WorldWideScience

Sample records for plasmodium falciparum-infected mosquitoes

  1. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions.

    Science.gov (United States)

    de Boer, Jetske G; Robinson, Ailie; Powers, Stephen J; Burgers, Saskia L G E; Caulfield, John C; Birkett, Michael A; Smallegange, Renate C; van Genderen, Perry J J; Bousema, Teun; Sauerwein, Robert W; Pickett, John A; Takken, Willem; Logan, James G

    2017-08-24

    Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities.

  2. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  3. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Directory of Open Access Journals (Sweden)

    Shirley Luckhart

    2013-02-01

    Full Text Available The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d, energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial

  4. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Science.gov (United States)

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  5. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions

    NARCIS (Netherlands)

    Boer, De Jetske G.; Robinson, Ailie; Powers, Stephen J.; Burgers, Saskia L.G.E.; Caulfield, John C.; Birkett, Michael A.; Smallegange, Renate C.; Genderen, Van Perry J.J.; Bousema, Teun; Sauerwein, Robert W.; Pickett, John A.; Takken, Willem; Logan, James G.

    2017-01-01

    Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile

  6. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available BACKGROUND: Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development. RESULTS: We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood. CONCLUSIONS: Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  7. Tetany with Plasmodium falciparum infection.

    Science.gov (United States)

    Singh, P S; Singh, Neha

    2012-07-01

    Plasmodium falciparum is a malarial infection with high morbidity and wide spectrum of atypical presentation. Here we report an unusual presentation of malaria as tetany with alteration in calcium,phosphate and magnesium metabolism Hypocalcaemia in malaria can cause prolonged Q-Tc interval which could be arisk factor for quinine cardiotoxicity and sudden death Hence monitoring of serum calcium in severe malarial infection and cautious use of quinine in such patients is very important in management

  8. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent;

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective...

  9. The dynamics of natural Plasmodium falciparum infections.

    Directory of Open Access Journals (Sweden)

    Ingrid Felger

    Full Text Available BACKGROUND: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. METHODS: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. RESULTS: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5-9 year old children (average duration 319 days, 95% confidence interval 318;320. CONCLUSIONS: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections.

  10. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  11. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.

    Science.gov (United States)

    Dennison, Nathan J; BenMarzouk-Hidalgo, Omar J; Dimopoulos, George

    2015-03-01

    Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.

  12. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge.

    Directory of Open Access Journals (Sweden)

    Angela K Talley

    Full Text Available Controlled human malaria infection (CHMI studies which recapitulate mosquito-borne infection are a critical tool to identify protective vaccine and drug candidates for advancement to field trials. In partnership with the Walter Reed Army Institute of Research, the CHMI model was established at the Seattle Biomedical Research Institute's Malaria Clinical Trials Center (MCTC. Activities and reagents at both centers were aligned to ensure comparability and continued safety of the model. To demonstrate successful implementation, CHMI was performed in six healthy malaria-naïve volunteers.All volunteers received NF54 strain Plasmodium falciparum by the bite of five infected Anopheles stephensi mosquitoes under controlled conditions and were monitored for signs and symptoms of malaria and for parasitemia by peripheral blood smear. Subjects were treated upon diagnosis with chloroquine by directly observed therapy. Immunological (T cell and antibody and molecular diagnostic (real-time quantitative reverse transcriptase polymerase chain reaction [qRT-PCR] assessments were also performed.All six volunteers developed patent parasitemia and clinical malaria. No serious adverse events occurred during the study period or for six months post-infection. The mean prepatent period was 11.2 days (range 9-14 days, and geometric mean parasitemia upon diagnosis was 10.8 parasites/µL (range 2-69 by microscopy. qRT-PCR detected parasites an average of 3.7 days (range 2-4 days earlier than blood smears. All volunteers developed antibodies to the blood-stage antigen merozoite surface protein 1 (MSP-1, which persisted up to six months. Humoral and cellular responses to pre-erythrocytic antigens circumsporozoite protein (CSP and liver-stage antigen 1 (LSA-1 were limited.The CHMI model was safe, well tolerated and characterized by consistent prepatent periods, pre-symptomatic diagnosis in 3/6 subjects and adverse event profiles as reported at established centers. The MCTC

  13. Sickle Cell Trait Protects Against Plasmodium falciparum Infection

    Science.gov (United States)

    Billo, Mounkaila A.; Johnson, Eric S.; Doumbia, Seydou O.; Poudiougou, Belco; Sagara, Issaka; Diawara, Sory I.; Diakité, Mahamadou; Diallo, Mouctar; Doumbo, Ogobara K.; Tounkara, Anatole; Rice, Janet; James, Mark A.; Krogstad, Donald J.

    2012-01-01

    Although sickle cell trait protects against severe disease due to Plasmodium falciparum, it has not been clear whether sickle trait also protects against asymptomatic infection (parasitemia). To address this question, the authors identified 171 persistently smear-negative children and 450 asymptomatic persistently smear-positive children in Bancoumana, Mali (June 1996 to June 1998). They then followed both groups for 2 years using a cohort-based strategy. Among the 171 children with persistently negative smears, the median time for conversion to smear-positive was longer for children with sickle trait than for children without (274 vs. 108 days, P sickle trait than for children without (190 vs. 365 days; P = 0.02). These protective effects of sickle trait against asymptomatic P. falciparum infection under conditions of natural transmission were demonstrable using a cohort-based approach but not when the same data were examined using a cross-sectional approach. PMID:23035141

  14. Congenital Plasmodium falciparum infection in neonates in Muheza District, Tanzania

    Directory of Open Access Journals (Sweden)

    Kimera Sharadhuli I

    2008-07-01

    Full Text Available Abstract Background Although recent reports on congenital malaria suggest that the incidence is increasing, it is difficult to determine whether the clinical disease is due to parasites acquired before delivery or as a result of contamination by maternal blood at birth. Understanding of the method of parasite acquisition is important for estimating the time incidence of congenital malaria and design of preventive measures. The aim of this study was to determine whether the first Plasmodium falciparum malaria disease in infants is due to same parasites present on the placenta at birth. Methods Babies born to mothers with P. falciparum parasites on the placenta detected by PCR were followed up to two years and observed for malaria episodes. Paired placental and infant peripheral blood samples at first malaria episode within first three months of life were genotyped (msp2 to determine genetic relatedness. Selected amplifications from nested PCR were sequenced and compared between pairs. Results Eighteen (19.1% out of 95 infants who were followed up developed clinical malaria within the first three months of age. Eight pairs (60% out of 14 pairs of sequenced placental and cord samples were genetically related while six (40% were genetically unrelated. One pair (14.3% out of seven pairs of sequenced placental and infants samples were genetically related. In addition, infants born from primigravidae mothers were more likely to be infected with P. falciparum (P P. falciparum infection earlier than those from secundigravidae and primigravidae mothers (RR = 1.43. Conclusion Plasmodium falciparum malaria parasites present on the placenta as detected by PCR are more likely to result in clinical disease (congenital malaria in the infant during the first three months of life. However, sequencing data seem to question the validity of this likelihood. Therefore, the relationship between placental parasites and first clinical disease need to be confirmed in

  15. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa, F.T.M.; Avril, M.; Nogueira,P.A.; Gysin, J

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  16. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa,F.T.M.; Avril, M.; Nogueira, P. A; Gysin, J.

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  17. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  18. Anaemia caused by asymptomatic Plasmodium falciparum infection in semi-immune African schoolchildren

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Addae, M M; Akanmori, B D;

    1999-01-01

    A cohort of 250 Ghanaian schoolchildren aged 5-15 years was followed clinically and parasitologically for 4 months in 1997/98 in order to study the effect of asymptomatic Plasmodium falciparum infections on haematological indices and bone-marrow responses. Of the 250 children 65 met the predefine...

  19. The multiplicity of Plasmodium falciparum infections is associated with acquired immunity to asexual blood stage antigens.

    NARCIS (Netherlands)

    Mayengue, P.I.; Luty, A.J.F.; Rogier, C.; Baragatti, M.; Kremsner, P.G.; Ntoumi, F.

    2009-01-01

    We evaluated the relationship between immune response markers and the multiplicity of Plasmodium falciparum infections in order to assess the validity of the latter as an indicator of the acquisition of anti-malarial immunity. Parasite populations present during malaria episodes of 64 Gabonese child

  20. Soluble haemoglobin is a marker of recent Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bygbjerg, I C; Theander, T G;

    1997-01-01

    . falciparum malaria compared to the levels during acute disease. Thus, both soluble Hb and haptoglobin appear to be markers of recent P. falciparum infections. Very high levels of CRP protein were measured in some of the malaria patients at the day of treatment while lower levels were recorded 7 and 30 days...... after treatment. Soluble Hb levels were associated with malariometric parameters in a similar fashion to haptoglobin. The new Mab-based assay for measuring soluble Hb in the peripheral blood of malaria patients may be useful for future epidemiological studies of malaria....

  1. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines.

    Science.gov (United States)

    Bickersmith, Sara A; Lainhart, William; Moreno, Marta; Chu, Virginia M; Vinetz, Joseph M; Conn, Jan E

    2015-06-01

    We describe a simple method for detection of Plasmodium vivax and Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed with Plasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochrome b-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.

  2. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Stéphanie Boström

    Full Text Available In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings.

  3. Soluble products of inflammatory reactions are not induced in children with asymptomatic Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; McKay, V; N'Jie, R;

    1996-01-01

    A proportion of children with Plasmodium falciparum infection have a high parasitaemia without accompanying fever, indicative of different clinical thresholds of parasitaemia. Higher levels of IL-10, IL-1Ra and sIL-4R but not sIL-2R were found in children with P. falciparum malaria, compared...... with levels in children with asymptomatic P. falciparum infections and in healthy children. Concentrations of IL-10 and IL-1Ra were correlated with levels of parasitaemia, but the association of cytokine levels with disease was independent of the association with parasitaemia. Children may tolerate a high...... parasitaemia by neutralizing the parasite-derived toxins. When studying potential anti-toxic molecules we found that children with symptomatic infections had lower concentrations of a phospholipid-binding molecule, beta 2-glycoprotein I (beta 2-GPI), compared with children with asymptomatic infections...

  4. Plasmodium falciparum infection causes proinflammatory priming of human TLR responses.

    NARCIS (Netherlands)

    McCall, M.B.B.; Netea, M.G.; Hermsen, C.C.; Jansen, T.; Jacobs, L.; Golenbock, D.; Ven, A.J.A.M. van der; Sauerwein, R.W.

    2007-01-01

    TLRs are a major group of pattern recognition receptors that are crucial in initiating innate immune responses and are capable of recognizing Plasmodium ligands. We have investigated TLR responses during acute experimental P. falciparum (P.f.) infection in 15 malaria-naive volunteers. TLR-4 response

  5. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on t...... microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion....

  6. Spatial Effects on the Multiplicity of Plasmodium falciparum Infections

    Science.gov (United States)

    Karl, Stephan; White, Michael T.; Milne, George J.; Gurarie, David; Hay, Simon I.; Barry, Alyssa E.; Felger, Ingrid; Mueller, Ivo

    2016-01-01

    As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low

  7. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    Science.gov (United States)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  8. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*

    OpenAIRE

    Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasit...

  9. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  10. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants

    DEFF Research Database (Denmark)

    Barfod, Lea; Dobrilovic, Tina; Magistrado, Pamela

    2010-01-01

    Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chond......Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes...

  11. Molecular Aspects of Plasmodium falciparum Infection during Pregnancy

    Directory of Open Access Journals (Sweden)

    Nicaise Tuikue Ndam

    2007-01-01

    Full Text Available Cytoadherence of Plasmodium-falciparum-parasitized red blood cells (PRBCs to host receptors is the key phenomenon in the pathological process of the malaria disease. Some of these interactions can originate poor outcomes responsible for 1 to 3 million annual deaths mostly occurring among children in sub-Saharan Africa. Pregnancy-associated malaria (PAM represents an important exception of the disease occurring at adulthood in malaria endemic settings. Consequences of this are shared between the mother (maternal anemia and the baby (low birth weight and infant mortality. Demonstrating that parasites causing PAM express specific variant surface antigens (VSAPAM, including the P. falciparum erythrocyte membrane protein 1 (PfEMP1 variant VAR2CSA, that are targets for protective immunity has strengthened the possibility for the development of PAM-specific vaccine. In this paper, we review the molecular basis of malaria pathogenesis attributable to the erythrocyte stages of the parasites, and findings supporting potential anti-PAM vaccine components evidenced in PAM.

  12. Serum enzymes activities in Plasmodium falciparum infection in Southern Pakistan

    Directory of Open Access Journals (Sweden)

    Koay Yen Chin

    2011-05-01

    Full Text Available Objective: Serum levels of lactate dehydrogenase (LDH,aspartate aminotranferase (AST, alanine aminotransferase(ALT, and alkaline phosphatase (ALP were assessed todetermine the liver functions of patients infected withPlasmodium falciparum. The enzyme activities were assessedin 60 malarial patients and a control group of 44 people.Materials and Methods: The data for the study was collectedfrom the survey conducted from Liaquat University of medicaland health sciences Hospital, Hyderabad, Pakaistan. Sample of60 patients aged between 20 and 50 years were collected. Acontrol group of 44 healthy individual adults was also assessedfor comparative purposes. All the malaria patients who visitedthe OPD during the study period enrolled in the study.Results: The LDH activity in male patients was found to be674.89 ± 33.354 IU/L. This is above the control LDH activity of296.59 ± 14.476 IU/L. Similarly, in female patients, the serumLDH activity of 580.25 ± 24.507 IU/L is over twice the controlfemale serum LDH activity of 302.18 ± 18.082 IU/L. Furtherone-way anova test was performed to find any significance ininfected and control male and female.Conclusion: Hepatic dysfunction was found to be associated toP. falciparum malaria infection.

  13. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection.

    Science.gov (United States)

    Berna, Amalia Z; McCarthy, James S; Wang, Rosalind X; Saliba, Kevin J; Bravo, Florence G; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C

    2015-10-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

  14. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  15. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    Directory of Open Access Journals (Sweden)

    Kendjo Eric

    2003-06-01

    Full Text Available Abstract Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57% had microscopic parasitaemia; 139 (64%of them were primigravidae, 38 (40% in their second pregnancy and 180 (64% were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.

  16. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Petersen, Wiebke; Külzer, Simone; Engels, Sonja; Zhang, Qi; Ingmundson, Alyssa; Rug, Melanie; Maier, Alexander G; Przyborski, Jude M

    2016-07-01

    Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte.

  17. Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry

    DEFF Research Database (Denmark)

    Staalsoe, T; Giha, H A; Dodoo, D;

    1999-01-01

    BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously...... been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias...... with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were...

  18. Influences of intermittent preventive treatment and persistent multiclonal Plasmodium falciparum infections on clinical malaria risk.

    Directory of Open Access Journals (Sweden)

    Anne Liljander

    Full Text Available BACKGROUND: Intermittent preventive treatment (IPT of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria. MATERIAL AND METHODS: The study included 2227 Ghanaian children (3-59 months who were given sulphadoxine-pyrimethamine (SP bimonthly, artesunate plus amodiaquine (AS+AQ monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up. RESULTS: Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment. CONCLUSION: Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that

  19. Usefulness of the recombinant liver stage antigen-3 for an early serodiagnosis of Plasmodium falciparum infection.

    Science.gov (United States)

    Lee, Hyeong-Woo; Moon, Sung-Ung; Ryu, Hye-Sun; Kim, Yeon-Joo; Cho, Shin-Hyeong; Chung, Gyung-Tae; Lin, Khin; Na, Byoung-Kuk; Kong, Yoon; Chung, Kyung-Suk; Kim, Tong-Soo

    2006-03-01

    In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.

  20. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia

    DEFF Research Database (Denmark)

    Helleberg, Marie; Goka, Bamenla Q; Akanmori, Bartholomew D

    2005-01-01

    BACKGROUND: Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. MATERIALS AND METHODS: Blood was collected from patients with recent malaria and negative malaria microscopy....... Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal), aldolase and histidine rich protein 2 (Now malaria) were used to differentiate between patients with (1) no malaria, (2) recent cleared malaria, (3) persistent P. falciparum infection. Red cell distribution width (RDW), plasma levels...

  1. Relevant assay to study the adhesion of Plasmodium falciparum-infected erythrocytes to the placental epithelium.

    Directory of Open Access Journals (Sweden)

    Philippe Boeuf

    Full Text Available In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies.

  2. An automated method for determining the cytoadhesion of Plasmodium falciparum-infected erythrocytes to immobilized cells

    DEFF Research Database (Denmark)

    Hempel, Casper; Boisen, Ida M; Efunshile, Akinwale;

    2015-01-01

    BACKGROUND: Plasmodium falciparum exports antigens to the surface of infected erythrocytes causing cytoadhesion to the host vasculature. This is central in malaria pathogenesis but in vitro studies of cytoadhesion rely mainly on manual counting methods. The current study aimed at developing...... an automated high-throughput method for this purpose utilizing the pseudoperoxidase activity of intra-erythrocytic haemoglobin. METHODS: Chinese hamster ovary (CHO) cells were grown to confluence in chamber slides and microtiter plates. Cytoadhesion of co-cultured P. falciparum, selected for binding to CHO...... using: i) binding of P. falciparum-infected erythrocytes to CHO cells over-expressing chondroitin sulfate A and ii) CHO cells transfected with CD36. Binding of infected erythrocytes including field isolates to primary endothelial cells was also performed. Data was analysed using linear regression...

  3. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K;

    2016-01-01

    BACKGROUND: Placental malaria occurs when Plasmodium falciparum infected erythrocytes sequester in the placenta. Placental parasite isolates bind to chondroitin sulphate A (CSA) by expression of VAR2CSA on the surface of infected erythrocytes, but may sequester by other VAR2CSA mediated mechanisms...... placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  4. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway.

    Science.gov (United States)

    Costa, F T M; Avril, M; Nogueira, P A; Gysin, J

    2006-12-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  5. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    Directory of Open Access Journals (Sweden)

    F.T.M. Costa

    2006-12-01

    Full Text Available Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM. This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  6. Assessing parasite clearance during uncomplicated Plasmodium falciparum infection treated with artesunate monotherapy in Suriname

    Directory of Open Access Journals (Sweden)

    Vreden SGS

    2016-11-01

    Full Text Available Stephen GS Vreden,1 Rakesh D Bansie,2 Jeetendra K Jitan,3 Malti R Adhin4 1Foundation for Scientific Research Suriname (SWOS, 2Department of Internal Medicine, Academic Hospital Paramaribo, 3Department of Public Health, Ministry of Health, 4Department of Biochemistry, Anton de Kom University of Suriname, Paramaribo, Suriname Background: Artemisinin resistance in Plasmodium falciparum is suspected when the day 3 parasitemia is >10% when treated with artemisinin-based combination therapy or if >10% of patients treated with artemisinin-based combination therapy or artesunate monotherapy harbored parasites with half-lives ≥5 hours. Hence, a single-arm prospective efficacy trial was conducted in Suriname for uncomplicated P. falciparum infection treated with artesunate-based monotherapy for 3 days assessing day 3 parasitemia, treatment outcome after 28 days, and parasite half-life. Methods: The study was conducted in Paramaribo, the capital of Suriname, from July 2013 until July 2014. Patients with uncomplicated Plasmodium falciparum infection were included and received artesunate mono-therapy for three days. Day 3 parasitaemia, treatment outcome after 28 days and parasite half-life were determined. The latter was assessed with the parasite clearance estimator from the WorldWide Antimalarial Resistance Network (WWARN. Results: Thirty-nine patients were included from July 2013 until July 2014. The day 3 parasitemia was 10%. Eight patients (20.5% could be followed up until day 28 and showed adequate clinical and parasitological response. Parasite half-life could only be determined from ten data series (25.7%. The median parasite half-life was 5.16 hours, and seven of these data series had a half-life ≥5 hours, still comprising 17.9% of the total data series. Conclusion: The low follow-up rate and the limited analyzable data series preclude clear conclusions about the efficacy of artesunate monotherapy in Suriname and the parasite half

  7. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake

    Science.gov (United States)

    Plasmodium parasites are known to manipulate the behaviour of their vectors so as to enhance their transmission. However, it is unknown if this vector manipulation also affects mosquito-plant interaction and sugar uptake. Dual-choice olfactometer and probing assays were used to study plant seeking b...

  8. Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection

    Science.gov (United States)

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H.; Sheel, Meru; Faleiro, Rebecca J.; Bunn, Patrick T.; Best, Shannon E.; Beattie, Lynette; Ng, Susanna S.; Edwards, Chelsea L.; Boyle, Glen M.; Price, Ric N.; Anstey, Nicholas M.; Loughland, Jessica R.; Burel, Julie; Doolan, Denise L.; Haque, Ashraful; McCarthy, James S.; Engwerda, Christian R.

    2016-01-01

    Summary The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement. PMID:27705789

  9. Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection

    Directory of Open Access Journals (Sweden)

    Natalie J. Spillman

    2016-10-01

    Full Text Available Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs. EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids by epoxide hydrolases (EHs. The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1 and 2 (PfEH2, both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium.

  10. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Heidi Smith

    1992-01-01

    Full Text Available The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain. A "model" system"for the study of cerebral malaria employs amelanotic melanoma cells as the "target"cells in an vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca²* (50mM result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES. We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognized modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a doso responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin, on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  11. Dynamics in the cytoadherence phenotypes of Plasmodium falciparum infected erythrocytes isolated during pregnancy.

    Directory of Open Access Journals (Sweden)

    Justin Doritchamou

    Full Text Available Pregnant women become susceptible to malaria infection despite their acquired immunity to this disease from childhood. The placental sequestration of Plasmodium falciparum infected erythrocytes (IE is the major feature of malaria during pregnancy, due to ability of these parasites to bind chondroitin sulfate A (CSA in the placenta through the VAR2CSA protein that parasites express on the surface of IE. We collected parasites at different times of pregnancy and investigated the adhesion pattern of freshly collected isolates on the three well described host receptors (CSPG, CD36 and ICAM-1. Var genes transcription profile and VAR2CSA surface-expression were assessed in these isolates. Although adhesion of IE to CD36 and ICAM-1 was observed in some isolates, CSA-adhesion was the predominant binding feature in all isolates analyzed. Co-existence in the peripheral blood of several adhesion phenotypes in early pregnancy isolates was observed, a diversity that gradually tightens with gestational age in favour of the CSA-adhesion phenotype. Infections occurring in primigravidae were often by parasites that adhered more to CSA than those from multigravidae. Data from this study further emphasize the specificity of CSA adhesion and VAR2CSA expression by parasites responsible for pregnancy malaria, while drawing attention to the phenotypic complexity of infections occurring early in pregnancy as well as in multigravidae.

  12. Field performance of malaria rapid diagnostic test for the detection of Plasmodium falciparum infection in Odisha State, India

    Directory of Open Access Journals (Sweden)

    S S Sahu

    2015-01-01

    Full Text Available Background & objectives: Rapid diagnostic tests (RDTs have become an essential surveillance tool in the malaria control programme in India. The current study aimed to assess the performance of ParaHIT-f, a rapid test in diagnosis of Plasmodium falciparum infection through detecting its specific antigen, histidine rich protein 2 (PfHRP-2, in Odisha State, India. Methods: The study was undertaken in eight falciparum malaria endemic southern districts of Odisha State. Febrile patients included through active case detection, were diagnosed by Accredited Social Health Activists (ASHAs for P. falciparum infection using the RDT, ParaHIT-f. The performance of ParaHIT-f was evaluated using microscopy as the gold standard. Results: A total of 1030 febrile patients were screened by both microscopy and the RDT for P. falciparum infection. The sensitivity of ParaHIT-f was 63.6% (95% CI: 56.0-70.6 and specificity was 98.9% (95% CI: 97.9-99.5, with positive and negative predictive values (PPV and NPV of 92.6% (95% CI: 86.0-96.3 and 93.0% (95% CI: 91.0-94.5, respectively. When related to parasitaemia, the RDT sensitivity was 47.8% at the low parasitaemia of 4 to 40 parasites/µl of blood. Interpretation & conclusions: The results showed that the performance of the RDT, ParaHIT-f, was not as sensitive as microscopy in detecting true falciparum infections; a high specificity presented a low frequency of false-positive RDT results. t0 he sensitivity of ParaHIT-f was around 60 per cent. It is, therefore, essential to improve the efficiency (sensitivity of the kit so that the true falciparum infections will not be missed especially in areas where P. falciparum has been the predominant species causing cerebral malaria.

  13. Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella during Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    Science.gov (United States)

    Nyirenda, Tonney S; Nyirenda, James T; Tembo, Dumizulu L; Storm, Janet; Dube, Queen; Msefula, Chisomo L; Jambo, Kondwani C; Mwandumba, Henry C; Heyderman, Robert S; Gordon, Melita A; Mandala, Wilson L

    2017-07-01

    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum-infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in

  14. Malaria in pregnancy in rural Mozambique: the role of parity, submicroscopic and multiple Plasmodium falciparum infections.

    Science.gov (United States)

    Saute, Francisco; Menendez, Clara; Mayor, Alfredo; Aponte, John; Gomez-Olive, Xavier; Dgedge, Martinho; Alonso, Pedro

    2002-01-01

    Falciparum malaria affects pregnant women, especially primigravidae, but before malaria control programmes targeted to them can be designed, a description of the frequency and parity pattern of the infection is needed. There is little information on the frequency and effect of submicroscopic malaria infection, as well as on multiplicity of Plasmodium falciparum genotypes in pregnancy. This study aimed to describe the prevalence of malaria parasitaemia and anaemia and their relation to parity and age in pregnant women, during two malaria transmission seasons in a rural area of southern Mozambique. It also tried to assess the frequency and effect on anaemia of submicroscopic and multiple falciparum infections. A total of 686 pregnant women were enrolled in three cross-sectional community-based surveys during different transmission seasons in rural southern Mozambique. In each survey a questionnaire was administered on previous parity history, the gestational age was assessed, the axillary temperature recorded and both haematocrit and malaria parasitaemia were determined. We used polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis to determine submicroscopic and multiple P. falciparum infections in a subsample of women. A total of 156 women (23%) had microscopic parasitaemia, of which 144 (92%) were asexual forms of P. falciparum. The prevalence of clinical malaria was 18 of 534 (3%), that of anaemia, 382 of 649 (59%). In a multivariate analysis age but not parity was associated with an increased risk of microscopic parasitaemia. Anaemia was associated with microscopic P. falciparum parasitaemia. Both malaria parasitaemia and anaemia were more frequent during the rainy season. Although not statistically significant, submicroscopic infections tended to be more frequent among grand-multiparous pregnant women. Subpatent infections were not associated with increased anaemia. Multiplicity of infection was not associated with either

  15. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission.

    Directory of Open Access Journals (Sweden)

    Geoffrey L Johnston

    2013-04-01

    Full Text Available Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population. Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0 . We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of

  16. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes

    Science.gov (United States)

    Saiwaew, Somporn; Sritabal, Juntima; Piaraksa, Nattaporn; Keayarsa, Srisuda; Ruengweerayut, Ronnatrai; Utaisin, Chirapong; Sila, Patima; Niramis, Rangsan; Udomsangpetch, Rachanee; Charunwatthana, Prakaykaew; Pongponratn, Emsri; Pukrittayakamee, Sasithon; Leitgeb, Anna M.; Wahlgren, Mats; Lee, Sue J.; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.; Chotivanich, Kesinee

    2017-01-01

    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria. PMID:28249043

  17. Submicroscopic Plasmodium falciparum Infections Are Associated With Maternal Anemia, Premature Births, and Low Birth Weight.

    Science.gov (United States)

    Cottrell, Gilles; Moussiliou, Azizath; Luty, Adrian J F; Cot, Michel; Fievet, Nadine; Massougbodji, Achille; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-05-15

    Molecular, as opposed to microscopic, detection measures the real prevalence of Plasmodium falciparum infections. Such occult infections are common during pregnancy but their impact on pregnancy outcomes is unclear. We performed a longitudinal study to describe that impact. In a cohort of 1037 Beninese pregnant women, we used ultrasound to accurately estimate gestational ages. Infection with P. falciparum, hemoglobin concentration, use of intermittent preventive treatment during pregnancy (IPTp) for malaria, and other parameters were recorded during pregnancy. Using multivariate analyses, we evaluated the impact of submicroscopic infections on maternal anemia, premature birth, and low birth weight. At inclusion, polymerase chain reaction (PCR) and microscopy detected infection in 40% and 16% of women, respectively. The proportion infected declined markedly after 2 doses of IPTp but rebounded to 34% (by PCR) at delivery. Submicroscopic infections during pregnancy were associated with lower mean hemoglobin irrespective of gravidity, and with increased anemia risk in primigravidae (odds ratio [OR], 2.23; 95% confidence interval [CI], .98-5.07). Prospectively, submicroscopic infections at inclusion were associated with significantly increased risks of low birth weight in primigravidae (OR, 6.09; 95% CI, 1.16-31.95) and premature births in multigravidae (OR, 2.25; 95% CI, 1.13-4.46). In this detailed longitudinal study, we document the deleterious impact of submicroscopic P. falciparum parasitemia during pregnancy on multiple pregnancy outcomes. Parasitemia occurs frequently during pregnancy, but routine microscopic and rapid diagnostic tests fail to detect the vast majority of episodes. Our findings imply caution in any revision of the current strategies for prevention of pregnancy-associated malaria. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e

  18. Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers.

    Science.gov (United States)

    Farrugia, Cécile; Cabaret, Odile; Botterel, Françoise; Bories, Christian; Foulet, Françoise; Costa, Jean-Marc; Bretagne, Stéphane

    2011-06-01

    A cytochrome b (cytb) gene quantitative PCR (qPCR) assay was developed to diagnose malaria in travelers. First, manual and automated DNA extractions were compared and automated DNA extraction of 400 μl of blood was found to be more efficient. Sensitivity was estimated using the WHO international standard for Plasmodium falciparum DNA and compared to that of a previously published qPCR targeting the 18S rRNA coding gene (18S qPCR). The limit of detection of the cytb qPCR assay was 20 DNA copies (i.e., 1 parasite equivalent) per 400 μl of extracted whole blood and was comparable for the two qPCR assays. Both qPCR assays were used on blood samples from 265 consecutive patients seen for suspicion of malaria. There were no microscopy-positive and qPCR-negative samples. Positive cytb qPCR results were observed for 51 samples, and all but 1 were also 18S qPCR positive. Eight (16%) of these 51 samples were negative by microscopic examination. The 8 cytb qPCR-positive and microscopy-negative samples were from African patients, 3 of whom had received antimalarial drugs. Three non-P. falciparum infections were correctly identified using an additional qPCR assay. The absence of PCR inhibitors was tested for by the use of an internal control of mouse DNA to allow reliable quantification of circulating DNA. The high analytical sensitivity of both qPCR assays combined with automated DNA extraction supports its use as a laboratory tool for diagnosis and parasitemia determination in emergencies. Whether to treat qPCR-positive and microscopy-negative patients remains to be determined.

  19. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*

    Science.gov (United States)

    Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasites in human red blood cells (RBC) from in vitro cultures of P. falciparum and in RBC from infected Gambians; RBC from 100 Geneva blood donors served as normal, uninfected controls. In titration experiments, the degree of antibody-binding inhibition correlated with the number of parasites in the test RBC. Parasites were detected at a level of 8 parasites/106 RBC. Samples of RBC were tested from 126 Gambians with microscopically proven infection; significant antibody-binding inhibition was found in 86% of these cases, where parasitaemia ranged from 10 to 125 000/μl of blood. The presence of high-titre antibody in the test preparations was found to reduce the sensitivity of parasite detection in infected RBC from in vitro cultures mixed with equal volumes of different antibody-containing sera. The sensitivity was restored in most cases by recovering the RBC by centrifugation before testing. In a preliminary experiment, there was no significant difference in antibody-binding inhibition using fresh infected RBC and RBC dried on filter-paper and recovered by elution, although there was greater variation in the latter samples. PMID:7044589

  20. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA.

    Science.gov (United States)

    Mackey, L J; McGregor, I A; Paounova, N; Lambert, P H

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasites in human red blood cells (RBC) from in vitro cultures of P. falciparum and in RBC from infected Gambians; RBC from 100 Geneva blood donors served as normal, uninfected controls. In titration experiments, the degree of antibody-binding inhibition correlated with the number of parasites in the test RBC. Parasites were detected at a level of 8 parasites/10(6) RBC. Samples of RBC were tested from 126 Gambians with microscopically proven infection; significant antibody-binding inhibition was found in 86% of these cases, where parasitaemia ranged from 10 to 125 000/mul of blood. The presence of high-titre antibody in the test preparations was found to reduce the sensitivity of parasite detection in infected RBC from in vitro cultures mixed with equal volumes of different antibody-containing sera. The sensitivity was restored in most cases by recovering the RBC by centrifugation before testing. In a preliminary experiment, there was no significant difference in antibody-binding inhibition using fresh infected RBC and RBC dried on filter-paper and recovered by elution, although there was greater variation in the latter samples.

  1. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available BACKGROUND: During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS: The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE: The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host

  2. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  3. The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates

    DEFF Research Database (Denmark)

    Quadt, Katharina A; Barfod, Lea; Andersen, Daniel;

    2012-01-01

    BACKGROUND: The virulence of Plasmodium falciparum malaria is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome....... Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density. METHODOLOGY/PRINCIPAL FINDINGS: We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates...

  4. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia

    Directory of Open Access Journals (Sweden)

    Rodriques Onike

    2005-12-01

    Full Text Available Abstract Background Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. Materials and methods Blood was collected from patients with recent malaria and negative malaria microscopy. Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal®, aldolase and histidine rich protein 2 (Now malaria® were used to differentiate between patients with (1 no malaria, (2 recent cleared malaria, (3 persistent P. falciparum infection. Red cell distribution width (RDW, plasma levels of soluble transferrin receptor (sTfR and erythropoietin (EPO were measured as markers of erythropoiesis. Interleukin (IL 10 and tumour necrosis factor (TNFα were used as inflammation markers. Results EPO was correlated with haemoglobin, irrespective of malaria (R = -0.36, P P. falciparum infection, but not recent malaria without residual parasites, was associated with bone marrow suppression i.e., low RDW (P Conclusion In the treatment of malaria, complete eradication of parasites may prevent subsequent development of anaemia. Severely anaemic children may benefit from antimalarial treatment if antigen tests are positive, even when no parasites can be demonstrated by microscopy.

  5. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of uncomplicated Plasmodium vivax and Plasmodium falciparum infection.

    Science.gov (United States)

    Lima-Junior, Josué da Costa; Rodrigues-da-Silva, Rodrigo Nunes; Pereira, Virgínia Araújo; Storer, Fábio Luiz; Perce-da-Silva, Daiana de Souza; Fabrino, Daniela Leite; Santos, Fátima; Banic, Dalma Maria; Oliveira-Ferreira, Joseli de

    2012-12-01

    The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.

  6. Modulation of the cellular immune response during Plasmodium falciparum infections in sickle cell trait individuals

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Theander, T G; Abdulhadi, N H

    1992-01-01

    Plasma and peripheral blood mononuclear cells (PBMC) were obtained from P. falciparum-infected individuals with and without the sickle cell trait at diagnosis and 7 days after treatment. HbAA and HbAS patients were compared for levels of plasma soluble IL-2 receptors (IL-2R) and the in vitro...

  7. Modulation of Whole-Cell Currents in Plasmodium Falciparum-Infected Human Red Blood Cells by Holding Potential and Serum

    Science.gov (United States)

    Staines, Henry M; Powell, Trevor; Clive Ellory, J; Egée, Stéphane; Lapaix, Franck; Decherf, Gaëtan; Thomas, Serge L Y; Duranton, Christophe; Lang, Florian; Huber, Stephan M

    2003-01-01

    Recent electrophysiological studies have identified novel ion channel activity in the host plasma membrane of Plasmodium falciparum-infected human red blood cells (RBCs). However, conflicting data have been published with regard to the characteristics of induced channel activity measured in the whole-cell configuration of the patch-clamp technique. In an effort to establish the reasons for these discrepancies, we demonstrate here two factors that have been found to modulate whole-cell recordings in malaria-infected RBCs. Firstly, negative holding potentials reduced inward currents (i.e. at negative potentials), although this result was highly complex. Secondly, the addition of human serum increased outward currents (i.e. at positive potentials) by approximately 4-fold and inward currents by approximately 2-fold. These two effects may help to resolve the conflicting data in the literature, although further investigation is required to understand the underlying mechanisms and their physiological relevance in detail. PMID:12937282

  8. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K;

    1988-01-01

    by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  9. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status

    Directory of Open Access Journals (Sweden)

    Cazenave Pierre-André

    2007-01-01

    Full Text Available Abstract Background There is an increase of serum levels of IgE during Plasmodium falciparum infections in individuals living in endemic areas. These IgEs either protect against malaria or increase malaria pathogenesis. To get an insight into the exact role played by IgE in the outcome of P. falciparum infection, total IgE levels and functional anti-parasite IgE response were studied in children and adults, from two different endemic areas Gabon and India, exhibiting either uncomplicated malaria, severe non cerebral malaria or cerebral malaria, in comparison with control individuals. Methodology and results Blood samples were collected from controls and P. falciparum-infected patients before treatment on the day of hospitalization (day 0 in India and, in addition, on days 7 and 30 after treatment in Gabon. Total IgE levels were determined by ELISA and functional P. falciparum-specific IgE were estimated using a mast cell line RBL-2H3 transfected with a human Fcε RI α-chain that triggers degranulation upon human IgE cross-linking. Mann Whitney and Kruskall Wallis tests were used to compare groups and the Spearman test was used for correlations. Total IgE levels were confirmed to increase upon infection and differ with level of transmission and age but were not directly related to the disease phenotype. All studied groups exhibited functional parasite-specific IgEs able to induce mast cell degranulation in vitro in the presence of P. falciparum antigens. Plasma IgE levels correlated with those of IL-10 in uncomplicated malaria patients from Gabon. In Indian patients, plasma IFN-γ , TNF and IL-10 levels were significantly correlated with IgE concentrations in all groups. Conclusion Circulating levels of total IgE do not appear to correlate with protection or pathology, or with anti-inflammatory cytokine pattern bias during malaria. On the contrary, the P. falciparum-specific IgE response seems to contribute to the control of parasites, since

  10. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum -infected erythrocytes

    National Research Council Canada - National Science Library

    Przyborski, Jude M; Miller, Susanne K; Rohrbach, Petra; Pfahler, Judith M; Crabb, Brendan S; Henrich, Philipp P; Lanzer, Michael

    2005-01-01

    The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts...

