WorldWideScience

Sample records for plasmodium falciparum clinical

  1. [Plasmodium falciparum malaria: epidemiology and clinical features at Tarapoto Hospital].

    Science.gov (United States)

    Calderon, J; Rodriguez, J; Romero, D

    1997-01-01

    A retrospective study was conducted of the clinical records of 41 patients discharged from a hospital in Tarapoto, Peru, between August 1992 and June 1996 following treatment for Plasmodium falciparum malaria. Patients ranged in age from 18 to 65 years; 25 were male. The cases were uniformly distributed throughout the year. The duration of illness averaged 11 days. At admission, 40 patients had fever, 36 had shaking chills, 29 had headache, 21 had nausea and vomiting, 21 had hyporexia, 15 had pallor, and 13 had splenomegaly. 3 of the 16 women were pregnant. 7 patients reported a history of malaria. The admission diagnosis was malaria in 33 cases. 31 patients were treated with chloroquine; 18 were subsequently treated with pyrimethamine-sulfadoxin and 1 received doxycycline. No cases of grave illness or death occurred. The increasing presence of Plasmodium falciparum malaria in the Peruvian lowlands should promote review of the adequacy of control programs.

  2. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Akanmori, B D; Kurtzhals, J A; Goka, B Q;

    2000-01-01

    The pathogenesis of two of the most severe complications of Plasmodium falciparum malaria, cerebral malaria (CM) and severe malarial anaemia (SA) both appear to involve dysregulation of the immune system. We have measured plasma levels of TNF and its two receptors in Ghanaian children with strictly...... defined cerebral malaria (CM), severe malarial anaemia (SA), or uncomplicated malaria (UM) in two independent studies in an area of seasonal, hyperendemic transmission of P. falciparum. Levels of TNF, soluble TNF receptor 1 (sTNF-R1) and 2 (sTNF-R2) were found to be significantly higher in CM than...... in the other clinical categories of P. falciparum malaria patients. Levels of both receptors depended on clinical category, whereas only sTNF-R1 levels were significantly dependent on parasitemia. Detailed analysis of the interrelationship between these variables resolved this pattern further, and identified...

  3. Epidemiological and clinical features of Plasmodium falciparum malaria in united nations personnel in Western Bahr el Ghazal State, South Sudan.

    Science.gov (United States)

    He, Dengming; Zhang, Yuqi; Liu, Xiaofeng; Guo, Shimin; Zhao, Donghong; Zhu, Yunjie; Li, Huaidong; Kong, Li

    2013-01-01

    Western Bahr el Ghazal State is located in northwestern South Sudan, which is a tropical area subject to Plasmodium falciparum malaria epidemics. The aim of this study is to explore the epidemiological and clinical features of Plasmodium falciparum malaria in United Nations personnel stationed in this area. From July 2006 to June 2009, epidemiological data and medical records of 678 patients with Plasmodium falciparum malaria at the U.N. level 2 hospital were analyzed. The U.N. personnel were divided into individuals not immune to Plasmodium falciparum and individuals semi-immune to Plasmodium falciparum. The patients were divided into a chemoprophylaxis group (non-immune individuals who complied with the chemoprophylaxis regimen, 582 cases) and a no/incomplete chemoprophylaxis group (non-immune individuals who either did not fully comply with chemoprophylaxis or did not use it at all and semi-immune individuals who did not use chemoprophylaxis, 96 cases). Overall morbidity was about 11.3%. There was a significant difference in the morbidity of semi-immune and non-immune individuals (1.3% vs. 15.1%, PPlasmodium falciparum malaria mainly occurred in rainy season. Gastrointestinal symptoms are an important precursor of malaria. Blood smears and rapid diagnostic tests should be performed after the onset of gastrointestinal symptoms. Appropriate chemoprophylaxis is necessary for reducing the severity of malaria.

  4. Guillain-Barré syndrome in Plasmodium falciparum malaria.

    OpenAIRE

    Wijesundere, A.

    1992-01-01

    A patient with Plasmodium falciparum malaria developed peripheral neuropathy. Clinical, cerebro-spinal fluid examination and nerve conduction studies confirmed Guillain-Barré syndrome, not previously reported in P. falciparum malaria.

  5. An in vivo transcriptome data set of natural antisense transcripts from Plasmodium falciparum clinical isolates

    Directory of Open Access Journals (Sweden)

    Amit Kumar Subudhi

    2014-12-01

    Full Text Available Antisense transcription is pervasive among biological systems and one of the products of antisense transcription is natural antisense transcripts (NATs. Emerging evidences suggest that they are key regulators of gene expression. With the discovery of NATs in Plasmodium falciparum, it has been suggested that these might also be playing regulatory roles in this parasite. However, all the reports describing the diversity of NATs have come from parasites in culture condition except for a recent study published by us. In order to explore the in vivo diversity of NATs in P. falciparum clinical isolates, we performed a whole genome expression profiling using a strand-specific 244 K microarray that contains probes for both sense and antisense transcripts. In this report, we describe the experimental procedure and analysis thereof of the microarray data published recently in Gene Expression Omnibus (GEO under accession number GSE44921. This published data provide a wealth of information about the prevalence of NATs in P. falciparum clinical isolates from patients with diverse malaria related disease conditions. Supplementary information about the description and interpretation of the data can be found in a recent publication by Subudhi et al. in Experimental Parasitology (2014.

  6. Clinical factors for severity of Plasmodium falciparum malaria in hospitalized adults in Thailand.

    Directory of Open Access Journals (Sweden)

    Patrick Sagaki

    Full Text Available Plasmodium falciparum is a major cause of severe malaria in Southeast Asia, however, there is limited information regarding clinical factors associated with the severity of falciparum malaria from this region. We performed a retrospective case-control study to compare clinical factors and outcomes between patients with severe and non-severe malaria, and to identify clinical factors associated with the requirement for intensive care unit (ICU admission of patients with severe falciparum malaria among hospitalized adults in Southeast Asia. A total of 255 patients with falciparum malaria in the Hospital for Tropical Diseases in Bangkok, Thailand between 2006 and 2012 were included. We identified 104 patients with severe malaria (cases and 151 patients with non-severe malaria (controls. Patients with falciparum malaria with following clinical and laboratory characteristics on admission (1 referrals, (2 no prior history of malaria, (3 body temperature of >38.5°C, (4 white blood cell counts >10×10(9/µL, (5 presence of schizonts in peripheral blood smears, and (6 albumin concentrations of <3.5 g/dL, were more likely to develop severe malaria (P<0.05. Among patients with severe malaria, patients who met ≥3 of the 2010 WHO criteria had sensitivity of 79.2% and specificity of 81.8% for requiring ICU admission. Multivariate analysis identified the following as independent associated factors for severe malaria requiring ICU admission; (1 ethnicity of Thai [odds ratio (OR = 3.601, 95% confidence interval (CI = 1.011-12.822] or Myanmar [OR = 3.610, 95% CI = 1.138-11.445]; (2 referrals [OR = 3.571, 95% CI = 1.306-9.762]; (3 no prior history of malaria [OR = 5.887, 95% CI = 1.354-25.594]; and (4 albumin concentrations of <3.5 g/dL [OR = 7.200, 95% CI = 1.802-28.759]. Our findings are important for the clinical management of patients with malaria because it can help early identification of patients that could develop

  7. Clinical Factors for Severity of Plasmodium falciparum Malaria in Hospitalized Adults in Thailand

    Science.gov (United States)

    Sagaki, Patrick; Thanachartwet, Vipa; Desakorn, Varunee; Sahassananda, Duangjai; Chamnanchanunt, Supat; Chierakul, Wirongrong; Pitisuttithum, Punnee; Ruangkanchanasetr, Prajej

    2013-01-01

    Plasmodium falciparum is a major cause of severe malaria in Southeast Asia, however, there is limited information regarding clinical factors associated with the severity of falciparum malaria from this region. We performed a retrospective case-control study to compare clinical factors and outcomes between patients with severe and non-severe malaria, and to identify clinical factors associated with the requirement for intensive care unit (ICU) admission of patients with severe falciparum malaria among hospitalized adults in Southeast Asia. A total of 255 patients with falciparum malaria in the Hospital for Tropical Diseases in Bangkok, Thailand between 2006 and 2012 were included. We identified 104 patients with severe malaria (cases) and 151 patients with non-severe malaria (controls). Patients with falciparum malaria with following clinical and laboratory characteristics on admission (1) referrals, (2) no prior history of malaria, (3) body temperature of >38.5°C, (4) white blood cell counts >10×109/µL, (5) presence of schizonts in peripheral blood smears, and (6) albumin concentrations of <3.5 g/dL, were more likely to develop severe malaria (P<0.05). Among patients with severe malaria, patients who met ≥3 of the 2010 WHO criteria had sensitivity of 79.2% and specificity of 81.8% for requiring ICU admission. Multivariate analysis identified the following as independent associated factors for severe malaria requiring ICU admission; (1) ethnicity of Thai [odds ratio (OR) = 3.601, 95% confidence interval (CI) = 1.011–12.822] or Myanmar [OR = 3.610, 95% CI = 1.138–11.445]; (2) referrals [OR = 3.571, 95% CI = 1.306–9.762]; (3) no prior history of malaria [OR = 5.887, 95% CI = 1.354–25.594]; and (4) albumin concentrations of <3.5 g/dL [OR = 7.200, 95% CI = 1.802–28.759]. Our findings are important for the clinical management of patients with malaria because it can help early identification of patients that could

  8. Asthma and atopic dermatitis are associated with increased risk of clinical Plasmodium falciparum malaria

    Science.gov (United States)

