、组织、规格等进行设计,采用纹杆织机进行绳带机织物的手工织造;同时对现代机械化织制绳带机织物进行尝试和可行性分析.认为:只有对现代整经机的导纱部件、伸缩筘及定幅筘等进行扁平状改造,保证其尺寸与所选用的带经规格相吻合,并对织机的综丝和钢筘进行特殊形状的改造,合理配置工艺参数,才能最终成功织制绳带机织物.%Design and weaving key points of rope woven fabric were discussed. Raw material, fabric weave structure and specification of rope woven fabric were designed. Wasp bar loom was adopted and rope woven fabric was produced by hand-woven. Experiment and feasiblility analysis were done on modem mechanization rope woven fabric. It is considered that yam guide deveic, expansion reed and spacing reed of modern warping machine were modified to ensure the matchi to selected warp. Heald and reed of loom were modified,parameter were set rationally,finally rope woven fabric can be produced successfully.

  3. Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction

    Directory of Open Access Journals (Sweden)

    Ali, Majid

    2016-03-01

    Full Text Available Earthquake-resistant and economical housing is the most desirable need in rural areas of developing countries. These regions often suffer significant loss of life during a seismic event. To enable an efficient and cost-effective solution, a new concept of construction, i.e. a wallette of interlocking blocks with movability at the interface and rope reinforcement, is investigated. The novel interlocking block is made of coconut fibre reinforced concrete (CFRC. The reason for using coconut fibre is their highest toughness amongst natural fibres. This paper describes the in-plane behaviour of the interlocking wallette under earthquake loadings. The wallette response is measured in terms of induced acceleration, block uplift, top maximum relative displacement and rope tension. The applied earthquake loadings cannot produce any damage in the structure, i.e. blocks and/or ropes. The response of the wallette is explained in detail along with correlation of materials aspect with structural behaviour.En las zonas rurales de los países en desarrollo, entre las características principales que deben reunir las viviendas es que sean tanto económicas como sismoresistentes, ya que en estas zonas la pérdida de vidas humanas debido a los terremotos es aun elevada. A fin de hallar una solución que cumple con estos requisitos de manera técnica y económicamente efectiva, se ha investigado un nuevo concepto constructivo: un murete de bloques conjugados con movilidad en el interfaz y reforzado con cuerda. Este novedoso bloque conjugable está realizado en hormigón reforzado con fibra de coco (CFRC, elegida por su alta tenacidad, la mayor de entre las fibras naturales. El artículo describe el comportamiento dentro del plano del murete conjugado frente a las cargas sísmicas. La respuesta de esta estructura se ha medido en función de la aceleración inducida, el levantamiento de los bloques, el desplazamiento relativo máximo y la tensión de las cuerdas

  4. Coronal mass ejection initiation: On the nature of the Flux Cancellation Model

    CERN Document Server

    Amari, Tahar; Mikic, Zoran; Linker, Jon A

    2010-01-01

    We consider a three-dimensional bipolar force-free magnetic field with non zero magnetic helicity, occupying a half-space, and study the problem of its evolution driven by an imposed photospheric flux decrease. For this specific setting of the Flux Cancellation Model describing coronal mass ejections occuring in active regions, we address the issues of the physical meaning of flux decrease, of the influence on field evolution of the size of the domain over which this decrease is imposed, and of the existence of an energetic criterion characterizing the possible onset of disruption of the configuration. We show that: (1) The imposed flux disappearance can be interpreted in terms of transport of positive and negative fluxes towards the inversion line, where they get annihilated. (2) For the particular case actually computed, in which the initial state is quite sheared, the formation of a twisted flux rope and the subsequent global disruption of the configuration are obtained when the flux has decreased by only ...

  5. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  6. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  7. Optimization of hoisting parameters in a multi-rope friction mine hoist based on the multi-source coupled vibration characteristics of hoisting catenaries

    National Research Council Canada - National Science Library

    Yao, Jiannan; Deng, Yong; Xiao, Xingming

    2017-01-01

    To avoid catenary collision in a multi-rope friction mine hoist, in this study, the relevant hoisting parameters based on the multi-source coupled vibration characteristics of hoisting catenaries are optimized...

  8. ACL injury while jumping rope in a patient with an unintended increase in the tibial slope after an opening wedge high tibial osteotomy.