  11. Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples

    Directory of Open Access Journals (Sweden)

    Venkatesan Meera

    2012-02-01

    Full Text Available Abstract Background Genome and transcriptome studies of Plasmodium nucleic acids obtained from parasitized whole blood are greatly improved by depletion of human DNA or enrichment of parasite DNA prior to next-generation sequencing and microarray hybridization. The most effective method currently used is a two-step procedure to deplete leukocytes: centrifugation using density gradient media followed by filtration through expensive, commercially available columns. This method is not easily implemented in field studies that collect hundreds of samples and simultaneously process samples for multiple laboratory analyses. Inexpensive syringes, hand-packed with CF11 cellulose powder, were recently shown to improve ex vivo cultivation of Plasmodium vivax obtained from parasitized whole blood. This study was undertaken to determine whether CF11 columns could be adapted to isolate Plasmodium falciparum DNA from parasitized whole blood and achieve current quantity and purity requirements for Illumina sequencing. Methods The CF11 procedure was compared with the current two-step standard of leukocyte depletion using parasitized red blood cells cultured in vitro and parasitized blood obtained ex vivo from Cambodian patients with malaria. Procedural variations in centrifugation and column size were tested, along with a range of blood volumes and parasite densities. Results CF11 filtration reliably produces 500 nanograms of DNA with less than 50% human DNA contamination, which is comparable to that obtained by the two-step method and falls within the current quality control requirements for Illumina sequencing. In addition, a centrifuge-free version of the CF11 filtration method to isolate P. falciparum DNA at remote and minimally equipped field sites in malaria-endemic areas was validated. Conclusions CF11 filtration is a cost-effective, scalable, one-step approach to remove human DNA from P. falciparum-infected whole blood samples.

  12. Malaria during pregnancy in a reference centre from the Brazilian Amazon: unexpected increase in the frequency of Plasmodium falciparum infections

    Directory of Open Access Journals (Sweden)

    Martínez-Espinosa Flor Ernestina

    2004-01-01

    Full Text Available Malaria remains globally the most important parasitic disease of man. Data on its deleterious effects during pregnancy have been extensively documented in hyperendemic, holoendemic, and mesoendemic areas from Africa and Asia where Plasmodium falciparum is responsible for almost all infections. However, knowledge about malaria during pregnancy in areas where transmission is unstable and P. vivax is the most prevalent species, such as the Brazilian Amazon, is scarce. Here, we report a preliminary cross sectional descriptive study, carried out at the Fundação de Medicina Tropical do Amazonas, a reference centre for diagnosis and treatment of tropical diseases in the west-Amazon (Manaus, Brazil. A total of 1699 febrile childbearing age women had positive thick blood smears to Plasmodium species, between January and November 1997: 1401 (82.5% were positive for P. vivax , 286 (16.8% for P. falciparum and 12 (0.07% carried mixed infections. From the malarious patients, 195 were pregnant. The ratio of P. falciparum to P. vivax infections in the group of non-pregnant infected women was 1:5.6 while it was 1:2.3 in that of pregnant infected ones. Similar rates or even proportionally more vivax infections during pregnancy were expected to occur, in function of the contraindication of primaquine with the resulting increased P. vivax relapse rates. Such an observation suggests that the mechanism of resistance/susceptibility to infection and/or malaria pathogenesis in pregnant women may differ according to Plasmodium species and that the extensively described increase in the frequencies of malaria infection during pregnancy may be specifically due to P. falciparum infection.

  13. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte.

    Science.gov (United States)

    Külzer, Simone; Petersen, Wiebke; Baser, Avni; Mandel, Katharina; Przyborski, Jude M

    2013-02-01

    In recent years, and largely supported by the increasing use of transfection technology, much research attention has been given to protein trafficking in the Plasmodium falciparum infected red blood cell. By expression of fluorescent reporter proteins, much information has been gained on both the signals and mechanisms directing proteins to their correct sub-cellular localisation within the parasite and infected host cell. Generally however, verification of the observed fluorescent phenotype is carried out using more traditional techniques such as co-immunofluorescence, protease protection, and cell fractionation followed by Western blot. Here we apply a self-assembling split GFP (saGFP) system and show that this can be used to determine both membrane topology and compartmentalisation using transfection technology alone. As an example, we verify the topology of an ER membrane protein, hDer1-1, and of an exported parasite Hsp40 co-chaperone, PFE55. Additionally, we can demonstrate that this system has the potential to be applied to analysis of organellar proteins.

  14. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon

    Science.gov (United States)

    Fratus, Alessandra Sampaio Bassi; Cabral, Fernanda Janku; Fotoran, Wesley Luzetti; Medeiros, Márcia Melo; Carlos, Bianca Cechetto; Martha, Rosimeire dalla; da Silva, Luiz Hildebrando Pereira; Lopes, Stefanie Costa Pinto; Costa, Fabio Trindade Maranhão; Wunderlich, Gerhard

    2014-01-01

    In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms. PMID:25099336

  15. Haptoglobin phenotype prevalence and cytokine profiles during Plasmodium falciparum infection in Dogon and Fulani ethnic groups living in Mali.

    Science.gov (United States)

    Perdijk, Olaf; Arama, Charles; Giusti, Pablo; Maiga, Bakary; Troye-Blomberg, Marita; Dolo, Amagana; Doumbo, Ogobara; Persson, Jan-Olov; Boström, Stéphanie

    2013-11-25

    The Fulani are known to have a lower parasitaemia and less clinical episodes of malaria as compared to the Dogon sympatric ethnic group, living in Mali. Higher circulating malaria-specific antibody titers and increased pro-inflammatory cytokine levels have been shown in Fulani individuals. Several studies have tried to link haptoglobin (Hp) phenotypes with susceptibility to malaria, but without consensus. This study investigated the role of Hp phenotypes and cytokine levels in Dogon and Fulani during asymptomatic Plasmodium falciparum infection. Two different cohorts were combined in this study: a 2008 cohort with 77 children aged between two and ten years and a 2001 cohort, with 82 children and adults, aged between 11 and 68 years. Hp phenotypes in plasma were measured by Western Blot. Circulating levels of sCD163, IL-6, IL-10, IFN-γ and TNF were measured by ELISA. Multiple regression analysis was performed to associate Hp phenotypes with cytokine profiles. In addition, in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with Hp:Hb complexes was performed and cytokine release in corresponding supernatants were measured using cytometric bead array. The results revealed a higher Hp2-2 phenotype prevalence in the Fulani. The Hp2-2 phenotype was associated with a higher susceptibility to P. falciparum infection in Dogon, but not in Fulani. In concordance with previous studies, Fulani showed increased inflammatory mediators (IL-6, IFN-γ) and additionally also increased sCD163 levels compared to Dogon, irrespective of infection. Furthermore, infected individuals showed elevated sCD163 levels compared to uninfected individuals, in both Fulani and Dogon. Multiple regression analysis revealed that the Hp1-1 phenotype was associated with higher levels of TNF and IFN-γ, as compared to the Hp2-2 phenotype. In vitro stimulation of PBMCs with Hb:Hp1-1 complexes resulted in a pro-inflammatory cytokine profile, whilst stimulation with Hb:Hp2-2 complexes showed

  16. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina

    2015-01-01

    Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interaction...

  17. In vivo switching between variant surface antigens in human Plasmodium falciparum infection

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Hamad, Amel A; Hviid, Lars

    2002-01-01

    A semi-immune individual was retrospectively found to have maintained an apparently monoclonal and genotypically stable asymptomatic infection for months after clinical cure of a Plasmodium falciparum malaria episode. Before the attack, the individual had no antibodies to variant surface antigens...

  18. Inhibition of human lymphocyte proliferative response by serum from Plasmodium falciparum infected patients

    DEFF Research Database (Denmark)

    Theander, T G; Svenson, M; Bygbjerg, I C

    1987-01-01

    initiation of treatment suppressed the in vitro lymphocyte proliferative response to both Plasmodium-derived antigens and an unrelated antigen (PPD-tuberculin). The suppressive effect was lost if the serum was incubated at 56 degrees C for 30 min, and the effect was not HLA-restricted since the inhibition...

  19. Detection of Plasmodium falciparum-infected red blood cells by optical stretching

    Science.gov (United States)

    Mauritz, Jakob M. A.; Tiffert, Teresa; Seear, Rachel; Lautenschläger, Franziska; Esposito, Alessandro; Lew, Virgilio L.; Guck, Jochen; Kaminski, Clemens F.

    2010-05-01

    We present the application of a microfluidic optical cell stretcher to measure the elasticity of malaria-infected red blood cells. The measurements confirm an increase in host cell rigidity during the maturation of the parasite Plasmodium falciparum. The device combines the selectivity and sensitivity of single-cell elasticity measurements with a throughput that is higher than conventional single-cell techniques. The method has potential to detect early stages of infection with excellent sensitivity and high speed.

  20. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Magistrado, Pamela; Salanti, Ali; Tuikue Ndam, Nicaise G;

    2008-01-01

    Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental inter...... on the surface of infected erythrocytes from placenta. Importantly, this was achieved with cross-reactive antibodies against VAR2CSA....

  1. The spatial-temporal clustering of Plasmodium falciparum infection over eleven years in Gezira State, The Sudan

    Directory of Open Access Journals (Sweden)

    Snow Robert W

    2010-06-01

    Full Text Available Abstract Background Malaria infection and disease exhibit microgeographic heterogeneity which if predictable could have implications for designing small-area intervention. Here, the space-time clustering of Plasmodium falciparum infections using data from repeat cross-sectional surveys in Gezira State, a low transmission area in northern Sudan, is investigated. Methods Data from cross-sectional surveys undertaken in January each year from 1999-2009 in 88 villages in the Gezira state were assembled. During each survey, about a 100 children between the ages two to ten years were sampled to examine the presence of P. falciparum parasites. In 2009, all the villages were mapped using global positioning systems. Cluster level data were analysed for spatial-only and space-time clustering using the Bernoulli model and the significance of clusters were tested using the Kulldorff scan statistic. Results Over the study period, 96,022 malaria slide examinations were undertaken and the P. falciparum prevalence was 8.6% in 1999 and by 2009 this had reduced to 1.6%. The cluster analysis showed the presence of one significant spatial-only cluster in each survey year and one significant space-time cluster over the whole study period. The primary spatial-only clusters in 10/11 years were either contained within or overlapped with the primary space-time cluster. Conclusion The results of the study confirm the generally low malaria transmission in the state of Gezira and the presence of spatial and space-time clusters concentrated around a specific area in the south of the state. Improved surveillance data that allows for the analysis of seasonality, age and other risk factors need to be collected to design effective small area interventions as Gezira state targets malaria elimination.

  2. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte.

    Science.gov (United States)

    Przyborski, Jude M; Nyboer, Britta; Lanzer, Michael

    2016-07-01

    The malaria parasite Plasmodium falciparum exports numerous proteins to its chosen host cell, the mature human erythrocyte. Many of these proteins are important for parasite survival. To reach the host cell, parasites must cross multiple membrane barriers and then furthermore be targeted to their correct sub-cellular localisation. This novel transport pathway has received much research attention in the past decades, especially as many of the mechanisms are expected to be parasite-specific and thus potential targets for drug development. In this article we summarize some of the most recent advances in this field, and highlight areas in which further research is needed.

  3. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  4. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection?

    Science.gov (United States)

    Brutus, Laurent; Watier, Laurence; Briand, Valérie; Hanitrasoamampionona, Virginie; Razanatsoarilala, Hélène; Cot, Michel

    2006-08-01

    A controlled randomized trial of antihelminthic treatment was undertaken in 1996-1997 in a rural area of Madagascar where populations were simultaneously infected with Ascaris lumbricoides and Plasmodium falciparum. Levamisole was administered bimonthly to 164 subjects, randomized on a family basis, whereas 186 were controls. While levamisole proved to be highly effective in reducing Ascaris egg loads in the treated group (P < 10(-3) at all bimonthly visits), subjects more than 5 years of age, treated with levamisole had a significant increase in their P. falciparum densities compared with controls (P = 0.02), whereas there was no effect of anti-helminthic treatment on children 6 months to 4 years of age. The demonstration of a clear negative interaction between Ascaris infection and malaria parasite density has important implications. Single community therapy programs to deliver treatments against several parasitic infections could avoid an increase of malaria attacks after mass treatment of ascariasis.

  5. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    Science.gov (United States)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  6. Comparison of Plasmodium falciparum infections in Panamanian and Colombian owl monkeys.

    Science.gov (United States)

    Rossan, R N; Harper, J S; Davidson, D E; Escajadillo, A; Christensen, H A

    1985-11-01

    Parameters of blood-induced infections of the Vietnam Oak Knoll, Vietnam Smith, and Uganda Palo Alto strains of Plasmodium falciparum studied in 395 Panamanian owl monkeys in this laboratory between 1976-1984 were compared with those reported from another laboratory for 665 Colombian owl monkeys, studied between 1968-1975, and, at the time, designated Aotus trivirgatus griseimembra. The virulence of these strains was less in Panamanian than in Colombian owl monkeys, as indicated by lower mortality rates of the Panamanian monkeys during the first 30 days of patency. Maximum parasitemias of the Vietnam Smith and Uganda Palo Alto strain, in Panamanian owl monkeys dying during the first 15 days of patent infection, were significantly higher than in Colombian owl monkeys. Panamanian owl monkeys that survived the primary attack had significantly higher maximum parasitemias than the surviving Colombian owl monkeys. Peak parasitemias were attained significantly earlier after patency in Panamanian than in Colombian owl monkeys, irrespective of the strain of P. falciparum. More Panamanian than Colombian owl monkeys evidenced self-limited infection after the primary attack of either the Vietnam Smith or Uganda Palo Alto strain. The duration of the primary attacks and recrudescences were significantly shorter in Panamanian than in Colombian owl monkeys. Mean peak parasitemias during recrudescence were usually higher in Panamanian owl monkeys than in Colombian monkeys. Differences of infection parameters were probably attributable, in part, to geographical origin of the two monkey hosts and parasite strains.

  7. Placental Malaria in Colombia: Histopathologic Findings in Plasmodium vivax and P. falciparum Infections

    Science.gov (United States)

    Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda

    2013-01-01

    Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807

  8. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya

    Directory of Open Access Journals (Sweden)

    Hongo Gordon

    2010-12-01

    Full Text Available Abstract Background Malaria is the commonest cause of childhood morbidity in Western Kenya with varied heamatological consequences. The t study sought to elucidate the haemotological changes in children infected with malaria and their impact on improved diagnosis and therapy of childhood malaria. Methods Haematological parameters in 961 children, including 523 malaria-infected and 438 non-malaria infected, living in Kisumu West District, an area of malaria holoendemic transmission in Western Kenya were evaluated. Results The following parameters were significantly lower in malaria-infected children; platelets, lymphocytes, eosinophils, red blood cell count and haemoglobin (Hb, while absolute monocyte and neutrophil counts, and mean platelet volume (MPV were higher in comparison to non-malaria infected children. Children with platelet counts of Conclusion Children infected with Plasmodium falciparum malaria exhibited important changes in some haematological parameters with low platelet count and haemoglobin concentration being the two most important predictors of malaria infection in children in our study area. When used in combination with other clinical and microscopy, these parameters could improve malaria diagnosis in sub-patent cases.

  9. Hemoglobin S and C affect protein export in Plasmodium falciparum-infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Nicole Kilian

    2015-02-01

    Full Text Available Malaria is a potentially deadly disease. However, not every infected person develops severe symptoms. Some people are protected by naturally occurring mechanisms that frequently involve inheritable modifications in their hemoglobin. The best studied protective hemoglobins are the sickle cell hemoglobin (HbS and hemoglobin C (HbC which both result from a single amino acid substitution in β-globin: glutamic acid at position 6 is replaced by valine or lysine, respectively. How these hemoglobinopathies protect from severe malaria is only partly understood. Models currently proposed in the literature include reduced disease-mediating cytoadherence of parasitized hemoglobinopathic erythrocytes, impaired intraerythrocytic development of the parasite, dampened inflammatory responses, or a combination thereof. Using a conditional protein export system and tightly synchronized Plasmodium falciparum cultures, we now show that export of parasite-encoded proteins across the parasitophorous vacuolar membrane is delayed, slower, and reduced in amount in hemoglobinopathic erythrocytes as compared to parasitized wild type red blood cells. Impaired protein export affects proteins targeted to the host cell cytoplasm, Maurer's clefts, and the host cell plasma membrane. Impaired protein export into the host cell compartment provides a mechanistic explanation for the reduced cytoadherence phenotype associated with parasitized hemoglobinopathic erythrocytes.

  10. Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia

    Science.gov (United States)

    2013-01-01

    Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by

  11. A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes

    Science.gov (United States)

    2014-01-01

    Background To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Methods Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Results Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Conclusions Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development. PMID:24885754

  12. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria

    Institute of Scientific and Technical Information of China (English)

    Muyiwa K Oyebola; Emmanuel T Idowu; Yetunde A Olukosi; Bamidele A Iwalokun; Chimere O Agomo; Olusola O Ajibaye; Monday Tola; Adetoro O Otubanjo

    2014-01-01

    Objective: To analyse the genetic diversity of Plasmodium falciparum (P. falciparum) usingmsp-1 and msp-2 as antigenic markers. Methods: Parasite DNA was extracted from 100 blood samples collected from P. falciparum-positive patients confirmed by microscopy, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block 3) allelic families.Results:observed. Results revealed that K1 (60/100) was the most predominant genotype of msp-1 allelic family followed by the genotypes of MAD20 (50/100) and R033 (45/100). In the msp-2 locus, FC27 genotype (62/100) showed higher frequency than 3D7 genotype (55/100). The allelic families were detected either alone or in combination with other families. However, no R033/MAD20 combination was observed. Multiplicity of infection (MOI) with msp-1 was higher in the locality of Ikorodu (1.50) than in Lekki (1.39). However, MOI with msp-2 was lower in the locality of Ikorodu (1.14) than in Lekki (1.76). There was no significant difference in the mean MOI between the two study areas (P=0.427). All the families of msp-1 (K1, MAD20 and R033) and msp-2 (FC27 and 3D7) locus were Conclusions: The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective.

  13. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    DEFF Research Database (Denmark)

    Sharling, Lisa; Enevold, Anders; Sowa, Kordai M P;

    2004-01-01

    BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythroc......BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected...... erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA) binding parasites express trypsin-resistant variant surface antigens (VSA) that bind female......-specific antibodies induced as a result of pregnancy associated malaria (PAM). METHODS: Fluorescence activated cell sorting (FACS) was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG) that bind to the surface of infected erythrocytes. P...

  14. The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates.

    Directory of Open Access Journals (Sweden)

    Katharina A Quadt

    Full Text Available BACKGROUND: The virulence of Plasmodium falciparum malaria is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs. The P. falciparum erythrocyte membrane protein 1 (PfEMP1 family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density. METHODOLOGY/PRINCIPAL FINDINGS: We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions. CONCLUSIONS/SIGNIFICANCE: The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the

  15. A Field-Tailored Reverse Transcription Loop-Mediated Isothermal Assay for High Sensitivity Detection of Plasmodium falciparum Infections

    Science.gov (United States)

    Kemleu, Sylvie; Guelig, Dylan; Eboumbou Moukoko, Carole; Essangui, Estelle; Diesburg, Steven; Mouliom, Abas; Melingui, Bernard; Manga, Jeanne; Donkeu, Christiane; Epote, Annie; Texier, Gaëtan; LaBarre, Paul; Burton, Robert

    2016-01-01

    Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.25ng of total parasite RNA, and exhibited a detection limit of 0.08 parasites/ μL when tested directly on infected whole blood lysates, or ~0.0008 parasites/ μL when using RNA extracts. Assay positivity was observed as early as eight minutes from initiation of the RT-LAMP and in most cases the reaction was complete before twenty minutes. Clinical evaluation of the assay on 132 suspected malaria cases resulted in a positivity rate of 90% for RT-LAMP using extracted RNA, and 85% when using whole blood lysates. The positivity rates were 70% for P. falciparum-specific RDT, 83% for RT-PCR, and 74% for thick blood smear microscopy (Mean parasite density = 36,986 parasites/ μL). Concordance rates between the developed RT-LAMP and comparator tests were greater than 75%, the lowest being with light microscopy (78%, McNemar’s test: P = 0.0002), and the highest was with RT-PCR (87%, McNemar’s test: P = 0.0523). Compared to reference RT-PCR, assay sensitivity was 90% for RT-LAMP on whole blood, and 96% for RT-LAMP using corresponding RNA extracts. Electricity-free heaters were further developed and evaluated in comparison with a battery-operated isothermal amplification machine for use with the developed test in resource-limited settings. Taken together, the data highlight the benefits of targeting high abundant RNA transcripts in molecular diagnosis, as well as the potential usefulness of the developed RT-LAMP-assay in

  16. Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants

    Directory of Open Access Journals (Sweden)

    Anchang Judith

    2008-01-01

    Full Text Available Abstract Background Individuals living in malaria endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI can be an indicator of immune status. However, whether this is good or bad for the development of immunity to malaria, is still a matter of debate. This study aimed to examine the MOI in asymptomatic children between two and ten years of age and to relate it to erythrocyte variants, clinical attacks, transmission levels and other parasitological indexes. Methods Study took place in Niakhar area in Senegal, where malaria is mesoendemic and seasonal. Three hundred and seventy two asymptomatic children were included. Sickle-cell trait, G6PD deficiency (A- and Santamaria and α+-thalassaemia (-α3.7 type were determined using PCR. Multiplicity of Plasmodium falciparum infection, i.e. number of concurrent clones, was defined by PCR-based genotyping of the merozoite surface protein-2 (msp2, before and at the end of the malaria transmission season. The χ2-test, ANOVA, multivariate linear regression and logistic regression statistical tests were used for data analysis. Results MOI was significantly higher at the end of transmission season. The majority of PCR positive subjects had multiple infections at both time points (64% before and 87% after the transmission season. MOI did not increase in α-thalassaemic and G6PD mutated children. The ABO system and HbAS did not affect MOI at any time points. No association between MOI and clinical attack was observed. MOI did not vary over age at any time points. There was a significant correlation between MOI and parasite density, as the higher parasite counts increases the probability of having multiple infections. Conclusion Taken together our data revealed that α-thalassaemia may have a role in protection against certain parasite strains. The protection against the increase in MOI after the transmission season conferred by G6PD deficiency is probably due to clearance of

  17. Morbidity and mortality associated with Plasmodium vivax and Plasmodium falciparum infection in a tertiary care kidney hospital

    Directory of Open Access Journals (Sweden)

    Salman Imtiaz

    2015-01-01

    Full Text Available Malaria is a disease of tropical regions and both types of plasmodia, i.e. Plasmodium falciparum and Plasmodium vivax, cause significant morbidity and mortality. P. vivax was thought to be benign and cause less morbidity and mortality. Many reports showed the devastating effect of vivax malaria too. We compared the clinical symptoms, laboratory markers, treatment and outcome of both the plasmodia. This is a retrospective analysis of 95 patients admitted to The Kidney Center, Karachi in a duration of 15 years (1997-2012; 45 patients with falciparum malaria and 50 patients with vivax malaria, and compared the clinical presentation, laboratory workup, treatment and outcome in both groups. The two groups constitute a mixed population of diabetes, chronic kidney disease (CKD and hemodialysis patients. Both plasmodia have an equal clinical impact in terms of fever and rigors, anorexia, nausea, feeling of dyspnea, change in the mental status, changes in the urine color, diarrhea, volume depletion and pedal edema. However, patients with falciparum had significantly more vomiting (P = 0.02, oliguria (P = 0.003 and jaundice (P = 0.003. Laboratory parameters also showed a severe impact of falciparum, as there was more severe anemia and kidney and liver dysfunction. More patients were treated with dialysis and blood transfusion in the falciparum group. The outcome in the two groups was not significantly different in terms of death and days of hospitalization. Falciparum malaria has a higher clinical impact than the vivax malaria, but vivax is not as benign as it was once thought to be. It also has devastating effects on vulnerable populations like patients with CKD and diabetes.

  18. Detection of very low level Plasmodium falciparum infections using the nested polymerase chain reaction and a reassessment of the epidemiology of unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Roper, C; Elhassan, I M; Hviid, L;

    1996-01-01

    We have used the nested polymerase chain reaction (PCR) to assay for low level Plasmodium falciparum infections that were below the threshold of detection of blood film examination. This revealed a substantial group of asymptomatic, submicroscopically patent infections within the population...... of a Sudanese village present throughout the year although clinical malaria episodes were almost entirely confined to the transmission season. In our September, January, April, and June surveys, the PCR-detected prevalences were 13%, 19%, 24%, and 19%, respectively. These figures reveal a much higher prevalence...... of dry season infection than previous microscopic surveys have indicated. Furthermore, 20% of a cohort of 79 individuals were healthy throughout the September to November transmission season but were PCR-positive for P. falciparum in a least one of a series of samples taken in the ensuing months. Levels...

  19. Distinct patterns of blood-stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Olesen, Cathrine Holm; Brahimi, Karima; Vandahl, Brian;

    2010-01-01

    ABSTRACT: BACKGROUND: In endemic regions naturally acquired immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections and is known to be mediated by IgG. The targets of protective antibodies remain to be fully defined. Several immunoepidemiological...... then gradually develop into protective response dominated by cytophilic IgG1 and IgG3 antibodies. METHODS: Naturally occurring IgG antibodies against P. falciparum blood-stage antigens were analysed from plasma samples collected from four groups of individuals differing in age and level of exposure to P....... falciparum infections. Western Blot profiling of blood-stage parasite antigens displaying reactivity with individual plasma samples in terms of their subclass specificities was conducted. Parasite antigens detected by IgG were grouped based on their apparent molecular sizes resolved by SDS-PAGE as high...

  20. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Directory of Open Access Journals (Sweden)

    Staalsoe Trine

    2004-09-01

    Full Text Available Abstract Background The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA binding parasites express trypsin-resistant variant surface antigens (VSA that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM. Methods Fluorescence activated cell sorting (FACS was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA was also studied. Results P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. Conclusion The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular

  1. Innexin AGAP001476 is critical for mediating anti-Plasmodium responses in Anopheles mosquitoes.

    Science.gov (United States)

    Li, Michelle W M; Wang, Jiuling; Zhao, Yang O; Fikrig, Erol

    2014-09-05

    The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Plasmodium Oocysts: Overlooked Targets of Mosquito Immunity.

    Science.gov (United States)

    Smith, Ryan C; Barillas-Mury, Carolina

    2016-12-01

    Although the ability of mosquitoes to limit Plasmodium infection is well documented, many questions remain as to how malaria parasites are recognized and killed by the mosquito host. Recent evidence suggests that anti-Plasmodium immunity is multimodal, with different immune mechanisms regulating ookinete and oocyst survival. However, most experiments determine the number of mature oocysts, without considering that different immune mechanisms may target different developmental stages of the parasite. Complement-like proteins have emerged as important determinants of early immunity targeting the ookinete stage, yet the mechanisms by which the mosquito late-phase immune response limits oocyst survival are less understood. Here, we describe the known components of the mosquito immune system that limit oocyst development, and provide insight into their possible mechanisms of action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    Science.gov (United States)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  4. Mosquito transgenic technologies to reduce Plasmodium transmission.

    Science.gov (United States)

    Fuchs, Silke; Nolan, Tony; Crisanti, Andrea

    2013-01-01

    The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.

  5. Two dimensional gel analysis of midgut proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infection

    NARCIS (Netherlands)

    Prevot, G.I.; Laurent-Winter, C.; Feldmann, A.M.; Rodhain, F.; Bourgouin, C.

    1998-01-01

    Little is known about the composition of the mosquito midgut which plays a central role in the development and subsequent transmission of malaria parasites. As a first step towards the characterization of mosquito midgut molecules involved in the transmission of malaria parasites, we analysed

  6. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa [v1; ref status: indexed, http://f1000r.es/4in

    Directory of Open Access Journals (Sweden)

    Michelle R. Sanford

    2014-10-01

    Full Text Available Presence of Plasmodium falciparum circumsporozoite protein (CSP was detected by enzyme linked immunosorbent assay (ELISA in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%. The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3%, 4.1%, 11.1% and 33.3% respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18 and A. pharoensis (N=6 and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

  7. Spleen enlargement and genetic diversity of Plasmodium falciparum infection in two ethnic groups with different malaria susceptibility in Mali, West Africa.

    Science.gov (United States)

    Bereczky, S; Dolo, A; Maiga, B; Hayano, M; Granath, F; Montgomery, S M; Daou, M; Arama, C; Troye-Blomberg, M; Doumbo, O K; Färnert, A

    2006-03-01

    The high resistance to malaria in the nomadic Fulani population needs further understanding. The ability to cope with multiclonal Plasmodium falciparum infections was assessed in a cross-sectional survey in the Fulani and the Dogon, their sympatric ethnic group in Mali. The Fulani had lower parasite prevalence and densities and more prominent spleen enlargement. Spleen rates in children aged 2-9 years were 75% in the Fulani and 44% in the Dogon (PDogon and Fulani, respectively. Spleen rate increased with parasite prevalence, density and number of co-infecting clones in asymptomatic Dogon. Moreover, splenomegaly was increased in individuals with clinical malaria in the Dogon, odds ratio 3.67 (95% CI 1.65-8.15, P=0.003), but not found in the Fulani, 1.36 (95% CI 0.53-3.48, P=0.633). The more susceptible Dogon population thus appear to respond with pronounced spleen enlargement to asymptomatic multiclonal infections and acute disease whereas the Fulani have generally enlarged spleens already functional for protection. The results emphasize the importance of spleen function in protective immunity to the polymorphic malaria parasite.

  8. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    Science.gov (United States)

    2013-01-01

    Background In heavily endemic malaria areas, it is almost inevitable that malarial infection will be associated with anaemia, although malaria may not be the prime cause of it. Anaemia is a major public health problem in Cameroon. We hypothesized that, factors other than falciparum malaria account for anaemia in the study area. Methods A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community. The investigative methods included the use of a structured questionnaire, clinical evaluation and laboratory investigations. Results At enrolment the overall prevalence of anaemia as assessed by Hb concentration (Hb anaemia was 6% and 46.2% of the children achieved haematological recovery by day 42. Exploratory multiple linear regression analysis showed the following; parasitaemia density (P 2 days (P anaemia in children with falciparum infection. Approximately 75.5% (265) of the caregivers had some knowledge about anaemia. Conclusion The identified risk factors revealed the important contributors to the pathogenesis of anaemia in the Mount Cameroon region. Control efforts should therefore be directed towards proper health education emphasizing on proper health seeking behaviour and attitudes of the population. PMID:23497273

  9. X-Ray Microanalysis Investigation of the Changes in Na, K, and Hemoglobin Concentration in Plasmodium falciparum-Infected Red Blood Cells

    Science.gov (United States)

    Mauritz, Jakob M.A.; Seear, Rachel; Esposito, Alessandro; Kaminski, Clemens F.; Skepper, Jeremy N.; Warley, Alice; Lew, Virgilio L.; Tiffert, Teresa

    2011-01-01

    Plasmodium falciparum is responsible for severe malaria. During the ∼48 h duration of its asexual reproduction cycle in human red blood cells, the parasite causes profound alterations in the homeostasis of the host red cell, with reversal of the normal Na and K gradients across the host cell membrane, and a drastic fall in hemoglobin content. A question critical to our understanding of how the host cell retains its integrity for the duration of the cycle had been previously addressed by modeling the homeostasis of infected cells. The model predicted a critical contribution of excess hemoglobin consumption to cell integrity (the colloidosmotic hypothesis). Here we tested this prediction with the use of electron-probe x-ray microanalysis to measure the stage-related changes in Na, K, and Fe contents in single infected red cells and in uninfected controls. The results document a decrease in Fe signal with increased Na/K ratio. Interpreted in terms of concentrations, the results point to a sustained fall in host cell hemoglobin concentration with parasite maturation, supporting a colloidosmotic role of excess hemoglobin digestion. The results also provide, for the first time to our knowledge, comprehensive maps of the elemental distributions of Na, K, and Fe in falciparum-infected red blood cells. PMID:21402025

  10. The Prevalence of α-Thalassemia and Its Relation to Plasmodium falciparum Infection in Patients Presenting to Clinics in Two Distinct Ecological Zones in Ghana.

    Science.gov (United States)

    Ghartey-Kwansah, George; Boampong, Johnson N; Aboagye, Benjamin; Afoakwah, Richmond; Ameyaw, Elvis O; Quashie, Neils B

    2016-01-01

    Thalassemia and sickle cell disease constitute the most monogenic hemoglobin (Hb) disorders worldwide. Clinical symptoms of α(+)-thalassemia (α(+)-thal) are related to inadequate Hb production and accumulation of β- and/or γ-globin subunits. The association of thalassemia with malaria remains contentious, though from its distribution it appears to have offered some protection against the disease. Data on the prevalence of thalassemia in Ghana and its link with malaria is scanty and restricted. It was an objective of this cross-sectional study to determine the prevalence of thalassemia in areas representing two of Ghana's distinct ecological zones. The relationship between thalassemia and Plasmodium falciparium (P. falciparum) infection was also ascertained. Overall, 277 patients presenting to health facilities in the study areas were recruited to participate. Tests were carried out to determine the presence of α(+)-thal, sickle cell and malaria parasites in the blood samples of participants. The outcome of this study showed an α(+)-thal frequency of 19.9% for heterozygotes (-α/αα) and 6.8% for homozygotes (-α/-α). Plasmodium falciparum was detected in 17.7% of the overall study population and 14.9% in those with α(+)-thal. No association was observed between those with α(+)-thal and the study sites (p > 0.05). A test of the Hardy-Weinberg law yielded no significant difference (p Ghana with no bias to the ecological zones. Although the prevalence and parasite density were relatively low in those with the disorder, no association was found between them.

  11. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    Full Text Available BACKGROUND: Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs. METHODS AND FINDINGS: Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. CONCLUSIONS: The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133.

  12. Plasmodium falciparum-infected erythrocyte knob density is linked to the PfEMP1 variant expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm

    2015-01-01

    regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still...... responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria......UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...

  13. Plasmodium falciparum-Infected Erythrocyte Knob Density Is Linked to the PfEMP1 Variant Expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm;

    2015-01-01

    UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...... regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still...... responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria...

  14. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    Full Text Available BACKGROUND: Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria

  15. Baculovirus-expressed constructs induce immunoglobulin G that recognizes VAR2CSA on Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Barfod, Lea; Nielsen, Morten A; Turner, Louise

    2006-01-01

    We raised specific antisera against recombinant VAR2CSA domains produced in Escherichia coli and in insect cells. All were reactive in enzyme-linked immunosorbent assay, but only insect cell-derived constructs induced immunoglobulin G (IgG) that was reactive with native VAR2CSA on the surface of ......-associated Plasmodium falciparum malaria....

  16. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    James S McCarthy

    Full Text Available BACKGROUND: Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP. The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. METHODS AND FINDINGS: A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L or atovaquone-proguanil (A/P. In the first cohort (n = 6 where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6. In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7 The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01. CONCLUSIONS: This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. TRIAL REGISTRATION: ClinicalTrials.gov NCT01055002.

  17. Effects of age, hemoglobin type and parasite strain on IgG recognition of Plasmodium falciparum-infected erythrocytes in Malian children.

    Directory of Open Access Journals (Sweden)

    Amir E Zeituni

    Full Text Available BACKGROUND: Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS: We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May and after (December the 2009 transmission season. To measure the effect of hemoglobin (Hb type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26 and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian. 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. CONCLUSIONS/SIGNIFICANCE: Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.

  18. Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Ospina Salazar Carmen L

    2011-03-01

    Full Text Available Abstract Background The development and spread of drug resistant Plasmodium falciparum strains is a major concern and novel anti-malarial drugs are, therefore, needed. Ferroquine is a ferrocenic derivative of chloroquine with proven anti-malarial activity against chloroquine-resistant and -sensitive P. falciparum laboratory strains. Methods Adult young male aged 18 to 45 years, asymptomatic carriers of P. falciparum, were included in two-dose escalation, double-blind, randomized, placebo-controlled Phase I trials, a single dose study and a multiple dose study aiming to evaluate oral doses of ferroquine from 400 to 1,600 mg. Results Overall, 54/66 patients (40 and 26 treated in the single and multiple dose studies, respectively experienced at least one adverse event, 15 were under placebo. Adverse events were mainly gastrointestinal symptoms such as abdominal pain (16, diarrhoea (5, nausea (13, and vomiting (9, but also headache (11, and dizziness (5. A few patients had slightly elevated liver parameters (10/66 including two patients under placebo. Moderate changes in QTc and morphological changes in T waves were observed in the course of the study. However, no adverse cardiac effects with clinical relevance were observed. Conclusions These phase I trials showed that clinically, ferroquine was generally well-tolerated up to 1,600 mg as single dose and up to 800 mg as repeated dose in asymptomatic young male with P. falciparum infection. Further clinical development of ferroquine, either alone or in combination with another anti-malarial, is highly warranted and currently underway.