    Herrant, Magali; Loucoubar, Cheikh; Bassène, Hubert; Gonçalves, Bronner; Boufkhed, Sabah; Diene Sarr, Fatoumata; Fontanet, Arnaud; Tall, Adama; Baril, Laurence; Mercereau-Puijalon, Odile; Mécheri, Salaheddine; Sakuntabhai, Anavaj; Paul, Richard

    2013-01-01

    Objectives To assess the impact of atopy and allergy on the risk of clinical malaria. Design A clinical and immunological allergy cross-sectional survey in a birth cohort of 175 children from 1 month to 14 years of age followed for up to 15 years in a longitudinal open cohort study of malaria in Senegal. Malaria incidence data were available for 143 of these children (aged 4 months to 14 years of age) for up to 15 years. Mixed-model regression analysis was used to determine the impact of allergy status on malaria incidence, adjusting for age, gender, sickle-cell trait and force of infection. Main outcome measures Asthma, allergic rhinoconjunctivitis and atopic dermatitis status, the number of clinical Plasmodium falciparum malaria episodes since birth and associated parasite density. Results 12% of the children were classified as asthmatic and 10% as having atopic dermatitis. These groups had respectively a twofold (OR 2.12 95%; CI 1.46 to 3.08; p=8×10−5) and threefold (OR 3.15; 1.56 to 6.33; p=1.3×10−3) increase in the risk of clinical P falciparum malaria once older than the age of peak incidence of clinical malaria (3–4 years of age). They also presented with higher P falciparum parasite densities (asthma: mean 105.3 parasites/μL±SE 41.0 vs 51.3±9.7; p=6.2×10−3. Atopic dermatitis: 135.4±70.7 vs 52.3±11.0; p=0.014). There was no effect of allergy on the number of non-malaria clinical presentations. Individuals with allergic rhinoconjunctivitis did not have an increased risk of clinical malaria nor any difference in parasite densities. Conclusions These results demonstrate that asthma and atopic dermatitis delay the development of clinical immunity to P falciparum. Despite the encouraging decrease in malaria incidence rates in Africa, a significant concern is the extent to which the increase in allergy will exacerbate the burden of malaria. Given the demonstrated antiparasitic effect of antihistamines, administration to atopic

  9. Influences of intermittent preventive treatment and persistent multiclonal Plasmodium falciparum infections on clinical malaria risk.

    Directory of Open Access Journals (Sweden)

    Anne Liljander

    Full Text Available BACKGROUND: Intermittent preventive treatment (IPT of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria. MATERIAL AND METHODS: The study included 2227 Ghanaian children (3-59 months who were given sulphadoxine-pyrimethamine (SP bimonthly, artesunate plus amodiaquine (AS+AQ monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up. RESULTS: Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment. CONCLUSION: Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that

  10. Pan-Plasmodium band sensitivity for Plasmodium falciparum detection in combination malaria rapid diagnostic tests and implications for clinical management.

    Science.gov (United States)

    Gatton, Michelle L; Rees-Channer, Roxanne R; Glenn, Jeffrey; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; González, Iveth J; Cunningham, Jane

    2015-03-18

    Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.

  11. Multiple clinical episodes of Plasmodium falciparum malaria in a low transmission intensity setting: exposure versus immunity.

    Science.gov (United States)

    Rono, Josea; Färnert, Anna; Murungi, Linda; Ojal, John; Kamuyu, Gathoni; Guleid, Fatuma; Nyangweso, George; Wambua, Juliana; Kitsao, Barnes; Olotu, Ally; Marsh, Kevin; Osier, Faith Ha

    2015-05-13

    Epidemiological studies indicate that some children experience many more episodes of clinical malaria than their age mates in a given location. Whether this is as a result of the micro-heterogeneity of malaria transmission with some children effectively getting more exposure to infectious mosquitoes than others, or reflects a failure in the acquisition of immunity needs to be elucidated. Here, we investigated the determinants of increased susceptibility to clinical malaria by comparing the intensity of exposure to Plasmodium falciparum and the acquisition of immunity in children at the extreme ends of the over-dispersed distribution of the incidence of clinical malaria. The study was nested within a larger cohort in an area where the intensity of malaria transmission was low. We identified children who over a five-year period experienced 5 to 16 clinical malaria episodes (children at the tail-end of the over-dispersed distribution, n = 35), remained malaria-free (n = 12) or had a single episode (n = 26). We quantified antibodies against seven Plasmodium falciparum merozoite antigens in plasma obtained at six cross-sectional surveys spanning these five years. We analyzed the antibody responses to identify temporal dynamics that associate with disease susceptibility. Children experiencing multiple episodes of malaria were more likely to be parasite positive by microscopy at cross-sectional surveys (X (2) test for trend 14.72 P = 0.001) and had a significantly higher malaria exposure index, than those in the malaria-free or single episode groups (Kruskal-Wallis test P = 0.009). In contrast, the five-year temporal dynamics of anti-merozoite antibodies were similar in the three groups. Importantly in all groups, antibody levels were below the threshold concentrations previously observed to be correlated with protective immunity. We conclude that in the context of a low malaria transmission setting, susceptibility to clinical malaria is not accounted

  12. Antibodies and Plasmodium falciparum merozoites

    NARCIS (Netherlands)

    Ramasamy, R; Ramasamy, M; Yasawardena, S

    There is considerable interest in using merozoite proteins in a vaccine against falciparum malaria. Observations that antibodies to merozoite surface proteins block invasion are a basis for optimism. This article draws attention to important and varied aspects of how antibodies to Plasmodium

  13. Plasmodium falciparum parasitaemia and clinical malaria among school children living in a high transmission setting in western Kenya.

    Science.gov (United States)

    Kepha, Stella; Nikolay, Birgit; Nuwaha, Fred; Mwandawiro, Charles S; Nankabirwa, Joaniter; Ndibazza, Juliet; Cano, Jorge; Matoke-Muhia, Damaris; Pullan, Rachel L; Allen, Elizabeth; Halliday, Katherine E; Brooker, Simon J

    2016-03-11

    Malaria among school children is increasingly receiving attention, yet the burden of malaria in this age group is poorly defined. This study presents data on malaria morbidity among school children in Bungoma county, western Kenya. This study investigated the burden and risk factors of Plasmodium falciparum infection, clinical malaria, and anaemia among 2346 school children aged 5-15 years, who were enrolled in an individually randomized trial evaluating the effect of anthelmintic treatment on the risks of malaria. At baseline, children were assessed for anaemia and nutritional status and information on household characteristics was collected. Children were followed-up for 13 months to assess the incidence of clinical malaria by active detection, and P. falciparum infection and density evaluated using repeated cross-sectional surveys over 15 months. On average prevalence of P. falciparum infection was 42% and ranged between 32 and 48% during the five cross-sectional surveys. Plasmodium falciparum prevalence was significantly higher among boys than girls. The overall incidence of clinical malaria was 0.26 episodes per person year (95% confidence interval, 0.24-0.29) and was significantly higher among girls (0.23 versus 0.31, episodes per person years). Both infection prevalence and clinical disease varied by season. In multivariable analysis, P. falciparum infection was associated with being male, lower socioeconomic status and stunting. The risk of clinical malaria was associated with being female. These findings show that the burden of P. falciparum parasitaemia, clinical malaria and anaemia among school children is not insignificant, and suggest that malaria control programmes should be expanded to include this age group.

  14. Competition between Plasmodium falciparum strains in clinical infections during in vitro culture adaptation.

    Science.gov (United States)

    Chen, Kexuan; Sun, Ling; Lin, Yingxue; Fan, Qi; Zhao, Zhenjun; Hao, Mingming; Feng, Guohua; Wu, Yanrui; Cui, Liwang; Yang, Zhaoqing

    2014-06-01

    We evaluated the dynamics of parasite populations during in vitro culture adaptation in 15 mixed Plasmodium falciparum infections, which were collected from a hypoendemic area near the China-Myanmar border. Allele types at the msp1 block 2 in the initial clinical samples and during subsequent culture were quantified weekly using a quantitative PCR method. All mixed infections carried two allele types based on the msp1 genotyping result. We also genotyped several polymorphic sites in the dhfr, dhps and mdr1 genes on day 0 and day 28, which showed that most of the common sites analyzed were monomorphic. Two of the three clinical samples mixed at dhps 581 remained stable while one changed to wild-type during the culture. During in vitro culture, we observed a gradual loss of parasite populations with 10 of the 15 mixed infections becoming monoclonal by day 28 based on the msp1 allele type. In most cases, the more abundant msp1 allele types in the clinical blood samples at the beginning of culture became the sole or predominant allele types on day 28. These results suggest that some parasites may have growth advantages and the loss of parasite populations during culture adaptation of mixed infections may lead to biased results when comparing the phenotypes such as drug sensitivity of the culture-adapted parasites.

  15. Cytokine profiling in immigrants with clinical malaria after extended periods of interrupted exposure to Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Gemma Moncunill

    Full Text Available Immunity to malaria is believed to wane with time in the absence of exposure to Plasmodium falciparum infection, but immunoepidemiological data on longevity of immunity remain controversial. We quantified serum cytokines and chemokines by suspension array technology as potential biomarkers for durability of immunity in immigrants with clinical malaria after years without parasite exposure. These were compared to serum/plasma profiles in naïve adults (travelers and semi-immune adults under continuous exposure, with malaria, along with immigrant and traveler patients without malaria. Immigrants had higher levels of IL-2, IL-5 and IL-8 compared to semi-immune adults with malaria (P≤0.0200. Time since immigration correlated with increased IL-2 (rho=0.2738P=0.0495 and IFN-γ (rho=0.3044P=0.0282. However, immigrants did not show as high IFN-γ concentrations as travelers during a first malaria episode (P<0.0001. Immigrants and travelers with malaria had higher levels of IFN-γ, IL-6, and IL-10 (P<0.0100 than patients with other diseases, and IL-8 and IL-1β were elevated in immigrants with malaria (P<0.0500. Therefore, malaria patients had a characteristic strong pro-inflammatory/Th1 signature. Upon loss of exposure, control of pro-inflammatory responses and tolerance to P. falciparum appeared to be reduced. Understanding the mechanisms to maintain non-pathogenic effector responses is important to develop new malaria control strategies.