    Science.gov (United States)

    Jung, Kwang Am; Lee, Su Chan; Hwang, Seung Hyun; Song, Moon Bok

    2009-08-01

    High tibial osteotomy (HTO) is an accepted surgical technique for the treatment of medial compartmental arthrosis of the knee in younger patients. Compared to total knee arthroplasty, HTO may be a good choice in patients who wish to continue with heavy labor and/or impact sports. Based on the rehabilitation protocol after HTO, impact sports, such as running, jumping rope, and full sports activities, are generally permitted 6 months postoperatively. Jumping rope is an excellent form of aerobic exercise, and when done properly, jumping rope can lead to a dramatic improvement in rehabilitation and full sports activities. However, an adequate evaluation should be performed prior to initiating impact sports. We present the case of a ruptured anterior cruciate ligament that occurred in a patient with an unintended increase in the tibial slope after an opening wedge HTO who was jumping rope.

  9. Changing Rope Technique of Long-Distance Man Car%长距离架空乘人装置的换绳工艺

    Institute of Scientific and Technical Information of China (English)

    张东峰; 张国华

    2011-01-01

    介绍了架空乘人装置钢丝绳更换工艺,利用架空乘人装置驱动旧绳带新绳、钢丝绳缠绳机回收旧绳。济三煤矿使用该工艺后实现了快速高效地换绳目的,供同业参考。%Introduces the wire rope changing techniques of man car,using man car to drive new ropes replacing old ones,the steel wire rope twist machine recycles old ones.Jining No.3 coal mine realizes changing rope quickly and high efficiency by this technique.It i

  10. The effect of falling anxiety on selected physiological parameters with different rope protocols in sport rock climbing

    Directory of Open Access Journals (Sweden)

    Dicle Aras

    2011-10-01

    Full Text Available The purpose of this study is to investigate the effects of falling anxiety on selected physiological parameters in sport rock climbing. For this aim, before performing the top-rope and lead climbing, the anxiety inventory was used in sport rock climbers. Afterwards, the selected physiological parameters were recorded during the climbing.Four female and 22 male, totally 26 middle level rock climber were participated to the study. The mean age of the subjects was 27.73 ± 6.67, climbing years 6.61 ±4.84 and lead climbing age was 5.71 ±4.34. In order to eliminate force loss differences between top-rope and lead climbing, top rope climbing was designed as if it is a lead climbing. The second rope was connected on the waist of the athletes during top-rope climbing and they clipped it to expresses such as leading. The ascents were perforformed on 15 m high climbing wall. The route was rated as VI grad (Unıon Internationale des Association d’Alpinisme.During both climbing hearth rate was recorded and energy consumption was measured by portable gas analyzer as MET and VO2ml.min.kg units. Though gas analyzer VE, RER were measured. When two types of climbing trial compared, results indicated that there were statistically significant mean difference between CSAI-2 subscales cognitive anxiety, somatic anxiety and self confidence. When physiological parameters examined in terms of two different types of climbing, results showed that there was no statistically significant difference in HR values. However, there were significant differences found between VO2ml.min.kg, VE, RER, and MET values.There wasn’t found significant difference in climbing times between two trials. This result shows us that we designed the ascents successfully and could eliminate the physical differences both lead and top-rope climbing. We observed on the same work load of two climbing trials more oxygen consumption, energy expenditure and anxiety scores during leading. This

  11. The effect of falling anxiety on selected physiological parameters with different rope protocols in sport rock climbing

    Directory of Open Access Journals (Sweden)

    Dicle Aras

    2011-10-01

    Full Text Available The purpose of this study is to investigate the effects of falling anxiety on selected physiological parameters in sport rock climbing. For this aim, before performing  the top-rope and lead climbing, the anxiety inventory was used in sport rock climbers. Afterwards, the selected physiological parameters were recorded during the climbing. Four female and 22 male, totally 26 middle level rock climber were participated to the study. The mean age of the subjects was 27.73 ± 6.67, climbing years 6.61 ±4.84 and lead climbing age was 5.71 ±4.34.  In order to eliminate force loss differences between top-rope and lead climbing, top rope climbing was designed as if it is a lead climbing. The second rope was connected on the waist of the athletes during top-rope climbing and they clipped it to expresses such as leading. The ascents were perforformed on 15 m high climbing wall. The route was rated as VI grad (Unıon Internationale des Association d’Alpinisme. During both climbing  hearth rate was recorded and energy consumption was measured by portable gas analyzer as MET and VO2ml.min.kg units. Though gas analyzer VE, RER were measured.  When two types of climbing trial compared, results indicated that there were statistically significant mean difference between CSAI-2 subscales cognitive anxiety, somatic anxiety and self confidence. When physiological parameters examined in terms of two different types of climbing, results showed that there was no statistically significant difference in HR values. However, there were significant differences found between VO2ml.min.kg, VE, RER, and MET values. There wasn’t found significant difference in climbing times between two trials. This result shows us that we designed the ascents successfully and could eliminate the physical differences both lead and top-rope climbing. We observed on the same work load of two climbing trials more oxygen consumption, energy expenditure and anxiety scores during leading