  19. An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells.

    Science.gov (United States)

    Kats, Lev M; Fernandez, Kate M; Glenister, Fiona K; Herrmann, Susann; Buckingham, Donna W; Siddiqui, Ghizal; Sharma, Laveena; Bamert, Rebecca; Lucet, Isabelle; Guillotte, Micheline; Mercereau-Puijalon, Odile; Cooke, Brian M

    2014-04-01

    Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) - Isoleucine (I) - Lysine (K) - Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite's ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.

  20. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar.

    Science.gov (United States)

    Brutus, Laurent; Watier, Laurence; Hanitrasoamampionona, Virginie; Razanatsoarilala, Hélène; Cot, Michel

    2007-12-01

    A controlled randomized trial of anti-helminthic treatment was undertaken in 1996-1997 in a rural area of Madagascar where populations were simultaneously infected with Ascaris lumbricoides, Plasmodium falciparum, and Schistosoma mansoni. Levamisole was administered bimonthly to 107 subjects, whereas 105 were controls. Levamisole was highly effective in reducing Ascaris egg loads in the treated group (P 15 years of age. This study confirms the results of a randomized trial, which showed a negative interaction in those > 5 years of age between Ascaris and malaria parasite density in another Malagasy population, submitted to a higher malaria transmission.

  1. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection.

    Science.gov (United States)

    Kennedy, Alexander T; Schmidt, Christoph Q; Thompson, Jennifer K; Weiss, Greta E; Taechalertpaisarn, Tana; Gilson, Paul R; Barlow, Paul N; Crabb, Brendan S; Cowman, Alan F; Tham, Wai-Hong

    2016-02-01

    The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.

  2. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    DEFF Research Database (Denmark)

    Bengtsson, Dominique; Sowa, Kordai M; Salanti, Ali;

    2008-01-01

    BACKGROUND: The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used...... to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development. METHODS: A novel staining technique has been developed which permits distinction between...... erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non...

  3. Mosquito transmission of wild turkey malaria, Plasmodium hermani.

    Science.gov (United States)

    Young, M D; Nayar, J K; Forrester, D J

    1977-04-01

    Culex nigripalpus experimentally transmitted Plasmodium hermani, a plasmodium of wild turkeys (Meleagris gallopavo) in Florida. The mosquitoes were infected by feeding upon blood induced parasitemias in domestic turkey poults. The resulting sporozoites, transmitted by either mosquito bites or injection, produced malaria infections in domestic poults.

  4. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    Science.gov (United States)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  5. Longitudinal study of Plasmodium falciparum infection and immune responses in infants with or without the sickle cell trait.

    Science.gov (United States)

    Le Hesran, J Y; Personne, I; Personne, P; Fievet, N; Dubois, B; Beyemé, M; Boudin, C; Cot, M; Deloron, P

    1999-08-01

    Individuals may be homozygous (SS) or heterozygous (AS) sickle cell gene carriers or have normal adult haemoglobin (AA). Haemoglobin S could have a protective role against malaria but evidence is sparse and the operating mechanisms are poorly known. We followed two cohorts of children. The first was enrolled at birth (156 newborn babies) and the second at 24-36 months old (84 children). Both cohorts were followed for 30 months; monthly for parasitological data and half yearly for immunological data. In the first cohort, 22%, and in the second 13% of children were AS. Whatever their age parasite prevalence rates were similar in AA and AS individuals. Mean parasite densities increased less rapidly with age in AS than in AA children, and were significantly lower in AS than in AA children >48 months old. The AA children tended to be more often admitted to hospital than AS children (22% versus 11%, NS). Both anti-Plasmodium falciparum and anti-Pfl55/RESA antibody rates increased more rapidly in AA than in AS children. Conversely, the prevalence rate of cellular responders to the Pfl55/RESA antigen was similar in AA and AS children during the first 2 years of life, then it was higher in AS than in AA children. Sickle cell trait related antimalarial protection varies with age. The role of the modifications of the specific immune response to P. falciparum in explaining the protection of AS children against malaria is discussed.

  6. Plasmodium falciparum-infected erythrocyte knob density is linked to the PfEMP1 variant expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm;

    2015-01-01

    UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...... the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined...... by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b...

  7. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  8. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jordi Ferrer

    Full Text Available Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  9. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Science.gov (United States)

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vidal-Mas, Jaume; Gargallo-Viola, Domingo; Guglietta, Antonio; Giró, Antoni

    2011-01-01

    Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  10. Tetracysteine-based fluorescent tags to study protein localization and trafficking in Plasmodium falciparum-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Georgeta Crivat

    Full Text Available Plasmodium falciparum (Pf malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane.Using a tetracysteine (TC motif tag and TC-binding biarsenical fluorophores (BAFs including fluorescein arsenical hairpin (FlAsH and resorufin arsenical hairpin (ReAsH, we detected knob-associated histidine-rich protein (KAHRP constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein.While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane.

  11. A kinetic fluorescence assay reveals unusual features of Ca⁺⁺ uptake in Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Zipprer, Elizabeth M; Neggers, McKinzie; Kushwaha, Ambuj; Rayavara, Kempaiah; Desai, Sanjay A

    2014-05-18

    To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development.

  12. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    Science.gov (United States)

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made.

  13. Plasmodium infection decreases fecundity and increases survival of mosquitoes.

    Science.gov (United States)

    Vézilier, J; Nicot, A; Gandon, S; Rivero, A

    2012-10-07

    Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).

  14. Tetany with Plasmodium falciparum infection

    National Research Council Canada - National Science Library

    Singh, P S; Singh, Neha

    2012-01-01

    .... Here we report an unusual presentation of malaria as tetany with alteration in calcium,phosphate and magnesium metabolism Hypocalcaemia in malaria can cause prolonged Q-Tc interval which could...

  15. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Estágios da fagocitose in vitro por monócitos humanos de eritrócitos infectados por Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira

    2009-04-01

    Full Text Available Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.Monócitos/macrófagos desempenham uma função crítica nos mecanismos de defesa antiplasmódio e constituem as principais células responsáveis pela eliminação das formas eritrocitárias do plasmódio da circulação sangüínea. Realizamos uma avaliação microscópica dos estágios da fagocitose in vitro de eritrócitos infectados por Plasmodium falciparum por monócitos humanos. Essas células foram obtidas de indivíduos adultos sadios por centrifugação em Percoll e incubadas com eritrócitos infectados por Plasmodium falciparum previamente incubados com um pool de soro imune contra plasmódio. Descrevemos os estágios da fagocitose, desde a aderência dos eritrócitos infectados até sua destruição nos fagolisossomas dos monócitos. Observou-se que eritrócitos infectados por todos os diferentes est

  16. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria.

    Science.gov (United States)

    Wang, Sibao; Dos-Santos, André L A; Huang, Wei; Liu, Kun Connie; Oshaghi, Mohammad Ali; Wei, Ge; Agre, Peter; Jacobs-Lorena, Marcelo

    2017-09-29

    The huge burden of malaria in developing countries urgently demands the development of novel approaches to fight this deadly disease. Although engineered symbiotic bacteria have been shown to render mosquitoes resistant to the parasite, the challenge remains to effectively introduce such bacteria into mosquito populations. We describe a Serratia bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito midgut, female ovaries, and male accessory glands and spreads rapidly throughout mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium effector proteins, and the recombinant strains inhibit development of Plasmodium falciparum in mosquitoes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  18. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  19. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  20. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  1. Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    NorParina Ismail

    2008-08-01

    Full Text Available Abstract Background Since a large focus of human infection with Plasmodium knowlesi, a simian malaria parasite naturally found in long-tailed and pig tailed macaques, was reported in Sarawak, Malaysian Borneo, it was pertinent to study the situation in peninsular Malaysia. A study was thus initiated to screen human cases of Plasmodium malariae using molecular techniques, to determine the presence of P. knowlesi in non- human primates and to elucidate its vectors. Methods Nested polymerase chain reaction (PCR was used to identify all Plasmodium species present in the human blood samples sent to the Parasitology laboratory of Institute for Medical Research. At the same time, non-human primates were also screened for malaria parasites and nested PCR was carried out to determine the presence of P. knowlesi. Mosquitoes were collected from Pahang by human landing collection and monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites and nested PCR was carried out on positive glands. Sequencing of the csp genes were carried on P. knowlesi samples from humans, monkeys and mosquitoes, positive by PCR. Results and Discussion Plasmodium knowlesi was detected in 77 (69.37% of the 111 human samples, 10 (6.90% of the 145 monkey blood and in 2 (1.7% Anopheles cracens. Sequence of the csp gene clustered with other P. knowlesi isolates. Conclusion Human infection with Plasmodium knowlesi is occurring in most states of peninsular Malaysia. An. cracens is the main vector. Economic exploitation of the forest is perhaps bringing monkeys, mosquitoes and humans into increased contact. A single bite from a mosquito infected with P. knowlesi is sufficient to introduce the parasite to humans. Thus, this zoonotic transmission has to be considered in the future planning of malaria control.

  2. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population.

    Directory of Open Access Journals (Sweden)

    Jacqueline Milet

    Full Text Available Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP genome scan (Affimetrix GeneChip Human Mapping 250K-nsp was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value=5x10(-5 and 9x10(-5 respectively, and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value=1.5x10(-4. Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value=3.7x10(-5. This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection

  3. The use of mosquito nets and the prevalence of Plasmodium falciparum infection in rural South Central Somalia.

    Directory of Open Access Journals (Sweden)

    Abdisalan M Noor

    Full Text Available BACKGROUND: There have been resurgent efforts in Africa to estimate the public health impact of malaria control interventions such as insecticide treated nets (ITNs following substantial investments in scaling-up coverage in the last five years. Little is known, however, on the effectiveness of ITN in areas of Africa that support low transmission. This hinders the accurate estimation of impact of ITN use on disease burden and its cost-effectiveness in low transmission settings. METHODS AND PRINCIPAL FINDINGS: Using a stratified two-stage cluster sample design, four cross-sectional studies were undertaken between March-June 2007 across three livelihood groups in an area of low intensity malaria transmission in South Central Somalia. Information on bed net use; age; and sex of all participants were recorded. A finger prick blood sample was taken from participants to examine for parasitaemia. Mantel-Haenzel methods were used to measure the effect of net use on parasitaemia adjusting for livelihood; age; and sex. A total of 10,587 individuals of all ages were seen of which 10,359 provided full information. Overall net use and parasite prevalence were 12.4% and 15.7% respectively. Age-specific protective effectiveness (PE of bed net ranged from 39% among <5 years to 72% among 5-14 years old. Overall PE of bed nets was 54% (95% confidence interval 44%-63% after adjusting for livelihood; sex; and age. CONCLUSIONS AND SIGNIFICANCE: Bed nets confer high protection against parasite infection in South Central Somalia. In such areas where baseline transmission is low, however, the absolute reductions in parasitaemia due to wide-scale net use will be relatively small raising questions on the cost-effectiveness of covering millions of people living in such settings in Africa with nets. Further understanding of the progress of disease upon infection against the cost of averting its consequent burden in low transmission areas of Africa is therefore required.

  4. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia

    DEFF Research Database (Denmark)

    Staalsoe, T; Megnekou, R; Fievét, N

    2001-01-01

    Otherwise clinically immune women in areas endemic for malaria are highly susceptible to Plasmodium falciparum malaria during their first pregnancy. Pregnancy-associated malaria (PAM) is characterized by placental accumulation of infected erythrocytes that adhere to chondroitin sulfate A (CSA...

  5. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    National Research Council Canada - National Science Library

    Sumbele, Irene Ule Ngole; Samje, Moses; Nkuo-Akenji, Theresa

    2013-01-01

    .... A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community...

  6. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa [v2; ref status: indexed, http://f1000r.es/4n3

    Directory of Open Access Journals (Sweden)

    Michelle R. Sanford

    2014-11-01

    Full Text Available Presence of Plasmodium falciparum circumsporozoite protein (CSP was detected by enzyme linked immunosorbent assay (ELISA in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall; confidence interval (CI: 7.45-13.6% was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%. The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % (CI: 8.88-17.6 across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3% (CI:0.98-12.4, 4.1% (CI:0.35-14.5, 11.1% (CI:1.86-34.1 and 33.3% (CI:9.25-70.4 respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18 and A. pharoensis (N=6 and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

  7. Similar efficacy and tolerability of double-dose chloroquine and artemether-lumefantrine for treatment of Plasmodium falciparum infection in Guinea-Bissau: a randomized trial

    DEFF Research Database (Denmark)

    Ursing, Johan; Kofoed, Poul-Erik; Rodrigues, Amabelia

    2011-01-01

    In 2008, Guinea-Bissau introduced artemether-lumefantrine for treatment of uncomplicated malaria. Previously, 3 times the standard dose of chloroquine, that was probably efficacious against Plasmodium falciparum with the resistance-associated chloroquine-resistance transporter (pfcrt) 76T allele...

  8. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...

  9. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja;

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  10. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    OpenAIRE

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The i...

  11. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    OpenAIRE

    Yesseinia I. Angleró-Rodríguez; Benjamin J. Blumberg; Yuemei Dong; Sandiford, Simone L.; Andrew Pike; Clayton, April M.; George Dimopoulos

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect...

  12. The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells.

    Science.gov (United States)

    Udomsangpetch, R; Todd, J; Carlson, J; Greenwood, B M

    1993-02-01

    The mechanisms by which the hemoglobin genotype AS protect against severe malaria are not fully understood. We have investigated the possibility that protection might be achieved through an inability of red blood cells (RBC) with the AS genotype to form rosettes with RBC infected by Plasmodium falciparum. No evidence was obtained to support this hypothesis because RBC with the AS genotype formed rosettes with wild isolates of P. falciparum as readily as RBC with the AA genotype. However, the previous finding that parasitized RBC form rosettes more readily with RBC belonging to group A or B than with RBC belonging to group O was confirmed even in fresh clinical isolates.

  13. Malaria in humait a county, state of Amazonas, Brazil. XIX - evaluation of clindamycin for the treatment of patients with Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Domingos Alves Meira

    1988-09-01

    Full Text Available A total of 207 patients with malaria caused by Plasmodium falciparum were submitted to 5 different treatment schedules with clindamycin from 1981 to 1984: A - 89 patients were treated intravenously and orally, or intramuscularly and orally with 20 mg/kg/day divided into two daily applications for 5 to 7 days; B-40 patients were treated orally with 20 mg/kg/day divided into two daily doses for 5 to 7 days; C-27 patients were treated with 20 mg/kg/day intravenously or orally divided into two daily applications for 3 days; D-16 patients were treated orally and/or intravenously with a single daily dose of 20 to 40 mg/kg/day for 5 to 7 days; E-35 patients were treated orally with 5 mg/kg/day divided into two doses for 5 days. Patients were examined daily during treatment and reexamined on the 7th, 24th, 21st, 28th and 35th day both clinically and parasitologically (blood test. Eighty three (40.1% had moderate or severe malaria, and 97 (46.8% had shown resistance to chloroquine or to the combination ofsulfadoxin and pyrimethamine. The proportion of cured patients was higher than 95% among patients submitted to schedules A and B. Side effects were only occasional and of low intensity. Three deaths occurred (1.4%, two of them involving patients whose signs and symptoms were already very severe when treatment was started. Thus, clindamycin proved to be very useful in the treatment of patients with malaria caused by Plasmodium falciparum and we recommend schedule A for moderate and severe cases and Bfor initial cases.De 1981 a 1984, 207 doentes com malária, causada pelo Plasmodium falciparum, foram tratados com 5 esquemas de clindamicina: A - 89 doente tratados com 20 mg/kg/dia, pelas vias endovenosa e oral, ou intramuscular e oral, em duas aplicações diárias, durante 5 a 7 dias; B - 40 doentes tratados com 20 mg/kg/dia, por via oral, em duas tomadas diárias, durante 5 a 7 dias; C - 27 doentes tratados com 20 mg/kg/dia, por via oral ou endovenosa, em

  14. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection.

    Science.gov (United States)

    Angleró-Rodríguez, Yesseinia I; Blumberg, Benjamin J; Dong, Yuemei; Sandiford, Simone L; Pike, Andrew; Clayton, April M; Dimopoulos, George

    2016-09-28

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect's ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito's anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito's susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito's innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission.

  15. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    Science.gov (United States)

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  16. Nutritional and socio-economic factors associated with Plasmodium falciparum infection in children from Equatorial Guinea: results from a nationally representative survey

    Directory of Open Access Journals (Sweden)

    Bernis Cristina

    2009-10-01

    Full Text Available Abstract Background Malaria has traditionally been a major endemic disease in Equatorial Guinea. Although parasitaemia prevalence on the insular region has been substantially reduced by vector control in the past few years, the prevalence in the mainland remains over 50% in children younger than five years. The aim of this study is to investigate the risk factors for parasitaemia and treatment seeking behaviour for febrile illness at country level, in order to provide evidence that will reinforce the EG National Malaria Control Programme. Methods The study was a cross-sectional survey of children 0 to 5 years old, using a multistaged, stratified, cluster-selected sample at the national level. It included a socio-demographic, health and dietary questionnaires, anthropometric measurements, and thick and thin blood smears to determine the Plasmodium infection. A multivariate logistic regression model was used to determine risk factors for parasitaemia, taking into account the cluster design. Results The overall prevalence of parasitemia was 50.9%; it was higher in rural (58.8% compared to urban areas (44.0%, p = 0.06. Age was positively associated with parasitemia (p Conclusion Results suggest that a national programme to fight malaria in Equatorial Guinea should take into account the differences between rural and urban communities in relation to risk factors for parasitaemia and treatment seeking behaviour, integrate nutrition programmes, incorporate campaigns on the importance of early treatment, and target appropriately for bed nets to reach the under-fives.

  17. Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jeurink Prescilla V

    2010-05-01

    Full Text Available Abstract Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI. Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144% in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries.

  18. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    McCall Matthew

    2010-06-01

    Full Text Available Abstract Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status.

  19. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro.

    Science.gov (United States)

    Urbán, Patricia; Estelrich, Joan; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-04-30

    Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2nM, ≥10 times below its IC(50) in solution, cleared 26.7±1.8% of pRBCs when delivered inside targeted immunoliposomes.

  20. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali

    Directory of Open Access Journals (Sweden)

    Boström Stéphanie

    2012-04-01

    Full Text Available Abstract Background The Fulani are known to be less susceptible to Plasmodium falciparum malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap. Methods Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES, monokine-induced by IFN-gamma (MIG, monocyte chemotactic protein (MCP-1 and IFN-gamma-inducible protein (IP-10 were measured by cytometric bead arrays. The levels of interferon (IFN-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig G, IgM and IgG subclasses (IgG1-IgG4 were measured by ELISA. Results The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon. Conclusions Taken together, this study demonstrates, in

  1. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali.

    Science.gov (United States)

    Boström, Stéphanie; Giusti, Pablo; Arama, Charles; Persson, Jan-Olov; Dara, Victor; Traore, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Troye-Blomberg, Marita

    2012-04-05

    The Fulani are known to be less susceptible to Plasmodium falciparum malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap. Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL)-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF) and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES), monokine-induced by IFN-gamma (MIG), monocyte chemotactic protein (MCP)-1 and IFN-gamma-inducible protein (IP)-10 were measured by cytometric bead arrays. The levels of interferon (IFN)-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig) G, IgM and IgG subclasses (IgG1-IgG4) were measured by ELISA. The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon. Taken together, this study demonstrates, in accordance with previous work, that Fulani children mount a stronger

  2. Avian malaria on Madagascar: bird hosts and putative vector mosquitoes of different Plasmodium lineages.

    Science.gov (United States)

    Schmid, Sandrine; Dinkel, Anke; Mackenstedt, Ute; Tantely, Michaël Luciano; Randrianambinintsoa, Fano José; Boyer, Sébastien; Woog, Friederike

    2017-01-05

    Avian malaria occurs almost worldwide and is caused by Haemosporida parasites (Plasmodium, Haemoproteus and Leucocytozoon). Vectors such as mosquitoes, hippoboscid flies or biting midges are required for the transmission of these parasites. There are few studies about avian malaria parasites on Madagascar but none about suitable vectors. To identify vectors of avian Plasmodium parasites on Madagascar, we examined head, thorax and abdomen of 418 mosquitoes from at least 18 species using a nested PCR method to amplify a 524 bp fragment of the haemosporidian mitochondrial cytochrome b gene. Sequences obtained were then compared with a large dataset of haemosporidian sequences detected in 45 different bird species (n = 686) from the same area in the Maromizaha rainforest. Twenty-one mosquitoes tested positive for avian malaria parasites. Haemoproteus DNA was found in nine mosquitoes (2.15%) while Plasmodium DNA was found in 12 mosquitoes (2.87%). Seven distinct lineages were identified among the Plasmodium DNA samples. Some lineages were also found in the examined bird samples: Plasmodium sp. WA46 (EU810628.1) in the Madagascar bulbul, Plasmodium sp. mosquito 132 (AB308050.1) in 15 bird species belonging to eight families, Plasmodium sp. PV12 (GQ150194.1) in eleven bird species belonging to eight families and Plasmodium sp. P31 (DQ839060.1) was found in three weaver bird species. This study provides the first insight into avian malaria transmission in the Maromizaha rainforest in eastern Madagascar. Five Haemoproteus lineages and seven Plasmodium lineages were detected in the examined mosquitoes. Complete life-cycles for the specialist lineages WA46 and P31 and for the generalist lineages mosquito132 and PV12 of Plasmodium are proposed. In addition, we have identified for the first time Anopheles mascarensis and Uranotaenia spp. as vectors for avian malaria and offer the first description of vector mosquitoes for avian malaria in Madagascar.

  3. Detection of avian Plasmodium spp. DNA sequences from mosquitoes captured in Minami Daito Island of Japan.

    Science.gov (United States)

    Ejiri, Hiroko; Sato, Yukita; Sasaki, Emi; Sumiyama, Daisuke; Tsuda, Yoshio; Sawabe, Kyoko; Matsui, Shin; Horie, Sayaka; Akatani, Kana; Takagi, Masaoki; Omori, Sumie; Murata, Koichi; Yukawa, Masayoshi

    2008-11-01

    Several species of birds in Minami Daito Island, an oceanic island located in the far south from the main islands of Japan, were found to be infected with avian Plasmodium. However, no vector species of the avian malaria in this island have been revealed yet. To speculate potential vectors, we collected mosquitoes there and investigated using a PCR procedure whether the mosquitoes harbor avian malaria or not. Totally 1,264 mosquitoes including 9 species were collected during March 2006 to February 2007. The mosquitoes collected were stored every species, sampled date and location for DNA extraction. Fifteen out of 399 DNA samples showed positive for the partial mtDNA cytb gene of avian Plasmodium. Estimated minimum infection rate among collected mosquitoes was 1.2% in this study. Four species of mosquitoes; Aedes albopictus, Culex quinquefasciatus, Lutzia fuscanus and Mansonia sp. had avian Plasmodium gene sequences. Detected DNA sequences from A. albopictus and L. fuscanus were identical to an avian Plasmodium lineage detected in bull-headed shrike (Lanius bucephalus) captured in the island. Different sequences were detected from C. quinquefasciatus, which were corresponding to an avian Plasmodium from a sparrow (Passer montanus) and Plasmodium gallinaceum. Our results suggest that A. albopictus, Lutzia fuscanus, C. quinquefasciatus, and Mansonia sp. could be potential vectors of avian malaria in Minami Daito Island. This study was the first report of molecular detection of avian Plasmodium from mosquitoes in Japan.

  4. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    Science.gov (United States)

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  5. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood.

    Science.gov (United States)

    Marrelli, Mauro T; Li, Chaoyang; Rasgon, Jason L; Jacobs-Lorena, Marcelo

    2007-03-27

    The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgenic mosquitoes when fed on noninfected mice. Here we show that when fed on mice infected with P. berghei, these transgenic mosquitoes are more fit (higher fecundity and lower mortality) than sibling nontransgenic mosquitoes. In cage experiments, transgenic mosquitoes gradually replaced nontransgenics when mosquitoes were maintained on mice infected with gametocyte-producing parasites (strain ANKA 2.34) but not when maintained on mice infected with gametocyte-deficient parasites (strain ANKA 2.33). These findings suggest that when feeding on Plasmodium-infected blood, transgenic malaria-resistant mosquitoes have a selective advantage over nontransgenic mosquitoes. This fitness advantage has important implications for devising malaria control strategies by means of genetic modification of mosquitoes.

  6. Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction?

    Directory of Open Access Journals (Sweden)

    Wilkins Simon

    2010-03-01

    Full Text Available Abstract Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.

  7. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  8. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion.

    NARCIS (Netherlands)

    Dinglasan, R.R.; Alaganan, A.; Ghosh, A.K.; Saito, A.; Kuppevelt, A.H.M.S.M. van; Jacobs-Lorena, M.

    2007-01-01

    Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are

  9. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.

  10. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Alvaro Molina-Cruz

    2014-08-01

    Full Text Available Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.

  11. Avian Plasmodium infection in field-collected mosquitoes during 2012-2013 in Tarlac, Philippines.

    Science.gov (United States)

    Chen, Tien-Huang; Aure, Wilfredo E; Cruz, Estrella Irlandez; Malbas, Fedelino F; Teng, Hwa-Jen; Lu, Liang-Chen; Kim, Kyeong Soon; Tsuda, Yoshio; Shu, Pei-Yun

    2015-12-01

    Global warming threatens to increase the spread and prevalence of mosquito-transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare -GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified. © 2015 The Society for Vector Ecology.

  12. Malaria infected mosquitoes express enhanced attraction to human odor.

    Directory of Open Access Journals (Sweden)

    Renate C Smallegange

    Full Text Available There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum--one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

  13. Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax

    Science.gov (United States)

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A.; Maguina, Paula; Conn, Jan E.; Vinetz, Joseph M.

    2014-01-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions. PMID:24534811

  14. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

    DEFF Research Database (Denmark)

    Ghosh, Anil K; Coppens, Isabelle; Gårdsvoll, Henrik

    2011-01-01

    Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody...

  15. Ingested human insulin inhibits the mosquito NF-¿B-dependent immune response to Plasmodium falciparum

    Science.gov (United States)

    We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms insulin can alter immune responsiveness through regulation of NF-kB transcription fa...

  16. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  17. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies

    Science.gov (United States)

    2014-01-01

    Background When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. Methods Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. Results Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. Conclusions Anopheles dirus, An. crascens and a

  18. Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey.

    Science.gov (United States)

    Inci, A; Yildirim, A; Njabo, K Y; Duzlu, O; Biskin, Z; Ciloglu, A

    2012-08-13

    Assessing vector-parasite relationship is important in understanding the emergence of vector-borne diseases and the evolution of parasite diversity. This study investigates avian Plasmodium parasites in mosquitoes collected from Kayseri province in Central Anatolian, Turkey and determines the haemosporidian parasite lineages from these mosquito species. A total of 6153 female mosquitos from 6 species were collected from 46 sites during June-August of 2008 and 2009. Each mosquito's head-thorax and abdomen were separated, categorized with respect to species and collection area and pooled for DNA extraction. A total of 1198 genomic DNA pools (599 thorax-head, 599 abdomen) were constituted of which 128 pools (59 thorax-head, 69 abdomen) were positive for avian haemosporidian parasites (Plasmodium and Haemoproteus) by Nested-PCR analysis. Culex pipens, Aedes vexans, Culex theileri and Culiseta annulata were positive with minimum infection rates (MIRs) of 16.22 and 18.15, 4.72 and 5.98, 5.18 and 10.36, 10.64 and 10.64 in their thorax-head and abdomen parts, respectively. No avian haemosporidian DNA was detected from Culex hortensis and Anopheles maculipennis. Phylogenetic analyses of the partial cytb gene of avian haemosporidian mt-DNA from 13 positive pools revealed that 11 lineages in four phylogenic groups were Plasmodium and the other two were Haemoproteus. Our results suggest that Cx. pipiens could probably be the major vector of avian Plasmodium in Central Turkey. This is the first report of molecular detection and characterization of avian Plasmodium lineages from mosquitoes in Turkey.

  19. In Ivorian school-age children, infection with hookworm does not reduce dietary iron absorption or systemic iron utilization, whereas afebrile Plasmodium falciparum infection reduces iron absorption by half

    NARCIS (Netherlands)

    Glinz, D.; Hurrell, R.F.; Righetti, A.A.; Zeder, C.; Adiossan, L.G.; Tjalsma, H.; Utzinger, J.; Zimmermann, M.B.; N'Goran, E.K.; Wegmuller, R.

    2015-01-01

    BACKGROUND: In sub-Saharan Africa, parasitic diseases and low bioavailable iron intake are major causes of anemia. Anemia results from inflammation, preventing iron recycling and decreasing dietary iron absorption. Hookworm, Plasmodium, and Schistosoma infections contribute to anemia, but their infl

  20. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Ricke, C H; Staalsoe, T; Koram, K;

    2000-01-01

    In areas of intense Plasmodium falciparum transmission, clinical immunity is acquired during childhood, and adults enjoy substantial protection against malaria. An exception to this rule is pregnant women, in whom malaria is both more prevalent and severe than in nonpregnant women. Pregnancy-asso...

  1. Experimental transmission by mosquitoes of Plasmodium hermani between domestic turkeys and pen-reared bobwhites.

    Science.gov (United States)

    Nayar, J K; Young, M D; Forrester, D J

    1982-10-01

    Plasmodium hermani was experimentally transmitted from domestic turkey poults (Meleagris gallopavo) to pen-reared bobwhites (Colinus virginianus) and then from these bobwhites back to domestic turkey poults. Transmission was achieved by Culex nigripalpus both by bites of the mosquito and by intraperitoneal injection of sporozoites. All of the 23 bobwhites and the 13 turkeys exposed to sporozoites became infected. These results indicate that the bobwhite might be a reservoir host for this malaria of wild turkeys in nature.

  2. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes.

    Science.gov (United States)

    Laroche, Maureen; Almeras, Lionel; Pecchi, Emilie; Bechah, Yassina; Raoult, Didier; Viola, Angèle; Parola, Philippe

    2017-01-03

    Malaria is still a major public health issue worldwide, and one of the best approaches to fight the disease remains vector control. The current methods for mosquito identification include morphological methods that are generally time-consuming and require expertise, and molecular methods that require laboratory facilities with relatively expensive running costs. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology, routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of the present study was to assess whether MALDI-TOF MS could successfully distinguish Anopheles stephensi mosquitoes according to their Plasmodium infection status. C57BL/6 mice experimentally infected with Plasmodium berghei were exposed to An. stephensi bites. For the determination of An. stephensi infection status, mosquito cephalothoraxes were dissected and submitted to mass spectrometry analyses and DNA amplification for molecular analysis. Spectra were grouped according to mosquitoes' infection status and spectra quality was validated based on intensity and reproducibility within each group. The in-lab MALDI-TOF MS arthropod reference spectra database, upgraded with representative spectra from both groups (infected/non-infected), was subsequently queried blindly with cephalothorax spectra from specimens of both groups. The MALDI TOF MS profiles generated from protein extracts prepared from the cephalothorax of An. stephensi allowed distinction between infected and uninfected mosquitoes. Correct classification was obtained in blind test analysis for (79/80) 98.75% of all mosquitoes tested. Only one of 80 specimens, an infected mosquito, was misclassified in the blind test analysis. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry appears to be a promising, rapid and reliable tool for the epidemiological surveillance of Anopheles vectors, including their identification and

  3. Plasmodium-mosquito interactions, phage display libraries and transgenic mosquitoes impaired for malaria transmission.

    Science.gov (United States)

    Ghosh, A K; Moreira, L A; Jacobs-Lorena, M

    2002-10-01

    Malaria continues to kill millions of people every year and new strategies to combat this disease are urgently needed. Recent advances in the study of the mosquito vector and its interactions with the malaria parasite suggest that it may be possible to genetically manipulate the mosquito in order to reduce its vectorial capacity. Here we review the advances made to date in four areas: (1) the introduction of foreign genes into the mosquito germ line; (2) the characterization of tissue-specific promoters; (3) the identification of gene products that block development of the parasite in the mosquito; and (4) the generation of transgenic mosquitoes impaired for malaria transmission. While initial results show great promise, the problem of how to spread the blocking genes through wild mosquito populations remains to be solved.

  4. The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission.

    Science.gov (United States)

    Vega-Rodríguez, Joel; Franke-Fayard, Blandine; Dinglasan, Rhoel R; Janse, Chris J; Pastrana-Mena, Rebecca; Waters, Andrew P; Coppens, Isabelle; Rodríguez-Orengo, José F; Srinivasan, Prakash; Jacobs-Lorena, Marcelo; Serrano, Adelfa E

    2009-02-01

    Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (gamma-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that gamma-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs(-) parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs(-) parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito.

  5. The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission.

    Directory of Open Access Journals (Sweden)

    Joel Vega-Rodríguez

    2009-02-01

    Full Text Available Infection of red blood cells (RBC subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (gamma-GCS, the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that gamma-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs(- parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs(- parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito.

  6. The Glutathione Biosynthetic Pathway of Plasmodium Is Essential for Mosquito Transmission

    Science.gov (United States)

    Vega-Rodríguez, Joel; Janse, Chris J.; Pastrana-Mena, Rebecca; Waters, Andrew P.; Coppens, Isabelle; Rodríguez-Orengo, José F.; Jacobs-Lorena, Marcelo; Serrano, Adelfa E.

    2009-01-01

    Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito. PMID:19229315

  7. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita

    2010-10-21

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  8. Plasmodium falciparum GPI toxin: a common foe for man and mosquito.

    Science.gov (United States)

    Arrighi, Romanico B G; Faye, Ingrid

    2010-06-01

    The glycosylphosphatidylinositol (GPI) anchor of the malaria parasite, Plasmodium falciparum, which can be regarded as an endotoxin, plays a role in the induced pathology associated with severe malaria in humans. However, it is unclear whether the main mosquito vector, Anopheles gambiae, can specifically recognize, and respond to GPI from the malaria parasite. Recent data suggests that the malaria vector does mount a specific response against malaria GPI. In addition, following the strong immune response, mosquito fecundity is severely affected, resulting in a significant reduction in viable eggs produced. In this mini-review we look at the increased interest in understanding the way that malaria antigens are recognized in the mosquito, and how this relates to a better understanding of the interactions between the malaria parasite and both human and vector.

  9. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia.

    Science.gov (United States)

    Tchioffo, Majoline T; Boissière, Anne; Abate, Luc; Nsango, Sandrine E; Bayibéki, Albert N; Awono-Ambéné, Parfait H; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2015-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors.

  10. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  11. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors.

    Science.gov (United States)

    Medeiros, Matthew C I; Ricklefs, Robert E; Brawn, Jeffrey D; Hamer, Gabriel L

    2015-11-01

    The prevalence of vector-borne parasites varies greatly across host species, and this heterogeneity has been used to relate infectious disease susceptibility to host species traits. However, a few empirical studies have directly associated vector-borne parasite prevalence with exposure to vectors across hosts. Here, we use DNA sequencing of blood meals to estimate utilization of different avian host species by Culex mosquitoes, and relate utilization by these malaria vectors to avian Plasmodium prevalence. We found that avian host species that are highly utilized as hosts by avian malaria vectors are significantly more likely to have Plasmodium infections. However, the effect was not consistent among individual Plasmodium taxa. Exposure to vector bites may therefore influence the relative number of all avian Plasmodium infections among host species, while other processes, such as parasite competition and host-parasite coevolution, delimit the host distributions of individual Plasmodium species. We demonstrate that links between avian malaria susceptibility and host traits can be conditioned by patterns of exposure to vectors. Linking vector utilization rates to host traits may be a key area of future research to understand mechanisms that produce variation in the prevalence of vector-borne pathogens among host species.

  12. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  13. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections.

    KAUST Repository

    Pillai, Dylan R

    2012-04-27

    BACKGROUND: Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. METHODS: Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. RESULTS: Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 - 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 - 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 - 11.6) versus 16.3 (10.7 - 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. CONCLUSIONS: These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.

  14. Malaria parasite colonisation of the mosquito midgut--placing the Plasmodium ookinete centre stage.

    Science.gov (United States)

    Angrisano, Fiona; Tan, Yan-Hong; Sturm, Angelika; McFadden, Geoffrey I; Baum, Jake

    2012-05-15

    Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  15. Expression of cytosolic peroxiredoxins in Plasmodium berghei ookinetes is regulated by environmental factors in the mosquito bloodmeal.

    Directory of Open Access Journals (Sweden)

    Benjamin A Turturice

    2013-01-01

    Full Text Available The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS. How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1, peroxiredoxin-1 (TPx-1, and 1-Cys peroxiredoxin (1-Cys Prx, in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO, expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions

  16. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Magali Roques

    2015-11-01

    Full Text Available Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs. Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites in host liver and red blood cells, and sporogony (producing sporozoites in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  17. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

    Directory of Open Access Journals (Sweden)

    Antonio M Mendes

    2008-05-01

    Full Text Available In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.

  18. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    NARCIS (Netherlands)

    Schats, R.; Bijker, E.M.; Gemert, G.J.A. van; Graumans, W.; Vegte-Bolmer, M. van de; Lieshout, L. van; Haks, M.C.; Hermsen, C.C.; Scholzen, A.; Visser, L.G.; Sauerwein, R.W.