  16. Spleen volume and clinical disease manifestations of severe Plasmodium falciparum malaria in African children.

    Science.gov (United States)

    Kotlyar, Simon; Nteziyaremye, Julius; Olupot-Olupot, Peter; Akech, Samuel O; Moore, Christopher L; Maitland, Kathryn

    2014-05-01

    Plasmodium falciparum malaria is common in African children. Severe disease manifestations include severe malarial anemia (SMA) and cerebral malaria (CM). In vitro studies suggest that splenic sequestration is associated with SMA and protective against CM. We sought to characterize the relationship between ultrasonographically derived spleen volume (SV), clinical manifestations and outcome. We conducted a prospective observational study of severe malaria and SV in children aged 3 months to 12 years in Eastern Uganda. An SV normogram was generated from 186 healthy controls and adjusted for total body surface area (TBSA). Children with severe P. falciparum malaria were classified according to disease phenotype, and SV z-scores were compared for cases and controls to assess the degree of spleen enlargement. One hundred and four children with severe malaria, median age 19.2 months, were enrolled; 54 were classified as having SMA and 15 with CM. Mortality was 27% in the CM group vs 1.9% in the SMA group. TBSA-adjusted SV z-scores were lower in children with CM compared to SMA (1.98 [95% CI 1.38-2.57] vs 2.73 [95% CI 2.41-3.04]; p=0.028). Mean SV z-scores were lower in children who died (1.20 [95% CI 0.14-2.25]) compared to survivors (2.58 [95% CI 2.35-2.81]); p=0.004. SV is lower in CM compared to SMA. Severe malaria with no increase in SV z-score may be associated with mortality.

  17. Plasmodium falciparum malaria associated with ABO blood ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria associated with ABO blood phenotypes and ... out to investigate the relationship between blood group types and P. falciparum ... of long lasting treated (LLT) mosquito bed nets and the prevalence of infection.

  18. Tetany with Plasmodium falciparum infection.

    Science.gov (United States)

    Singh, P S; Singh, Neha

    2012-07-01

    Plasmodium falciparum is a malarial infection with high morbidity and wide spectrum of atypical presentation. Here we report an unusual presentation of malaria as tetany with alteration in calcium,phosphate and magnesium metabolism Hypocalcaemia in malaria can cause prolonged Q-Tc interval which could be arisk factor for quinine cardiotoxicity and sudden death Hence monitoring of serum calcium in severe malarial infection and cautious use of quinine in such patients is very important in management

  19. Exploring the folate pathway in Plasmodium falciparum

    OpenAIRE

    Hyde, John E.

    2005-01-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, t...

  20. Analysis of the Clinical Profile in Patients with Plasmodium falciparum Malaria and Its Association with Parasite Density.

    Science.gov (United States)

    Mangal, Praveen; Mittal, Shilpa; Kachhawa, Kamal; Agrawal, Divya; Rath, Bhabagrahi; Kumar, Sanjay

    2017-01-01

    Malaria remains a major health hazard in the modern world, particularly in developing countries. In Plasmodium falciparum malaria, there is a direct correlation between asexual erythrocytic stage parasite density and disease severity. Accordingly, the correlations between parasite density and various clinical presentations, severity, and outcome were examined in falciparum malaria in India. The study was conducted in a tertiary health-care center in North India. Of 100 cases of falciparum malaria, 65 patients were male and 35 were female. A total of 54 patients were in the uncomplicated group and 46 patients were in the complicated malaria group. Fever, anemia, icterus, splenomegaly, hepatomegaly, and hepatosplenomegaly were common clinical findings. All clinical findings were significantly more common in the complicated malaria group and patients with a high parasite density than in the uncomplicated group and those with a low parasite density. All patients in the uncomplicated malaria group had a parasite density of 5%, and the difference between groups was statistically significant. The incidence of cerebral malaria was significantly higher in cases with a high parasite density; 58.33% mortality was observed in these cases. Cerebral malaria and hyperbilirubinemia was the most frequently encountered combination of complications. In P. falciparum malaria, parasite density was associated with complications and poor clinical outcomes. These results may inform treatment decisions and suggest that a threshold parasite density of 5% is informative.

  1. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity

    Directory of Open Access Journals (Sweden)

    Arinaminpathy Nimalan

    2008-01-01

    Full Text Available Abstract Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1. It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.

  2. Telomeric Heterochromatin in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Rosaura Hernandez-Rivas

    2010-01-01

    Full Text Available Until very recently, little was known about the chromatin structure of the telomeres and subtelomeric regions in Plasmodium falciparum. In yeast and Drosophila melanogaster, chromatin structure has long been known to be an important aspect in the regulation and functioning of these regions. Telomeres and subtelomeric regions are enriched in epigenetic marks that are specific to heterochromatin, such as methylation of lysine 9 of histone H3 and lysine 20 of histone H4. In P. falciparum, histone modifications and the presence of both the heterochromatin “writing” (PfSir2, PKMT and “reading” (PfHP1 machinery at telomeric and subtelomeric regions indicate that these regions are likely to have heterochromatic structure that is epigenetically regulated. This structure may be important for telomere functions such as the silencing of the var gene family implicated in the cytoadherence and antigenic variation of these parasites.

  3. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    Science.gov (United States)

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

  4. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...

  5. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria

    DEFF Research Database (Denmark)

    Cavanagh, David R; Dodoo, Daniel; Hviid, Lars

    2004-01-01

    This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the bl...

  6. Molecular characterization and phylogenetic analysis of Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium cynomolgi

    National Research Council Canada - National Science Library

    Chatterjee, Soumendranath; Mukhopadhyay, Priyanka; Bandyopadhyay, Raktima; Dhal, Paltu; Biswal, Debraj; Bandyopadhyay, Prabir Kumar

    18S ribosomal RNA gene sequences of different species of Plasmodium were aligned and analyzed to determine the molecular diversity among different species of Plasmodium. AT content of P. cynomolgi, P. ovale, P. falciparum, P. vivax and P...

  7. Desferrioxamine suppresses Plasmodium falciparum in Aotus monkeys.

    Science.gov (United States)

    Pollack, S; Rossan, R N; Davidson, D E; Escajadillo, A

    1987-02-01

    Clinical observation has suggested that iron deficiency may be protective in malaria, and we have found that desferrioxamine (DF), an iron-specific chelating agent, inhibited Plasmodium falciparum growth in vitro. It was difficult to be confident that DF would be effective in an intact animal, however, because continuous exposure to DF was required in vitro and, in vivo, DF is rapidly excreted. Also, the in vitro effect of DF was overcome by addition of iron to the culture and in vivo there are potentially high local iron concentrations when iron is absorbed from the diet or released from reticuloendothelial cells. We now show that DF given by constant subcutaneous infusion does suppress parasitemia in P. falciparum-infected Aotus monkeys.

  8. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India.

    Science.gov (United States)

    Rao, Pavitra N; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C; Carlton, Jane M

    2016-06-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy.

  9. Clinical trials of artesunate plus sulfadoxine-pyrimethamine for Plasmodium falciparum malaria in Afghanistan: maintained efficacy a decade after introduction.

    Science.gov (United States)

    Awab, Ghulam Rahim; Imwong, Mallika; Pukrittayakamee, Sasithon; Alim, Fazel; Hanpithakpong, Warunee; Tarning, Joel; Dondorp, Arjen M; Day, Nicholas P J; White, Nicholas J; Woodrow, Charles J

    2016-02-25

    Combination therapy with artesunate plus sulfadoxine-pyrimethamine (SP) was adopted as recommended treatment for Plasmodium falciparum infection in Afghanistan in 2003. A series of prospective clinical studies examining the efficacy of artesunate plus sulfadoxine-pyrimethamine (AS + SP) against P. falciparum were undertaken in sentinel sites in Afghanistan from 2007 to 2014, accompanied by relevant molecular studies. The first study was a randomized trial of AS + SP versus dihydroartemisinin-piperaquine, while two subsequent studies were standard therapeutic efficacy studies of AS + SP. Three hundred and three patients were enrolled across four provinces in the north and east of the country. Curative efficacy was high in all the trials, with an adequate clinical and parasitological response (ACPR) of more than 95 % in all groups and trial stages. Genotyping for drug-resistance alleles at dhfr indicated fixation of the S108 N mutation and a prevalence of the C59R mutation of approximately 95 % across all sites. Other mutations in dhfr and dhps remained rare or absent entirely, although five isolates from the first trial carried the dhps triple mutant SGEGA haplotype. In the last study undertaken in 2012-2014 the K13 artemisinin resistance marker was examined; only two of 60 successfully sequenced samples carried a K13-propeller mutation. These data confirm maintained efficacy 10 years after introduction of artesunate plus SP as combination treatment of P. falciparum in Afghanistan. The molecular data indicate that despite a substantial fall in incidence, resistance has not developed to artemisinins, or intensified to the ACT partner drug components. Trial Registration http://www.clinicaltrials.gov/ct NCT00682578, NCT01115439 and NCT01707199.

  10. Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates

    Directory of Open Access Journals (Sweden)

    Eisen Damon P

    2006-07-01

    Full Text Available Abstract Background As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. Methods Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP. These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. Results PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. Conclusion This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens.