  12. NUMERICAL ANALYSIS OF THE STRESS-STRAIN STATE OF A ROPE STRAND WITH LINEAR CONTACT UNDER TENSION AND TORSION LOADING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Evgenij Kalentev

    2017-06-01

    Full Text Available The paper presents the results of a numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions. Calculations are done using the ANSYS software package. Different approaches to calculation of the stress-strain state of ropes are reviewed, and their advantages and deficiencies are considered. The analysis of the obtained results leads us to the conclusion that the proposed method can be used in engineering calculations.

  13. The substructure of a flux transfer event observed by the MMS spacecraft

    Science.gov (United States)

    Hwang, K.-J.; Sibeck, D. G.; Giles, B. L.; Pollock, C. J.; Gershman, D.; Avanov, L.; Paterson, W. R.; Dorelli, J. C.; Ergun, R. E.; Russell, C. T.; Strangeway, R. J.; Mauk, B.; Cohen, I. J.; Torbert, R. B.; Burch, J. L.

    2016-09-01

    On 15 August 2015, MMS (Magnetospheric Multiscale mission), skimming the dusk magnetopause, detected an isolated region of an increased magnetic strength and bipolar Bn, indicating a flux transfer event (FTE). The four spacecraft in a tetrahedron allowed for investigations of the shape and motion of the FTE. In particular, high-resolution particle data facilitated our exploration of FTE substructures and their magnetic connectivity inside and surrounding the FTE. Combined field and plasma observations suggest that the core fields are open, magnetically connected to the northern magnetosphere from which high-energy particles leak; ion "D" distributions characterize the axis of flux ropes that carry old-opened field lines; counterstreaming electrons superposed by parallel-heated components populate the periphery surrounding the FTE; and the interface between the core and draped regions contains a separatrix of newly opened magnetic field lines that emanate from the X line above the FTE.

  14. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres

    CERN Document Server

    Uzdensky, Dmitri A

    2012-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers --- temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial c...

  15. Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors

    Science.gov (United States)

    Zheng, Jie; Yan, Xu; Li, Meng-Meng; Yu, Gui-Feng; Zhang, Hong-Di; Pisula, Wojciech; He, Xiao-Xiao; Duvail, Jean-Luc; Long, Yun-Ze

    2015-12-01

    Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors.

  16. The power supply system model of the process submersible device with AC power transmission over the cable-rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Kuleshova, E. O.; Shandarova, E. B.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

  17. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    Science.gov (United States)

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.

    2017-08-01

    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  18. Prompt atmospheric neutrino flux

    CERN Document Server

    Jeong, Yu Seon; Enberg, Rikard; Kim, C S; Reno, Mary Hall; Sarcevic, Ina; Stasto, Anna

    2016-01-01

    We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10\\% - 30\\%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.

  19. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    Science.gov (United States)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  20. A finite element model for independent wire rope core with double helical geometry subjected to axial loads

    Indian Academy of Sciences (India)

    Cengiz Erdonmez; C Erdem Imrak

    2011-12-01

    Due to the complex geometry of wires within a wire rope, it is difficult to model and analyse independent wire rope core accurately (IWRC). In this paper, a more realistic three-dimensional modelling approach and finite element analysis of wire ropes are explained. Single helical geometry is enough to model simple straight strand while IWRC has a more complex geometry by inclusion of double helical wires in outer strands. Taking the advantage of the double helical wires, three-dimensional IWRCs modelling is applied for both right regular lay and lang lay IWRCs. Wire-by-wire based results are gathered by using the proposed modelling and analysis method under various loading conditions. Illustrative examples are given for those show the accuracy and the robustness of the present FE analysis scheme with considering frictional properties and contact interactions between wires. FE analysis results are compared with the analytical and available test results and show reasonable agreement with a simpler and more practical approach.