    2015-01-01

    BACKGROUND: Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization),

  19. Evidence that mutant PfCRT facilitates the transmission to mosquitoes of chloroquine-treated Plasmodium gametocytes.

    Science.gov (United States)

    Ecker, Andrea; Lakshmanan, Viswanathan; Sinnis, Photini; Coppens, Isabelle; Fidock, David A

    2011-01-15

    Resistance of the human malarial parasite Plasmodium falciparum to the antimalarial drug chloroquine has rapidly spread from several independent origins and is now widely prevalent throughout the majority of malaria-endemic areas. Field studies have suggested that chloroquine-resistant strains might be more infective to mosquito vectors. To test the hypothesis that the primary chloroquine resistance determinant, mutations in PfCRT, facilitates parasite transmission under drug pressure, we have introduced a mutant or wild-type pfcrt allele into the rodent model malarial parasite Plasmodium berghei. Our results show that mutant PfCRT from the chloroquine-resistant 7G8 strain has no effect on asexual blood stage chloroquine susceptibility in vivo or ex vivo but confers a significant selective advantage in competitive mosquito infections in the presence of this drug, by protecting immature gametocytes from its lethal action. Enhanced infectivity to mosquitoes may have been a key factor driving the worldwide spread of mutant pfcrt.

  20. Identification of Novel Membrane Structures in Plasmodium falciparum Infected Erythrocytes

    Directory of Open Access Journals (Sweden)

    Clavijo Carlos A

    1998-01-01

    Full Text Available Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell

  1. Influence of host iron status on Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Martha A. Clark

    2014-05-01

    Full Text Available Iron deficiency affects one quarter of the world’s population and causes significant morbidity, including detrimental effects on immune function and cognitive development. Accordingly, the World Health Organization recommends routine iron supplementation in children and adults in areas with high prevalence of iron deficiency. However, a large body of clinical and epidemiological evidence has accumulated which clearly demonstrates that host iron deficiency is protective against falciparum malaria and that host iron supplementation may increase the risk of malaria. Although many effective antimalarial treatments and preventive measures are available, malaria remains a significant public health problem, in part because the mechanisms of malaria pathogenesis remain obscured by the complexities in the relationships between parasite virulence factors, host susceptibility traits, and the immune responses that modulate disease. Here we review (i the clinical and epidemiological data that describes the relationship between host iron status and malaria infection and (ii the progress being made to understand the biological basis for these clinical and epidemiological observations.

  2. Clonal outbreak of Plasmodium falciparum infection in eastern Panama.

    Science.gov (United States)

    Obaldia, Nicanor; Baro, Nicholas K; Calzada, Jose E; Santamaria, Ana M; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F; Hartl, Daniel L; Marti, Matthias; Volkman, Sarah K

    2015-04-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated.

  3. Genotyping of chloroquine resistant Plasmodium falciparum in wild caught Anopheles minimus mosquitoes in a malaria endemic area of Assam, India.

    Science.gov (United States)

    Sarma, D K; Mohapatra, P K; Bhattacharyya, D R; Mahanta, J; Prakash, A

    2014-09-01

    We validated the feasibility of using Plasmodium falciparum, the human malaria parasite, DNA present in wild caught vector mosquitoes for the characterization of chloroquine resistance status. House frequenting mosquitoes belonging to Anopheles minimus complex were collected from human dwellings in a malaria endemic area of Assam, Northeast India and DNA was extracted from the head-thorax region of individual mosquitoes. Anopheles minimus complex mosquitoes were identified to species level and screened for the presence of Plasmodium sp. using molecular tools. Nested PCR-RFLP method was used for genotyping of P. falciparum based on K76T mutation in the chloroquine resistance transporter (pfcrt) gene. Three of the 27 wild caught An. minimus mosquitoes were harbouring P. falciparum sporozoites (positivity 11.1%) and all 3 were had 76T mutation in the pfcrt gene, indicating chloroquine resistance. The approach of characterizing antimalarial resistance of malaria parasite in vector mosquitoes can potentially be used as a surveillance tool for monitoring transmission of antimalarial drug resistant parasite strains in the community.

  4. Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years?

    Science.gov (United States)

    Kim, K S; Tsuda, Y

    2012-11-01

    The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector-borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector-borne pathogens. Avian Plasmodium parasites are multihost mosquito-borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)-based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and C. pipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study.

  5. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    NARCIS (Netherlands)

    Breitling, L.P.; Fendel, R.; Mordmueller, B.; Adegnika, A.A.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring o

  6. Plasmodium yoelii vitamin B5 pantothenate transporter candidate is essential for parasite transmission to the mosquito.

    Science.gov (United States)

    Hart, Robert J; Lawres, Lauren; Fritzen, Emma; Ben Mamoun, Choukri; Aly, Ahmed S I

    2014-07-11

    In nearly all non-photosynthetic cells, pantothenate (vitamin B5) transport and utilization are prerequisites for the synthesis of the universal essential cofactor Coenzyme A (CoA). Early studies showed that human malaria parasites rely on the uptake of pantothenate across the parasite plasma membrane for survival within erythrocytes. Recently, a P. falciparum candidate pantothenate transporter (PAT) was characterized by functional complementation in yeast. These studies revealed that PfPAT mediated survival of yeast cells in low pantothenate concentrations and restored sensitivity of yeast cells lacking pantothenate uptake to fenpropimorph. In addition, PfPAT was refractory to deletion in P. falciparum in vitro, but nothing is known about the in vivo functions of PAT in Plasmodium life cycle stages. Herein, we used gene-targeting techniques to delete PAT in Plasmodium yoelii. Parasites lacking PAT displayed normal asexual and sexual blood stage development compared to wild-type (WT) and WT-like p230p(-) parasites. However, progression from the ookinete to the oocyst stage and sporozoite formation were completely abolished in pat(-) parasites. These studies provide the first evidence for an essential role of a candidate pantothenate transport in malaria transmission to Anopheles mosquitoes. This will set the stage for the development of PAT inhibitors against multiple parasite life cycle stages.

  7. Impact of exposure to mosquito transmission-blocking antibodies on Plasmodium falciparum population genetic structure.

    Science.gov (United States)

    Sandeu, Maurice M; Abate, Luc; Tchioffo, Majoline T; Bayibéki, Albert N; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Chesnais, Cédric B; Dinglasan, Rhoel R; de Meeûs, Thierry; Morlais, Isabelle

    2016-11-01

    Progress in malaria control has led to a significant reduction of the malaria burden. Interventions that interrupt transmission are now needed to achieve the elimination goal. Transmission-blocking vaccines (TBV) that aim to prevent mosquito infections represent promising tools and several vaccine candidates targeting different stages of the parasite's lifecycle are currently under development. A mosquito-midgut antigen, the anopheline alanyl aminopeptidase (AnAPN1) is one of the lead TBV candidates; antibodies against AnAPN1 prevent ookinete invasion. In this study, we explored the transmission dynamics of Plasmodium falciparum in mosquitoes fed with anti-AnAPN1 monoclonal antibodies (mAbs) vs. untreated controls, and investigated whether the parasite genetic content affects or is affected by antibody treatment. Exposure to anti-AnAPN1 mAbs was efficient at blocking parasite transmission and the effect was dose-dependent. Genetic analysis revealed a significant sib-mating within P. falciparum infra-populations infecting one host, as measured by the strong correlation between Wright's FIS and multiplicity of infection. Treatments also resulted in significant decrease in FIS as a by-product of drop in infra-population genetic diversity and concomitant increase of apparent panmictic genotyping proportions. Genetic differentiation analyses indicated that mosquitoes fed on a same donor randomly sampled blood-circulating gametocytes. We did not detect trace of selection, as the genetic differentiation between different donors did not decrease with increasing mAb concentration and was not significant between treatments for each gametocyte donor. Thus, there is apparently no specific genotype associated with the loss of diversity under mAb treatment. Finally, the anti-AnAPN1 mAbs were effective at reducing mosquito infection and a vaccine aiming at eliciting anti-AnAPN1 mAbs has a strong potential to decrease the burden of malaria in transmission-blocking interventions

  8. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut.

    Directory of Open Access Journals (Sweden)

    Derrick K Mathias

    Full Text Available Malaria transmission-blocking (T-B interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001 in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA domain: (i circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP and (ii vWA domain-related protein (WARP. By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when

  9. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito.

    Science.gov (United States)

    Arai, M; Billker, O; Morris, H R; Panico, M; Delcroix, M; Dixon, D; Ley, S V; Sinden, R E

    2001-08-01

    Gametogenesis of Plasmodium in vitro can be induced by the combined stimulus of a 5 degrees C fall in temperature and the presence of xanthurenic acid (XA). In-vitro experiments showed that P. gallinaceum (EC(50)=80 nM) is much more sensitive to XA than P. berghei (9 microM), P. yoelii (8 microM), and P. falciparum (2 microM). However, in the mosquito vector, we do not know whether the temperature shift and XA are the only gametocyte-activating factors (GAF), nor do we know with certainty the true source(s) of XA in the mosquito blood meal. Previous studies indicate that XA is the only source of GAF in the mosquito. By defining, and then contrasting, the ability of an XA-deficient mutant of Aedes aegypti, with the wild-type mosquito to support exflagellation and ookinete formation in vivo, we determined the roles of parasite-, mosquito- and host blood-derived GAF in the regulation of gametogenesis of P. gallinaceum. Removal of both host and vector sources of GAF totally inhibited both exflagellation and ookinete production, whilst the lack of either single source resulted in only a partial reduction of exflagellation and ookinete formation in the mosquito gut. Both sources can be effectively replaced/substituted by synthetic XA. This suggests (1) both mosquito- and vertebrate-derived factors act as GAF in the mosquito gut in vivo; (2) the parasite itself is unable to produce any significant GAF activity. Studies are underway to determine whether vertebrate-derived GAF is XA. These data may form the basis of further studies of the development of new methods of interrupting malarial transmission.

  10. Evidence That Mutant PfCRT Facilitates the Transmission to Mosquitoes of Chloroquine-Treated Plasmodium Gametocytes

    OpenAIRE

    Ecker, Andrea; Lakshmanan, Viswanathan; Sinnis, Photini; Coppens, Isabelle; Fidock, David A

    2011-01-01

    Resistance of the human malarial parasite Plasmodium falciparum to the antimalarial drug chloroquine has rapidly spread from several independent origins and is now widely prevalent throughout the majority of malaria-endemic areas. Field studies have suggested that chloroquine-resistant strains might be more infective to mosquito vectors. To test the hypothesis that the primary chloroquine resistance determinant, mutations in PfCRT, facilitates parasite transmission under drug pressure, we hav...

  11. A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst.

    Directory of Open Access Journals (Sweden)

    Sanjai Kumar

    Full Text Available There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP and native PfCSP from Oocysts (Pf Oocyst developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5-20 pg; R2 = 0.9505. We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1-4, R2 = 0.9795 and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5-3 pg of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes

  12. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    Science.gov (United States)

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds.

  13. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  14. Binding of Plasmodium falciparum to CD36 can be shielded by the glycocalyx

    DEFF Research Database (Denmark)

    Hempel, Casper; Wang, Christian William; Kurtzhals, Jorgen Anders Lindholm

    2017-01-01

    Background: Plasmodium falciparum-infected erythrocytes sequester in the microcirculation due to interaction between surface-expressed parasite proteins and endothelial receptors. Endothelial cells are covered in a carbohydrate-rich glycocalyx that shields against undesired leukocyte adhesion...

  15. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival.

    Science.gov (United States)

    Kone, Aminatou; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; van Gemert, Geert-Jan; Dara, Antoine; Niangaly, Hamidou; Luty, Adrian; Doumbo, Ogobara K; Sauerwein, Robert; Djimde, Abdoulaye A

    2010-08-15

    Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anopheles gambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S=61 microg/ml, P=154.7 ng/ml) day 7 (S=33.8 microg/ml, P=66.6 ng/ml) and day 14 (S=14.2 microg/ml, P=15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anopheles stephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (Pmosquito survival by up to 65% (Pmosquito survival. Copyright 2010. Published by Elsevier Ltd.

  16. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes.

    Science.gov (United States)

    van Schaijk, Ben C L; Kumar, T R Santha; Vos, Martijn W; Richman, Adam; van Gemert, Geert-Jan; Li, Tao; Eappen, Abraham G; Williamson, Kim C; Morahan, Belinda J; Fishbaugher, Matt; Kennedy, Mark; Camargo, Nelly; Khan, Shahid M; Janse, Chris J; Sim, Kim Lee; Hoffman, Stephen L; Kappe, Stefan H I; Sauerwein, Robert W; Fidock, David A; Vaughan, Ashley M

    2014-05-01

    The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria. Using antibodies, we find that the FAS-II enzyme FabI is expressed in mosquito midgut oocysts and sporozoites as well as liver-stage parasites but not during the blood stages. As expected, FabI colocalizes with the apicoplast-targeted acyl carrier protein, indicating that FabI functions in the apicoplast. We further analyze the FAS-II pathway in Plasmodium falciparum by assessing the functional consequences of deleting fabI and fabB/F. Targeted deletion or disruption of these genes in P. falciparum did not affect asexual blood-stage replication or the generation of midgut oocysts; however, subsequent sporozoite development was abolished. We conclude that the P. falciparum FAS-II pathway is essential for sporozoite development within the midgut oocyst. These findings reveal an important distinction from the rodent Plasmodium parasites P. berghei and P. yoelii, where the FAS-II pathway is known to be required for normal parasite progression through the liver stage but is not required for oocyst development in the Anopheles mosquito midgut.

  17. Plasmodium relictum (lineages pSGS1 and pGRW11): complete synchronous sporogony in mosquitoes Culex pipiens pipiens.

    Science.gov (United States)

    Kazlauskienė, Rita; Bernotienė, Rasa; Palinauskas, Vaidas; Iezhova, Tatjana A; Valkiūnas, Gediminas

    2013-04-01

    Plasmodium relictum is a widespread invasive agent of avian malaria, responsible for acute, chronic and debilitating diseases in many species of birds. Recent PCR-based studies revealed astonishing genetic diversity of avian malaria parasites (genus Plasmodium), with numerous genetic lineages deposited in GenBank. Many studies addressed distribution and evolutionary relationships of avian Plasmodium lineages, but information about patterns of development of different lineages in mosquito vectors remains insufficient. Here we present data on sporogonic development of 2 widespread mitochondrial cytochrome b lineages (cyt b) of P. relictum (pSGS1 and pGRW11) in mosquito Culex pipiens pipiens. Genetic distance between these lineages is 0.2%; they fall in a well-supported clade in the phylogenetic tree. Three P. relictum strains were isolated from common crossbill (Loxia curvirostra, lineage pSGS1), domestic canary (Serinus canaria domestica, pSGS1) and house sparrow (Passer domesticus, pGRW11). These strains were multiplied in domestic canaries and used as donors of malarial gametocytes to infect C. p. pipiens. Mosquitoes were allowed to take blood meal on infected canaries and then dissected on intervals to study development of sporogonic stages. All 3 strains developed synchronously and completed sporogony in this vector, with infective sporozoites reported in the salivary glands on the day 14 after infection. Ookinetes, oocysts and sporozoites of all strains were indistinguishable morphologically. This study shows that patterns of sporogonic development of the closely related lineages pSGS1 and pGRW11 and different strains of the lineage pSGS1 of P. relictum are similar indicating that phylogenetic trees based on the cyt b gene likely can be used for predicting sporogonic development of genetically similar avian malaria lineages in mosquito vectors. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Efecto de la infección submicroscópica o policlonal de Plasmodium falciparum sobre la madre y el producto de la gestación: revisión sistemática Effect of submicroscopic or polyclonal Plasmodium falciparum infection on mother and gestation product: systematic review

    Directory of Open Access Journals (Sweden)

    Eliana Arango

    2010-09-01

    plasmodial infection during pregnancy and to establish their impact on clinical presentation, immunity acquisition, and consequences on mother and gestation product. METHODS: A search on Medline was performed using key words (MeSH: pregnancy, malaria, PCR, microscopy, genotype, and clones. Studies on plasmodial infection diagnosed by microscopy and PCR were selected. RESULTS: A total of 16 studies were included, all carried out in Africa. The weighted mean (WM of submicroscopic infection was 36%. According to type of infection (microscopic, submicroscopic or negative, the WM of maternal anemia and low birth weight (LBW were 51%, 42%, 33%, and 19%, 16%, 11%, respectively. Risks (OR, using the negative group as reference, were: a for maternal anemia 2.12 in microscopic infection and 1.48 in submicroscopic; b for LBW 1.89 in microscopic and 1.56 in submicroscopic infection. The WM of polyclonal infection was 75% and the mean number of clones by sample was three. CONCLUSIONS: Submicroscopic and polyclonal P. falciparum infections during pregnancy are very common, but have been little studied and their impact must be assessed in each specific region because they depend on malaria transmission intensity and stability, maternal age and parity, among other variables, which are influenced by environmental and socio-economic conditions of each region.

  19. Susceptibility of Anopheles stephensi to Plasmodium gallinaceum: a trait of the mosquito, the parasite, and the environment.

    Directory of Open Access Journals (Sweden)

    Jen C C Hume

    Full Text Available BACKGROUND: Vector susceptibility to Plasmodium infection is treated primarily as a vector trait, although it is a composite trait expressing the joint occurrence of the parasite and the vector with genetic contributions of both. A comprehensive approach to assess the specific contribution of genetic and environmental variation on "vector susceptibility" is lacking. Here we developed and implemented a simple scheme to assess the specific contributions of the vector, the parasite, and the environment to "vector susceptibility." To the best of our knowledge this is the first study that employs such an approach. METHODOLOGY/PRINCIPAL FINDINGS: We conducted selection experiments on the vector (while holding the parasite "constant" and on the parasite (while holding the vector "constant" to estimate the genetic contributions of the mosquito and the parasite to the susceptibility of Anopheles stephensi to Plasmodium gallinaceum. We separately estimated the realized heritability of (i susceptibility to parasite infection by the mosquito vector and (ii parasite compatibility (transmissibility with the vector while controlling the other. The heritabilities of vector and the parasite were higher for the prevalence, i.e., fraction of infected mosquitoes, than the corresponding heritabilities of parasite load, i.e., the number of oocysts per mosquito. CONCLUSIONS: The vector's genetics (heritability comprised 67% of "vector susceptibility" measured by the prevalence of mosquitoes infected with P. gallinaceum oocysts, whereas the specific contribution of parasite genetics (heritability to this trait was only 5%. Our parasite source might possess minimal genetic diversity, which could explain its low heritability (and the high value of the vector. Notably, the environment contributed 28%. These estimates are relevant only to the particular system under study, but this experimental design could be useful for other parasite-host systems. The prospects and

  20. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains i...

  1. Characterization of immunoglobulin G antibodies to Plasmodium falciparum sporozoite surface antigen MB2 in malaria exposed individuals

    Directory of Open Access Journals (Sweden)

    John Chandy C

    2009-10-01

    Full Text Available Abstract Background MB2 protein is a sporozoite surface antigen on the human malaria parasite Plasmodium falciparum. MB2 was identified by screening a P. falciparum sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of P. falciparum-infected irradiated mosquitoes. It is not known whether natural exposure to P. falciparum also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of P. falciparum infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite. Methods Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an in vitro inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of P. falciparum infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya. Results Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells in vitro. Analysis of serum from five human volunteers that were immunized via the bites of P. falciparum infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that

  2. Expression of a mutated phospholipase A2 in transgenic Aedes fluviatilis mosquitoes impacts Plasmodium gallinaceum development

    OpenAIRE

    Rodrigues, F. G.; Santos, M. N.; de Carvalho, T. X. T.; Rocha, B. C.; Riehle, M. A.; Pimenta, P. F. P.; Abraham, E. G.; Jacobs-Lorena, M; Alves de Brito, C. F.; Moreira, L. A

    2008-01-01

    The genetic manipulation of mosquito vectors is an alternative strategy in the fight against malaria. It was previously shown that bee venom phospholipase A2 (PLA2) inhibits ookinete invasion of the mosquito midgut although mosquito fitness was reduced. To maintain the PLA2 blocking ability without compromising mosquito biology, we mutated the protein-coding sequence to inactivate the enzyme while maintaining the protein’s structure. DNA encoding the mutated PLA2 (mPLA2) was placed downstream...

  3. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection

    NARCIS (Netherlands)

    Churcher, T.S.; Bousema, Jan Teun; Walker, M.; Drakeley, C.; Schneider, P.; Ouedraogo, A.L.; Basanez, M.G.

    2013-01-01

    Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito

  4. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    Science.gov (United States)

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-09-20

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  5. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    Science.gov (United States)

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  6. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes.

    Science.gov (United States)

    Murugan, Kadarkarai; Panneerselvam, Chellasamy; Samidoss, Christina Mary; Madhiyazhagan, Pari; Suresh, Udaiyan; Roni, Mathath; Chandramohan, Balamurugan; Subramaniam, Jayapal; Dinesh, Devakumar; Rajaganesh, Rajapandian; Paulpandi, Manickam; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Pavela, Roman; Canale, Angelo; Benelli, Giovanni

    2016-06-01

    Malaria transmission is a serious emergence in urban and semiurban areas worldwide, becoming a major international public health concern. Malaria is transmitted through the bites of Anopheles mosquitoes. The extensive employ of synthetic pesticides leads to negative effects on human health and the environment. Recently, plant-synthesized nanoparticles have been proposed as highly effective mosquitocides. In this research, we synthesized silver nanoparticles (AgNP) using the Azadirachta indica seed kernel extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectrophotometry, SEM, EDX, XRD and FTIR spectroscopy. The A. indica seed kernel extract was toxic against Anopheles stephensi larvae and pupae, LC50 were 232.8ppm (larva I), 260.6ppm (II), 290.3ppm (III), 323.4ppm (IV), and 348.4ppm (pupa). AgNP LC50 were 3.9ppm (I), 4.9ppm (II), 5.6ppm (III), 6.5ppm (IV), and 8.2ppm (pupa). The antiplasmodial activity of A. indica seed kernel extract and AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of A. indica seed kernel extract were 63.18μg/ml (CQ-s) and 69.24μg/ml (CQ-r). A. indica seed kernel-synthesized AgNP achieved IC50, of 82.41μg/ml (CQ-s) and 86.12μg/ml (CQ-r). However, in vivo anti-plasmodial experiments conducted on Plasmodium berghei infecting albino mice showed moderate activity of the A. indica extract and AgNP. Overall, this study showed that the A. indica-mediated fabrication of AgNP is of interest for a wide array of purposes, ranging from IPM of mosquito vectors to the development of novel and cheap antimalarial drugs.

  7. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    NARCIS (Netherlands)

    Bongaerts, G.P.A.

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this

  8. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes

    Directory of Open Access Journals (Sweden)

    Sattabongkot Jetsumon

    2006-08-01

    Full Text Available Abstract Background The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand. Methods Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes, ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1 changes in life-stage prevalence during early sporogony, 2 kinetics of life-stage formation, 3 efficiency of life-stage transitions, 4 density relationships between successive life-stages, and 5 parasite aggregation patterns. Results There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization, second (= round stage transformation, and third (= ookinete migration life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than

  9. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes.

    Science.gov (United States)

    Jaganathan, Anitha; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Dinesh, Devakumar; Vadivalagan, Chithravel; Aziz, Al Thabiani; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Subramaniam, Jayapal; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Benelli, Giovanni

    2016-06-01

    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.

  10. The presence of Plasmodium falciparum gametocytes in human blood increases the gravidity of Anopheles gambiae mosquitoes

    NARCIS (Netherlands)

    Ferguson, H.M.; Gouagna, L.C.; Obare, P.; Read, A.F.; Babiker, H.; Githure, J.I.; Beier, J.C.

    2005-01-01

    We conducted a field study in an area of endemic malaria transmission in western Kenya to determine whether mosquitoes that feed on gametocyte-infected blood but do not become infected have reduced or enhanced fecundity in comparison to mosquitoes fed on uninfected blood. Fifteen paired membrane-fee

  11. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors.

    Science.gov (United States)

    Murugan, Kadarkarai; Wei, Jiang; Alsalhi, Mohamad Saleh; Nicoletti, Marcello; Paulpandi, Manickam; Samidoss, Christina Mary; Dinesh, Devakumar; Chandramohan, Balamurugan; Paneerselvam, Chellasamy; Subramaniam, Jayapal; Vadivalagan, Chithravel; Wei, Hui; Amuthavalli, Pandiyan; Jaganathan, Anitha; Devanesan, Sandhanasamy; Higuchi, Akon; Kumar, Suresh; Aziz, Al Thabiani; Nataraj, Devaraj; Vaseeharan, Baskaralingam; Canale, Angelo; Benelli, Giovanni

    2017-02-01

    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.

  12. Effect of ingested human antibodies induced by RTS, S/AS01 malaria vaccination in children on Plasmodium falciparum oocyst formation and sporogony in mosquitoes

    DEFF Research Database (Denmark)

    Miura, Kazutoyo; Jongert, Erik; Deng, Bingbing

    2014-01-01

    BACKGROUND: The circumsporozoite protein (CS protein) on the malaria parasites in mosquitoes plays an important role in sporogony in mosquitoes. The RTS,S/AS01 malaria vaccine candidate, which has shown significant efficacy against clinical malaria in a large Phase 3 trial, targets the Plasmodium...... falciparum CS protein, but the ability of serum from vaccinated individuals to inhibit sporogony in mosquitoes has not been evaluated. METHODS: Previously a double-blind, randomized trial of RTS,S/AS01 vaccine, as compared with rabies vaccine, in five- to 17-month old children in Tanzania was conducted...... of antibodies to inhibit P. falciparum oocyst formation and/or sporogony in the mosquito host was evaluated by a standard membrane-feeding assay. The test antibodies were fed on day 0 (at the same time as the gametocyte feed), or on days 3 or 6 (serial-feed experiments). The oocyst and sporozoite counts were...

  13. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies

    OpenAIRE

    Murphy, Jittawadee R.; Walter R Weiss; Fryauff, David; Dowler, Megan; Savransky, Tatyana; Stoyanov, Cristina; Muratova, Olga; Lambert, Lynn; Orr-Gonzalez, Sachy; Zeleski, Katie Lynn; Hinderer, Jessica; Fay, Michael P.; Joshi, Gyan; Gwadz, Robert W; Richie, Thomas L

    2014-01-01

    Background When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito...

  14. Mosquito appetite for blood is stimulated by Plasmodium chabaudi infections in themselves and their vertebrate hosts

    Directory of Open Access Journals (Sweden)

    Ferguson Heather M

    2004-05-01

    Full Text Available Abstract Background Arthropod vectors of disease may encounter more than one infected host during the course of their lifetime. The consequences of super-infection to parasite development are rarely investigated, but may have substantial epidemiological and evolutionary consequences. Methods Using a rodent malaria model system, behavioural avoidance of super-infection was tested by examining whether already-infected Anopheles stephensi mosquitoes were less responsive to new vertebrate hosts if they were infected. Additionally, a second dose of parasites was given to malaria-infected mosquitoes on a biologically realistic time scale to test whether it impeded the development of a first infection. Results No effect of a second infected blood meal on either the prevalence or parasite burden arising from a first was found. Furthermore, it was found that not only were infected mosquitoes more likely to take a second blood meal than their uninfected counterparts, they were disproportionately drawn to infected hosts. Conclusions The alterations in mosquito feeding propensity reported here would occur if parasites have been selected to make infected vertebrate hosts more attractive to mosquitoes, and infected mosquitoes are more likely to seek out new blood meals. Although such a strategy might increase the risk of super-infection, this study suggests the cost to parasite development is not high and as such would be unlikely to outweigh the potential benefits of increasing the contact rate between the parasite's two obligate hosts.

  15. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival.

    NARCIS (Netherlands)

    Kone, A.; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Gemert, G.J.A. van; Dara, A.; Niangaly, H.; Luty, A.J.F.; Doumbo, O.K.; Sauerwein, R.W.; Djimde, A.A.

    2010-01-01

    Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in

  16. A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito.

    Science.gov (United States)

    Pradel, Gabriele; Hayton, Karen; Aravind, L; Iyer, Lakshminarayan M; Abrahamsen, Mitchell S; Bonawitz, Annemarie; Mejia, Cesar; Templeton, Thomas J

    2004-06-07

    The recent sequencing of several apicomplexan genomes has provided the opportunity to characterize novel antigens essential for the parasite life cycle that might lead to the development of new diagnostic and therapeutic markers. Here we have screened the Plasmodium falciparum genome sequence for genes encoding extracellular multidomain putative adhesive proteins. Three of these identified genes, named PfCCp1, PfCCp2, and PfCCp3, have multiple adhesive modules including a common Limulus coagulation factor C domain also found in two additional Plasmodium genes. Orthologues were identified in the Cryptosporidium parvum genome sequence, indicating an evolutionary conserved function. Transcript and protein expression analysis shows sexual stage-specific expression of PfCCp1, PfCCp2, and PfCCp3, and cellular localization studies revealed plasma membrane-associated expression in mature gametocytes. During gametogenesis, PfCCps are released and localize surrounding complexes of newly emerged microgametes and macrogametes. PfCCp expression markedly decreased after formation of zygotes. To begin to address PfCCp function, the PfCCp2 and PfCCp3 gene loci were disrupted by homologous recombination, resulting in parasites capable of forming oocyst sporozoites but blocked in the salivary gland transition. Our results describe members of a conserved apicomplexan protein family expressed in sexual stage Plasmodium parasites that may represent candidates for subunits of a transmission-blocking vaccine.

  17. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  18. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    M.E. van Wolfswinkel (Marlies); M. De Mendonça Melo (Mariana); K. Vliegenthart-Jongbloed (Klaske); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2012-01-01

    textabstractBackground: In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often

  19. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    M.E. van Wolfswinkel (Marlies); M. De Mendonça Melo (Mariana); K. Vliegenthart-Jongbloed (Klaske); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2012-01-01

    textabstractBackground: In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often

  20. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans, L.C. (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J. van Genderen (P.)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  1. Mosquito Species Composition and Plasmodium vivax Infection Rates on Baengnyeong-do (Island), Republic of Korea

    Science.gov (United States)

    2011-09-01

    313 © 2011, Korean Society for Parasitology This is an Open Access article distributed under the terms of the Creative Commons Attribution Non... parasite rates for different species have been reported [8,9], but few data of a similar nature are available for the DPRK. Anopheles belenrae...the prob­ ability of detecting DNA from parasite oocysts in the midgut. The head and thorax of a subsample of 257 mosquitoes were identified by PCR

  2. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles

    Directory of Open Access Journals (Sweden)

    Lilian M. Spencer

    2016-09-01

    Full Text Available La Malaria o Paludismo es una de las enfermedades tropicales considerada un problema de salud pública a nivel mundial por la OMS. Plasmodium es un protozoario cuyo vector es la hembra del mosquito Anopheles. En este vector se cumplen dos procesos fundamentales en el ciclo de vida del parásito, como son la reproducción sexual, con la formación de un cigoto móvil llamado ooquineto como producto de la fertilización entre los gametos; y la invasión del epitelio del estómago y formación del ooquiste. El estadio producto de esta esporogonia son los esporozoítos (reproducción asexual que se dirigen a las glándulas salivales; y es el infectivo para el mamífero. El esporozoíto es el responsable de establecer la enfermedad en su hospedador vertebrado y por lo tanto los procesos de invasión de este a las glándulas salivales del mosquito es uno de los puntos fundamentales de estudio. Nosotros presentamos una revisión acerca de los mecanismos de invasión del parásito dentro del vector mosquito y las proteínas más importantes que median este proceso. Uno de los aspectos más estudiados en las investigaciones en malaria ha sido determinar la antigenicidad de dichas proteínas en esta parte del ciclo con el fin de ser usadas en el diseño de vacunas. Entre ellas, algunas de las más estudiadas son: P230, P48/45, P28, P25, CTRP, CS, TRAP, WARP y SOAP las cuales han sido consideradas en las estrategias para inhibir el desarrollo del parásito, mejor conocidas como vacunas de bloqueo de trasmisión por el vector. Por lo tanto, presentamos algunas de las estrategias en el diseño de vacunas, basado en las proteínas implicadas en los estadios desarrollados dentro del vector.

  3. 弓形虫与疟原虫入侵引起宿主细胞骨架重组相关GTP酶不同定位的观察%Observation on different localization of GTPases related to host cytoskeleton reorganization triggered by Toxoplasma gondii and Plasmodium falciparum infection

    Institute of Scientific and Technical Information of China (English)

    陈艾媛; 娜仁花; 彭鸿娟; 赵亚

    2012-01-01

    Both Toxoplasmagondii and Plasmodium spp. belong to the intracellular protozoa in Order Eucoccidiida, Class Sporozoea, and Phylum Apicomplexa. They dwell in the parasitophorons vaenole lor parasitism , development and multiplication alter recruitment . The invasion of these intracellular protozoans into host cells requires the cytoskeleton reorganization of the host cell . Rho GTPases are the important enzymes in regulation of cytoskeleton reorganization in mammalian cells inclu -ding nucleated cells and erythrocytes . We found in our research that host cell RhoA and Racl GTPase were recruited to the par-asitophorous vacuole membrane (PV M ) of T. gondii and showed a high accumulation on the PV M after T. gondii tachyzoite invading the host cell. On the other hand , this accumulation of the Rho GTPases on the PV M was not observed after Plasmodium falciparum merozoites invading erythrocytes . The different distribution of RhoA and RaclGTPase in the host cell after the invasion of T. gondii tachyzoites and Plasmodium falciparum merozoites indicated the different way for the regulation of cytoskeleton reorganization in host cells upon the parasites invasion .%目的 方法,结果,结论弓形虫与疟原虫均是顶复门(Phylum Apicomplexa),孢子纲(Class Sporozoea), 真球虫目(Order Eucoccidiida)的细胞内寄生原虫,入侵宿主细胞后均寄生于纳虫泡内进行发育增殖.细胞内寄生原虫的入侵均需要宿主细胞的细胞骨架发生重组,RhoGTP酶是哺乳动物细胞(有核细胞及红细胞)调节细胞骨架重组的重要酶类.我们在研究中发现宿主细胞的RhoA及Rac1GTP酶在弓形虫速殖子侵染后被纳入了纳虫泡膜(Parasitophorous Vacuole Membrane,PVM)上并高丰度聚集,然而在疟原虫裂殖子侵染的红细胞内却没有发现这两种GTP酶在纳虫泡膜上聚集的现象.宿主细胞RhoA及Rac1GTP酶在弓形虫及疟原虫感染宿主细胞后的不同分布,显示这两种原虫感染引起宿主细

  4. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas

    2015-01-01

    For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms

  5. Protocolo de extracción de ADN en lotes de 10 mosquitos para la identificación de Plasmodium spp. mediante qPCR

    Directory of Open Access Journals (Sweden)

    A. Pérez Rico

    Full Text Available Las tropas que despliegan en zonas de operaciones endémicas de malaria, necesitan de una información precisa del riesgo sanitario para la toma de decisiones acerca de las medidas de prevención más adecuadas. El estado de portador de un mosquito se determina clásicamente por la presencia o ausencia de esporozoitos de Plasmodium spp. en las glándulas salivales. Los protocolos basados en la amplificación del ADN en tiempo real (qPCR son muy sensibles, sin embargo existen dificultades en la qPCR debido a inhibidores presentes en los tejidos del mosquito, lo que obliga a trabajar de uno en uno. En este trabajo se diseña una qPCR para amplificar una región conservada entre mosquitos de diferentes especies y otros dípteros, con el objetivo de comparar varios protocolos de extracción de ADN y determinar el más eficiente a la hora de procesar lotes de 10 mosquitos.

  6. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium.

    Science.gov (United States)

    Kim, Won; Koo, Hyeyoung; Richman, Adam M; Seeley, Douglas; Vizioli, Jacopo; Klocko, Andrew D; O'Brochta, David A

    2004-05-01

    Genetically altering the disease vector status of insects using recombinant DNA technologies is being considered as an alternative to eradication efforts. Manipulating the endogenous immune response of mosquitoes such as the temporal and special expression of antimicrobial peptides like cecropin may result in a refractory phenotype. Using transgenic technology a unique pattern of expression of cecropin A (cecA) in Anopheles gambiae was created such that cecA was expressed beginning 24 h after a blood meal in the posterior midgut. Two independent lines of transgenic An. gambiae were created using a piggyBac gene vector containing the An. gambiae cecA cDNA under the regulatory control of the Aedes aegypti carboxypeptidase promoter. Infection with Plasmodium berghei resulted in a 60% reduction in the number of oocysts in transgenic mosquitoes compared with nontransgenic mosquitoes. Manipulating the innate immune system of mosquitoes can negatively affect their capacity to serve as hosts for the development of disease-causing microbes.

  7. PLASMODIUM PRE-ERYTHROCYTIC STAGES: BIOLOGY, WHOLE PARASITE VACCINES AND TRANSGENIC MODELS

    Directory of Open Access Journals (Sweden)

    Kota Arun Kumar

    2012-01-01

    Full Text Available Malaria remains one of the world’s worst health problems, which causes 216 million new cases and approximately 655,000 deaths every year WHO World Malaria Report, 2011. Malaria transmission to the mammalian host is initiated through a mosquito bite that delivers sporozoites into the vertebrate host. The injected sporozoites are selectively targeted to liver which is the first obligatory step in infection thus making this stage an attractive target for both drug and vaccine development. Research using rodent models of malaria has greatly facilitated the understanding of several aspects of pre-erythrocytic parasite biology and immunology. However, translation of this knowledge to combat Plasmodium falciparum infections still offers several challenges. We highlight in this review some of the recent advances in the field of Plasmodium sporozoite and liver stage biology and in the generation of whole organism attenuated vaccines. We also comment on the application of transgenic models central to Circumsporozoite Protein (CSP in understanding the mechanism of pre-erythrocytic immunity.