  11. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during

  12. Expression of variant surface antigens by Plasmodium falciparum parasites in the peripheral blood of clinically immune pregnant women indicates ongoing placental infection

    DEFF Research Database (Denmark)

    Ofori, Michael F; Staalsoe, Trine; Bam, Victoria

    2003-01-01

    Placenta-sequestered Plasmodium falciparum parasites that cause pregnancy-associated malaria (PAM) in otherwise clinically immune women express distinct variant surface antigens (VSA(PAM)) not expressed by parasites in nonpregnant individuals. We report here that parasites from the peripheral blood...... of clinically immune pregnant women also express VSA(PAM), making them a convenient source of VSA(PAM) expressors for PAM vaccine research....

  13. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Bischoff, Emmanuel; Proux, Caroline

    2008-01-01

    BACKGROUND: Pregnancy-associated malaria (PAM) causing maternal anemia and low birth weight is among the multiple manifestations of Plasmodium falciparum malaria. Infected erythrocytes (iEs) can acquire various adhesive properties that mediate the clinical severity of malaria. Recent advances...

  14. Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kofoed, Poul-Erik

    2015-01-01

    -lumefantrine for uncomplicated Plasmodium falciparum malaria, to define therapeutic day 7 lumefantrine concentrations and identify patient factors that substantially alter these concentrations. A systematic review of PubMed, Embase, Google Scholar, ClinicalTrials.gov and conference proceedings identified all relevant studies...

  15. Plasmodium falciparum Polymorphisms associated with ex vivo drug susceptibility and clinical effectiveness of artemisinin-based combination therapies in Benin.

    Science.gov (United States)

    Dahlström, Sabina; Aubouy, Agnès; Maïga-Ascofaré, Oumou; Faucher, Jean-François; Wakpo, Abel; Ezinmègnon, Sèm; Massougbodji, Achille; Houzé, Pascal; Kendjo, Eric; Deloron, Philippe; Le Bras, Jacques; Houzé, Sandrine

    2014-01-01

    Artemisinin-based combination therapies (ACTs) are the main option to treat malaria, and their efficacy and susceptibility must be closely monitored to avoid resistance. We assessed the association of Plasmodium falciparum polymorphisms and ex vivo drug susceptibility with clinical effectiveness. Patients enrolled in an effectiveness trial comparing artemether-lumefantrine (n = 96), fixed-dose artesunate-amodiaquine (n = 96), and sulfadoxine-pyrimethamine (n = 48) for the treatment of uncomplicated malaria 2007 in Benin were assessed. pfcrt, pfmdr1, pfmrp1, pfdhfr, and pfdhps polymorphisms were analyzed pretreatment and in recurrent infections. Drug susceptibility was determined in fresh baseline isolates by Plasmodium lactate dehydrogenase enzyme-linked immunosorbent assay (ELISA). A majority had 50% inhibitory concentration (IC50) estimates (the concentration required for 50% growth inhibition) lower than those of the 3D7 reference clone for desethylamodiaquine, lumefantrine, mefloquine, and quinine and was considered to be susceptible, while dihydroartemisinin and pyrimethamine IC50s were higher. No association was found between susceptibility to the ACT compounds and treatment outcome. Selection was observed for the pfmdr1 N86 allele in artemether-lumefantrine recrudescences (recurring infections) (4/7 [57.1%] versus 36/195 [18.5%]), and of the opposite allele, 86Y, in artesunate-amodiaquine reinfections (new infections) (20/22 [90.9%] versus 137/195 [70.3%]) compared to baseline infections. The importance of pfmdr1 N86 in lumefantrine tolerance was emphasized by its association with elevated lumefantrine IC50s. Genetic linkage between N86 and Y184 was observed, which together with the low frequency of 1246Y may explain regional differences in selection of pfmdr1 loci. Selection of opposite alleles in artemether-lumefantrine and artesunate-amodiaquine recurrent infections supports the strategy of multiple first-line treatment. Surveillance based on clinical, ex

  16. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia

    DEFF Research Database (Denmark)

    Arévalo-Herrera, Myriam; Lopez-Perez, Mary; Medina, Luz

    2015-01-01

    by fever, chills, headache, sweating, myalgia/arthralgia and parasitaemia ≤ 20,000 parasites/μL. Fever, tachycardia, pallor and abdominal pain on palpation were more frequent in P. falciparum patients, whereas mild hepatomegaly and splenomegaly were mostly observed with P. vivax. Non-severe anaemia (Hb 7...

  17. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  18. Plasmodium falciparum Malaria, Southern Algeria, 2007

    OpenAIRE

    Boubidi, Saïd C; Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria.

  19. Congenital Plasmodium falciparum Malaria in Washington, DC.

    Science.gov (United States)

    Del Castillo, Melissa; Szymanski, Ann Marie; Slovin, Ariella; Wong, Edward C C; DeBiasi, Roberta L

    2017-01-11

    Congenital malaria is rare in the United States, but is an important diagnosis to consider when evaluating febrile infants. Herein, we describe a case of congenital Plasmodium falciparum malaria in a 2-week-old infant born in the United States to a mother who had emigrated from Nigeria 3 months before delivery. © The American Society of Tropical Medicine and Hygiene.

  20. Plasmodium falciparum Malaria, Southern Algeria, 2007

    Science.gov (United States)

    Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria. PMID:20113565

  1. Plasmodium falciparum Malaria, Southern Algeria, 2007

    OpenAIRE

    Boubidi, Saïd C; Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria.

  2. Survival strategies of the malarial parasite Plasmodium falciparum

    OpenAIRE

    Ramya, TNC; Surolia, Namita; Surolia, Avadhesha

    2002-01-01

    Plasmodium falciparum, the protozoan parasite causing falciparum malaria, is undoubtedly highly versatile when it comes to survival and defence strategies. Strategies adopted by the asexual blood stages of Plasmodium range from unique pathways of nutrient uptake to immune evasion strategies and multiple drug resistance. Studying the survival strategies of Plasmodium could help us envisage strategies of tackling one of the worst scourges of mankind.

  3. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant......Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...

  4. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  5. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    NARCIS (Netherlands)

    Teirlinck, A.C.; McCall, M.B.B.; Roestenberg, M.; Scholzen, A.; Woestenenk, R.M.; Mast, Q. de; Ven, A.J.A.M. van der; Hermsen, C.C.; Luty, A.J.F.; Sauerwein, R.W.

    2011-01-01

    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNgamma) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation

  6. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    NARCIS (Netherlands)

    Tran, T.M.; Jones, M.B.; Ongoiba, A.; Bijker, E.M.; Schats, R.; Venepally, P.; Skinner, J.; Doumbo, S.; Quinten, E.; Visser, L.G.; Whalen, E.; Presnell, S.; O'Connell, E.M.; Kayentao, K.; Doumbo, O.K.; Chaussabel, D.; Lorenzi, H.; Nutman, T.B.; Ottenhoff, T.H.; Haks, M.C.; Traore, B.; Kirkness, E.F.; Sauerwein, R.W.; Crompton, P.D.

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective,

  7. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    Directory of Open Access Journals (Sweden)

    Lopez Ana

    2012-11-01

    Full Text Available Abstract Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77 for pvama-1; 23 (n = 84 for pvcsp; and 23 (n = 35 for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2 was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30 block 2 (K1, MAD20, and RO33, and both allelic families described for the central domain of pfmsp-2 (n = 11 (3D7 and FC27 were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  8. Gametocytogenesis : the puberty of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Ariey Frédéric

    2004-07-01

    Full Text Available Abstract The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.

  9. A nuclear targeting system in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Kochakarn Theerarat

    2010-05-01

    Full Text Available Abstract Background The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the P. falciparum nucleus using an exogenous nuclear localization sequence is reported here. Methods To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP. The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for P. falciparum nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy. Results The nuclear localization sequence of Gal4 is functional in P. falciparum. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization. Conclusions The Gal4 fusion technique enables specific transport of a protein of choice into the P. falciparum nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and P. falciparum. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues

  10. Surface antigens and virulence in Plasmodium falciparum malaria

    OpenAIRE

    Normark, Johan

    2008-01-01

    Plasmodium falciparum is an intracellular protozoan that may cause severe forms of malaria. It is a major world health hazard and reaps the highest toll among the children and pregnant mothers of the developing world. An Anopheles mosquito vector injects the pathogen when taking a blood meal. After multiplication in cells of the liver, the parasite escapes and infects red blood cells in a cyclic manner and this is when the clinical manifestations of malaria as a disease beco...

  11. Plasmodium falciparum malaria in infants under 5 kg: retrospective surveillance of hospital records in five sub-saharan African countries.

    Science.gov (United States)

    Alao, Maroufou J; Gbadoé, Adama D; Meremikwu, Martin; Tshefu, Antoinette; Tiono, Alfred B; Cousin, Marc; Hamed, Kamal

    2013-04-01

    To investigate the disease burden, clinical features, treatment and outcomes of Plasmodium falciparum malaria in neonates and infants weighing Plasmodium falciparum malaria exists in this subpopulation. Further epidemiological data are needed to estimate malaria morbidity and mortality in young infants. Moreover, clinical evidence on the efficacy and safety of artemisinin-based combination therapies in this subpopulation is warranted.

  12. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Jørgen

    2007-01-01

    BACKGROUND: Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism......55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. RESULTS: Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were...... falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement...

  13. Exploring the folate pathway in Plasmodium falciparum.

    Science.gov (United States)

    Hyde, John E

    2005-06-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.

  14. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...