  8. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is...

  9. Possibility of false-positive detection for sporozoites in mosquitos (Diptera: Culicidae) by nested polymerase chain reaction using Plasmodium yoelii genomic DNA.

    Science.gov (United States)

    Tsuzuki, A; Toma, T; Miyagi, I; Toma, H; Arakawa, T; Sato, Y; Kobayashi, J; Mugissa, M F

    2001-06-01

    Anopheles stephensi Liston and An. saperoi Bohart and Ingram infected with the rodent malaria parasite Plasmodium yoelii nigeriense. They were examined 12 and 19 days after blood feeding for sporozoites in head with anterior thorax (HT) and oocysts in abdomen with posterior thorax (AB) by light microscopy and by the nested polymerase chain reaction (nested PCR-based on the amplification of the sequences of the small subunit ribosomal RNA gene). The detection rate of parasite DNA by nested PCR in HT samples 12 days after blood feeding was similar to that by microscopic method. However, in HT samples 19 days after blood feeding, the rate by the PCR method was higher than that by the microscopic method. The incidence of sporozoites in salivary glands of infected mosquitos for 12 days after blood sucking was examined by the PCR method. Parasite DNA in HT of Aedes albopictus Skuse (a non vector for the rodent malaria) as well as An. stephensi and An. saperoi was detected for up to 4 days after feeding on mouse with the rodent malaria parasites. The results indicate that when the PCR method is used for detection of sporozoites of human malaria in mosquitos collected in the field, there are possibilities of including false-positive data for mosquitos that have just or recently fed on human blood infected with malaria (erythrocytic form).

  10. Transportproteiner som drug-targets hos Plasmodium falciparum. Nye perspektiver i behandlingen af malaria

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Colding, Hanne

    2006-01-01

    The malaria parasite, Plasmodium falciparum, infects and replicates in human erythrocytes. Through the use of substrate-specific transport proteins, P. falciparum takes up nutrients from the erythrocyte's cytoplasm. The sequencing and publishing of the P. falciparum genome have made it possible...

  11. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...

  12. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistan...

  13. Population Dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) Infectivity Rates for the Malaria Vector Anopheles arabiensis (Diptera: Culicidae) at Mamfene, KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Dandalo, Leonard C; Brooke, Basil D; Munhenga, Givemore; Lobb, Leanne N; Zikhali, Jabulani; Ngxongo, Sifiso P; Zikhali, Phineas M; Msimang, Sipho; Wood, Oliver R; Mofokeng, Mohlominyana; Misiani, Eunice; Chirwa, Tobias; Koekemoer, Lizette L

    2017-09-06

    Anopheles arabiensis (Patton; Diptera: Culicidae) is a major malaria vector in the southern African region. In South Africa, effective control of this species using indoor-based interventions is reduced owing to its tendency to rest outdoors. As South Africa moves towards malaria elimination there is a need for complementary vector control strategies. One of the methods under consideration is the use of the sterile insect technique (SIT). Key to the successful implementation of an SIT programme is prior knowledge of the size and spatial distribution of the target population. Understanding mosquito population dynamics for both males and females is critical for efficient programme implementation. It is thus necessary to use outdoor-based population monitoring tools capable of sampling both sexes of the target population. In this project mosquito surveillance and evaluation of tools capable of collecting both genders were carried out at Mamfene in northern KwaZulu-Natal Province, South Africa, during the period January 2014 to December 2015. Outdoor- and indoor-resting Anopheles mosquitoes were sampled in three sections of Mamfene over the 2-yr sampling period using modified plastic buckets, clay pots and window exit traps. Morphological and molecular techniques were used for species identifications of all samples. Wild-caught adult females were tested for Plasmodium falciparum (Welch; Haemosporida: Plasmodiidae) infectivity. Out of 1,705 mosquitoes collected, 1,259 (73.8%) and 255 (15%) were identified as members of either the Anopheles gambiae complex or Anopheles funestus group respectively. An. arabiensis was the most abundant species contributing 78.8% of identified specimens. Mosquito density was highest in summer and lowest during winter. Clay pots yielded 16.3 mosquitoes per trap compared to 10.5 for modified plastic buckets over the 2-yr sampling period. P. falciparum infection rates for An. arabiensis were 0.7% and 0.5% for 2014 and 2015, respectively

  14. Transmission blocking activity of Azadirachta indica and Guiera senegalensis extracts on the sporogonic development of Plasmodium falciparum field isolates in Anopheles coluzzii mosquitoes.

    Science.gov (United States)

    Yerbanga, Rakiswendé S; Lucantoni, Leonardo; Ouédraogo, Robert K; Da, Dari F; Yao, Franck A; Yaméogo, Koudraogo B; Churcher, Thomas S; Lupidi, Giulio; Taglialatela-Scafati, Orazio; Gouagna, Louis Clément; Cohuet, Anna; Christophides, George K; Ouédraogo, Jean Bosco; Habluetzel, Annette

    2014-04-15

    Targeting the stages of the malaria parasites responsible for transmission from the human host to the mosquito vector is a key pharmacological strategy for malaria control. Research efforts to identify compounds that are active against these stages have significantly increased in recent years. However, at present, only two drugs are available, namely primaquine and artesunate, which reportedly act on late stage gametocytes. In this study, we assessed the antiplasmodial effects of 5 extracts obtained from the neem tree Azadirachta indica and Guiera senegalensis against the early vector stages of Plasmodium falciparum, using field isolates. In an ex vivo assay gametocytaemic blood was supplemented with the plant extracts and offered to Anopheles coluzzii females by membrane feeding. Transmission blocking activity was evaluated by assessing oocyst prevalence and density on the mosquito midguts. Initial screening of the 5 plant extracts at 250 ppm revealed transmission blocking activity in two neem preparations. Up to a concentration of 70 ppm the commercial extract NeemAzal completely blocked transmission and at 60 ppm mosquitoes of 4 out of 5 replicate groups remained uninfected. Mosquitoes fed on the ethyl acetate phase of neem leaves at 250 ppm showed a reduction in oocyst prevalence of 59.0% (CI₉₅ 12.0 - 79.0; p plant part did not exhibit any activity. No evidence of transmission blocking activity was found using G. senegalensis ethyl acetate extract from stem galls. The results of this study highlight the potential of antimalarial plants for the discovery of novel transmission blocking molecules, and open up the potential of developing standardized transmission blocking herbal formulations as malaria control tools to complement currently used antimalarial drugs and combination treatments.

  15. RETINAL HAEMORRHAGE IN PLASMODIUM VIVAX PATIENTS- 2 RARE CASE REPORTS

    Directory of Open Access Journals (Sweden)

    Sangeeta

    2012-12-01

    Full Text Available ABSTRACT: Retinal haemorrhage is commonly detected during opht halmoscopic examination of patients with Plasmodium falciparum infections. Ho wever, it is observed very rarely in Plasmodium vivax infections. Only six cases of reti nal haemorrhage have been reported so far in Plasmodium vivax infections. We review the literatu re and discuss two such cases of retinal haemorrhage that presented at our hospital. It is sug gested that retinal haemorrhage be routinely ruled out in all malaria patients, and Pla smodium vivax infection be considered in patients with unexplained retinal haemorrhage and fev er.

  16. Acalculous Cholecystitis in a Pediatric Patient with Plasmodium falciparum Infection: A Case Report and Literature Review.

    Science.gov (United States)

    Aguilera-Alonso, David; Medina, Eva María López; Del Rosal, Teresa; Arrieta, Julián Villota; Escosa-García, Luis; Hortelano, Milagros García

    2017-08-02

    Malaria has been associated with acute acalculous cholecystitis, a very uncommon complication in children. We present a 5-year-old girl, originally from Equatorial-Guinea, diagnosed with severe malaria with acute kidney injury, thrombocytopenia and acute acalculous cholecystitis. She was treated with intravenous quinine and clindamycin, plus cefotaxime and metronidazole with a full resolution without surgery.

  17. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast.

    Directory of Open Access Journals (Sweden)

    Steffen Borrmann

    Full Text Available BACKGROUND: The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies. METHODS: On the Kenyan coast we studied the treatment responses in 474 children 6-59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995. RESULTS: The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005-2006 to 87% in 2007-2008 (odds ratio, 5.4, 95%CI, 2.7-11.1; P37.5°C, 2.8, 1.9-4.1; P<0.001. Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof. CONCLUSIONS: The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN88705995.

  18. [Gametocyte carriage in asymptomatic Plasmodium falciparum infections in Haiti (2010-2013)].

    Science.gov (United States)

    Raccurt, C P; Brasseur, P; Cicéron, M; Existe, A; Lemoine, F; Boncy, J

    2015-02-01

    A survey conducted from May 2010 to October 2013 in five from ten departments of Haiti among 5,342 persons aged from 1 to 107 years showed a gametocytic rate = 3.2%. However, it varies greatly from one Department to another, ranging from 0.5% in Grande Anse Department to 5.9% in Southeast Department. Malaria is present in Haiti in heterogeneous coastal foci. Gametocytes occur at all ages, but two times most often in male under 20 years. Entomological studies in Haiti are needed to better characterize the relationships between man and the vector Anopheles albimanus, adapting the fight more effectively.

  19. Associations between Red Cell Polymorphisms and Plasmodium falciparum Infection in the Middle Belt of Ghana

    Science.gov (United States)

    Amoako, Nicholas; Asante, Kwaku Poku; Adjei, George; Awandare, Gordon A.; Bimi, Langbong; Owusu-Agyei, Seth

    2014-01-01

    Background Red blood cell (RBC) polymorphisms are common in malaria endemic regions and are known to protect against severe forms of the disease. Therefore, it is important to screen for these polymorphisms in drugs or vaccines efficacy trials. This study was undertaken to evaluate associations between clinical malaria and RBC polymorphisms to assess biological interactions that may be necessary for consideration when designing clinical trials. Method In a cross-sectional study of 341 febrile children less than five years of age, associations between clinical malaria and common RBC polymorphisms including the sickle cell gene and G6PD deficiency was evaluated between November 2008 and June 2009 in the middle belt of Ghana, Kintampo. G6PD deficiency was determined by quantitative methods whiles haemoglobin variants were determined by haemoglobin titan gel electrophoresis. Blood smears were stained with Giemsa and parasite densities were determined microscopically. Results The prevalence of clinical malarial among the enrolled children was 31.9%. The frequency of G6PD deficiency was 19.0% and that for the haemoglobin variants were 74.7%, 14.7%, 9.1%, 0.9% respectively for HbAA, HbAC, HbAS and HbSS. In Multivariate regression analysis, children with the HbAS genotype had 79% lower risk of malaria infection compared to those with the HbAA genotypes (OR = 0.21, 95% CI: 0.06–0.73, p = 0.01). HbAC genotype was not significantly associated with malaria infection relative to the HbAA genotype (OR = 0.70, 95% CI: 0.35–1.42, p = 0.33). G6PD deficient subgroup had a marginally increased risk of malaria infection compared to the G6PD normal subgroup (OR = 1.76, 95% CI: 0.98–3.16, p = 0.06). Conclusion These results confirm previous findings showing a protective effect of sickle cell trait on clinical malaria infection. However, G6PD deficiency was associated with a marginal increase in susceptibility to clinical malaria compared to children without G6PD deficiency. PMID:25470251

  20. Associations between red cell polymorphisms and Plasmodium falciparum infection in the middle belt of Ghana

    National Research Council Canada - National Science Library

    Amoako, Nicholas; Asante, Kwaku Poku; Adjei, George; Awandare, Gordon A; Bimi, Langbong; Owusu-Agyei, Seth

    2014-01-01

    .... In a cross-sectional study of 341 febrile children less than five years of age, associations between clinical malaria and common RBC polymorphisms including the sickle cell gene and G6PD deficiency...

  1. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin

    DEFF Research Database (Denmark)

    Rasti, Niloofar; Namusoke, Fatuma; Chêne, Arnaud;

    2006-01-01

    . A P. falciparum erythrocyte membrane protein 1 variant, VAR2CSA, and the placental receptor chondroitin sulfate A (CSA) are currently the focus of PAM research. A role for immunoglobulins (IgG and IgM) from normal human serum and hyaluronic acid as additional receptors in placental sequestration have...

  2. Antibody reactivity to conserved linear epitopes of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)

    DEFF Research Database (Denmark)

    Staalsø, T; Khalil, E A; Elhassan, I M;

    1998-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of protein antigens are involved in adhesion of P. falciparum infected erythrocytes to the capillary endothelium of the host. Antibodies to variable regions of these proteins, measured by agglutination, correlates with clini......The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of protein antigens are involved in adhesion of P. falciparum infected erythrocytes to the capillary endothelium of the host. Antibodies to variable regions of these proteins, measured by agglutination, correlates...

  3. Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon

    Science.gov (United States)

    Amaral, Daphne R. T.; Costa, Daiane C.; Furlani, Natália G.; Zuccherato, Luciana W.; Machado, Moara; Reid, Marion E.; Zalis, Mariano G.; Rossit, Andréa R.; Santos, Sidney E. B.; Machado, Ricardo L.; Lustigman, Sara

    2011-01-01

    Background Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil. Methods Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection. Results GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity. Conclusion Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is

  4. Population genetics of GYPB and association study between GYPB*S/s polymorphism and susceptibility to P. falciparum infection in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Eduardo Tarazona-Santos

    Full Text Available BACKGROUND: Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil. METHODS: Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases; and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls. The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection. RESULTS: GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02. Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity. CONCLUSION: Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this

  5. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is...

  6. The case for PfEMP1-based vaccines to protect pregnant women against Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, Lars

    2011-01-01

    to develop a vaccine protecting pregnant women and their offspring against mortality and morbidity caused by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta. It is based on a detailed understanding of the parasite antigen and the host receptor involved in this accumulation...

  7. Neutrophil alterations in pregnancy-associated malaria and induction of neutrophil chemotaxis by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Boström, S.; Schmiegelow, C; Abu Abed, U

    2017-01-01

    Pregnancy-associated malaria (PAM) is a severe form of the disease caused by sequestration of Plasmodium falciparum-infected red blood cells (iRBCs) in the developing placenta. Pathogenesis of PAM is partially based on immunopathology, with frequent monocyte infiltration into the placenta. Neutro...

  8. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific N...

  9. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania

    DEFF Research Database (Denmark)

    Boström, Stéphanie; Ibitokou, Samad; Oesterholt, Mayke

    2012-01-01

    In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in p...

  10. An analysis of the binding characteristics of a panel of recently selected ICAM-1 binding Plasmodium falciparum patient isolates

    DEFF Research Database (Denmark)

    Madkhali, Aymen M; Alkurbi, Mohammed O; Szestak, Tadge;

    2014-01-01

    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (...

  11. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...

  12. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    Directory of Open Access Journals (Sweden)

    Lindsey S Garver

    2009-03-01

    Full Text Available Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway-mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort

  13. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    Science.gov (United States)

    Garver, Lindsey S; Dong, Yuemei; Dimopoulos, George

    2009-03-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway-mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort development of P. falciparum

  14. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.

  15. Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa

    Directory of Open Access Journals (Sweden)

    Kaiser Maria L

    2011-06-01

    Full Text Available Abstract Background Malaria vector control programmes that rely on insecticide-based interventions such as indoor house spraying with residual insecticides or insecticide treated bed nets, need to base their decision-making process on sound baseline data. More and more commercial entities in Africa, such as mining companies, are realising the value to staff productivity of controlling malaria transmission in their areas of operation. This paper presents baseline entomological data obtained during surveys conducted for four mining operations in Ghana, West Africa. Results The vast majority of the samples were identified as Anopheles gambiae S form with only a few M form specimens being identified from Tarkwa. Plasmodium falciparum infection rates ranged from 4.5 to 8.6% in An. gambiae and 1.81 to 8.06% in An. funestus. High survival rates on standard WHO bioassay tests were recorded for all insecticide classes except the organophosphates that showed reasonable mortality at all locations (i.e. > 90%. The West African kdr mutation was detected and showed high frequencies in all populations. Conclusions The data highlight the complexity of the situation prevailing in southern Ghana and the challenges facing the malaria vector control programmes in this region. Vector control programmes in Ghana need to carefully consider the resistance profiles of the local mosquito populations in order to base their resistance management strategies on sound scientific data.

  16. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  17. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Science.gov (United States)

    Nagaraj, Viswanathan Arun; Sundaram, Balamurugan; Varadarajan, Nandan Mysore; Subramani, Pradeep Annamalai; Kalappa, Devaiah Monnanda; Ghosh, Susanta Kumar; Padmanaban, Govindarajan

    2013-01-01

    Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14)C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  18. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by s...

  19. α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes

    DEFF Research Database (Denmark)

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J;

    2015-01-01

    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites...

  20. Low density parasitaemia, red blood cell polymorphisms and Plasmodium falciparum specific immune responses in a low endemic area in northern Tanzania

    DEFF Research Database (Denmark)

    Shekalaghe, Seif; Alifrangis, Michael; Mwanziva, Charles;

    2009-01-01

    BACKGROUND: Low density Plasmodium falciparum infections, below the microscopic detection limit, may play an important role in maintaining malaria transmission in low endemic areas as well as contribute to the maintenance of acquired immunity. Little is known about factors influencing the occurre...

  1. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Che J. Ngwa

    2017-07-01

    Full Text Available Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA. TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry

  2. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Ngwa, Che J; Kiesow, Meike J; Papst, Olga; Orchard, Lindsey M; Filarsky, Michael; Rosinski, Alina N; Voss, Till S; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1

  3. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  4. Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection

    Directory of Open Access Journals (Sweden)

    Romans Patricia A

    2006-05-01

    Full Text Available Abstract Background Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S, rat blood fed (RB, and P. berghei-infected (IRB mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts. Results The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt in length. They assembled into 1975 consensus sequences – 567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were subjected to digital Northern analysis and results on expression of 5 verified by qRT-PCR. Conclusion 13% of the 1965 ESTs showing identity to the A. gambiae genome sequence represent novel genes. These, together with untranslated regions (UTR present on many of the ESTs, will inform further genome annotation. We have identified 23 genes encoding products likely to be involved in regulating the cellular oxidative environment and 25 insect immunity genes. We also identified 25 genes as being up or down regulated following blood feeding and/or feeding with P. berghei infected blood relative to their expression levels in sugar fed females.

  5. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria

    OpenAIRE

    Fry, Andrew E.; Griffiths, Michael J.; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T.; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N.; Marsh, Kevin; Malcolm E Molyneux

    2007-01-01

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across 3 African pop...

  6. Programmierter Zelltod in Plasmodium infizierten HbA/A und HbA/S Erythrozyten

    OpenAIRE

    Brand, Verena Beatrice

    2007-01-01

    In the first part of my thesis, I investigated the activation of erythrocyte nonselective cation (NSC) permeability and of sphingomyelinase by Plasmodium falciparum infection. Both are involved in programmed cell death in erythrocytes, also referred to as eryptosis [Lang et al., 2006; Lang et al., 2005], and meet four requirements for parasite growth at the same time: i) Development of an inwardly directed Na+ and an outwardly directed K+ ion gradient across the parasite plasma membrane, ...

  7. An epidemiological study to assess Plasmodium falciparum parasite prevalence and malaria control measures in Burkina Faso and Senegal.

    Science.gov (United States)

    Diallo, Aldiouma; Sié, Ali; Sirima, Sodiomon; Sylla, Khadime; Ndiaye, Mahmadou; Bountogo, Mamadou; Ouedraogo, Espérance; Tine, Roger; Ndiaye, Assane; Coulibaly, Boubacar; Ouedraogo, Alphonse; Faye, Babacar; Ba, El Hadji; Compaore, Guillaume; Tiono, Alfred; Sokhna, Cheikh; Yé, Maurice; Diarra, Amidou; Bahmanyar, Edith Roset; De Boer, Melanie; Pirçon, Jean-Yves; Usuf, Effua Abigail

    2017-02-06

    Malariometric information is needed to decide how to introduce malaria vaccines and evaluate their impact in sub-Saharan African countries. This cross-sectional study (NCT01954264) was conducted between October and November, 2013, corresponding to the high malaria transmission season, in four sites with Health and Demographic Surveillance Systems (DSS) [two sites with moderate-to-high malaria endemicity in Burkina Faso (Nouna and Saponé) and two sites with low malaria endemicity in Senegal (Keur Socé and Niakhar)]. Children (N = 2421) were randomly selected from the DSS lists of the study sites and were stratified into two age groups (6 months-4 years and 5-9 years). A blood sample was collected from each child to evaluate parasite prevalence of Plasmodium falciparum and other Plasmodium species and gametocyte density by microscopy, and rapid diagnosis test in the event of fever within 24 h. Case report forms were used to evaluate malaria control measures and other factors. Plasmodium falciparum was identified in 707 (29.2%) children, with a higher prevalence in Burkina Faso than Senegal (57.5 vs 0.9% of children). In Burkina Faso, prevalence was 57.7% in Nouna and 41.9% in Saponé in the 6 months-4 years age group, and 75.4% in Nouna and 70.1% in Saponé in the 5-9 years age group. Infections with other Plasmodium species were rare and only detected in Burkina Faso. While mosquito nets were used by 88.6-97.0 and 64.7-80.2% of children in Burkina Faso and Senegal, other malaria control measures evaluated at individual level were uncommon. In Burkina Faso, exploratory analyses suggested that use of malaria treatment or any other medication within 14 days, and use of insecticide spray within 7 days decreased the prevalence of malaria infection; older age, rural residence, natural floor, grass/palm roof, and unavailability of electricity in the house were factors associated with increased malaria occurrence. Plasmodium falciparum infection prevalence in children

  8. 3D structure and immunogenicity of Plasmodium falciparum sporozoite induced associated protein peptides as components of fully-protective anti-malarial vaccine.

    Science.gov (United States)

    Alba, Martha P; Almonacid, Hannia; Calderón, Dayana; Chacón, Edgar A; Poloche, Luis A; Patarroyo, Manuel A; Patarroyo, Manuel E

    2011-12-16

    SIAP-1 and SIAP-2 are proteins which are implicated in early events involving Plasmodium falciparum infection of the Anopheles mosquito vector and the human host. High affinity HeLa and HepG2 cell binding conserved peptides have been previously identified in these proteins, i.e. SIAP-1 34893 ((421)KVQGLSYLLRRKNGTKHPVY(440)) and SIAP-1 34899 ((541)YVLNSKLLNSRSFDKFKWIQ(560)) and SIAP-2 36879 ((181)LLLYSTNSEDNLDISFGELQ(200)). When amino acid sequences have been properly modified (replacements shown in bold) they have induced high antibody titres against sporozoites in Aotus monkeys (assessed by IFA) and in the corresponding recombinant proteins (determined by ELISA and Western blot). (1)H NMR studies of these conserved native and modified high activity binding peptides (HABPs) revealed that all had α-helical structures in different locations and lengths. Conserved and corresponding modified HABPs displayed different lengths between the residues fitting into MHCII molecule pockets 1-9 and different amino acid orientation based on their different HLA-DRβ1(∗) binding motifs and binding registers, suggesting that such modifications were associated with making them immunogenic. The results suggested that these modified HAPBs could be potential targets for inclusion as components of a fully-effective, minimal sub-unit based, multi-epitope, and multistage anti-malarial vaccine.

  9. ama1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency.

    Directory of Open Access Journals (Sweden)

    Rosalynn L Ord

    Full Text Available BACKGROUND: We present the first population genetic analysis of homologous loci from two sympatric human malaria parasite populations sharing the same human hosts, using full-length sequences of ama1 genes from Plasmodium vivax and P. falciparum collected in the Venezuelan Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Significant differences between the two species were found in genetic diversity at the ama1 locus, with 18 distinct haplotypes identified among the 73 Pvama1 sequences obtained, compared to 6 unique haplotypes from 30 Pfama1 sequences, giving overall diversity estimates of h = 0.9091, and h = 0.538 respectively. Levels of recombination were also found to differ between the species, with P. falciparum exhibiting very little recombination across the 1.77 kb sequence. In contrast, analysis of patterns of nucleotide substitutions provided evidence that polymorphisms in the ama1 gene of both species are maintained by balancing selection, particularly in domain I. The two distinct population structures observed are unlikely to result from different selective forces acting upon the two species, which share both human and mosquito hosts in this setting. Rather, the highly structured P. falciparum population appears to be the result of a population bottleneck, while the much less structured P. vivax population is likely to be derived from an ancient pool of diversity, as reflected in a larger estimate of effective population size for this species. Greatly reduced mosquito transmission in 1997, due to low rainfall prior to the second survey, was associated with far fewer P. falciparum infections, but an increase in P. vivax infections, probably due to hypnozoite activation. CONCLUSIONS/SIGNIFICANCE: The relevance of these findings to putative competitive interactions between these two important human pathogen species is discussed. These results highlight the need for future control interventions to employ strategies targeting each of the parasite

  10. Clinical indicators for bacterial co-infection in Ghanaian children with P. falciparum infection.

    Directory of Open Access Journals (Sweden)

    Maja Verena Nielsen

    Full Text Available Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40% of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0% of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%, followed by Streptococcus spp. (13.0%. Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl, a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6-48.9, dehydration (OR 18.2; CI 2.0-166.0 and coughing (OR 9.0; CI 0.7-118.6. In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4-15.8, severe anemia (OR 3.3; CI 1.0-11.1 and leukocytosis (OR 6.8 CI 1.9-24.2. Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the

  11. Multiple splenic infarcts in acute Plasmodium vivax malaria:A rare case report

    Institute of Scientific and Technical Information of China (English)

    Hari Krishan Aggarwal; Deepak Jain; Vipin Kaverappa; Promil Jain; Ashwani Kumar; Sachin Yadav

    2013-01-01

    In tropical countries like India, malaria has been one of the most common parasitic illnesses leading to frequent hospitalization and causing major economic burden among the masses. Although Plasmodium vivax infection is considered to be benign, in contrast to Plasmodium falciparum infection which is notorious for its severe splenic complications can occur frequently. Splenomegaly tends not to receive special attention, as it is not usually accompanied by any symptoms and can be gradually resolved via standard antimalarial therapy. Splenic infarction, although rarely attributable to malaria in an endemic region with high parasitemia, can be a rare presentation of this disease entity.

  12. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  13. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Antonio-Nkondjio Christophe

    2012-10-01

    Full Text Available Abstract Background Rapid demographic growth in Douala city, Cameroon, has resulted in profound ecological and environmental changes. Although demographic changes can affect anopheline mosquito breeding sites, there is a lack of understanding about the epidemiological impact that such changes might have on vector ecology and malaria transmission. Methods A 12-month entomological study was conducted in a highly populated district of Douala called Ndogpassi. Adult mosquitoes were collected using two methods: 1 human landing catches (HLC; and 2 Centers for Disease Control and Prevention (CDC light traps; these methods were used twice monthly from January to December 2011. Mosquito genus and species were identified with morphological and molecular diagnostic tools. The sampling efficiency of the CDC light trap and HLC were compared. Anopheles gambiae infection with Plasmodium falciparum was detected using ELISA. Susceptibility to DDT, permethrin, and deltamethrin insecticides were also determined. Results A total of 6923 mosquitoes were collected by HLC (5198 and CDC light traps (1725. There was no equivalence in the sampling efficiency between light traps and human landing catches (P > 0.01. With 51% of the total, Culex was the most common, followed by Anopheles (26.14%, Mansonia (22.7% and Aedes (0.1%. An. gambiae ss (M form comprised ~98% of the total anophelines collected. An. gambiae had a biting rate of 0.25 to 49.25 bites per human per night, and was the only species found to be infected with P. falciparum. A P. falciparum infection rate of 0.5% was calculated (based on enzyme-linked immunosorbent assays using the circumsporozoite surface protein. The entomological inoculation rate was estimated at 31 infective bites per annum. Insecticide susceptibility tests on An. gambiae females revealed a mortality rate of 33%, 76% and 98% for DDT, permethrin and deltamethrin, respectively. The West African kdr allele (L1014F was detected in 38 of

  14. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum

    DEFF Research Database (Denmark)

    Kharazmi, A; Høiby, N; Theander, T G

    1987-01-01

    presented with severe form of malaria, progressing rapidly into coma and died within a short time. P. aeruginosa was isolated from his blood taken on the day of admission. His neutrophils were all occupied by P. falciparum. The unusual combination of severe falciparum malaria infection and P. aeruginosa......This report describes a Danish patient with severe Plasmodium falciparum infection and Pseudomonas aeruginosa septicaemia. The patient had been sailing along the coast of West Africa for ten years without taking any antimalaria prophylaxis and without any apparent previous history of malaria. He...

  15. Mosquito age and avian malaria infection.

    Science.gov (United States)

    Pigeault, Romain; Nicot, Antoine; Gandon, Sylvain; Rivero, Ana

    2015-09-30

    The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a

  16. Plasmodium falciparum malaria associated with ABO blood ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria associated with ABO blood phenotypes and ... out to investigate the relationship between blood group types and P. falciparum ... of long lasting treated (LLT) mosquito bed nets and the prevalence of infection.

  17. Misclassification of Plasmodium infections by conventional microscopy and the impact of remedial training on the proficiency of laboratory technicians in species identification.

    Science.gov (United States)

    Obare, Peter; Ogutu, Bernhards; Adams, Mohammed; Odera, James Sande; Lilley, Ken; Dosoo, David; Adhiambo, Christine; Owusu-Agyei, Seth; Binka, Fred; Wanja, Elizabeth; Johnson, Jacob

    2013-03-27

    Malaria diagnosis is largely dependent on the demonstration of parasites in stained blood films by conventional microscopy. Accurate identification of the infecting Plasmodium species relies on detailed examination of parasite morphological characteristics, such as size, shape, pigment granules, besides the size and shape of the parasitized red blood cells and presence of cell inclusions. This work explores misclassifications of four Plasmodium species by conventional microscopy relative to the proficiency of microscopists and morphological characteristics of the parasites on Giemsa-stained blood films. Ten-day malaria microscopy remedial courses on parasite detection, species identification and parasite counting were conducted for public health and research laboratory personnel. Proficiency in species identification was assessed at the start (pre) and the end (post) of each course using known blood films of Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections with densities ranging from 1,000 to 30,000 parasites/μL. Outcomes were categorized as false negative, positive without speciation, P. falciparum, P. malariae, P. ovale, P. vivax and mixed infections. Reported findings are based on 1,878 P. falciparum, 483 P. malariae, 581 P. ovale and 438 P. vivax cumulative results collated from 2008 to 2010 remedial courses. Pre-training false negative and positive misclassifications without speciation were significantly lower on P. falciparum infections compared to non-falciparum infections (p Plasmodium species. Remedial training might improve reliability of conventional light microscopy with respect to differentiation of Plasmodium infections.

  18. High proportion of subclinical Plasmodium falciparum infections in an area of seasonal and unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Jakobsen, P H;

    1995-01-01

    In the present longitudinal study, a cohort (n = 98) of children and adults 5-30 years of age living in an area of highly seasonal and unstable malaria transmission were followed for malaria morbidity during several successive transmission seasons. Based on morbidity surveillance during 1993...

  19. Parasite-specific lactate dehydrogenase for the diagnosis of Plasmodium falciparum infection in an endemic area in west Uganda.

    Science.gov (United States)

    Jelinek, T; Kilian, A H; Henk, M; Mughusu, E B; Nothdurft, H D; Löscher, T; Knobloch, J; Van Sonnenburg, F

    1996-04-01

    The measurement of parasite lactate dehydrogenase (pLDH) has been presented as an easy and rapid method for the diagnosis of malaria in humans. In order to evaluate the sensitivity and specificity of such a test we examined blood samples from 429 Ugandan patients. While pLDH activity was significantly linked to parasitaemia, sensitivity and specificity were found to be rather low at 58.8 and 62.2% respectively. The positive and negative predictive values failed to meet necessary standards. We conclude that the methods of measurement of pLDH activity in malaria infection, although potentially useful for the fast diagnosis of malaria, need to be improved to be of true value in endemic areas.

  20. Associations between the IL-4 -590 T allele and Plasmodium falciparum infection prevalence in asymptomatic Fulani of Mali.

    Science.gov (United States)

    Vafa, Manijeh; Maiga, Bakary; Berzins, Klavs; Hayano, Masashi; Bereczky, Sandor; Dolo, Amagana; Daou, Modibo; Arama, Charles; Kouriba, Bourema; Färnert, Anna; Doumbo, Ogobara K; Troye-Blomberg, Marita

    2007-07-01

    In this study, we compared the genotype and allele frequencies of the IL-10 -1087 A/G and IL-4 -590 C/T single nucleotide polymorphisms in asymptomatic subjects of two sympatric ethnic tribes differing in susceptibility to malaria, the Fulani and the Dogon in Mali. The genotype data was correlated with ethnicity and malariometric indexes. A statistically significant inter-ethnic difference in allele and genotype frequency for both loci was noted (PDogon. Inter-ethnic differences in spleen rates, higher in the Fulani than the Dogon, were seen between T carriers (TT and CT) of both groups (PDogon. No associations between IL-10 genotypes and studied malariometric indexes were observed in any of the two communities.

  1. Subclinical Plasmodium falciparum infections act as year-round reservoir for malaria in the hypoendemic Chittagong Hill districts of Bangladesh

    Directory of Open Access Journals (Sweden)

    Kerry L. Shannon

    2016-08-01

    Conclusions: Hypoendemic subclinical malaria infections were associated with a number of household and demographic factors, similar to symptomatic cases. Unlike clinical symptomatic malaria, which is highly seasonal, these actively detected infections were present year-round, made up the vast majority of infections at any given time, and likely acted as reservoirs for continued transmission.

  2. Nine-year longitudinal study of antibodies to variant antigens on the surface of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D;

    1999-01-01

    PfEMP1 is an antigenically variable molecule which mediates the adhesion of parasitized erythrocytes to a variety of cell types and which is believed to constitute an important target for naturally acquired protective immune responses in malaria. For 9 years we have monitored individuals living...... in an area of low-intensity, seasonal, and unstable malaria transmission in eastern Sudan, and we have used this database to study the acquisition, specificity, and duration of the antibody response to variant parasitized erythrocyte surface antigens. Both the levels and the spectrum of reactivity...... of these antibodies varied considerably among individuals, ranging from low levels of antibodies recognizing only few parasitized erythrocyte surface antigens to high levels of broad-specificity antibodies. In general, episodes of clinical malaria were associated with increases in the levels of parasitized...

  3. Tracing the origins and signatures of selection of antifolate resistance in island populations of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Pinto João

    2010-06-01

    Full Text Available Abstract Background Resistance of the malaria parasite Plasmodium falciparum to sulfadoxine-pyrimethamine (SP has evolved worldwide. In the archipelago of São Tomé and Principe (STP, West Africa, although SP resistance is highly prevalent the drug is still in use in particular circumstances. To address the evolutionary origins of SP resistance in these islands, we genotyped point mutations at P. falciparum dhfr and dhps genes and analysed microsatellites flanking those genes. Methods Blood samples were collected in July and December 2004 in three localities of São Tomé Island and one in Principe Island. Species-specific nested-PCR was used to identify P. falciparum infected samples. Subsequently, SNPs at the dhfr and dhps genes were identified through PCR-RFLP. Isolates were also analysed for three microsatellite loci flanking the dhfr gene, three loci flanking dhps and four loci located at putative neutral genomic regions. Results An increase of resistance-associated mutations at dhfr and dhps was observed, in particular for the dhfr/dhps quintuple mutant, associated with clinical SP failure. Analysis of flanking microsatellites suggests multiple independent introductions for dhfr and dhps mutant haplotypes, possibly from West Africa. A reduced genetic diversity and increased differentiation at flanking microsatellites when compared to neutral loci is consistent with a selective sweep for resistant alleles at both loci. Conclusions This study provides additional evidence for the crucial role of gene flow and drug selective pressures in the rapid spread of SP resistance in P. falciparum populations, from only a few mutation events giving rise to resistance-associated mutants. It also highlights the importance of human migration in the spread of drug resistant malaria parasites, as the distance between the islands and mainland is not consistent with mosquito-mediated parasite dispersal.