  15. Complement evasion by Plasmodium falciparum

    OpenAIRE

    Holopainen, Saila

    2008-01-01

    Patologian oppiaine Malaria remains one of the major health problems in many tropical countries, especially in sub-Saharan Africa. Among the most characteristic features of the malaria pathogens, protozoan parasites of the genus Plasmodium, is their ability to evade the immune defences of the host for extended periods of time. The complement system (C) is an essential part of the innate system in the first line of defense. It consists of over 30 soluble or membrane-bound components. C...

  16. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status

    Directory of Open Access Journals (Sweden)

    Cazenave Pierre-André

    2007-01-01

    Full Text Available Abstract Background There is an increase of serum levels of IgE during Plasmodium falciparum infections in individuals living in endemic areas. These IgEs either protect against malaria or increase malaria pathogenesis. To get an insight into the exact role played by IgE in the outcome of P. falciparum infection, total IgE levels and functional anti-parasite IgE response were studied in children and adults, from two different endemic areas Gabon and India, exhibiting either uncomplicated malaria, severe non cerebral malaria or cerebral malaria, in comparison with control individuals. Methodology and results Blood samples were collected from controls and P. falciparum-infected patients before treatment on the day of hospitalization (day 0 in India and, in addition, on days 7 and 30 after treatment in Gabon. Total IgE levels were determined by ELISA and functional P. falciparum-specific IgE were estimated using a mast cell line RBL-2H3 transfected with a human Fcε RI α-chain that triggers degranulation upon human IgE cross-linking. Mann Whitney and Kruskall Wallis tests were used to compare groups and the Spearman test was used for correlations. Total IgE levels were confirmed to increase upon infection and differ with level of transmission and age but were not directly related to the disease phenotype. All studied groups exhibited functional parasite-specific IgEs able to induce mast cell degranulation in vitro in the presence of P. falciparum antigens. Plasma IgE levels correlated with those of IL-10 in uncomplicated malaria patients from Gabon. In Indian patients, plasma IFN-γ , TNF and IL-10 levels were significantly correlated with IgE concentrations in all groups. Conclusion Circulating levels of total IgE do not appear to correlate with protection or pathology, or with anti-inflammatory cytokine pattern bias during malaria. On the contrary, the P. falciparum-specific IgE response seems to contribute to the control of parasites, since

  17. Artemisinin-Resistant Plasmodium falciparum Malaria.

    Science.gov (United States)

    Fairhurst, Rick M; Dondorp, Arjen M

    2016-06-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.

  18. High prevalence of drug-resistance mutations in Plasmodium falciparum and Plasmodium vivax in southern Ethiopia

    OpenAIRE

    Schunk, Mirjam; Kumma, Wondimagegn P.; Barreto Miranda, Isabel; Maha E. Osman; Roewer, Susanne; Alano, Abraham; Loescher, Thomas; Bienzle, Ulrich; Mockenhaupt, Frank P

    2006-01-01

    Background: In Ethiopia, malaria is caused by both Plasmodium falciparum and Plasmodium vivax. Drug resistance of P. falciparum to sulfadoxine-pyrimethamine (SP) and chloroquine (CQ) is frequent and intense in some areas. Methods: In 100 patients with uncomplicated malaria from Dilla, southern Ethiopia, P. falciparum dhfr and dhps mutations as well as P. vivax dhfr polymorphisms associated with resistance to SP and P. falciparum pfcrt and pfmdr1 mutations conferring CQ resistance were assesse...

  19. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    Science.gov (United States)

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  20. Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

    Science.gov (United States)

    Taylor, Steve M.; Cerami, Carla; Fairhurst, Rick M.

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite

  1. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    Directory of Open Access Journals (Sweden)

    Steve M Taylor

    Full Text Available Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS, hemoglobin C (HbC, and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait. Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1 to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and

  2. Congenital Plasmodium falciparum infection in neonates in Muheza District, Tanzania

    Directory of Open Access Journals (Sweden)

    Kimera Sharadhuli I

    2008-07-01

    Full Text Available Abstract Background Although recent reports on congenital malaria suggest that the incidence is increasing, it is difficult to determine whether the clinical disease is due to parasites acquired before delivery or as a result of contamination by maternal blood at birth. Understanding of the method of parasite acquisition is important for estimating the time incidence of congenital malaria and design of preventive measures. The aim of this study was to determine whether the first Plasmodium falciparum malaria disease in infants is due to same parasites present on the placenta at birth. Methods Babies born to mothers with P. falciparum parasites on the placenta detected by PCR were followed up to two years and observed for malaria episodes. Paired placental and infant peripheral blood samples at first malaria episode within first three months of life were genotyped (msp2 to determine genetic relatedness. Selected amplifications from nested PCR were sequenced and compared between pairs. Results Eighteen (19.1% out of 95 infants who were followed up developed clinical malaria within the first three months of age. Eight pairs (60% out of 14 pairs of sequenced placental and cord samples were genetically related while six (40% were genetically unrelated. One pair (14.3% out of seven pairs of sequenced placental and infants samples were genetically related. In addition, infants born from primigravidae mothers were more likely to be infected with P. falciparum (P P. falciparum infection earlier than those from secundigravidae and primigravidae mothers (RR = 1.43. Conclusion Plasmodium falciparum malaria parasites present on the placenta as detected by PCR are more likely to result in clinical disease (congenital malaria in the infant during the first three months of life. However, sequencing data seem to question the validity of this likelihood. Therefore, the relationship between placental parasites and first clinical disease need to be confirmed in

  3. Plasmodium Falciparum Versus Plasmodium Vivax: Which Is a Lesser Evil?

    Directory of Open Access Journals (Sweden)

    Rathod Chirag C, Deshpande Shubhangi V, Rana Himanshu M, Godbole Varsha Y, Patel Amul, Patel Vaibhav, Darad Dimple, Panchal Maulik

    2012-09-01

    Full Text Available Background: With changing spectrum, different grades of biochemical & haematological changes generally found to be more severe with p. falciparum, now frequently seen with p. vivax. Present study intends to find species specific differences in diseases progression & complications. Methodology: A retrospective study of Malaria-patients admitted at GMERS Medical College & Hospital, Vadodara from january-2011to december-2011 was done. p. falciparum, P. Vivax were diagnosed by demonstrating asexual forms of parasites in peripheral blood smear, haematological & biochemical tests were analyzed. Results: Out of 1093 cases, 781 were slide positive, remaining 312 were treated on clinical-ground .Of 781 cases, 443 (56% p. falciparum, 327 (42% P. Vivax and 11(2% were mixed Infection. Male to female ratio was 1.8:1&0.8:1 in p. falciparum & P. vivax, respectively. Fever, Prodroms, GI symptoms, Liver -dysfunction (51%vs47%, Renal- dysfunction (52%vs48% were equally frequent; whereas Hemolysis, Bleeding tendency, Breathlessness and altered sensorium were more in p. falciparum. Anemia (56%, Thrombocytopenia (60%, Pancytopenia (54%, Hemolysis (65% was more frequent in p. falciparum. Leucopenia (54% was more frequent in p. Vivax. Conclusion: In contrast to earlier studies, which have proven p. falciparum to be more fatal & complicated, it was noted in present study that P. Vivax species was frequent cause of overall slide-positive cases causing complications head to head with p. falciparum. Anemia, Hepato-renal dysfunctions were equally frequent, nonfatal leucopenia more in p. Vivax, while hemolysis and thrombocytopenia was more in p. falciparum. If ignored complications can alter clinical course & be equally fatal in p. vivax malaria. Hence p. vivax can no more be considered as benign infection and can be equally lethal.

  4. Measures of clinical malaria in field trials of interventions against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2007-05-01

    Full Text Available Abstract Background Standard methods for defining clinical malaria in intervention trials in endemic areas do not guarantee that efficacy estimates will be unbiased, and do not indicate whether the intervention has its effect by modifying the force of infection, the parasite density, or the risk of pathology at given parasite density. Methods Three different sets, each of 500 Phase IIb or III malaria vaccine trials were simulated corresponding to each of a pre-erythrocytic, blood stage, and anti-disease vaccine, each in a population with 80% prevalence of patent malaria infection. Simulations considered only the primary effects of vaccination in a homogeneous trial population. The relationships between morbidity and parasite density and the performance of different case definitions for clinical malaria were analysed using conventional likelihood ratio tests to compare incidence of episodes defined using parasite density cut-offs. Bayesian latent class models were used to compare the overall frequencies of clinical malaria episodes in analyses that did not use diagnostic cut-offs. Results The different simulated interventions led to different relationships between clinical symptoms and parasite densities. Consequently, the operating characteristics of parasitaemia cut-offs in general differ between vaccine and placebo arms of the simulated trials, leading to different patterns of bias in efficacy estimates depending on the type of intervention effect. Efficacy was underestimated when low parasitaemia cut-offs were used but the efficacy of an asexual blood stage vaccine was overestimated when a high parasitaemia cut-off was used. The power of a trial may be maximal using case definitions that are associated with substantial bias in efficacy. Conclusion Secondary analyses of the data of malaria intervention trials should consider the relationship between clinical symptoms and parasite density, and attempt to estimate overall numbers of clinical

  5. Clinical disease, immunity and protection against Plasmodium falciparum malaria in populations living in endemic areas

    DEFF Research Database (Denmark)

    Hviid, L

    1998-01-01

    and mortality in an endemic setting (malaria is regularly found) is concentrated in children below the age of five years, and the increasing resistance to infection and disease with age is conventionally thought to reflect a slow and gradual acquisition of protective immunity. Many recent and comprehensive...... reviews of malarial immunity exist; rather than attempting to add another, this review summarises some of the recent evidence on how protective immunity is acquired in humans and what precipitates clinical disease, specifically as it relates to populations living in areas where the disease is endemic...