  4. 荧光定量PCR用于按蚊体内疟原虫子孢子检测的研究%Detection of Plasmodium sporozoites in mosquitoes by using fluorescent quantitative PCR

    Institute of Scientific and Technical Information of China (English)

    刘耀宝; 高琪; 周华云; 汪圣强; 李菊林; 朱韩武; 朱国鼎; 顾亚萍; 王伟明; 曹俊

    2012-01-01

    目的 建立一种用于按蚊体内疟原虫子孢子定量检测和虫种鉴别的荧光定量PCR方法.方法 采用针对4种人体疟原虫18S rRNA基因属特异性保守区的1对引物,以疟原虫18S rRNA基因重组质粒与按蚊DNA的混合物为模板,进行反应体系和反应条件优化,验证方法的特异性,并通过熔解曲线分析进行虫种鉴别.应用阴性按蚊DNA稀释的间日疟原虫18S rRNA基因重组质粒为模板制作标准曲线,并分别以质粒DNA和实验室子孢子感染阳性的按蚊DNA为模板分析建立的荧光定量PCR方法的敏感性.在反应体系中加入不同部位、不同用量按蚊DNA,以探讨按蚊DNA对检测效果的影响.结果 该方法对按蚊、人血DNA均无扩增,对4种疟原虫DNA均有特异性扩增且扩增产物的熔解温度(Tm)易于区分,三日疟原虫、恶性疟原虫、卵形疟原虫和间日疟原虫的Tm值分别为71.0、72.7、73.9℃和75.9℃.标准曲线中循环阈值(Ct值)与模板浓度具有良好的相关性(相关系数r=-0.99).最低可以检出含50拷贝的质粒DNA或32倍稀释的子孢子阳性按蚊DNA样本.按蚊DNA对荧光定量PCR反应具有抑制作用.荧光定量PCR的Ct值在实验内和实验间均具有良好的重现性.结论 新建立的SYBR Green Ⅰ染料荧光定量PCR方法具有较高的敏感性和特异性,可用于按蚊体内疟原虫子孢子的检测,并可同时对4种人体疟原虫进行鉴别.%Objective To establish a fluorescent quantitative PCR (FQ-PCR) method for quantitative detection and species identification of Plasmodium sporozoites in Anopheles mosquitoes. Methods One pair of human Plasmodium genus-specific primers based on 18S rRNA genes were used and the reaction system and reaction condition of FQ-PCR were optimized by using the mixture of Plasmodium 18S rRNA gene recombinant plasmids and Anopheles DNA as a template. The specificity was verified by using four Plasmodium spp. 18S rRNA gene plasmid DNA as

  5. Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants

    DEFF Research Database (Denmark)

    Roeffen, Will; Theisen, Michael; van de Vegte-Bolmer, Marga

    2015-01-01

    BACKGROUND: Plasmodium falciparum is transmitted from person to person by Anopheles mosquitoes after completing its sexual reproductive cycle within the infected mosquito. An efficacious vaccine holds the potential to interrupt development of the parasite in the mosquito leading to control...

  6. Hemozoin activates the innate immune system and reduces Plasmodium berghei infection in Anopheles gambiae

    OpenAIRE

    Simões, Maria L; Gonçalves, Luzia; Silveira, Henrique

    2015-01-01

    Background Malaria is a worldwide infectious disease caused by Plasmodium parasites and transmitted by female Anopheles mosquitoes. The malaria vector mosquito Anopheles can trigger effective mechanisms to control completion of the Plasmodium lifecycle; the mosquito immune response to the parasite involves several pathways which are not yet well characterized. Plasmodium metabolite hemozoin has emerged as a potent immunostimulator of mammalian tissues. In this study, we aim to investigate the...

  7. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys.

    Science.gov (United States)

    Pollack, S; Rossan, R N; Davidson, D E; Escajadillo, A

    1987-02-01

    Clinical observation has suggested that iron deficiency may be protective in malaria, and we have found that desferrioxamine (DF), an iron-specific chelating agent, inhibited Plasmodium falciparum growth in vitro. It was difficult to be confident that DF would be effective in an intact animal, however, because continuous exposure to DF was required in vitro and, in vivo, DF is rapidly excreted. Also, the in vitro effect of DF was overcome by addition of iron to the culture and in vivo there are potentially high local iron concentrations when iron is absorbed from the diet or released from reticuloendothelial cells. We now show that DF given by constant subcutaneous infusion does suppress parasitemia in P. falciparum-infected Aotus monkeys.

  8. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections

    Directory of Open Access Journals (Sweden)

    Rodrigo Nunes Rodrigues-da-Silva

    2014-04-01

    Full Text Available Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.

  9. Mosquito Control

    Science.gov (United States)

    ... Share Facebook Twitter Google+ Pinterest Contact Us Mosquito Control About Mosquitoes General Information Life Cycle Information from ... Repellent that is Right for You DEET Mosquito Control Methods Success in mosquito control: an integrated approach ...

  10. Human skin emanations in the host-seeking behaviour of the malaria mosquito Anopheles gambiae

    NARCIS (Netherlands)

    Braks, M.A.H.

    1999-01-01

    Malaria is an infectious disease caused by a parasite ( Plasmodium spp.) that is transmitted between human individuals by mosquitoes, belonging to the order of insects, Diptera, family of Culicidae (mosquitoes) and genus of Anopheles (malaria mosquitoes). Mosquitoes feed on humans (and other animals

  11. Plasmodium falciparum parasitaemia and clinical malaria among school children living in a high transmission setting in western Kenya.

    Science.gov (United States)

    Kepha, Stella; Nikolay, Birgit; Nuwaha, Fred; Mwandawiro, Charles S; Nankabirwa, Joaniter; Ndibazza, Juliet; Cano, Jorge; Matoke-Muhia, Damaris; Pullan, Rachel L; Allen, Elizabeth; Halliday, Katherine E; Brooker, Simon J

    2016-03-11

    Malaria among school children is increasingly receiving attention, yet the burden of malaria in this age group is poorly defined. This study presents data on malaria morbidity among school children in Bungoma county, western Kenya. This study investigated the burden and risk factors of Plasmodium falciparum infection, clinical malaria, and anaemia among 2346 school children aged 5-15 years, who were enrolled in an individually randomized trial evaluating the effect of anthelmintic treatment on the risks of malaria. At baseline, children were assessed for anaemia and nutritional status and information on household characteristics was collected. Children were followed-up for 13 months to assess the incidence of clinical malaria by active detection, and P. falciparum infection and density evaluated using repeated cross-sectional surveys over 15 months. On average prevalence of P. falciparum infection was 42% and ranged between 32 and 48% during the five cross-sectional surveys. Plasmodium falciparum prevalence was significantly higher among boys than girls. The overall incidence of clinical malaria was 0.26 episodes per person year (95% confidence interval, 0.24-0.29) and was significantly higher among girls (0.23 versus 0.31, episodes per person years). Both infection prevalence and clinical disease varied by season. In multivariable analysis, P. falciparum infection was associated with being male, lower socioeconomic status and stunting. The risk of clinical malaria was associated with being female. These findings show that the burden of P. falciparum parasitaemia, clinical malaria and anaemia among school children is not insignificant, and suggest that malaria control programmes should be expanded to include this age group.

  12. Engineered anopheles immunity to Plasmodium infection.

    Directory of Open Access Journals (Sweden)

    Yuemei Dong

    2011-12-01

    Full Text Available A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control.

  13. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  14. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Odilon Nouatin

    Full Text Available Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.

  15. Comparison of different PCR protocols for the detection and diagnosis of Plasmodium falciparum.

    Science.gov (United States)

    Oster, N; Abdel-Aziz, I Z; Stich, A; Coulibaly, B; Kouyatè, B; Andrews, K T; McLean, J E; Lanzer, M

    2005-11-01

    An assessment of differing PCR protocols for the diagnosis of Plasmodium falciparum infection was performed on samples from an area of holoendemic malaria transmission in western Burkina Faso. The PCR protocols had generally high sensitivities (>92%) and specificities (>69%), but the negative predictive values (NPV) were moderate and differed widely among the PCR protocols tested. These PCR protocols that amplified either the P. falciparum pfcrt gene or the small subunit ribosomal DNA were the most reliable diagnostic tools. However, the moderate NPV imply that more than one PCR protocol should be used for diagnosis in holoendemic areas.

  16. Overlapping antigenic repertoires of variant antigens expressed on the surface of erythrocytes infected by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D;

    1999-01-01

    Antibodies against variable antigens expressed on the surface of Plasmodium falciparum-infected erythrocytes are believed to be important for protection against malaria. A target for these antibodies is the P. falciparum erythrocyte membrane protein 1, PfEMP1, which is encoded by around 50 var...... genes and undergoes clonal variation. Using agglutination and mixed agglutination tests and flow cytometry to analyse the recognition of variant antigens on parasitized erythrocytes by plasma antibodies from individuals living in Daraweesh in eastern Sudan, an area of seasonal and unstable malaria...

  17. Wolbachia increases susceptibility to Plasmodium infection in a natural system.

    Science.gov (United States)

    Zélé, F; Nicot, A; Berthomieu, A; Weill, M; Duron, O; Rivero, A

    2014-03-22

    Current views about the impact of Wolbachia on Plasmodium infections are almost entirely based on data regarding artificially transfected mosquitoes. This work has shown that Wolbachia reduces the intensity of Plasmodium infections in mosquitoes, raising the exciting possibility of using Wolbachia to control or limit the spread of malaria. Whether natural Wolbachia infections have the same parasite-inhibiting properties is not yet clear. Wolbachia-mosquito combinations with a long evolutionary history are, however, key for understanding what may happen with Wolbachia-transfected mosquitoes after several generations of coevolution. We investigate this issue using an entirely natural mosquito-Wolbachia-Plasmodium combination. In contrast to most previous studies, which have been centred on the quantification of the midgut stages of Plasmodium, we obtain a measurement of parasitaemia that relates directly to transmission by following infections to the salivary gland stages. We show that Wolbachia increases the susceptibility of Culex pipiens mosquitoes to Plasmodium relictum, significantly increasing the prevalence of salivary gland stage infections. This effect is independent of the density of Wolbachia in the mosquito. These results suggest that naturally Wolbachia-infected mosquitoes may, in fact, be better vectors of malaria than Wolbachia-free ones.

  18. Mosquito Bites

    Science.gov (United States)

    ... larvae, then pupae, and then they become adult mosquitos. The males live for about a week to ... can live for months. What health problems can mosquito bites cause? Most mosquito bites are harmless, but ...

  19. STUDY ON RELATIVE ABUNDANCE OF Plasmodium SPECIES: A ...

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... Keywords: abundance, plasmodium, relative, thin blood film, malaria control programmes. INTRODUCTION ... When an infected female Anopheles mosquito bites a ... the understanding of the type of infection as well as.

  20. Identification of MMV malaria box inhibitors of plasmodium falciparum early-stage gametocytes using a luciferase-based high-throughput assay.

    Science.gov (United States)

    Lucantoni, Leonardo; Duffy, Sandra; Adjalley, Sophie H; Fidock, David A; Avery, Vicky M

    2013-12-01

    The design of new antimalarial combinations to treat Plasmodium falciparum infections requires drugs that, in addition to resolving disease symptoms caused by asexual blood stage parasites, can also interrupt transmission to the mosquito vector. Gametocytes, which are essential for transmission, develop as sexual blood stage parasites in the human host over 8 to 12 days and are the most accessible developmental stage for transmission-blocking drugs. Considerable effort is currently being devoted to identifying compounds active against mature gametocytes. However, investigations on the drug sensitivity of developing gametocytes, as well as screening methods for identifying inhibitors of early gametocytogenesis, remain scarce. We have developed a luciferase-based high-throughput screening (HTS) assay using tightly synchronous stage I to III gametocytes from a recombinant P. falciparum line expressing green fluorescent protein (GFP)-luciferase. The assay has been used to evaluate the early-stage gametocytocidal activity of the MMV Malaria Box, a collection of 400 compounds with known antimalarial (asexual blood stage) activity. Screening this collection against early-stage (I to III) gametocytes yielded 64 gametocytocidal compounds with 50% inhibitory concentrations (IC50s) below 2.5 μM. This assay is reproducible and suitable for the screening of large compound libraries, with an average percent coefficient of variance (%CV) of ≤5%, an average signal-to-noise ratio (S:N) of >30, and a Z' of ∼0.8. Our findings highlight the need for screening efforts directed specifically against early gametocytogenesis and indicate the importance of experimental verification of early-stage gametocytocidal activity in the development of new antimalarial candidates for combination therapy.

  1. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  2. Effects of mefloquine use on Plasmodium vivax multidrug resistance.

    Science.gov (United States)

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y M; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-10-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non-P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites.

  3. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  4. Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-05-01

    Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.

  5. Mosquitoes as potential bridge vectors of malaria parasites from non-human primates to humans

    NARCIS (Netherlands)

    Verhulst, N.O.; Smallegange, R.C.; Takken, W.

    2012-01-01

    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and

  6. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface...... is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion...... of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly...

  7. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... if high levels of in vivo resistance are reflected at molecular level as well. METHODS: Finger prick blood samples (n=189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum...

  8. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    Science.gov (United States)

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  9. Implication of the mosquito midgut microbiota in the defense against malaria parasites.

    Directory of Open Access Journals (Sweden)

    Yuemei Dong

    2009-05-01

    Full Text Available Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection.

  10. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S D; Hviid, L;

    1993-01-01

    Plasma levels of antibodies against phosphatidylinositol (PI), phosphatidylcholine (PC) and cardiolipin (CL) were measured by enzyme-linked immunosorbent assay (ELISA) in patients from malaria endemic area of Sudan and The Gambia. Some Sudanese adults produced IgM antibodies against all three types...... of phospholipids (PL) during an acute Plasmodium falciparum infection. The anti-PL antibody titre returned to preinfection levels in most of the donors 30 days after the disease episode. IgG titres against PI, PC and CL were low. In Gambian children with malaria, IgM antibody titres against PI and PC were...... significantly higher in those with severe malaria than in those with mild malaria. These results show that a proportion of malaria patients produce anti-PL antibodies during infection and that titres of these antibodies are associated with the severity of disease....

  11. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Directory of Open Access Journals (Sweden)

    Genton Blaise

    2006-12-01

    Full Text Available Abstract Artemisinin-based combination therapies (ACTs are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance.

  12. Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Wang, Christian W; Mwakalinga, Steven B; Sutherland, Colin J

    2010-01-01

    ABSTRACT: BACKGROUND: The Plasmodium falciparum parasite is transmitted in its sexual gametocyte stage from man to mosquito and as asexual sporozoites from mosquito to man. Developing gametocytes sequester preferentially in the bone marrow, but mature stage gametocytes are released...

  13. Plasmodium falciparum liver stage antigen-1 is cross-linked by tissue transglutaminase

    Directory of Open Access Journals (Sweden)

    Doerig Christian

    2011-01-01

    Full Text Available Abstract Background Plasmodium falciparum sporozoites injected by mosquitoes into the blood rapidly enter liver hepatocytes and undergo pre-erythrocytic developmental schizogony forming tens of thousands of merozoites per hepatocyte. Shortly after hepatocyte invasion, the parasite starts to produce Liver Stage Antigen-1 (LSA-1, which accumulates within the parasitophorous vacuole surrounding the mass of developing merozoites. The LSA-1 protein has been described as a flocculent mass, but its role in parasite development has not been determined. Methods Recombinant N-terminal, C-terminal or a construct containing both the N- and C- terminal regions flanking two 17 amino acid residue central repeat sequences (LSA-NRC were subjected to in vitro modification by tissue transglutaminase-2 (TG2 to determine if cross-linking occurred. In addition, tissue sections of P. falciparum-infected human hepatocytes were probed with monoclonal antibodies to the isopeptide ε-(γ-glutamyllysine cross-bridge formed by TG2 enzymatic activity to determine if these antibodies co-localized with antibodies to LSA-1 in the growing liver schizonts. Results This study identified a substrate motif for (TG2 and a putative casein kinase 2 phosphorylation site within the central repeat region of LSA-1. The function of TG2 is the post-translational modification of proteins by the formation of a unique isopeptide ε-(γ-glutamyllysine cross-bridge between glutamine and lysine residues. When recombinant LSA-1 protein was crosslinked in vitro by purified TG2 in a calcium dependent reaction, a flocculent mass of protein was formed that was highly resistant to degradation. The cross-linking was not detectably affected by phosphorylation with plasmodial CK2 in vitro. Monoclonal antibodies specific to the very unique TG2 catalyzed ε- lysine cross-bridge co-localized with antibodies to LSA-1 in infected human hepatocytes providing visual evidence that LSA-1 was cross-linked in vivo

  14. Placental histopathological changes associated with Plasmodium vivax infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Rodrigo M Souza

    Full Text Available Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41, P. vivax exposure (n = 59 or P. falciparum exposure (n = 19. We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045, placental barrier thickness (OR, 25.59, P = 0.021 and mononuclear cells (OR, 4.02, P = 0.046 were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A

  15. Plasmodium falciparum Malaria, Southern Algeria, 2007

    OpenAIRE

    Boubidi, Saïd C; Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria.

  16. Plasmodium falciparum Malaria, Southern Algeria, 2007

    Science.gov (United States)

    Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria. PMID:20113565

  17. Plasmodium falciparum Malaria, Southern Algeria, 2007

    OpenAIRE

    Boubidi, Saïd C; Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria.

  18. In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection.

    Science.gov (United States)

    Hanson, Kirsten K; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N; Mota, Maria M

    2015-01-01

    Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    Science.gov (United States)

    Knöckel, Julia; Molina-Cruz, Alvaro; Fischer, Elizabeth; Muratova, Olga; Haile, Ashley; Barillas-Mury, Carolina; Miller, Louis H

    2013-01-01

    Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.)-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.

  20. Plasmodium Immunomics

    Science.gov (United States)

    Doolan, Denise L.

    2010-01-01

    The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ~ 5,300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritizing antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. PMID:20816843

  1. IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children

    DEFF Research Database (Denmark)

    Alifrangis, M; Lemnge, M M; Moon, R;

    1999-01-01

    -Associated Protein-1 (rRAP-1). The data were related to the prevalence of malarial disease and single P. falciparum or mixed Plasmodium infections. Fever (> or = 37.5 degrees C) in combination with parasite densities > 5000/microliter were used to distinguish between children with asymptomatic malaria infections......A cross-sectional sero-epidemiological study was performed in Magoda, Tanzania, an area where malaria is holoendemic. Blood samples were collected from children (1-4 years) and tested for IgG antibody reactivity against 2 recombinant protein fragments of Plasmodium falciparum Rhoptry...... and those with acute clinical disease. Furthermore, C-reactive protein (CRP) was applied as a surrogate marker of malaria morbidity. The prevalence of Plasmodium infections was 96.0%. Eleven children were defined as clinical malaria cases, all with single P. falciparum infections. The density of P...

  2. Effect of acute Plasmodium falciparum malaria on reactivation and shedding of the eight human herpes viruses.

    Directory of Open Access Journals (Sweden)

    Arnaud Chêne

    Full Text Available Human herpes viruses (HHVs are widely distributed pathogens. In immuno-competent individuals their clinical outcomes are generally benign but in immuno-compromised hosts, primary infection or extensive viral reactivation can lead to critical diseases. Plasmodium falciparum malaria profoundly affects the host immune system. In this retrospective study, we evaluated the direct effect of acute P. falciparum infection on reactivation and shedding of all known human herpes viruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6, HHV-7, HHV-8. We monitored their presence by real time PCR in plasma and saliva of Ugandan children with malaria at the day of admission to the hospital (day-0 and 14 days later (after treatment, or in children with mild infections unrelated to malaria. For each child screened in this study, at least one type of HHV was detected in the saliva. HHV-7 and HHV-6 were detected in more than 70% of the samples and CMV in approximately half. HSV-1, HSV-2, VZV and HHV-8 were detected at lower frequency. During salivary shedding the highest mean viral load was observed for HSV-1 followed by EBV, HHV-7, HHV-6, CMV and HHV-8. After anti-malarial treatment the salivary HSV-1 levels were profoundly diminished or totally cleared. Similarly, four children with malaria had high levels of circulating EBV at day-0, levels that were cleared after anti-malarial treatment confirming the association between P. falciparum infection and EBV reactivation. This study shows that acute P. falciparum infection can contribute to EBV reactivation in the blood and HSV-1 reactivation in the oral cavity. Taken together our results call for further studies investigating the potential clinical implications of HHVs reactivation in children suffering from malaria.

  3. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  4. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from em>P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S;

    2007-01-01

    Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas...... where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A PfEMP...

  5. The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer

    DEFF Research Database (Denmark)

    Wang, Christian W; Hermsen, Cornelus C; Sauerwein, Robert W;

    2009-01-01

    The var genes encode a family of adhesion receptor proteins, Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which profoundly influence malaria pathogenesis. Only a single var gene is transcribed and one PfEMP1 expressed per P.falciparum parasite. Here we present the in vivo...... transcript distribution of var genes in a P. falciparum-infected non-immune individual and show that the initial expression of PfEMP1 is based on a strategy that allows all or most variants of PfEMP1s to be expressed by the parasite population at the onset of the blood stage infection....

  6. Blood meal identification and prevalence of avian malaria parasite in mosquitoes collected at Kushiro wetland, a subarctic zone of Japan.

    Science.gov (United States)

    Ejiri, Hiroko; Sato, Yukita; Kim, Kyeong Soon; Tsuda, Yoshio; Murata, Koichi; Saito, Keisuke; Watanabe, Yukiko; Shimura, Yoshiharu; Yukawa, Masayoshi

    2011-07-01

    In Japan, the prevalence of avian Plasmodium in birds and mosquitoes has been partially examined in the temperate and subtropical zones; however, mosquitoes in the Japanese subarctic zone have not been adequately investigated. In this study, mosquito collections and avian Plasmodium detections from the mosquito samples were carried out to demonstrate the avian Plasmodium transmission between vector mosquitoes and birds inhabiting in Kushiro Wetland, subarctic zone of Japan. A total of 5657 unfed mosquitoes from 18 species and 320 blood-fed mosquitoes from eight species was collected in summer 2008, 2009, and 2010. Three Aedes esoensis that fed on Hokkaido Sika Deer and one unfed Culex pipiens group were found to be positive for avian Plasmodium by polymerase chain reaction. This is the first report of the detection of avian Plasmodium DNA from mosquitoes distributing in the subarctic zone of Japan. The blood meals were successfully identified to captive or wild animals, including seven mammalian species, four bird species, and one amphibian species. These results indicated that infected birds with avian Plasmodium inhabited and direct contacts occurred between the infected birds and mosquitoes in Kushiro Wetland, Hokkaido, Japan.

  7. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    Science.gov (United States)

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  8. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    Science.gov (United States)

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  9. 云南省蚊媒传播性疾病的控制问题%VECTOR OF MOSQUITO BORNE DISEASE CONTROL PROBLEMS IN YUNNAN PROVINCE OF CHINA

    Institute of Scientific and Technical Information of China (English)

    周红宁; 董学书; Chris Curtis

    2005-01-01

    @@ Mosquito-borne diseases in Yunnan, mainly consist of malaria (Plasmodium vivax and Plasmodium falcipurium) [1,2] and Japanese encephalitis (JE).No clinic dengue fever and filariasis patients were reported in Yunnan.But in neighboring region Guangxi, these two diseases occur [3,4].In Yunnan, some Aedes mosquitoes such as Aedes albopitus have been detected carrying dengue virus[5].

  10. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    NARCIS (Netherlands)

    McCarthy, J.S.; Sekuloski, S.; Griffin, P.M.; Elliott, S.; Douglas, N.; Peatey, C.; Rockett, R.; O'Rourke, P.; Marquart, L.; Hermsen, C.C.; Duparc, S.; Möhrle, J.; Trenholme, K.R.; Humberstone, A.J.

    2011-01-01

    BACKGROUND: Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects

  11. Biological and haematological safety profile of oral amodiaquine and chloroquine in healthy volunteers with or without Plasmodium falciparum infection in northeast Tanzania

    DEFF Research Database (Denmark)

    Massaga, J J; Lusingu, J P; Makunde, R

    2008-01-01

    morbidity in infants. Volunteers were stratified according to parasitaemia status and randomly assigned 20 participants each arm to three days treatment with either AQ or chloroquine (CQ). The level of difference of selected haematological and hepatological values pre-and post-trial were marginal and within......-immune healthy adult male volunteers with and without malaria parasites. The objective was to collect data on biological and haematological safety, tolerability, and parasitological efficacy to serve as baseline in the evaluation of the effectiveness of AQ preventive intermittent treatment against malaria......-treated volunteers. The findings indicate that there was no agranulocytosis or hepatic toxicity suggesting that AQ may pose no public health risk in its wide therapeutic dosage uses. Larger studies are needed to exclude rare adverse effects....

  12. Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions?

    NARCIS (Netherlands)

    Bousema, Jan Teun; Churcher, T.S.; Morlais, I.; Dinglasan, R.R.

    2013-01-01

    A recent meta-analysis of mosquito feeding assays to determine the Plasmodium falciparum transmission potential of naturally infected gametocyte carriers highlighted considerable variation in transmission efficiency between assay methodologies and between laboratories. This begs the question as to

  13. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  14. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    Science.gov (United States)

    Breitling, Lutz P; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A; Kremsner, Peter G; Luty, Adrian J F

    2006-10-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.

  15. Pan-Plasmodium band sensitivity for Plasmodium falciparum detection in combination malaria rapid diagnostic tests and implications for clinical management.

    Science.gov (United States)

    Gatton, Michelle L; Rees-Channer, Roxanne R; Glenn, Jeffrey; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; González, Iveth J; Cunningham, Jane

    2015-03-18

    Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.

  16. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010.

    Science.gov (United States)

    Leang, Rithea; Barrette, Amy; Bouth, Denis Mey; Menard, Didier; Abdur, Rashid; Duong, Socheat; Ringwald, Pascal

    2013-02-01

    We describe here the results of antimalarial therapeutic efficacy studies conducted in Cambodia from 2008 to 2010. A total of 15 studies in four sentinel sites were conducted using dihydroartemisinin-piperaquine (DP) for the treatment of Plasmodium falciparum infection and chloroquine (CQ) and DP for the treatment of P. vivax infection. All studies were performed according to the standard World Health Organization protocol for the assessment of antimalarial treatment efficacy. Among the studies of DP for the treatment of P. falciparum, an increase in treatment failure was observed in the western provinces. In 2010, the PCR-corrected treatment failure rates for DP on day 42 were 25% (95% confidence interval [CI] = 10 to 51%) in Pailin and 10.7% (95% CI = 4 to 23%) in Pursat, while the therapeutic efficacy of DP remained high (100%) in Ratanakiri and Preah Vihear provinces, located in northern and eastern Cambodia. For the studies of P. vivax, the day 28 uncorrected treatment failure rate among patients treated with CQ ranged from 4.4 to 17.4%; DP remained 100% effective in all sites. Further study is required to investigate suspected P. falciparum resistance to piperaquine in western Cambodia; the results of in vitro and molecular studies were not found to support the therapeutic efficacy findings. The emergence of artemisinin resistance in this region has likely put additional pressure on piperaquine. Although DP appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed for P. falciparum-infected patients in western Cambodia.

  17. Control of Plasmodium knowlesi malaria

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-10-01

    The most significant and efficient measures against Plasmodium knowlesi outbreaks are efficient anti malaria drug, biological control in form of predatory mosquitoes and culling control strategies. In this paper optimal control theory is applied to a system of ordinary differential equation. It describes the disease transmission and Pontryagin's Maximum Principle is applied for analysis of the control. To this end, three control strategies representing biological control, culling and treatment were incorporated into the disease transmission model. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for disease transmission.

  18. Concurrent infection of Japanese encephalitis and mixed plasmodium infection

    Directory of Open Access Journals (Sweden)

    Girish Chandra Bhatt

    2012-01-01

    Full Text Available Japanese encephalitis (JE and malaria would coexist in the areas where both illnesses are endemic with overlapping clinical pictures, especially in a case of febrile encephalopathy with hepatosplenomegaly. However, there are no published data till date showing concurrent infection of these two agents despite both diseases being coendemic in many areas. We report a case of concurrent infection of JE and mixed plasmodium infection, where the case, initially diagnosed as cerebral malaria did not improve on antimalarials and alternative diagnosis of JEV encephalitis was thought which was confirmed by a serological test. To the best of our knowledge, this is the first case report of concurrent Japanese encephalitis with mixed plasmodium infection. We report a case of 3-year-old male child, who presented with febrile encephalopathy with hepatosplenomegaly. Based on a rapid diagnostic test and peripheral smear examination, a diagnosis of mixed P.Vivax and P.falciparum infection was made and the patient was treated with quinine and doxycycline. However, besides giving antimalarials the patient did not improve and an alternative diagnosis of JE was considered as the patient was from the endemic zone of Japanese encephalitis. Cerebrospinal fluid (CSF of the patient was sent for a virological study which came out to be positive for JE IgM in CSF, which is confirmatory of JE infection. In a patient with febrile encephalopathy with hepatosplenomegaly especially in areas coendemic for JE and malaria, the possibility of mixed infection should be kept in mind.

  19. Detection of persistent Plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment.

    Science.gov (United States)

    Betson, Martha; Sousa-Figueiredo, José C; Atuhaire, Aaron; Arinaitwe, Moses; Adriko, Moses; Mwesigwa, Gerald; Nabonge, Juma; Kabatereine, Narcis B; Sutherland, Colin J; Stothard, J Russell

    2014-12-01

    During a longitudinal study investigating the dynamics of malaria in Ugandan lakeshore communities, a consistently high malaria prevalence was observed in young children despite regular treatment. To explore the short-term performance of artemether-lumefantrine (AL), a pilot investigation into parasite carriage after treatment(s) was conducted in Bukoba village. A total of 163 children (aged 2-7 years) with a positive blood film and rapid antigen test were treated with AL; only 8.7% of these had elevated axillary temperatures. On day 7 and then on day 17, 40 children (26.3%) and 33 (22.3%) were positive by microscopy, respectively. Real-time PCR analysis demonstrated that multi-species Plasmodium infections were common at baseline, with 41.1% of children positive for Plasmodium falciparum/Plasmodium malariae, 9.2% for P. falciparum/ Plasmodium ovale spp. and 8.0% for all three species. Moreover, on day 17, 39.9% of children infected with falciparum malaria at baseline were again positive for the same species, and 9.2% of those infected with P. malariae at baseline were positive for P. malariae. Here, chronic multi-species malaria infections persisted in children after AL treatment(s). Better point-of-care diagnostics for non-falciparum infections are needed, as well as further investigation of AL performance in asymptomatic individuals.

  20. Do mosquitoes transmit the avian malaria-like parasite Haemoproteus? An experimental test of vector competence using mosquito saliva.

    Science.gov (United States)

    Gutiérrez-López, Rafael; Martínez-de la Puente, Josué; Gangoso, Laura; Yan, Jiayue; Soriguer, Ramón C; Figuerola, Jordi

    2016-11-28

    The life-cycle of many vector-borne pathogens includes an asexual replication phase in the vertebrate host and sexual reproduction in the insect vector. However, as only a small array of parasites can successfully develop infective phases inside an insect, few insect species are competent vectors for these pathogens. Molecular approaches have identified the potential insect vectors of blood parasites under natural conditions. However, the effectiveness of this methodology for verifying mosquito competence in the transmission of avian malaria parasites and related haemosporidians is still under debate. This is mainly because positive amplifications of parasite DNA in mosquitoes can be obtained not only from sporozoites, the infective phase of the malaria parasites that migrate to salivary glands, but also from different non-infective parasite forms in the body of the vector. Here, we assessed the vectorial capacity of the common mosquito Culex pipiens in the transmission of two parasite genera. A total of 1,560 mosquitoes were allowed to feed on five house sparrows Passer domesticus naturally infected by Haemoproteus or co-infected by Haemoproteus/Plasmodium. A saliva sample of the mosquitoes that survived after 13 days post-exposure was taken to determine the presence of parasite DNA by PCR. Overall, 31.2% mosquito's head-thorax and 5.8% saliva samples analysed showed positive amplifications for avian malaria parasites. In contrast to Haemoproteus DNA, which was not found in either the body parts or the saliva, Plasmodium DNA was detected in both the head-thorax and the saliva of mosquitoes. Parasites isolated from mosquitoes feeding on the same bird corresponded to the same Plasmodium lineage. Our experiment provides good evidence for the competence of Cx. pipiens in the transmission of Plasmodium but not of Haemoproteus. Molecular analyses of saliva are an effective method for testing the vector competence of mosquitoes and other insects in the transmission of

  1. Fitness of Transgenic Anopheles stephensi Mosquitoes Expressing the SM1 Peptide under the Control of a Vitellogenin Promoter

    OpenAIRE

    Li, Chaoyang; Marrelli, Mauro T.; Yan, Guiyun; Jacobs-Lorena, Marcelo

    2008-01-01

    Three transgenic Anopheles stephensi lines were established that strongly inhibit transmission of the mouse malaria parasite Plasmodium berghei. Fitness of the transgenic mosquitoes was assessed based on life table analysis and competition experiments between transgenic and wild-type mosquitoes. Life table analysis indicated low fitness load for the 2 single-insertion transgenic mosquito lines VD35 and VD26 and no load for the double-insertion transgenic mosquito line VD9. However, in cage ex...

  2. Antibody response dynamics to the Plasmodium falciparum conserved vaccine candidate antigen, merozoite surface protein-1 C-terminal 19kD (MSP1-19kD, in Peruvians exposed to hypoendemic malaria transmission

    Directory of Open Access Journals (Sweden)

    Gamboa Dionicia

    2008-09-01

    Full Text Available Abstract Background In high-transmission areas, developing immunity to symptomatic Plasmodium falciparum infections requires 2–10 years of uninterrupted exposure. Delayed malaria-immunity has been attributed to difficult-to-develop and then short-lived antibody responses. Methods In a study area with P. falciparum infections/person/year, antibody responses to the MSP1-19kD antigen were evaluated and associations with P. falciparum infections in children and adults. In months surrounding and during the malaria seasons of 2003–2004, 1,772 participants received ≥6 active visits in one study-year. Community-wide surveys were conducted at the beginning and end of each malaria season, and weekly active visits were completed for randomly-selected individuals each month. There were 79 P. falciparum infections with serum samples collected during and approximately one month before and after infection. Anti-MSP1-19kD IgG levels were measured by ELISA. Results The infection prevalence during February-July was similar in children (0.02–0.12 infections/person/month and adults (0.03–0.14 infections/person/month and was negligible in the four-month dry season. In children and adults, the seroprevalence was maintained in the beginning (children = 28.9%, adults = 61.8% versus ending malaria-season community survey (children = 26.7%, adults = 64.6%. Despite the four-month non-transmission season, the IgG levels in Plasmodium-negative adults were similar to P. falciparum-positive adults. Although children frequently responded upon infection, the transition from a negative/low level before infection to a high level during/after infection was slower in children. Adults and children IgG-positive before infection had reduced symptoms and parasite density. Conclusion Individuals in low transmission areas can rapidly develop and maintain αMSP1-19kD IgG responses for >4 months, unlike responses reported in high transmission study areas. A greater immune

  3. Laminin and the malaria parasite's journey through the mosquito midgut.

    Science.gov (United States)

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  4. Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Charles Arama

    Full Text Available The Fulani ethnic group from West Africa is relatively better protected against Plasmodium falciparum malaria as compared to other sympatric ethnic groups, such as the Dogon. However, the mechanisms behind this lower susceptibility to malaria are largely unknown, particularly those concerning innate immunity. Antigen-presenting cells (APCs, and in particular dendritic cells (DCs are important components of the innate and adaptive immune systems. Therefore, in this study we investigated whether APCs obtained from Fulani and Dogon children exhibited differences in terms of activation status and toll-like receptor (TLR responses during malaria infection. Lower frequency and increased activation was observed in circulating plasmacytoid DCs and BDCA-3+ myeloid DCs of infected Fulani as compared to their uninfected counterparts. Conversely, a higher frequency and reduced activation was observed in the same DC subsets obtained from peripheral blood of P. falciparum-infected Dogon children as compared to their uninfected peers. Moreover, infected individuals of both ethnic groups exhibited higher percentages of both classical and inflammatory monocytes that were less activated as compared to their non-infected counterparts. In line with APC impairment during malaria infection, TLR4, TLR7 and TLR9 responses were strongly inhibited by P. falciparum infection in Dogon children, while no such TLR inhibition was observed in the Fulani children. Strikingly, the TLR-induced IFN-γ release was completely abolished in the Dogon undergoing infection while no difference was seen within infected and non-infected Fulani. Thus, P. falciparum infection is associated with altered activation status of important APC subsets and strongly inhibited TLR responses in peripheral blood of Dogon children. In contrast, P. falciparum induces DC activation and does not affect the innate response to specific TLR ligands in Fulani children. These findings suggest that DCs and TLR

  5. MAD 20 alleles of merozoite surface protein-1 (msp-1) are associated with severe Plasmodium falciparum malaria in Pakistan.

    Science.gov (United States)

    Ghanchi, Najia Karim; Hasan, Zahra; Islam, Muniba; Beg, Mohammad Asim

    2015-04-01

    Various factors determine the outcome of Plasmodium falciparum infection such as parasite load, sequestration, adhesion molecules, and immune mediators. P. falciparum merozoite surface protein-1 (msp-1) and msp-2 genotypes were also found associated with severe disease. We investigated the association between msp-1 and msp-2 genotypes in patients with uncomplicated malaria (UM) and severe malaria (SM). Twenty-two malaria patients with microscopy-confirmed P. falciparum infection and eight healthy endemic controls were selected for analysis. Nested polymerase chain reaction (PCR) was used to identify P. falciparum genotypes. The plasma concentration of cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)] and chemokines [chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL10] were evaluated using enzyme-linked immunosorbent assay (ELISA). TNF-α levels were significantly higher in both UM (389 pg/mL, p = 0.020) and SM (771 pg/mL, p = 0.004) compared with healthy controls, while they were greater in SM (p = 0.012) as compared to UM. CXCL9 levels were significantly raised in SM as compared to UM and negative controls (NCs). CXCL10 levels were raised in UM (550 pg/mL, p = 0.001) and SM (1480 pg/mL, p = 0.01) as compared with NCs. Increased levels of IL-6 were found in patients carrying the FC27 allelic type of msp-2. A higher prevalence of MAD 20 and K1 msp-1 alleles was observed in the SM group compared to UM. Overall, a greater prevalence of MAD 20 alleles and increased serum TNF-α and CXCL9 levels were associated with severe outcome in malaria. Understanding the diversity of malaria genotypes is important for predicting disease-related outcomes of P. falciparum infection in endemic areas. Copyright © 2014. Published by Elsevier B.V.

  6. Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria.