  6. Clinical features and outcome in children with severe Plasmodium falciparum malaria: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Laurens Manning

    Full Text Available BACKGROUND: Although global malaria mortality is declining, estimates may not reflect better inpatient management of severe malaria (SM where reported case fatality rates (CFRs vary from 1-25%. METHODS: A meta-analysis of prospective studies of SM was conducted to examine i whether hypothesized differences between clinical features and outcome in Melanesian compared with African or Asian children really exist, and ii to explore temporal changes in overall and complication-specific CFRs. The proportions of different SM complications and, overall and complication-specific CFRs were incorporated into the meta-analysis. Adjustments were made for study-level covariates including geographic region, SM definition, artemisinin treatment, median age of participants and time period. FINDINGS: Sixty-five studies were included. Substantial heterogeneity (I(2>80% was demonstrated for most outcomes. SM definition contributed to between-study heterogeneity in proportions of cerebral malaria (CM, metabolic acidosis (MA, severe anemia and overall CFR, whilst geographic region was a significant moderator in for CM and hypoglycemia (HG rates. Compared with their African counterparts, Melanesian children had lower rates of HG (10% [CI95 7-13%] versus 1% [0-3%], P<0.05, lower overall CFR (2% [0-4%] versus 7% [6-9%], P<0.05 and lower CM-specific CFR (8% [0-17%] versus 19% [16-21%], P<0.05. There was no temporal trend for overall CFR and CM-specific CFR but declining HG- and MA- specific CFRs were observed. INTERPRETATION: These data highlight that recent estimates of declining global malaria mortality are not replicated by improved outcomes for children hospitalized with SM. Significant geographic differences in the complication rates and subsequent CFRs exist and provide the first robust confirmation of lower CFRs in Melanesian children, perhaps due to less frequent HG.

  7. 恶性疟的诊断及治疗:附23例报告%Clinical Manifestation of Plasmodium Falciparum Malaria:a Report of 23 Cases

    Institute of Scientific and Technical Information of China (English)

    叶伟; 赵伟; 魏红霞; 成骢; 池云

    2013-01-01

    Objective:To investigate the clinical characteristics of plasmodium falciparum malaria. Methods:The Epidemiologi cal data and clinical data of 23 patients with plasmodium falciparum malaria were retrospectively analyzed. Results: All of the patients had African inhabitation history. Most of the patients had the symptoms of irregular fever, chills, sweating, nausea, vomiting. Among them, 7 casesOO. 4%) suffered from anemia;18 cases(78. 3%) had a decline in platelet count;10 cases (43.5%) had abnormal liver function;and 2 cases(8. 7%)had abnormal renal function. All of the patients were cured after antimalarial treatment. Conclusions: All of the patients with plasmodium falciparum malaria in this study were infused cases. These patients had complicated clinical manifestation. The antimalarial drugs are effective and safe.%目的:探讨恶性疟的临床特征.方法:回顾分析23例恶性疟患者的流行病学资料及临床资料.结果:23例恶性疟患者均有非洲地区居留史,临床症状主要表现为不规则发热、畏寒、寒战、大汗、恶心、呕吐.7例(30.4%)患者有不同程度的贫血,18例(78.3%)患者有不同程度的血小板数减少,10例(43.5%)患者有不同程度的肝功能异常,2例(8.7%)患者肾功能异常.经过积极抗疟治疗后,23例患者均获痊愈.结论:本组恶性疟病例均为输入性疟疾,临床表现多样,并发症多,抗疟治疗安全有效、预后好.

  8. Premunition in Plasmodium falciparum malaria

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... parasite, premunition is probably caused by antitoxic immunity. These poor and ... immunity to clinical malaria rather than infection may be of long duration ... use of antimalaria drugs and its possible strategic role in vaccine ...

  9. International population movements and regional Plasmodium falciparum malaria elimination strategies

    National Research Council Canada - National Science Library

    Andrew J. Tatem; David L. Smith; Susan Hanson

    2010-01-01

    ... to areas targeted for elimination. Here, census-based migration data were analyzed with network analysis tools, Plasmodium falciparum malaria transmission maps, and global population databases to map globally communities of countries...

  10. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent;

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective...

  11. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    NARCIS (Netherlands)

    Schats, R.; Bijker, E.M.; Gemert, G.J.A. van; Graumans, W.; Vegte-Bolmer, M. van de; Lieshout, L. van; Haks, M.C.; Hermsen, C.C.; Scholzen, A.; Visser, L.G.; Sauerwein, R.W.

    2015-01-01

    BACKGROUND: Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization),

  12. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  13. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  14. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans, L.C. (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J. van Genderen (P.)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  15. Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan

    DEFF Research Database (Denmark)

    Iriemenam, Nnaemeka C; Khirelsied, Atif H; Nasr, Amre

    2009-01-01

    Despite many intervention programmes aimed at curtailing the scourge, malaria remains a formidable problem of human health. Immunity to asexual blood-stage of Plasmodium falciparum malaria is thought to be associated with protective antibodies of certain immunoglobulin classes and subclasses. We...

  16. The Prevalence of α-Thalassemia and Its Relation to Plasmodium falciparum Infection in Patients Presenting to Clinics in Two Distinct Ecological Zones in Ghana.

    Science.gov (United States)

    Ghartey-Kwansah, George; Boampong, Johnson N; Aboagye, Benjamin; Afoakwah, Richmond; Ameyaw, Elvis O; Quashie, Neils B

    2016-01-01

    Thalassemia and sickle cell disease constitute the most monogenic hemoglobin (Hb) disorders worldwide. Clinical symptoms of α(+)-thalassemia (α(+)-thal) are related to inadequate Hb production and accumulation of β- and/or γ-globin subunits. The association of thalassemia with malaria remains contentious, though from its distribution it appears to have offered some protection against the disease. Data on the prevalence of thalassemia in Ghana and its link with malaria is scanty and restricted. It was an objective of this cross-sectional study to determine the prevalence of thalassemia in areas representing two of Ghana's distinct ecological zones. The relationship between thalassemia and Plasmodium falciparium (P. falciparum) infection was also ascertained. Overall, 277 patients presenting to health facilities in the study areas were recruited to participate. Tests were carried out to determine the presence of α(+)-thal, sickle cell and malaria parasites in the blood samples of participants. The outcome of this study showed an α(+)-thal frequency of 19.9% for heterozygotes (-α/αα) and 6.8% for homozygotes (-α/-α). Plasmodium falciparum was detected in 17.7% of the overall study population and 14.9% in those with α(+)-thal. No association was observed between those with α(+)-thal and the study sites (p > 0.05). A test of the Hardy-Weinberg law yielded no significant difference (p Ghana with no bias to the ecological zones. Although the prevalence and parasite density were relatively low in those with the disorder, no association was found between them.

  17. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175.

    Science.gov (United States)

    Chitnis, Chetan E; Mukherjee, Paushali; Mehta, Shantanu; Yazdani, Syed Shams; Dhawan, Shikha; Shakri, Ahmad Rushdi; Bhardwaj, Rukmini; Bharadwaj, Rukmini; Gupta, Puneet Kumar; Hans, Dhiraj; Mazumdar, Suman; Singh, Bijender; Kumar, Sanjeev; Pandey, Gaurav; Parulekar, Varsha; Imbault, Nathalie; Shivyogi, Preethi; Godbole, Girish; Mohan, Krishna; Leroy, Odile; Singh, Kavita; Chauhan, Virander S

    2015-01-01

    A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-1(19), the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Healthy malaria naïve Indian male subjects aged 18-45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10 μg, 25 μg and 50 μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-1(19). Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-1(19) construct needs to be optimised to improve its immunogenicity. Clinical Trial Registry, India CTRI/2010/091/000301.

  18. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    Energy Technology Data Exchange (ETDEWEB)

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; El Mazouni, Farah; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Angulo-Barturen, Inigo; Ferrer, Santiago B.; Jimenez-Diaz, Maria Belen; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A. (UWASH); (MMV, Switzerland); (GSK); (Monash); (UW); (UTSMC)

    2012-02-27

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

  19. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    Science.gov (United States)

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Differential antibody response of Gambian donors to soluble Plasmodium falciparum antigens

    DEFF Research Database (Denmark)

    Jakobsen, P H; Riley, E M; Allen, S J

    1991-01-01

    A seroepidemiological and clinical study was performed in an area of West Africa (The Gambia) where Plasmodium falciparum is endemic with seasonal transmission. Plasma samples were tested by intermediate gel immunoelectrophoresis for antibodies against 7 soluble P. falciparum antigens. There were...... who had had a documented attack of clinical malaria or parasitaemia. There was no difference in antibody profiles to soluble antigens between children with sickle cell trait and children with normal haemoglobin....

  1. Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia.

    Science.gov (United States)

    Lo, Eugenia; Yewhalaw, Delenasaw; Zhong, Daibin; Zemene, Endalew; Degefa, Teshome; Tushune, Kora; Ha, Margaret; Lee, Ming-Chieh; James, Anthony A; Yan, Guiyun

    2015-02-19

    Malaria is the most prevalent communicable disease in Ethiopia, with 75% of the country's landmass classified as endemic for malaria. Accurate information on the distribution and clinical prevalence of Plasmodium vivax and Plasmodium falciparum malaria in endemic areas, as well as in Duffy-negative populations, is essential to develop integrated control strategies. A total of 390 and 416 community and clinical samples, respectively, representing different localities and age groups across Ethiopia were examined. Malaria prevalence was estimated using nested PCR of the 18S rRNA region. Parasite gene copy number was measured by quantitative real-time PCR and compared between symptomatic and asymptomatic samples, as well as between children/adolescents and adults from the local community. An approximately 500-bp segment of the human DARC gene was amplified and sequenced to identify Duffy genotype at the -33rd nucleotide position for all the clinical and community samples. Plasmodium vivax prevalence was higher in the south while P. falciparum was higher in the north. The prevalence of P. vivax and P. falciparum malaria is the highest in children compared to adolescents and adults. Four P. vivax infections were detected among the Duffy-negative samples. Samples from asymptomatic individuals show a significantly lower parasite gene copy number than those from symptomatic infections for P. vivax and P. falciparum. Geographical and age differences influence the distribution of P. vivax and P. falciparum malaria in Ethiopia. These findings offer evidence-based guidelines in targeting malaria control efforts in the country.