    Science.gov (United States)

    Arama, Charles; Giusti, Pablo; Boström, Stéphanie; Dara, Victor; Traore, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Varani, Stefania; Troye-Blomberg, Marita

    2011-03-31

    The Fulani ethnic group from West Africa is relatively better protected against Plasmodium falciparum malaria as compared to other sympatric ethnic groups, such as the Dogon. However, the mechanisms behind this lower susceptibility to malaria are largely unknown, particularly those concerning innate immunity. Antigen-presenting cells (APCs), and in particular dendritic cells (DCs) are important components of the innate and adaptive immune systems. Therefore, in this study we investigated whether APCs obtained from Fulani and Dogon children exhibited differences in terms of activation status and toll-like receptor (TLR) responses during malaria infection. Lower frequency and increased activation was observed in circulating plasmacytoid DCs and BDCA-3+ myeloid DCs of infected Fulani as compared to their uninfected counterparts. Conversely, a higher frequency and reduced activation was observed in the same DC subsets obtained from peripheral blood of P. falciparum-infected Dogon children as compared to their uninfected peers. Moreover, infected individuals of both ethnic groups exhibited higher percentages of both classical and inflammatory monocytes that were less activated as compared to their non-infected counterparts. In line with APC impairment during malaria infection, TLR4, TLR7 and TLR9 responses were strongly inhibited by P. falciparum infection in Dogon children, while no such TLR inhibition was observed in the Fulani children. Strikingly, the TLR-induced IFN-γ release was completely abolished in the Dogon undergoing infection while no difference was seen within infected and non-infected Fulani. Thus, P. falciparum infection is associated with altered activation status of important APC subsets and strongly inhibited TLR responses in peripheral blood of Dogon children. In contrast, P. falciparum induces DC activation and does not affect the innate response to specific TLR ligands in Fulani children. These findings suggest that DCs and TLR signalling may be

  7. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    Science.gov (United States)

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. PMID:21317311

  8. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    Science.gov (United States)

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  9. Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum.

    Science.gov (United States)

    Herdiana, Herdiana; Cotter, Chris; Coutrier, Farah N; Zarlinda, Iska; Zelman, Brittany W; Tirta, Yusrifar Kharisma; Greenhouse, Bryan; Gosling, Roly D; Baker, Peter; Whittaker, Maxine; Hsiang, Michelle S

    2016-09-13

    As malaria transmission declines, it becomes more geographically focused and more likely due to asymptomatic and non-falciparum infections. To inform malaria elimination planning in the context of this changing epidemiology, local assessments on the risk factors for malaria infection are necessary, yet challenging due to the low number of malaria cases. A population-based, cross-sectional study was performed using passive and active surveillance data collected in Aceh Besar District, Indonesia from 2014 to 2015. Malaria infection was defined as symptomatic polymerase chain reaction (PCR)-confirmed infection in index cases reported from health facilities, and asymptomatic or symptomatic PCR-confirmed infection identified in reactive case detection (RACD). Potential risk factors for any infection, species-specific infection, or secondary-case detection in RACD were assessed through questionnaires and evaluated for associations. Nineteen Plasmodium knowlesi, 12 Plasmodium vivax and six Plasmodium falciparum cases were identified passively, and 1495 community members screened in RACD, of which six secondary cases were detected (one P. knowlesi, three P. vivax, and two P. falciparum, with four being asymptomatic). Compared to non-infected subjects screened in RACD, cases identified through passive or active surveillance were more likely to be male (AOR 12.5, 95 % CI 3.0-52.1), adult (AOR 14.0, 95 % CI 2.2-89.6 for age 16-45 years compared to malaria infection in index and RACD identified cases was associated with forest exposure, particularly overnights in the forest for work. In low-transmission settings, utilization of data available through routine passive and active surveillance can support efforts to target individuals at high risk.

  10. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  11. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.;

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human...... endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full......-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support...

  12. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum.

    Science.gov (United States)

    Clark, Martha A; Goheen, Morgan M; Fulford, Anthony; Prentice, Andrew M; Elnagheeb, Marwa A; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M; Kasthuri, Raj S; Cerami, Carla

    2014-07-25

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria.

  13. How is childhood development of immunity to Plasmodium falciparum enhanced by certain antimalarial interventions?

    Directory of Open Access Journals (Sweden)

    Schellenberg David

    2007-12-01

    Full Text Available Abstract The development of acquired protective immunity to Plasmodium falciparum infection in young African children is considered in the context of three current strategies for malaria prevention: insecticide-impregnated bed nets or curtains, anti-sporozoite vaccines and intermittent preventive therapy. Evidence is presented that each of these measures may permit attenuated P. falciparum blood-stage infections, which do not cause clinical malaria but can act as an effective blood-stage "vaccine". It is proposed that the extended serum half-life, and rarely considered liver-stage prophylaxis provided by the anti-folate combination sulphadoxine-pyrimethamine frequently lead to such attenuated infections in high transmission areas, and thus contribute to the sustained protection from malaria observed among children receiving the combination as intermittent preventative therapy or for parasite clearance in vaccine trials.

  14. Plasmodium chabaudi-Infected Erythrocytes Adhere to CD36 and Bind to Microvascular Endothelial Cells in an Organ-Specific Way

    Science.gov (United States)

    Mota, Maria M.; Jarra, William; Hirst, Elizabeth; Patnaik, Pradeep K.; Holder, Anthony A.

    2000-01-01

    Adherence of erythrocytes infected with Plasmodium falciparum to microvascular endothelial cells (sequestration) is considered to play an important role in parasite virulence and pathogenesis. However, the real importance of sequestration for infection and disease has never been fully assessed. The absence of an appropriate in vivo model for sequestration has been a major barrier. We have examined the rodent malaria parasite Plasmodium chabaudi chabaudi AS in mice as a potential model. Erythrocytes infected with this parasite adhere in vitro to purified CD36, a critical endothelium receptor for binding P. falciparum-infected erythrocytes. P. c. chabaudi-infected erythrocytes adhere in vitro to endothelial cells in a gamma interferon-dependent manner, suggesting the involvement of additional adhesion molecules in the binding process, as is also the case with P. falciparum-infected cells. Furthermore, plasma or sera from infected and hyperimmune mice, respectively, have the ability to block binding of infected erythrocytes to endothelial cells. In vivo, erythrocytes containing mature P. c. chabaudi parasites are sequestered from the peripheral circulation. Sequestration is organ specific, occurring primarily in the liver, although intimate contact between infected erythrocytes and endothelial cells is also observed in the spleen and brain. The results are discussed in the context of the use of this model to study (i) the relationship between endothelial cell activation and the level of sequestration and (ii) the primary function of sequestration in malaria infection. PMID:10858230

  15. Culex nigripalpus: a natural vector of wild turkey malaria (Plasmodium hermani) in Florida.

    Science.gov (United States)

    Forrester, D J; Nayar, J K; Foster, G W

    1980-07-01

    Durking 1977 and 1978, more than 21,000 female mosquitoes of 15 species were live-trapped in south Florida where high numbers of wild turkeys (Meleagris gallopavo) are known to harbor malarial infections. By inoculation of mosquito extracts into uninfected domestic poults, the presence of sporozoites of Plasmodium hermani was demonstrated in Culex nigrapalpus. This mosquito, previously shown to be a competent experimental vector, is believed to be the primary natural vector of wild turkey malaria in Florida.

  16. Wolbachia-a foe for mosquitoes

    Directory of Open Access Journals (Sweden)

    Nadipinayakanahalli Munikrishnappa Guruprasad

    2014-02-01

    Full Text Available Mosquitoes act as vectors for a wide range of viral and parasitic infectious diseases such as malaria, dengue, Chickungunya, lymphatic filariasis, Japanese encephalitis and West Nile virus in humans as well as in animals. Although a wide range of insecticides are used to control mosquitoes, it has only resulted in development of resistance to such insecticides. The evolution of insecticide resistance and lack of vaccines for many mosquito-borne diseases have made these arthropods highly harmful vectors. Recently, a novel approach to control mosquitoes by transinfection of life shortening maternally transmitted endo-symbiont Wolbachia wMelPop strain from fruitfly Drosophila into mosquito population has been developed by researchers. The wMelPop strain up-regulated the immune gene expression in mosquitoes thereby reducing the dengue and Chickungunya viral replication in Aedes aegypti, and also it significantly reduced the Plasmodium level in Anopheles gambiae. Here, we discuss the strategy of using Wolbachia in control of vector-borne diseases of mosquitoes.

  17. Coma associated with microscopy-diagnosed Plasmodium vivax: a prospective study in Papua, Indonesia.

    Directory of Open Access Journals (Sweden)

    Daniel A Lampah

    2011-06-01

    Full Text Available BACKGROUND: Coma complicates Plasmodium falciparum infection but is uncommonly associated with P. vivax. Most series of vivax coma have been retrospective and have not utilized molecular methods to exclude mixed infections with P. falciparum. METHODS: We prospectively enrolled patients hospitalized in Timika, Indonesia, with a Glasgow Coma Score (GCS ≤10 and P. vivax monoinfection on initial microscopy over a four year period. Hematological, biochemical, serological, radiological and cerebrospinal fluid (CSF examinations were performed to identify other causes of coma. Repeat microscopy, antigen detection and polymerase chain reaction (PCR were performed to exclude infections with other Plasmodium species. RESULTS: Of 24 patients fulfilling enrolment criteria, 5 had clear evidence for other non-malarial etiologies. PCR demonstrated 10 mixed infections and 3 P. falciparum monoinfections. 6 (25% patients had vivax monoinfection and no apparent alternative cause, with a median GCS of 9 (range 8-10 and a median coma duration of 42 (range 36-48 hours. CSF leukocyte counts were <10/ul (n=3; 2 of the 3 patients without CSF examination recovered with antimalarial therapy alone. One patient had a tremor on discharge consistent with a post-malarial neurological syndrome. No patient had other organ dysfunction. The only death was associated with pure P. falciparum infection by PCR. Vivax monoinfection-associated risk of coma was estimated at 1 in 29,486 clinical vivax infections with no deaths. In comparison, the risk of falciparum-associated coma was estimated at 1 in 1,276 clinical infections with an 18.5% mortality rate. CONCLUSIONS: P. vivax-associated coma is rare, occurring 23 times less frequently than that seen with falciparum malaria, and is associated with a high proportion of non-malarial causes and mixed infections using PCR. The pathogenesis of coma associated with vivax malaria, particularly the role of comorbidities, is uncertain and

  18. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi

    National Research Council Canada - National Science Library

    Drexler, Anna L; Pietri, Jose E; Pakpour, Nazzy; Hauck, Eric; Wang, Bo; Glennon, Elizabeth K K; Georgis, Martha; Riehle, Michael A; Luckhart, Shirley

    2014-01-01

    ...) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM...

  19. A rapid and scalable density gradient purification method for Plasmodium sporozoites

    Directory of Open Access Journals (Sweden)

    Kennedy Mark

    2012-12-01

    Full Text Available Abstract Background Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. Methods Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. Results This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax and rodent (Plasmodium yoelii infective species with excellent recovery rates. Conclusions This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.

  20. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times.

    Science.gov (United States)

    Okoth, Sheila Akinyi; Chenet, Stella M; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes.

  1. Epidemiology of Plasmodium infections in Flores Island, Indonesia using real-time PCR.

    Science.gov (United States)

    Kaisar, Maria M M; Supali, Taniawati; Wiria, Aprilianto E; Hamid, Firdaus; Wammes, Linda J; Sartono, Erliyani; Luty, Adrian J F; Brienen, Eric A T; Yazdanbakhsh, Maria; van Lieshout, Lisette; Verweij, Jaco J

    2013-05-24

    DNA-based diagnostic methods have been shown to be highly sensitive and specific for the detection of malaria. An 18S-rRNA-based, real-time polymerase chain reaction (PCR) was used to determine the prevalence and intensity of Plasmodium infections on Flores Island, Indonesia. Microscopy and real-time multiplex PCR for the detection of Plasmodium species was performed on blood samples collected in a population-based study in Nangapanda Flores Island, Indonesia. A total 1,509 blood samples were analysed. Real-time PCR revealed prevalence for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae to be 14.5%, 13.2%, and 1.9% respectively. Sub-microscopic parasitaemia were found in more than 80% of all positive cases. The prevalence of P. falciparum and P. vivax was significantly higher in subjects younger than 20 years (p ≤ 0.01). In the present study, among non-symptomatic healthy individuals, anaemia was strongly correlated with the prevalence and load of P. falciparum infections (p ≤ 0.01; p = 0.02) and with the load of P. vivax infections (p = 0.01) as detected with real-time PCR. Subjects with AB blood group tend to have a higher risk of being infected with P. falciparum and P. vivax when compared to other blood groups. The present study has shown that real-time PCR provides more insight in the epidemiology of Plasmodium infections and can be used as a monitoring tool in the battle against malaria. The unsurpassed sensitivity of real-time PCR reveals that sub microscopic infections are common in this area, which are likely to play an important role in transmission and control. Trials number ISRCTN83830814.

  2. Multiplicity of Infection and Disease Severity in Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    M Andreína Pacheco

    2016-01-01

    Full Text Available Multiplicity of infection (MOI refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared.As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7% than P. falciparum (14.8%. Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections.The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal

  3. Risk of drug resistance in Plasmodium falciparum malaria therapy-a systematic review and meta-analysis.

    Science.gov (United States)

    Zhou, Li-Juan; Xia, Jing; Wei, Hai-Xia; Liu, Xiao-Jun; Peng, Hong-Juan

    2017-02-01

    Plasmodium falciparum is responsible for the vast majority of the morbidity and mortality associated with malaria infection globally. Although a number of studies have reported the emergence of drug resistance in different therapies for P. falciparum infection, the degree of the drug resistance in different antimalarials is still unclear. This research investigated the risk of drug resistance in the therapies with different medications based on meta-analyses. Relevant original randomized control trials (RCTs) were searched in all available electronic databases. Pooled relative risks (RRs) with 95% confidence intervals (95% CIs) were used to evaluate the risk of drug resistance resulting from different treatments. Seventy-eight studies were included in the meta-analysis to compare drug resistance in the treatment of P. falciparum infections and yielded the following results: chloroquine (CQ) > sulfadoxine-pyrimethamine (SP) (RR = 3.67, p  artemether + lumefantrine (AL) (RR = 2.94, p  artemisinin-based combination therapies (ACTs) (RR = 1.93, p < 0.001); no significant difference was found in amodiaquine (AQ) vs. SP, AS + AQ vs. AS + SP, AS + AQ vs. AL, or AS + MQ vs. AL. These results presented a global view for the current status of antimalarial drug resistance and provided a guidance for choice of antimalarials for efficient treatment and prolonging the life span of the current effective antimalarial drugs.

  4. [Falciform anemia and Plasmodium falciparum malaria: a threat to flap survival?].

    Science.gov (United States)

    Mariéthoz, S; Pittet, B; Loutan, L; Humbert, J; Montandon, D

    1999-02-01

    Plasmodium falciparum malaria, a parasitic disease, and sickle cell anemia, a hereditary disease, are two diseases affecting erythrocyte cycle, occurring with a high prevalence in tropical Africa. They may induce microthrombosis inducing vaso-occlusion, organ dysfunction and flap necrosis. During the acute phase of Plasmodium falciparum malaria, destruction of parasitized and healthy erythrocytes, release of parasite and erythrocyte material into the circulation, and secondary host reaction occur. Plasmodium falciparum infected erythrocytes also sequester in the microcirculation of vital organs and may interfere with microcirculatory flow in the flap during the postoperative period. The lower legs of homozygous sickle cell anemia patients are areas of marginal vascularity where minor abrasions become foci of inflammation. Inflammation results in decreased local oxygen tension, sickling of erythrocytes, increased blood viscosity and thrombosis with consequent ischemia, tissue breakdown and leg ulcer. Tissue transfer has become the procedure of choice for reconstruction of the lower third of the leg although flaps may become necrotic. The aim of this study is to analyse circumstances predisposing to surgical complications and to define preventive and therapeutic measures. A review of the literature will describe the current research and the new perspectives to treat sickle cell anemia, for example hydroxyurea and vasoactive substances (pentoxifylline, naftidrofuryl, buflomedil).

  5. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Julia Knöckel

    Full Text Available Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.

  6. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes.

    Science.gov (United States)

    Frischknecht, Friedrich; Baldacci, Patricia; Martin, Béatrice; Zimmer, Christophe; Thiberge, Sabine; Olivo-Marin, Jean-Christophe; Shorte, Spencer L; Ménard, Robert

    2004-07-01

    Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.

  7. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Marcelo Jacobs-Lorena

    2003-09-01

    Full Text Available Malaria ranks among the deadliest infectious diseases that kills more than one million persons everyyear. The mosquito is an obligatory vector for malaria transmission. In the mosquito, Plasmodiumundergoes a complex series of developmental events that includes transformation into severaldistinct morphological forms and the crossing of two different epithelia—midgut and salivarygland. Circumstantial evidence suggests that crossing of the epithelia requires specific interactionsbetween Plasmodium and epithelial surface molecules. By use of a phage display library we haveidentified a small peptide-SM1—that binds to the surfaces of the mosquito midgut and salivaryglands. Transgenic Anopheles stephensi mosquitoes expressing a SM1 tetramer from a bloodinducibleand gut-specific promoter are substantially impaired in their ability to sustain parasitedevelopment and transmission. A second effector gene, phospholipase A2, also impairs parasitetransmission in transgenic mosquitoes. These findings have important implications for the developmentof new strategies for malaria control.

  8. Does the Use of Dihydroartemisinin-Piperaquine in Treating Patients with Uncomplicated falciparum Malaria Reduce the Risk for Recurrent New falciparum Infection More Than Artemether-Lumefantrine?

    Directory of Open Access Journals (Sweden)

    Wisdom Akpaloo

    2014-01-01

    Full Text Available Malaria contributes significantly to the global disease burden. The World Health Organization recommended the use of artemisinin-based combination therapies (ACTs for treatment of uncomplicated falciparum malaria a decade ago in response to problems of drug resistance. This review compared two of the ACTs—Dihydroartemisinin-Piperaquine (DP and Artemether-Lumefantrine (AL to provide evidence which one has the ability to offer superior posttreatment prophylaxis at 28 and 42 days posttreatment. Four databases (MEDLINE, EMBASE, Cochrane Database and Global Health were searched on June 2, 2013 and a total of seven randomized controlled trials conducted in sub-Sahara Africa were included. Results involving 2, 340 participants indicates that reduction in risk for recurrent new falciparum infections (RNIs was 79% at day 28 in favour of DP [RR, 0.21; 95% CI: 0.14 to 0.32, P<0.001], and at day 42 was 44% favouring DP [RR, 0.56; 95% CI: 0.34 to 0.90; P=0.02]. No significant difference was seen in treatment failure rates between the two drugs at days 28 and 42. It is concluded that use of DP offers superior posttreatment prophylaxis compared to AL in the study areas. Hence DP can help reduce malaria cases in such areas more than AL.

  9. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.

    Directory of Open Access Journals (Sweden)

    Yuemei Dong

    2006-06-01

    Full Text Available Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence

  10. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.;

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human...... endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full......-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support...

  11. Cell-mediated immune responses to Plasmodium falciparum purified soluble antigens in sickle-cell trait subjects

    DEFF Research Database (Denmark)

    Bayoumi, R A; Abu-Zeid, Y A; Abdulhadi, N H

    1990-01-01

    To determine the possible differences in the immune response to Plasmodium falciparum between sickle-cell trait (Hb AS) and normal haemoglobin (Hb AA) individuals, we examined 35 Hb AS and 24 Hb AA subjects matched for age and microenvironment. Their age was 2-55 years and all lived in a malaria...... individuals (P less than 0.025). Responses of BMNCs to PPD and PHA were also higher among Hb AS individuals and correlated positively with responses to SPAg. These findings support the hypotheses that the sickle-cell trait protects individuals from P. falciparum infections, at least in part, by modulating...... endemic area 300 km south of Khartoum. Antibodies to ring-infected erythrocyte surface antigen (Pf155/RESA) and to circumsporozoite (CS) protein (anti-NANP40) indicated equal exposure to falciparum malaria. Peripheral blood mononuclear cells (BMNCs) from 20/35 (57%) Hb AS subjects compared with 10/24 (42...

  12. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype.

    Science.gov (United States)

    Brown, Tyler S; Jacob, Christopher G; Silva, Joana C; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V; Cummings, Michael P

    2015-03-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives.

  13. The susceptibility of Plasmodium falciparum to sulfadoxine and pyrimethamine: correlation of in vivo and in vitro results

    DEFF Research Database (Denmark)

    Schapira, A; Bygbjerg, Ib Christian; Jepsen, S;

    1986-01-01

    In 1982, 2 of 14 Plasmodium falciparum infections acquired in East Africa and diagnosed in Copenhagen were resistant to treatment with sulfadoxine plus pyrimethamine (Fansidar), while in 1983, 6 of 18 were so. The in vivo tests were supplemented by determinations of drug concentrations in serum......, and 4 isolates from in vivo-sensitive cases and 6 from in vivo-resistant cases were selected for in vivo tests. These were performed in ordinary RPMI 1640 medium and in a medium with physiological p-aminobenzoic acid and folic acid concentrations. Pharmacokinetic aberrations were found to be of possible...... importance in only 2 of the in vivo-resistant cases. In vitro susceptibility to sulfadoxine was found to be uniformly low in all isolates. Testing with a combination of sulfadoxine and pyrimethamine in the medium with physiological concentrations of cofactors probably reflects the in vivo situation most...

  14. Avoid Mosquito Bites

    Science.gov (United States)

    ... Submit What's this? Submit Button Past Emails Avoid Mosquito Bites Language: English (US) Español (Spanish) Recommend on ... finding a travel medicine clinic near you. Prevent Mosquito Bites While Traveling Mosquito bites are bothersome enough, ...

  15. Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi: e1004231

    National Research Council Canada - National Science Library

    Anna L Drexler; Jose E Pietri; Nazzy Pakpour; Eric Hauck; Bo Wang; Elizabeth K K Glennon; Martha Georgis; Michael A Riehle; Shirley Luckhart

    2014-01-01

    ...) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM...

  16. Safety, Immunogenicity, and Protective Efficacy of Intradermal Immunization with Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites in Volunteers Under Chloroquine Prophylaxis : A Randomized Controlled Trial

    NARCIS (Netherlands)

    G.J.H. Baestians (Guido); M.P.A. van Meer (Maurits); A. Scholzen (Anja); J.M. Obiero (Joshua); M. Vatanshenassan (Mansoureh); T. van Grinsven (Tim); B.K.L. Sim (B. Kim Lee); P.F. Billingsley (Peter); E.R. James (Eric); A. Gunasekera (Anusha); E.M. Bijker (Else); G-J. van Gemert (Geert-Jan); M. van de Vegte-Bolmer (Magda); W. Graumans (Wouter); C.C. Hermsen (Cornelus); Q. de Mast (Quirijn); A.J.A.M. van der Ven (André); S.L. Hoffman (Stephen); R.W. Sauerwein (Robert)

    2015-01-01

    markdownabstractImmunization of volunteers under chloroquine prophylaxis by bites of *Plasmodium falciparum* sporozoite (PfSPZ)–infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in

  17. Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.

    Science.gov (United States)

    Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D

    2017-03-27

    Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.

  18. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  19. Mosquito Akirin as a potential antigen for malaria control.

    Science.gov (United States)

    da Costa, Mário; Pinheiro-Silva, Renato; Antunes, Sandra; Moreno-Cid, Juan A; Custódio, Ana; Villar, Margarita; Silveira, Henrique; de la Fuente, José; Domingos, Ana

    2014-12-03

    The control of vector-borne diseases is important to improve human and animal health worldwide. Malaria is one of the world's deadliest diseases and is caused by protozoan parasites of the genus Plasmodium, which are transmitted by Anopheles spp. mosquitoes. Recent evidences using Subolesin (SUB) and Akirin (AKR) vaccines showed a reduction in the survival and/or fertility of blood-sucking ectoparasite vectors and the infection with vector-borne pathogens. These experiments suggested the possibility of using AKR for malaria control. The role of AKR on Plasmodium berghei infection and on the fitness and reproduction of the main malaria vector, Anopheles gambiae was characterized by evaluating the effect of akr gene knockdown or vaccination with recombinant mosquito AKR on parasite infection levels, fertility and mortality of female mosquitoes. Gene knockdown by RNA interference in mosquitoes suggested a role for akr in mosquito survival and fertility. Vaccination with recombinant Aedes albopictus AKR reduced parasite infection in mosquitoes fed on immunized mice when compared to controls. These results showed that recombinant AKR could be used to develop vaccines for malaria control. If effective, AKR-based vaccines could be used to immunize wildlife reservoir hosts and/or humans to reduce the risk of pathogen transmission. However, these vaccines need to be evaluated under field conditions to characterize their effect on vector populations and pathogen infection and transmission.

  20. Plasmodium-specific molecular assays produce uninterpretable results and non-Plasmodium spp. sequences in field-collected Anopheles vectors.

    Science.gov (United States)

    Harrison, Genelle F; Foley, Desmond H; Rueda, Leopoldo M; Melanson, Vanessa R; Wilkerson, Richard C; Long, Lewis S; Richardson, Jason H; Klein, Terry A; Kim, Heung-Chul; Lee, Won-Ja

    2013-12-01

    The Malaria Research and Reference Reagent Resource-recommended PLF/UNR/VIR polymerase chain reaction (PCR) was used to detect Plasmodium vivax in Anopheles spp. mosquitoes collected in South Korea. Samples that were amplified were sequenced and compared with known Plasmodium spp. by using the PlasmoDB.org Basic Local Alignment Search Tool/n and the National Center for Biotechnology Information Basic Local Alignment Search Tool/n tools. Results show that the primers PLF/UNR/VIR used in this PCR can produce uninterpretable results and non-specific sequences in field-collected mosquitoes. Three additional PCRs (PLU/VIV, specific for 18S small subunit ribosomal DNA; Pvr47, specific for a nuclear repeat; and GDCW/PLAS, specific for the mitochondrial marker, cytB) were then used to find a more accurate and interpretable assay. Samples that were amplified were again sequenced. The PLU/VIV and Pvr47 assays showed cross-reactivity with non-Plasmodium spp. and an arthropod fungus (Zoophthora lanceolata). The GDCW/PLAS assay amplified only Plasmodium spp. but also amplified the non-human specific parasite P. berghei from an Anopheles belenrae mosquito. Detection of P. berghei in South Korea is a new finding.

  1. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    Science.gov (United States)

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  2. Role of the Parasight-F test in the diagnosis of complicated Plasmodium falciparum malarial infection

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2003-01-01

    Full Text Available An evaluation was made of the diagnostic efficacy and utility of the Parasight-F test in diagnosing Plasmodium falciparum malaria, compared with conventional microscopy, particularly in severe and complicated cases. This study was designed as a prospective, case control hospital-based study. Febrile patients suspected to be suffering from malaria were selected randomly and were subjected to peripheral smear examinations (thick and thin and Parasight-F tests till the required number of at least 30 cases of P. falciparum infection were identified, including at least 15 complicated cases. In addition 20 cases of P. vivax malarial infection as well as 20 healthy age and sex-matched individuals were taken as two control groups. The outcome measure was the number of cases with positive Parasight-F test results compared with conventional microscopy. Thirty-two patients with P. falciparum malaria were identified, with 15 severe and complicated cases. Peripheral smears were positive in 29 (91% of these, while parasight-F test was positive in 31 out of 32 (97% cases. Parasites were detected only by bone marrow examination in one case. Diagnostic sensitivity and specificity of peripheral smears for detecting falciparum infection were 90.6% and 100% respectively while that of the Parasight-F test were 96.8% and 100%, respectively (P>.05. The Parasight-F test has high sensitivity and specificity in diagnosing P. falciparum malarial infection, comparable to or even higher than microscopy exams, particularly in severe and complicated cases, with additional advantages of speed, simplicity and objectivity.

  3. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  4. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Science.gov (United States)

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border.

  5. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community

    Directory of Open Access Journals (Sweden)

    Alvarez Eugenia

    2005-06-01

    Full Text Available Abstract Background There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections. Methods Passive case-detection (PCD during the malaria season (February-July and an active case-detection (ACD community-wide survey (March surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD occurred within at-risk zones, where 137 houses (573 persons were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses. Results The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones. Conclusion Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior.

  6. Backward bifurcation and optimal control of Plasmodium Knowlesi malaria

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2014-07-01

    A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.

  7. Molecular characterization and phylogenetic analysis of Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium cynomolgi

    National Research Council Canada - National Science Library

    Chatterjee, Soumendranath; Mukhopadhyay, Priyanka; Bandyopadhyay, Raktima; Dhal, Paltu; Biswal, Debraj; Bandyopadhyay, Prabir Kumar

    18S ribosomal RNA gene sequences of different species of Plasmodium were aligned and analyzed to determine the molecular diversity among different species of Plasmodium. AT content of P. cynomolgi, P. ovale, P. falciparum, P. vivax and P...

  8. High Mobility Group Protein HMGB2 Is a Critical Regulator of Plasmodium Oocyst Development*S⃞

    OpenAIRE

    Gissot, Mathieu; Ting, Li-Min; Daly, Thomas M.; Bergman, Lawrence W.; Sinnis, Photini; Kim, Kami

    2008-01-01

    The sexual cycle of Plasmodium is required for transmission of malaria from mosquitoes to mammals, but how parasites induce the expression of genes required for the sexual stages is not known. We disrupted the Plasmodium yoelii gene encoding high mobility group nuclear factor hmgb2, which encodes a DNA-binding protein potentially implicated in transcriptional regulation of malaria gene expression. We investigated its function in vivo in the vertebrate and invertebrate ...

  9. Disruption of Plasmodium Sporozoite Transmission by Depletion of Sporozoite Invasion-Associated Protein 1▿ §

    OpenAIRE

    2009-01-01

    Accumulation of infectious Plasmodium sporozoites in Anopheles spp. salivary glands marks the final step of the complex development of the malaria parasite in the insect vector. Sporozoites are formed inside midgut-associated oocysts and actively egress into the mosquito hemocoel. Traversal of the salivary gland acinar cells correlates with the sporozoite's capacity to perform continuous gliding motility. Here, we characterized the cellular role of the Plasmodium berghei sporozoite invasion-a...

  10. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.

    OpenAIRE

    Yuemei Dong; Ruth Aguilar; Zhiyong Xi; Emma Warr; Emmanuel Mongin; George Dimopoulos

    2006-01-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. I...

  11. Gametocitos de Plasmodium vivax y Plasmodium falciparum: etapas relegadas en el desarrollo de vacunas Plasmodium vivax and Plasmodium falciparum gametocyte stages are neglected in vaccine development

    OpenAIRE

    Carla Contreras-Ochoa; Ramsey, Janine M.

    2004-01-01

    Los gametocitos de Plasmodium son los responsables de la transmisión del huésped vertebrado al mosquito vector. Sufren un proceso de desarrollo complejo a partir de parásitos asexuales, que no está completamente entendido, expresando proteínas y moléculas de adhesión específicas. Son capaces de inducir una respuesta inmune humoral específica con anticuerpos IgG, y celular específica, con producción de TNFa, IFNg y proliferación de linfocitos gd+, aun cuando existen respuestas inducidas en con...

  12. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  13. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    Directory of Open Access Journals (Sweden)

    Shigeto Yoshida

    2007-12-01

    Full Text Available The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50 of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.

  14. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Directory of Open Access Journals (Sweden)

    Zborowski Maciej

    2008-04-01

    Full Text Available Abstract Background Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG. Methods and findings Individuals with Plasmodium falciparum malaria symptoms (n = 55 provided samples for conventional blood smear (CBS and magnetic deposition microscopy (MDM diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13, trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01, schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08 and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002 parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. Conclusion MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.

  15. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm

    2009-09-01

    Full Text Available Abstract Background Sequestration of parasitized red blood cells in the microvasculature of major organs involves a sequence of events that is believed to contribute to the pathogenesis of severe falciparum malaria. Plasmodium falciparum infections are commonly composed of multiple subpopulations of parasites with varied adhesive properties. A key question is: do these subpopulations compete for adhesion to endothelium? This study investigated whether, in a laboratory model of cytoadherence, there is competition in binding to endothelium between pRBC infected with P. falciparum of variant adhesive phenotypes, particularly under flow conditions. Methods Four different P. falciparum isolates, of known adherence phenotypes, were matched in pairs, mixed in different proportions and allowed to bind to cultured human endothelium. Using in vitro competitive static and flow-based adhesion assays, that allow simultaneous testing of the adhesive properties of two different parasite lines, adherence levels of paired P. falciparum isolates were quantified and analysed using either non-parametric Wilcoxon's paired signed rank test or Student paired test. Results Study findings show that P. falciparum parasite lines show marked differences in the efficiency of adhesion to endothelium. Conclusion Plasmodium falciparum variants will compete for adhesion to endothelia and variants can be ranked by their efficiency of binding. These findings suggest that variants from a mixed infection will not show uniform cytoadherence and so may vary in their ability to cause disease.

  16. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  17. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium.

    Science.gov (United States)

    Martínez-de la Puente, Josué; Ferraguti, Martina; Ruiz, Santiago; Roiz, David; Soriguer, Ramón C; Figuerola, Jordi

    2016-12-08

    The wide spread mosquito Culex pipiens pipiens have two forms molestus and pipiens which frequently hybridize. The two forms have behavioural and physiological differences affecting habitat requirements and host selection, which may affect the transmission dynamic of Cx. p. pipiens-borne diseases. During 2013, blood engorged Cx. p. pipiens mosquitoes were captured in urban, rural and natural areas from Southern Spain. In 120 mosquitoes, we identified the blood meal origin at vertebrate species/genus level and the mosquito form. The presence and molecular lineage identity of avian malaria parasites in the head-thorax of each mosquito was also analysed. Mosquitoes of the form pipiens were more frequently found in natural than in urban areas. The proportion of Cx. pipiens form molestus and hybrids of the two forms did not differ between habitat categories. Any significant difference in the proportion of blood meals on birds between forms was found. Birds were the most common feeding source for the two forms and their hybrids. Among mammals, dogs and humans were the most common hosts. Two Plasmodium and one Haemoproteus lineages were found in mosquitoes, with non-significant differences between forms. This study supports a differential distribution of Cx. p. pipiens form pipiens between urban and natural areas. Probably due to the similar feeding sources of both mosquito forms and their hybrids here, all of them may frequently interact with avian malaria parasites playing a role in the transmission of Plasmodium.

  18. Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Ranford-Cartwright Lisa C

    2007-10-01

    Full Text Available Abstract Background The susceptibility of anopheline mosquito species to Plasmodium infection is known to be variable with some mosquitoes more permissive to infection than others. Little work, however, has been carried out investigating the susceptibility of major malaria vectors to geographically diverse tropical isolates of Plasmodium falciparum aside from examining the possibility of infection extending its range from tropical regions into more temperate zones. Methods This study investigates the susceptibility of two major tropical mosquito hosts (Anopheles gambiae and Anopheles stephensi to P. falciparum isolates of different tropical geographical origins. Cultured parasite isolates were fed via membrane feeders simultaneously to both mosquito species and the resulting mosquito infections were compared. Results Infection prevalence was variable with African parasites equally successful in both mosquito species, Thai parasites significantly more successful in An. stephensi, and PNG parasites largely unsuccessful in both species. Conclusion Infection success of P. falciparum was variable according to geographical origin of both the parasite and the mosquito. Data presented raise the possibility that local adaptation of tropical parasites and mosquitoes has a role to play in limiting gene flow between allopatric parasite populations.

  19. Surface antigens and virulence in Plasmodium falciparum malaria

    OpenAIRE

    Normark, Johan

    2008-01-01

    Plasmodium falciparum is an intracellular protozoan that may cause severe forms of malaria. It is a major world health hazard and reaps the highest toll among the children and pregnant mothers of the developing world. An Anopheles mosquito vector injects the pathogen when taking a blood meal. After multiplication in cells of the liver, the parasite escapes and infects red blood cells in a cyclic manner and this is when the clinical manifestations of malaria as a disease beco...

  20. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    OpenAIRE

    Norazsida Ramli; Pakeer Oothuman Syed Ahamed; Hassan Mohamed Elhady; Muhammad Taher

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral t...

  1. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    OpenAIRE

    Garver, Lindsey S.; Yuemei Dong; George Dimopoulos

    2009-01-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to depl...

  2. Placental sequestration of Plasmodium falciparum malaria parasites is mediated by the interaction between VAR2CSA and chondroitin sulfate A on syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans......-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor...... for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial...

  3. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R;

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...... as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein...

  4. Suppression of parasite-specific response in Plasmodium falciparum malaria. A longitudinal study of blood mononuclear cell proliferation and subset composition

    DEFF Research Database (Denmark)

    Theander, T G; Bygbjerg, I C; Andersen, B J

    1986-01-01

    -specific proliferative response. The subset composition of BMNC isolated from non-immune patients was studied in a FACS analyser. The mean cell volumes of both Leu 2+ and Leu 3+ cells were increased during the acute phase of the infection, indicating that malaria infection results in activation of both T-helper and T......The present longitudinal study was designed to characterize immunosuppression during acute Plasmodium falciparum infection, during the treatment and up to 1 month after the acute stage. The proliferative responses of blood mononuclear cells (BMNC) isolated from non-immune and semi-immune malaria......-suppressor cells. There was no overall reduction of the response to mitogens on day 0. However, 3 days after initiation of the treatment the mitogen response was decreased. This finding indicates that it is important to distinguish between the effects of malaria infection and of drug treatment....