  2. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm E

    2011-02-01

    Full Text Available Abstract Background Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. Methods Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI, population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. Results Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008 and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11 and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission

  3. Case report of Plasmodium falciparum malaria presenting as wide complex tachycardia

    Institute of Scientific and Technical Information of China (English)

    Sunil Kumar; Diwan SK; Mahajan SN; Shilpa Bawankule; Chetan Mahure

    2011-01-01

    Malaria caused by Plasmodium falciparum is a multisystem disorder and may have diversity of clinical presentations. We are presenting a case report of patients of falciparum malaria who presented to us with palpitation and fever. On electrocardiogram he had wide complex tachycardia. This case reiterates the need to think of malaria in any case with symptoms of fever with chills, even with various unusual presentations like palpitation due to wide complex tachycardia, especially in endemic country like India.

  4. Combating multidrug-resistant Plasmodium falciparum malaria.

    Science.gov (United States)

    Thu, Aung Myint; Phyo, Aung Pyae; Landier, Jordi; Parker, Daniel M; Nosten, François H

    2017-08-01

    Over the past 50 years, Plasmodium falciparum has developed resistance against all antimalarial drugs used against it: chloroquine, sulphadoxine-pyrimethamine, quinine, piperaquine and mefloquine. More recently, resistance to the artemisinin derivatives and the resulting failure of artemisinin-based combination therapy (ACT) are threatening all major gains made in malaria control. Each time resistance has developed progressively, with delayed clearance of parasites first emerging only in a few regions, increasing in prevalence and geographic range, and then ultimately resulting in the complete failure of that antimalarial. Drawing from this repeated historical chain of events, this article presents context-specific approaches for combating drug-resistant P. falciparum malaria. The approaches begin with a context of drug-sensitive parasites and focus on the prevention of the emergence of drug resistance. Next, the approaches address a scenario in which resistance has emerged and is increasing in prevalence and geographic extent, with interventions focused on disrupting transmission through vector control, early diagnosis and treatment, and the use of new combination therapies. Elimination is also presented as an approach for addressing the imminent failure of all available antimalarials. The final drug resistance context presented is one in which all available antimalarials have failed; leaving only personal protection and the use of new antimalarials (or new combinations of antimalarials) as a viable strategy for dealing with complete resistance. All effective strategies and contexts require a multipronged, holistic approach. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  5. The dynamics of natural Plasmodium falciparum infections.

    Directory of Open Access Journals (Sweden)

    Ingrid Felger

    Full Text Available BACKGROUND: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. METHODS: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. RESULTS: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5-9 year old children (average duration 319 days, 95% confidence interval 318;320. CONCLUSIONS: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections.

  6. RELATIONSHIP OF HEPATIC AND RENAL DYSFUNCTION WITH HAEMORRHEOLOGICAL PARAMETERS IN PLASMODIUM FALCIPARUM MALARIA

    Directory of Open Access Journals (Sweden)

    Valluri Satya

    2015-04-01

    Full Text Available The clinical pattern of malaria has changed worldwide including India in last decade. Earlier cerebral malaria was the predominant manifestation of severe malaria, whereas now the combination of jaundice and renal failure are more common. Severe haemorrhage is seen in upto 5% of patients with severe malaria. Studies on renal and hepatic dys function in Plasmodium falciparum malaria are a plenty, but there is a paucity of studies correlating haemorrheological abnormalities with hepatic and renal dysfunction in Plasmodium falciparum malaria. METHODS : 100 patients of malaria with positive periph eral blood smear for plasmodium falciparum , out of which 50 cases with AKI and Hepatic failure during the period January 2012 - June 2013. I n department of general medicine, Government General Hospital, Kakinada. GROUP A : Comprising 50 consecutive adult pat ients of all age groups and both genders who had jaundice or renal failure or both at the time of admission. GROUP B: comprising 50 consecutive cases of plasmodium falciparum malaria and had no complications. RESULTS: In group A patients all parameters are significantly raised as compared to group B patients. CONCLUSION: 10% of patients had clinically overt bleeding manifestations, this indicates subclinical haemorrheological dysfunction in patients suffering from falciparum malaria with hepatic and renal d ysfunction, high incidence of subclinical DIC, evidenced by prolonged aPTT (56%, low total platelet count (58%, and PT (20%. An observational, screening, analytical prospective study. 100 cases of PF positive complicated and uncomplicated cases during t he period - January 2012 - June 2013

  7. New synchronization method for Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Mwangi Jonathan M

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. Methods Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. Results Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. Conclusions The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle.

  8. Plasmodium falciparum secretome in erythrocyte and beyond

    Directory of Open Access Journals (Sweden)

    Rani eSoni

    2016-02-01

    Full Text Available Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for development of novel anti-malarial therapies.

  9. Identification and Localization of Minimal MHC-restricted CD8+ T Cell Epitopes within the Plasmodium falciparum AMA1 Protein

    Science.gov (United States)

    2010-08-24

    Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the...A, Muratova O, Awkal M, et al: Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria...PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum. Malar J 2010, 9(1):94. 40. Senger T, Becker MR, Schadlich L, Waterboer T

  10. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  11. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theisen, M; Kurtzhals, J A

    2000-01-01

    of the Plasmodium falciparum glutamate-rich protein (GLURP). The data show that levels of the GLURP-specific IgG that occurs in the nonrepeat region of the antigen are significantly correlated with clinical protection from P. falciparum malaria, after correction for the confounding effect of age. Furthermore...

  12. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  13. Discordance in drug resistance-associated mutation patterns in marker genes of Plasmodium falciparum and Plasmodium knowlesi during coinfections.

    Science.gov (United States)

    Tyagi, Rupesh K; Das, Manoj K; Singh, Shiv S; Sharma, Yagya D

    2013-05-01

    Human Plasmodium knowlesi infections have been reported from several South-East Asian countries, excluding India, but its drug susceptibility profile in mixed-infection cases remains unknown. The chloroquine resistance transporter (CRT) and dihydrofolate reductase (DHFR) genes of P. knowlesi and other Plasmodium species were sequenced from clinical isolates obtained from malaria patients living in the Andaman and Nicobar Islands, India. The merozoite surface protein-1 and 18S rRNA genes of P. knowlesi were also sequenced from these isolates. Among 445 samples analysed, only 53 of them had P. knowlesi-specific gene sequences. While 3 of the 53 cases (5.66%) had P. knowlesi monoinfection, the rest were coinfected with Plasmodium falciparum (86.79%, n = 46) or Plasmodium vivax (7.55%, n = 4), but none with Plasmodium malariae or Plasmodium ovale. There was discordance in the drug resistance-associated mutations among the coinfecting Plasmodium species. This is because the P. knowlesi isolates contained wild-type sequences, while P. falciparum isolates had mutations in the CRT and DHFR marker genes associated with a higher level of chloroquine and antifolate drug resistance, respectively. The mutation pattern indicates that the same patient, having a mixed infection, may be harbouring the drug-susceptible P. knowlesi parasite and a highly drug-resistant P. falciparum parasite. A larger human population in South-East Asia may be at risk of P. knowlesi infection than reported so far. The different drug susceptibility genotypes of P. knowlesi from its coinfecting Plasmodium species in mixed infections adds a new dimension to the malaria control programme, requiring formulation of an appropriate drug policy.

  14. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  15. Parasite virulence and disease severity in Plasmodium falciparum malaria.

    OpenAIRE

    Ribacke, Ulf

    2009-01-01

    Malaria stands out as one of the most important infectious diseases and one of the world s leading causes of death. Plasmodium falciparum is the parasite responsible for the great majority of severe disease syndromes and mortality, and affects mainly children and pregnant women. Despite intensive research efforts, the understanding of P. falciparum virulence is limited. Infections with the parasite cause everything from asymptomatic parasitemia to severe disease and death, a...

  16. Insulin reduces the requirement for serum in Plasmodium falciparum culture

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    1984-03-01

    Full Text Available Insulin added to Plasmodium falciparum cultures (0.2 IU/ml reduced the requirement for human serum from ten to five percent. This represents an obvious advantage by its serum-sparing effect and by reducing the chances of using contaminated serum in cultures. The growth-promoting ability of insulin was observed eitherin culture- adapted P. falciparum or in newly-isolated samples.

  17. [Erythrocytes infected by Plasmodium falciparum activate human platelets].

    Science.gov (United States)

    Polack, B; Peyron, F; Sheick Zadiuddin, I; Kolodié, L; Ambroise-Thomas, P

    1990-01-01

    Blood platelets are involved in Plasmodium falciparum malaria pathology as shown by thrombocytopenia and increased plasma level of two alpha granule proteins: beta thromboglobulin (beta TG) and platelet factor 4 (PF4). In this study we demonstrate that Plasmodium falciparum parasitized erythrocytes activate directly the secretion of beta TG and PF4 by human platelets. This secretion is related to parasitemia and occurs immediately after contact. Treatment of parasited erythrocytes by trypsin and diffusion chamber experiments suggest that platelet activation is triggered by parasitic substances shed on erythrocyte membrane and released in the culture medium.