  5. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline;

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans......-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor...... for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial...

  6. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles

    OpenAIRE

    Bryant, William B.; Michel, Kristin

    2014-01-01

    Malaria is a global public health problem, especially in sub-Saharan Africa, where the mosquito Anopheles gambiae Giles serves as the major vector for the protozoan Plasmodium falciparum Welch. One determinant of malaria vector competence is the mosquito's immune system. Hemocytes are a critical component as they produce soluble immune factors that either support or prevent malaria parasite development. However, despite their importance in vector competence, understanding of their basic biolo...

  7. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  8. Gametocitos de Plasmodium vivax y Plasmodium falciparum: etapas relegadas en el desarrollo de vacunas Plasmodium vivax and Plasmodium falciparum gametocyte stages are neglected in vaccine development

    Directory of Open Access Journals (Sweden)

    Carla Contreras-Ochoa

    2004-02-01

    Full Text Available Los gametocitos de Plasmodium son los responsables de la transmisión del huésped vertebrado al mosquito vector. Sufren un proceso de desarrollo complejo a partir de parásitos asexuales, que no está completamente entendido, expresando proteínas y moléculas de adhesión específicas. Son capaces de inducir una respuesta inmune humoral específica con anticuerpos IgG, y celular específica, con producción de TNFa, IFNg y proliferación de linfocitos gd+, aun cuando existen respuestas inducidas en contra de las etapas previas del parásito (esporozoito, exo-eritrocítica y eritrocítica. Las vacunas destinadas a bloquear la transmisión del parásito no contemplan a los gametocitos circulantes en el huésped como blancos de acción, sino que van enfocadas contra antígenos expresados en los gametos y en las etapas posfertilización. El estudio de los mecanismos que regulan la producción de gametocitos y de la respuesta inmune contra éstos, ofrece una oportunidad para el desarrollo de estrategias adicionales para el control de la transmisión.Plasmodium gametocytes are responsible for transmission from the vertebrate host to the mosquito. Plasmodium gametocytes undergo a complex cycle from asexual stages, through a poorly understood process characterized by expression of stage-specific proteins and adhesion molecules. Gametocytes are capable of inducing specific humoral IgG, and cellular responses, which include induction of TNFa, IFNg and gd+ lymphocyte proliferation, in addition to immune responses to other stages of the parasite (sporozoite, exo-erythrocytic stages, erythrocytic stages. Although transmission-blocking vaccines against Plasmodium do not currently include components against the gametocytes (rather they focus on gametes, zygotes or ookinetes, stages which occur in the mosquito, further understanding of the mechanisms underlying gametocytogenesis and immune responses against these stages may provide additional strategies for

  9. Mosquito, egg raft (image)

    Science.gov (United States)

    ... that float in still or stagnant water. The mosquito lays the eggs one at a time sticking ... feed on micro-organisms before developing into flying mosquitoes. (Image courtesy of the Centers for Disease Control ...

  10. Mosquito, adult (image)

    Science.gov (United States)

    This illustration shows an adult southern house mosquito. This mosquito feeds on blood and is the carrier of many diseases, such as encephalitis, West Nile, dengue fever, yellow fever, and others. ( ...

  11. Studies on mosquito biting risk among migratory rice farmers in rural south-eastern Tanzania and development of a portable mosquito-proof hut.

    Science.gov (United States)

    Swai, Johnson K; Finda, Marceline F; Madumla, Edith P; Lingamba, Godfrey F; Moshi, Irene R; Rafiq, Mohamed Y; Majambere, Silas; Okumu, Fredros O

    2016-11-22

    Subsistence rice farmers in south-eastern Tanzania are often migratory, spending weeks or months tending to crops in distant fields along the river valleys and living in improvised structures known as Shamba huts, not fully protected from mosquitoes. These farmers also experience poor access to organized preventive and curative services due to long distances. Mosquito biting exposure in these rice fields, relative to main village residences was assessed, then a portable mosquito-proof hut was developed and tested for protecting these migratory farmers. Pair-wise mosquito surveys were conducted in four villages in Ulanga district, south-eastern Tanzania in 20 randomly-selected Shamba huts located in the distant rice fields and in 20 matched houses within the main villages, to assess biting densities and Plasmodium infection rates. A portable mosquito-proof hut was designed and tested in semi-field and field settings against Shamba hut replicas, and actual Shamba huts. Also, semi-structured interviews were conducted, timed-participant observations, and focus-group discussions to assess experiences and behaviours of the farmers regarding mosquito-bites and the mosquito-proof huts. There were equal numbers of mosquitoes in Shamba huts and main houses [RR (95% CI) 27 (25.1-31.2), and RR (95% CI) 30 (27.5-33.4)], respectively (P > 0.05). Huts having >1 occupant had more mosquitoes than those with just one occupant, regardless of site [RR (95% CI) 1.57 (1.30-1.9), P mosquitoes caught were negative for Plasmodium. Common night-time outdoor activities in the fields included cooking, eating, fetching water or firewood, washing dishes, bathing, and storytelling, mostly between 6 and 11 p.m., when mosquitoes were also biting most. The prototype hut provided 100% protection in semi-field and field settings, while blood-fed mosquitoes were recaptured in Shamba huts, even when occupants used permethrin-impregnated bed nets. Though equal numbers of mosquitoes were caught

  12. The transmission potential of malaria-infected mosquitoes (An.gambiae-Keele, An.arabiensis-Ifakara) is altered by the vertebrate blood type they consume during parasite development

    OpenAIRE

    Emami, S Noushin; Ranford-Cartwright, Lisa C; Ferguson, Heather M

    2017-01-01

    The efficiency of malaria parasite development within mosquito vectors (sporogony) is a critical determinant of transmission. Sporogony is thought to be controlled by environmental conditions and mosquito/parasite genetic factors, with minimal contribution from mosquito behaviour during the period of parasite development. We tested this assumption by investigating whether successful sporogony of Plasmodium falciparum parasites through to human-infectious transmission stages is influenced by t...

  13. Epidemiology of Plasmodium vivax in Indonesia.

    Science.gov (United States)

    Surjadjaja, Claudia; Surya, Asik; Baird, J Kevin

    2016-12-28

    Endemic malaria occurs across much of the vast Indonesian archipelago. All five species of Plasmodium known to naturally infect humans occur here, along with 20 species of Anopheles mosquitoes confirmed as carriers of malaria. Two species of plasmodia cause the overwhelming majority and virtually equal shares of malaria infections in Indonesia: Plasmodium falciparum and Plasmodium vivax The challenge posed by P. vivax is especially steep in Indonesia because chloroquine-resistant strains predominate, along with Chesson-like strains that relapse quickly and multiple times at short intervals in almost all patients. Indonesia's hugely diverse human population carries many variants of glucose-6-phosphate dehydrogenase (G6PD) deficiency, most of them exhibiting severely impaired enzyme activity. Therefore, the patients most likely to benefit from primaquine therapy by preventing aggressive relapse, may also be most likely to suffer harm without G6PD deficiency screening. Indonesia faces the challenge of controlling and eventually eliminating malaria across > 13,500 islands stretching > 5,000 km and an enormous diversity of ecological, ethnographic, and socioeconomic settings, and extensive human migrations. This article describes the occurrence of P. vivax in Indonesia and the obstacles faced in eliminating its transmission. © The American Society of Tropical Medicine and Hygiene.

  14. Controlling Mosquitoes Outside

    Centers for Disease Control (CDC) Podcasts

    2016-08-09

    Mosquitoes can carry viruses, like West Nile, Zika, dengue, and chikungunya. In this podcast, Mr. Hubbard will teach you and his neighbor, Laura, ways to help reduce the number of mosquitoes outside your home. Tips include eliminating areas of standing water where mosquitoes lay eggs and using larvicides to kill young mosquitoes.  Created: 8/9/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/9/2016.

  15. MAN, MOSQUITOES AND MICROBES.

    Science.gov (United States)

    SCHOONOVER, ROBERT A.

    THE CONTROL OF MOSQUITOES IS A MATTER OF INCREASING CONCERN IN THE STATE OF FLORIDA. A BRIEF DESCRIPTION OF THE LIFE CYCLE, VARIOUS SPECIES, CONTROL, AND DESCRIPTION OF DISEASES TRANSMITTED BY THE MOSQUITO WAS PRESENTED. THE ARTICLE CONCLUDED THAT MOSQUITO CONTROL IS NOT ONLY A HEALTH PROBLEM, BUT ALSO A MATTER OF IMPROVED ECONOMICS IN RELATION TO…

  16. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  17. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  18. Protective Efficacy of Plasmodium vivax Radiation-Attenuated Sporozoites in Colombian Volunteers

    DEFF Research Database (Denmark)

    Arévalo-Herrera, Myriam; Vásquez-Jiménez, Juan M; Lopez-Perez, Mary;

    2016-01-01

    BACKGROUND: Immunizing human volunteers by mosquito bite with radiation-attenuated Plasmodium falciparum sporozoites (RAS) results in high-level protection against infection. Only two volunteers have been similarly immunized with P. vivax (Pv) RAS, and both were protected. A phase 2 controlled cl...

  19. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery

    NARCIS (Netherlands)

    Dembele, L.; Gego, A.; Zeeman, A.M.; Franetich, J.F.; Silvie, O.; Rametti, A.; Grand, R. Le; Dereuddre-Bosquet, N.; Sauerwein, R.W.; Gemert, G.J. van; Vaillant, J.C.; Thomas, A.W.; Snounou, G.; Kocken, C.H.; Mazier, D.

    2011-01-01

    BACKGROUND: Amongst the Plasmodium species in humans, only P. vivax and P. ovale produce latent hepatic stages called hypnozoites, which are responsible for malaria episodes long after a mosquito bite. Relapses contribute to increased morbidity, and complicate malaria elimination programs. A single

  20. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    LENUS (Irish Health Repository)

    Larkin, Deirdre

    2009-03-01

    Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU\\/ml versus 1.9 IU\\/ml; p<0.005). This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  1. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    Directory of Open Access Journals (Sweden)

    Deirdre Larkin

    2009-03-01

    Full Text Available Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20 and cerebral (n = 13 P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005. This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005. Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1. These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  2. Construction of a human functional single-chain variable fragment (scFv) antibody recognizing the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Wajanarogana, Sumet; Prasomrothanakul, Teerawat; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2006-04-01

    Falciparum malaria is one of the most deadly and profound human health problems around the tropical world. Antimalarial drugs are now considered to be a powerful treatment; however, there are drugs currently being used that are resistant to Plasmodium falciparum parasites spreading in different parts of the world. Although the protective immune response against intraerythrocytic stages of the falciparum malaria parasite is still not fully understood, immune antibodies have been shown to be associated with reduced parasite prevalence. Therefore antibodies of the right specificity present in adequate concentrations and affinity are reasonably effective in providing protection. In the present study, VH (variable domain of heavy chain) and VL (variable domain of light chain) were isolated from human blood lymphocytes of P. falciparum in one person who had high serum titre to RESA (ring-infected erythrocyte surface antigen). Equal amounts of VH and VL were assembled together with universal linker (G4S)3 to generate scFvs (single-chain variable fragments). The scFv antibodies were expressed with a phage system for the selection process. Exclusively, an expressed scFv against asynchronous culture of P. falciparum-infected erythrocytes was selected and characterized. Sequence analysis of selected scFv revealed that this clone could be classified into a VH family-derived germline gene (VH1) and Vkappa family segment (Vkappa1). Using an indirect immunofluorescence assay, we could show that soluble expressed scFv reacted with falciparum-infected erythrocytes. The results encourage the further study of scFvs for development as a potential immunotherapeutic agent.

  3. Selective killing of the human malaria parasite Plasmodium falciparum by a benzylthiazolium dye.

    Science.gov (United States)

    Kelly, Jane X; Winter, Rolf W; Braun, Theodore P; Osei-Agyemang, Myralyn; Hinrichs, David J; Riscoe, Michael K

    2007-06-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by Plasmodium falciparum which infects hundreds of millions of people and is responsible for the deaths of 1-2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study, we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel.

  4. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    Science.gov (United States)

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  5. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    Science.gov (United States)

    2012-01-01

    Background In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often absent in peripheral blood samples. The appearance of schizonts in peripheral blood smears is thought to be a marker of high sequestered parasite burden and severe disease. In the present study, the value of schizontaemia as an early marker for severe disease in non-immune individuals with imported malaria was evaluated. Methods All patients in the Rotterdam Malaria Cohort diagnosed with P. falciparum malaria between 1 January 1999 and 1 January 2012 were included. Thick and thin blood films were examined for the presence of schizontaemia. The occurrence of WHO defined severe malaria was the primary endpoint. The diagnostic performance of schizontaemia was compared with previously evaluated biomarkers C-reactive protein and lactate. Results Schizonts were present on admission in 49 of 401 (12.2%) patients. Patients with schizontaemia were more likely to present with severe malaria, a more complicated course and had longer duration of admission in hospital. Schizontaemia had a specificity of 0.95, a sensitivity of 0.53, a negative predictive value of 0.92 and a positive predictive value of 0.67 for severe malaria. The presence of schizonts was an independent predictor for severe malaria. Conclusion Absence of schizonts was found to be a specific marker for exclusion of severe malaria. Presence of schizonts on admission was associated with a high positive predictive value for severe malaria. This may be of help to identify patients who are at risk of a more severe course than would be expected when considering peripheral parasitaemia alone. PMID:22929647

  6. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    Science.gov (United States)

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  7. Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

    Science.gov (United States)

    Taylor, Steve M.; Cerami, Carla; Fairhurst, Rick M.

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite

  8. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  9. Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia

    Directory of Open Access Journals (Sweden)

    Muchohi Simon

    2008-10-01

    Full Text Available Abstract Background Plasmodium vivax accounts for about 40% of all malaria infection in Ethiopia. Chloroquine (CQ is the first line treatment for confirmed P. vivax malaria in the country. The first report of CQ treatment failure in P. vivax was from Debre Zeit, which suggested the presence of chloroquine resistance. Methods An in vivo drug efficacy study was conducted in Debre Zeit from June to August 2006. Eighty-seven patients with microscopically confirmed P. vivax malaria, aged between 8 months and 52 years, were recruited and treated under supervision with CQ (25 mg/kg over three days. Clinical and parasitological parameters were assessed during the 28 day follow-up period. CQ and desethylchloroquine (DCQ blood and serum concentrations were determined with high performance liquid chromatography (HPLC in patients who showed recurrent parasitaemia. Results Of the 87 patients recruited in the study, one was lost to follow-up and three were excluded due to P. falciparum infection during follow-up. A total of 83 (95% of the study participants completed the follow-up. On enrolment, 39.8% had documented fever and 60.2% had a history of fever. The geometric mean parasite density of the patients was 7045 parasites/μl. Among these, four patients had recurrent parasitaemia on Day 28. The blood CQ plus DCQ concentrations of these four patients were all above the minimal effective concentration (> 100 ng/ml. Conclusion Chloroquine-resistant P. vivax parasites are emerging in Debre Zeit, Ethiopia. A multi-centre national survey is needed to better understand the extent of P. vivax resistance to CQ in Ethiopia.

  10. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    Directory of Open Access Journals (Sweden)

    Steve M Taylor

    Full Text Available Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS, hemoglobin C (HbC, and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait. Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1 to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and

  11. Pyrethroid resistance in mosquitoes

    Institute of Scientific and Technical Information of China (English)

    NANNAN LIU; QIANG XU; FANG ZHU; LEE ZHANG

    2006-01-01

    Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.

  12. A Multi-detection Assay for Malaria Transmitting Mosquitoes

    Science.gov (United States)

    Lee, Yoosook; Weakley, Allison M.; Nieman, Catelyn C.; Malvick, Julia; Lanzaro, Gregory C.

    2015-01-01

    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays. PMID:25867057

  13. Members of the salivary gland surface protein (SGS) family are major immunogenic components of mosquito saliva.

    Science.gov (United States)

    King, Jonas G; Vernick, Kenneth D; Hillyer, Julián F

    2011-11-25

    Mosquitoes transmit Plasmodium and certain arboviruses during blood feeding, when they are injected along with saliva. Mosquito saliva interferes with the host's hemostasis and inflammation response and influences the transmission success of some pathogens. One family of mosquito salivary gland proteins, named SGS, is composed of large bacterial-type proteins that in Aedes aegypti were implicated as receptors for Plasmodium on the basal salivary gland surface. Here, we characterize the biology of two SGSs in the malaria mosquito, Anopheles gambiae, and demonstrate their involvement in blood feeding. Western blots and RT-PCR showed that Sgs4 and Sgs5 are produced exclusively in female salivary glands, that expression increases with age and after blood feeding, and that protein levels fluctuate in a circadian manner. Immunohistochemistry showed that SGSs are present in the acinar cells of the distal lateral lobes and in the salivary ducts of the proximal lobes. SDS-PAGE, Western blots, bite blots, and immunization via mosquito bites showed that SGSs are highly immunogenic and form major components of mosquito saliva. Last, Western and bioinformatic analyses suggest that SGSs are secreted via a non-classical pathway that involves cleavage into a 300-kDa soluble fragment and a smaller membrane-bound fragment. Combined, these data strongly suggest that SGSs play an important role in blood feeding. Together with their role in malaria transmission, we propose that SGSs could be used as markers of human exposure to mosquito bites and in the development of disease control strategies.

  14. Identification of Caucasian CD4 T cell epitopes on the circumsporozoite protein of Plasmodium vivax. T cell memory.

    Science.gov (United States)

    Bilsborough, J; Carlisle, M; Good, M F

    1993-07-15

    We have identified a population of Caucasians with a defined past history of infection with Plasmodium vivax malaria. Using purified synthetic peptides overlapping the sequence of the circumsporozoite protein, we determined the percentage of individuals whose T cells proliferated or secreted IFN-gamma in response to peptide stimulation, for both this population and a population of nonmalaria-exposed control individuals. A number of peptides were recognized by both groups, but 11 peptides were uniquely recognized by the exposed population, and thus represented malaria-specific T cell epitopes. CD4 T cells were found to be responsible for the proliferative response. Humans last exposed to vivax sporozoites as long ago as 49 yr responded as well or better to these malaria-specific epitopes as individuals exposed within the previous month. Since such malaria-induced memory response may not be a feature of Plasmodium falciparum infections, and since P. falciparum does not have a persisting hypnozoite stage, our data argue that the persistence of T cell memory to vivax epitopes may result from antigenic persistence in the liver.

  15. The Maternally Inheritable Wolbachia wAlbB Induces Refractoriness to Plasmodium berghei in Anopheles stephensi

    Science.gov (United States)

    Joshi, Deepak; Pan, Xiaoling; McFadden, Michael J.; Bevins, David; Liang, Xiao; Lu, Peng; Thiem, Suzanne; Xi, Zhiyong

    2017-01-01

    The endosymbiont Wolbachia wAlbB induces refractoriness to Plasmodium falciparum in Anopheles stephensi, the primary mosquito vector of human malaria in the Middle East and South Asia. However, it remains unknown whether such refractoriness can be extended to other malaria species. In particular, it was reported that under very specific conditions, wAlbB can enhance Plasmodium infection in some hosts. Here, we measured the impact of wAlbB on the rodent malaria parasite Plasmodium berghei in A. stephensi by comparing the load of oocysts and sporozoites in midguts and salivary glands, respectively, between wAlbB-infected and -uninfected mosquitoes. To investigate whether wAlbB modulated mosquito immune defense against parasites, we compared the expression of the immune genes, which were previously reported to involve in antimalarial response, in both midguts and the remaining carcass tissues of mosquitoes. The stable association of wAlbB with A. stephensi resulted in reduction of parasites by more than half at the oocyst stage, and up to 91.8% at the sporzoite stage. The anti-plasmodium immune genes, including TEP1, LRIM1, Toll pathway gene Rel1 and the effector Defensin 1, were induced by wAlbB in different mosquito body tissues. These findings suggest that immune priming is a potential cause of wAlbB-mediated antimalarial response in A. stephensi. More importantly, no evidence was found for any enhancement of Plasmodium infection in A. stephensi stably infected with wAlbB. We discuss these findings with possible implementations of Wolbachia for malaria control in disease endemic areas. PMID:28337184

  16. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium

    Directory of Open Access Journals (Sweden)

    Christina Faust

    2015-12-01

    Full Text Available Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence–absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  17. Anopheles gambiae PRS1 modulates Plasmodium development at both midgut and salivary gland steps.

    Directory of Open Access Journals (Sweden)

    Thomas Chertemps

    Full Text Available BACKGROUND: Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we have studied one of the genes, PRS1 (Plasmodium responsive salivary 1, whose expression was upregulated in infected glands, using immunolocalization and functional inactivation approaches. METHODOLOGY/PRINCIPAL FINDINGS: PRS1 belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat motifs of uncharacterized function. We show that PRS1 is induced in response to Plasmodium, not only in the salivary glands but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore, this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures. Importantly, PRS1 knockdown during the onset of midgut and salivary gland invasion demonstrates that PRS1 acts as an agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in both tissues. CONCLUSIONS/SIGNIFICANCE: While providing insights into potential functions of DM9 proteins, our results reveal that PRS1 likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the specific Anopheles/P. falciparum coevolutionary history.

  18. Influence of age and previous diet of Anopheles gambiae on the infectivity of natural Plasmodium falciparum gametocytes from human volunteers

    OpenAIRE

    Okech, Bernard A.; Louis C Gouagna; Kabiru, Ephantus W; Beier, John C.; Yan, Guiyun; Githure, John I

    2004-01-01

    The effect of age and dietary factors of Anopheles gambiae (Diptera: Culicidae) on the infectivity of natural Plasmodium falciparum parasites was studied. Mosquitoes of various ages (1–3, 4–7 and 8–11 day old) and those fed blood (either single or double meals) and sugar meals were experimentally co-infected with P. falciparum gametocytes obtained from different naturally infected human volunteers. On day 7, midguts were examined for oocyst infection to determine whether mosquito age or diets...

  19. Enhanced transmission of malaria parasites to mosquitoes in a murine model of type 2 diabetes.

    Science.gov (United States)

    Pakpour, Nazzy; Cheung, Kong Wai; Luckhart, Shirley

    2016-04-21

    More than half of the world's population is at risk of malaria and simultaneously, many malaria-endemic regions are facing dramatic increases in the prevalence of type 2 diabetes. Studies in murine malaria models have examined the impact of malaria infection on type 2 diabetes pathology, it remains unclear how this chronic metabolic disorder impacts the transmission of malaria. In this report, the ability type 2 diabetic rodents infected with malaria to transmit parasites to Anopheles stephensi mosquitoes is quantified. The infection prevalence and intensity of An. stephensi mosquitoes that fed upon control or type 2 diabetic C57BL/6 db/db mice infected with either lethal Plasmodium berghei NK65 or non-lethal Plasmodium yoelii 17XNL murine malaria strains were determined. Daily parasitaemias were also recorded. A higher percentage of mosquitoes (87.5 vs 61.5 % for P. yoelii and 76.9 vs 50 % for P. berghei) became infected following blood feeding on Plasmodium-infected type 2 diabetic mice compared to mosquitoes that fed on infected control animals, despite no significant differences in circulating gametocyte levels. These results suggest that type 2 diabetic mice infected with malaria are more efficient at infecting mosquitoes, raising the question of whether a similar synergy exists in humans.

  20. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    Directory of Open Access Journals (Sweden)

    Zhen Zou

    2011-11-01

    Full Text Available The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+ or REL2 (REL2+ in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated and 299 (123 up- and 176 down-regulated genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi-depleted mosquitoes (50%. In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated, suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating

  1. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the ‘Sinton and Mulligan’ Stipplings in the Cytoplasm of Monkey and Human Erythrocytes

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J.

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum. PMID:27732628

  2. Artificial Diets for Mosquitoes

    Directory of Open Access Journals (Sweden)

    Kristina K. Gonzales

    2016-12-01

    Full Text Available Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT, release of insects carrying a dominant lethal (RIDL, population replacement strategies (PR, and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.

  3. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission.

    Science.gov (United States)

    Akinosoglou, Karolina A; Bushell, Ellen S C; Ukegbu, Chiamaka Valerie; Schlegelmilch, Timm; Cho, Jee-Sun; Redmond, Seth; Sala, Katarzyna; Christophides, George K; Vlachou, Dina

    2015-02-01

    The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut.

  4. Tips to Prevent Mosquito Bites

    Science.gov (United States)

    Using the right insect repellent and other preventive actions can discourage mosquitoes from landing on you. Tips include removing mosquito habitats such as standing water, minimizing exposed skin, and staying indoors while mosquitoes are most active.

  5. Mosquito vectors and the spread of cancer: an overlooked connection?

    Science.gov (United States)

    Benelli, Giovanni; Lo Iacono, Annalisa; Canale, Angelo; Mehlhorn, Heinz

    2016-06-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and animals worldwide, vectoring important pathogens and parasites, including malaria, dengue, filariasis, and Zika virus. Besides mosquito-borne diseases, cancers figure among the leading causes of mortality worldwide. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Notably, there are few contrasting evidences of the relationship between cancer and mosquito-borne diseases, with special reference to malaria. However, analogies at the cellular level for the two diseases were reported. Recently, a significant association of malaria incidence with all cancer mortality in 50 USA states was highlighted and may be explained by the ability of Plasmodium to induce suppression of the immune system. However, it was hypothesized that Anopheles vectors may transmit obscure viruses linked with cancer development. The possible activation of cancer pathways by mosquito feeding events is not rare. For instance, the hamster reticulum cell sarcoma can be transmitted through the bites of Aedes aegypti by a transfer of tumor cells. Furthermore, mosquito bites may influence human metabolic pathways following different mechanisms, leading to other viral infections and/or oncogenesis. Hypersensitivity to mosquito bites is routed by a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy, and oncogenesis. During dengue virus infection, high viral titers, macrophage infiltration, and tumor necrosis factor alpha production in the local tissues are the three key important events that lead to hemorrhage. Overall, basic epidemiological knowledge on the relationships occurring between mosquito vector activity and the spread of cancer is urgently needed, as well as detailed information about the ability of Culicidae to transfer viruses or tumor cells among hosts over time. Current evidences on nanodrugs with multipotency against

  6. Characterization of a Plasmodium falciparum macrophage-migration inhibitory factor homologue.

    Science.gov (United States)

    Cordery, Damien V; Kishore, Uday; Kyes, Sue; Shafi, Mohammed J; Watkins, Katherine R; Williams, Thomas N; Marsh, Kevin; Urban, Britta C

    2007-03-15

    Macrophage-migration inhibitory factor (MIF), one of the first cytokines described, has a broad range of proinflammatory properties. The genome sequencing project of Plasmodium falciparum identified a parasite homologue of MIF. The protein is expressed during the asexual blood stages of the parasite life cycle that cause malarial disease. The identification of a parasite homologue of MIF raised the question of whether it affects monocyte function in a manner similar to its human counterpart. Recombinant P. falciparum MIF (PfMIF) was generated and used in vitro to assess its influence on monocyte function. Antibodies generated against PfMIF were used to determine the expression profile and localization of the protein in blood-stage parasites. Antibody responses to PfMIF were determined in Kenyan children with acute malaria and in control subjects. PfMIF protein was expressed in asexual blood-stage parasites, localized to the Maurer's cleft. In vitro treatment of monocytes with PfMIF inhibited random migration and reduced the surface expression of Toll-like receptor (TLR) 2, TLR4, and CD86. These results indicate that PfMIF is released during blood-stage malaria and potentially modulates the function of monocytes during acute P. falciparum infection.

  7. Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy

    Science.gov (United States)

    Abdi, Abdirahman I.; Kariuki, Symon M; Muthui, Michelle K.; Kivisi, Cheryl A.; Fegan, Gregory; Gitau, Evelyn; Newton, Charles R; Bull, Peter C.

    2015-01-01

    Retinopathy provides a window into the underlying pathology of life-threatening malarial coma (“cerebral malaria”), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called “DC8” and “DC13” have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called “group A” was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology. PMID:26657042

  8. Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression

    Science.gov (United States)

    2014-01-01

    Background Liver involvement in severe Plasmodium falciparum infection is commonly a significant cause of morbidity and mortality among humans. The clinical presentation of jaundice often reflects a certain degree of liver damage. This study investigated the liver pathology of severe P. falciparum malaria as well as the regulation and occurrence of apoptosis in cellular components of formalin-fixed, paraffin-embedded liver tissues. Methods The liver tissues used in the study came from patients who died from P. falciparum malaria with hyperbilirubinaemia (total bilirubin (TB) ≥ 51.3 μmol/L or 3 mg/dl) (12 cases), P. falciparum malaria without hyperbilirubinaemia (TB falciparum malaria were associated with higher TB level. Significant correlations were found between NF-κB p65 expression and apoptosis in Kupffer cells and lymphocytes in the portal tracts. Conclusions Hyperplastic Kupffer cells and portal tract inflammation are two main features found in the liver tissues of severe P. falciparum malaria cases. In addition, NF-κB is associated with Kupffer cells and lymphocyte apoptosis in severe P. falciparum malaria. PMID:24636003

  9. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    Science.gov (United States)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  10. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea

    Science.gov (United States)

    Fowkes, Freya JI; Michon, Pascal; Pilling, Lynn; Ripley, Ruth M; Tavul, Livingstone; Imrie, Heather J; Woods, Caira M; Mgone, Charles S; Luty, Adrian JF; Day, Karen P

    2008-01-01

    Background The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA) should be seen in different host genotypes. Methods To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of α+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA. Results No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA. Conclusion Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms. PMID:18173836

  11. Competition between Plasmodium falciparum strains in clinical infections during in vitro culture adaptation.

    Science.gov (United States)

    Chen, Kexuan; Sun, Ling; Lin, Yingxue; Fan, Qi; Zhao, Zhenjun; Hao, Mingming; Feng, Guohua; Wu, Yanrui; Cui, Liwang; Yang, Zhaoqing

    2014-06-01

    We evaluated the dynamics of parasite populations during in vitro culture adaptation in 15 mixed Plasmodium falciparum infections, which were collected from a hypoendemic area near the China-Myanmar border. Allele types at the msp1 block 2 in the initial clinical samples and during subsequent culture were quantified weekly using a quantitative PCR method. All mixed infections carried two allele types based on the msp1 genotyping result. We also genotyped several polymorphic sites in the dhfr, dhps and mdr1 genes on day 0 and day 28, which showed that most of the common sites analyzed were monomorphic. Two of the three clinical samples mixed at dhps 581 remained stable while one changed to wild-type during the culture. During in vitro culture, we observed a gradual loss of parasite populations with 10 of the 15 mixed infections becoming monoclonal by day 28 based on the msp1 allele type. In most cases, the more abundant msp1 allele types in the clinical blood samples at the beginning of culture became the sole or predominant allele types on day 28. These results suggest that some parasites may have growth advantages and the loss of parasite populations during culture adaptation of mixed infections may lead to biased results when comparing the phenotypes such as drug sensitivity of the culture-adapted parasites.

  12. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Science.gov (United States)

    Tran, Tuan M.; Jones, Marcus B.; Ongoiba, Aissata; Bijker, Else M.; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G.; Whalen, Elizabeth; Presnell, Scott; O’Connell, Elise M.; Kayentao, Kassoum; Doumbo, Ogobara K.; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B.; Ottenhoff, Tom H. M.; Haks, Mariëlle C.; Traore, Boubacar; Kirkness, Ewen F.; Sauerwein, Robert W.; Crompton, Peter D.

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria. PMID:27506615

  13. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Imrie Heather J

    2008-01-01

    Full Text Available Abstract Background The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA should be seen in different host genotypes. Methods To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of α+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA. Results No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA. Conclusion Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms.

  14. Three cases of ARDS: An emerging complication of Plasmodium vivax malaria

    Directory of Open Access Journals (Sweden)

    Sarkar Supriya

    2010-01-01

    Full Text Available Plasmodium (P. vivax malaria is rarely associated with severe complications like acute respiratory distress syndrome (ARDS. We report three cases of ARDS, which occurred as a complication of vivax malaria, from the city of Kolkata. A middle aged man who developed ARDS along with hepatic and renal dysfunction on the day 7 after completion of antimalarial treatment; a 36-year-old man who developed ARDS on the day 5 after completion of antimalarial treatment and a 15-year-old boy who developed ARDS on day 2, before starting anti-malarial drug. In all cases, vivax malaria was diagnosed by peripheral blood film (PBF examination. Associated falciparum infection was excluded by repeated PBF examination, and by negative P. falciparum malaria antigen tests. In all cases, ARDS was diagnosed by the presence of hypoxia with PaO 2 / FiO 2 ratio < 200 and bilateral pulmonary infiltration, and by excluding cardiac disease by echocardiography. All cases typically had dramatic onset of ARDS, and required immediate (within hour of onset of dyspnea institution of mechanical ventilation with high positive end expiratory pressure. All three cases recovered completely, and early ventilator support was life-saving.

  15. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  16. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015.

    Science.gov (United States)

    Bhatt, S; Weiss, D J; Cameron, E; Bisanzio, D; Mappin, B; Dalrymple, U; Battle, K E; Moyes, C L; Henry, A; Eckhoff, P A; Wenger, E A; Briët, O; Penny, M A; Smith, T A; Bennett, A; Yukich, J; Eisele, T P; Griffin, J T; Fergus, C A; Lynch, M; Lindgren, F; Cohen, J M; Murray, C L J; Smith, D L; Hay, S I; Cibulskis, R E; Gething, P W

    2015-10-01

    Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.

  17. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Victoria Carter

    Full Text Available A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.

  18. Gametocytogenesis : the puberty of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Ariey Frédéric

    2004-07-01

    Full Text Available Abstract The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.

  19. Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model

    OpenAIRE

    Robinson, Leanne J.; Rahel Wampfler; Inoni Betuela; Stephan Karl; White, Michael T.; Connie S N Li Wai Suen; Hofmann, Natalie E.; Benson Kinboro; Andreea Waltmann; Jessica Brewster; Lina Lorry; Nandao Tarongka; Lornah Samol; Mariabeth Silkey; Quique Bassat

    2015-01-01

    Editors' Summary Background Malaria is a mosquito-borne parasitic disease caused by Plasmodium falciparum, P. vivax, P. ovale, and P. malariae. Although P. falciparum is responsible for most of the 600,000 malaria deaths that occur every year, P. vivax is the most common, most widely distributed cause of malaria. All malaria parasites have a complex life cycle. When infected mosquitoes bite people, they inject “sporozoites,” a parasitic form that replicates in the liver. After 8–9 days, the l...

  20. The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae.

    Science.gov (United States)

    Arrighi, Romanico B G; Debierre-Grockiego, Françoise; Schwarz, Ralph T; Faye, Ingrid

    2009-02-01

    In contrast to humans, mosquitoes do not have an adaptive immune response to deal with pathogens, and therefore must rely on their innate immune system to deal with invaders. This facilitates the recognition of different microbes on the basis of surface components or antigens. Such antigens have been identified in various types of microbe such as bacteria and fungi, yet none has been identified in the genus protozoa, which includes pathogens such as the malaria parasite, Plasmodium falciparum and Toxoplasma gondii. This study allowed us to test the antigenic properties of protozoan glycosylphosphatidylinositol (GPI) on the mosquito immune system. We found that both P. falciparum GPI and T. gondii GPI induce the strong expression of several antimicrobial peptides following ingestion, and that as a result of the immune response against the GPIs, the number of eggs produced by the mosquito is reduced dramatically. Such effects have been associated with malaria infected mosquitoes, but never associated with a Plasmodium specific antigen. This study demonstrates that protozoan GPIs can be considered as protozoan specific immune elicitors in mosquitoes, and that P. falciparum GPI plays a critical role in the malaria parasite manipulation of the mosquito vector to facilitate its transmission.

  1. Inflammatory reactions in placental blood of Plasmodium falciparum-infected women and high concentrations of soluble E-selectin and a circulating P. falciparum protein in the cord sera

    DEFF Research Database (Denmark)

    Jakobsen, P H; Rasheed, F N; Bulmer, J N

    1998-01-01

    concentrations measured in the placenta. Markers of inflammatory reactions: IL-10, sIL-2R, sIL-4R, and soluble tumour necrosis factor receptor I (sTNF-RI) were found in high concentrations in the placenta, indicating that inflammatory reactions take place in the placenta which has been regarded...

  2. Molecular identification of the chitinase genes in Plasmodium relictum.

    Science.gov (United States)

    Garcia-Longoria, Luz; Hellgren, Olof; Bensch, Staffan

    2014-06-18

    Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions.

  3. Molecular genetics of mosquito resistance to malaria parasites.

    Science.gov (United States)

    Vernick, K D; Oduol, F; Lazzaro, B P; Glazebrook, J; Xu, J; Riehle, M; Li, J

    2005-01-01

    Malaria parasites are transmitted by the bite of an infected mosquito, but even efficient vector species possess multiple mechanisms that together destroy most of the parasites present in an infection. Variation between individual mosquitoes has allowed genetic analysis and mapping of loci controlling several resistance traits, and the underlying mechanisms of mosquito response to infection are being described using genomic tools such as transcriptional and proteomic analysis. Malaria infection imposes fitness costs on the vector, but various forms of resistance inflict their own costs, likely leading to an evolutionary tradeoff between infection and resistance. Plasmodium development can be successfully completed onlyin compatible mosquito-parasite species combinations, and resistance also appears to have parasite specificity. Studies of Drosophila, where genetic variation in immunocompetence is pervasive in wild populations, offer a comparative context for understanding coevolution of the mosquito-malaria relationship. More broadly, plants also possess systems of pathogen resistance with features that are structurally conserved in animal innate immunity, including insects, and genomic datasets now permit useful comparisons o