  18. Analysis of expressed sequence tags from Plasmodium falciparum.

    Science.gov (United States)

    Chakrabarti, D; Reddy, G R; Dame, J B; Almira, E C; Laipis, P J; Ferl, R J; Yang, T P; Rowe, T C; Schuster, S M

    1994-07-01

    An initiative was undertaken to sequence all genes of the human malaria parasite Plasmodium falciparum in an effort to gain a better understanding at the molecular level of the parasite that inflicts much suffering in the developing world. 550 random complimentary DNA clones were partially sequenced from the intraerythrocytic form of the parasite as one of the approaches to analyze the transcribed sequences of its genome. The sequences, after editing, generated 389 expressed sequence tag sites and over 105 kb of DNA sequences. About 32% of these clones showed significant homology with other genes in the database. These clones represent 340 new Plasmodium falciparum expressed sequence tags.

  19. In vivo switching between variant surface antigens in human Plasmodium falciparum infection

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Hamad, Amel A; Hviid, Lars

    2002-01-01

    A semi-immune individual was retrospectively found to have maintained an apparently monoclonal and genotypically stable asymptomatic infection for months after clinical cure of a Plasmodium falciparum malaria episode. Before the attack, the individual had no antibodies to variant surface antigens...

  20. Anaemia caused by asymptomatic Plasmodium falciparum infection in semi-immune African schoolchildren

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Addae, M M; Akanmori, B D;

    1999-01-01

    A cohort of 250 Ghanaian schoolchildren aged 5-15 years was followed clinically and parasitologically for 4 months in 1997/98 in order to study the effect of asymptomatic Plasmodium falciparum infections on haematological indices and bone-marrow responses. Of the 250 children 65 met the predefine...

  1. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistan...

  2. Neuronal monoamine reuptake inhibitors enhance in vitro susceptibility to chloroquine in resistant Plasmodium falciparum.

    OpenAIRE

    Coutaux, A F; Mooney, J. J.; Wirth, D. F.

    1994-01-01

    Chloroquine resistance in Plasmodium falciparum was reversed in vitro by the neuronal monoamine reuptake inhibitors and antidepressants desipramine, sertraline, fluoxetine, and norfluoxetine but not by carbamazepine, an antiseizure and mood-stabilizing tricyclic drug resembling desipramine which only weakly inhibits neuronal monoamine reuptake. These findings have important clinical implications for drug combination therapy.

  3. Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    del Portillo Hernando A

    2007-02-01

    Full Text Available Abstract Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements.

  4. Refrigeration provides a simple means to synchronize in vitro cultures of Plasmodium falciparum.

    Science.gov (United States)

    Yuan, Lili; Hao, Mingming; Wu, Lanou; Zhao, Zhen; Rosenthal, Benjamin M; Li, Xiaomei; He, Yongshu; Sun, Ling; Feng, Guohua; Xiang, Zheng; Cui, Liwang; Yang, Zhaoqing

    2014-05-01

    Plasmodium falciparum is usually asynchronous during in vitro culture. Highly synchronized cultures of P. falciparum are routinely used in malaria research. Here, we describe a simple synchronization procedure for P. falciparum asexual erythrocytic culture, which involves storage at 4°C for 8-24 h followed by routine culture. When cultures with 27-60% of ring stage were synchronized using this procedure, 70-93% ring stages were obtained after 48 h of culture and relative growth synchrony remained for at least two erythrocytic cycles. To test the suitability of this procedure for subsequent work, drug sensitivity assays were performed using four laboratory strains and four freshly adapted clinical P. falciparum isolates. Parasites synchronized by sorbitol treatment or refrigeration showed similar dose-response curves and comparable IC50 values to four antimalarial drugs. The refrigeration synchronization method is simple, inexpensive, time-saving, and should be especially useful when large numbers of P. falciparum culture are handled.

  5. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    Science.gov (United States)

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  6. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  7. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Science.gov (United States)

    Zhang, Chao; He, Xinlong; Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi

    2014-01-01

    Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  8. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum

    DEFF Research Database (Denmark)

    Kharazmi, A; Høiby, N; Theander, T G

    1987-01-01

    presented with severe form of malaria, progressing rapidly into coma and died within a short time. P. aeruginosa was isolated from his blood taken on the day of admission. His neutrophils were all occupied by P. falciparum. The unusual combination of severe falciparum malaria infection and P. aeruginosa......This report describes a Danish patient with severe Plasmodium falciparum infection and Pseudomonas aeruginosa septicaemia. The patient had been sailing along the coast of West Africa for ten years without taking any antimalaria prophylaxis and without any apparent previous history of malaria. He...

  9. [From malaria parasite point of view--Plasmodium falciparum evolution].

    Science.gov (United States)

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  10. Biguanide-Atovaquone Synergy against Plasmodium falciparum In Vitro

    OpenAIRE

    2002-01-01

    The synergistic potential of a range of biguanides, their triazine metabolites, tetracyclines, and pyrimethamine in combination with atovaquone has been assessed. All five biguanides tested interacted synergistically with atovaquone against Plasmodium falciparum in vitro. All of the other compounds tested were either additive or antagonistic.

  11. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...

  12. Positive blood culture with Plasmodium falciparum : Case report

    NARCIS (Netherlands)

    De Vries, Jutte J. C.; Van Assen, Sander; Mulder, André B.; Kampinga, Greetje A.

    2007-01-01

    An adult traveler presented with fever and malaise after returning from Sierra Leone. Young trophozoites of Plasmodium falciparum were seen in a blood smear, with parasitemia being 10%. Moreover, blood cultures drawn on admission signaled as "positive" after 1 day of incubation, but no bacteria were

  13. Plasmodium falciparum infection causes proinflammatory priming of human TLR responses.

    NARCIS (Netherlands)

    McCall, M.B.B.; Netea, M.G.; Hermsen, C.C.; Jansen, T.; Jacobs, L.; Golenbock, D.; Ven, A.J.A.M. van der; Sauerwein, R.W.

    2007-01-01

    TLRs are a major group of pattern recognition receptors that are crucial in initiating innate immune responses and are capable of recognizing Plasmodium ligands. We have investigated TLR responses during acute experimental P. falciparum (P.f.) infection in 15 malaria-naive volunteers. TLR-4 response

  14. Positive blood culture with Plasmodium falciparum: Case report

    NARCIS (Netherlands)

    De Vries, Jutte J. C.; Van Assen, Sander; Mulder, André B.; Kampinga, Greetje A.

    2007-01-01

    An adult traveler presented with fever and malaise after returning from Sierra Leone. Young trophozoites of Plasmodium falciparum were seen in a blood smear, with parasitemia being 10%. Moreover, blood cultures drawn on admission signaled as "positive" after 1 day of incubation, but no bacteria were

  15. Positive blood culture with Plasmodium falciparum : Case report

    NARCIS (Netherlands)

    De Vries, Jutte J. C.; Van Assen, Sander; Mulder, André B.; Kampinga, Greetje A.

    2007-01-01

    An adult traveler presented with fever and malaise after returning from Sierra Leone. Young trophozoites of Plasmodium falciparum were seen in a blood smear, with parasitemia being 10%. Moreover, blood cultures drawn on admission signaled as "positive" after 1 day of incubation, but no bacteria were

  16. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    M.E. van Wolfswinkel (Marlies); M. De Mendonça Melo (Mariana); K. Vliegenthart-Jongbloed (Klaske); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2012-01-01

    textabstractBackground: In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often

  17. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    M.E. van Wolfswinkel (Marlies); M. De Mendonça Melo (Mariana); K. Vliegenthart-Jongbloed (Klaske); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2012-01-01

    textabstractBackground: In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often

  18. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion.

    NARCIS (Netherlands)

    Drakeley, C.; Sutherland, C.; Bousema, J.T.; Sauerwein, R.W.; Targett, G.A.T.

    2006-01-01

    Much of the epidemiology of Plasmodium falciparum in Sub-Saharan Africa focuses on the prevalence patterns of asexual parasites in people of different ages, whereas the gametocytes that propagate the disease are often neglected. One expected benefit of the widespread introduction of artemisinin-base

  19. Mitosis in the Human Malaria Parasite Plasmodium falciparum

    Science.gov (United States)

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. PMID:21317311

  20. Correlation between 'H' blood group antigen and Plasmodium falciparum invasion.

    Science.gov (United States)

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2016-06-01

    The ABO blood group system is the most important blood group system in clinical practice. The relationship between Plasmodium falciparum and ABO blood groups has been studied for many years. This study was undertaken to investigate the abilities of different blood group erythrocytes to support in vitro growth of P. falciparum parasites. P. falciparum parasites of four different strains (3D7, 7G8, Dd2 and RKL9) were co-cultured with erythrocytes of blood group 'A', 'B', 'O' (n = 10 for each) and 'O(h)' (Bombay group) (n = 7) for 5 days. Statistically significant differences were observed on the fourth day among the mean percent parasitemias of 'O', non-'O' ('A' and 'B') and 'O(h)' group cultures. The parasitemias of four strains ranged from 12.23 to 14.66, 11.68 to 13.24, 16.89 to 22.3, and 7.37 to 11.27 % in 'A', 'B', 'O' and Bombay group cultures, respectively. As the expression of H antigen decreased from 'O' blood group to 'A' and 'B' and then to Bombay blood group, parasite invasion (percent parasitemia) also decreased significantly (p group erythrocytes were virtually converted to Bombay group-like erythrocytes by the treatment of anti-H lectins extracted from Ulex europaeus seeds. Mean percent parasitemia of lectin-treated cultures on the fourth day was significantly lower (p Bombay group erythrocyte cultures, thus further strengthening the hypothesis.

  1. Design and pre-clinical profiling of a Plasmodium falciparum MSP-3 derived component for a multi-valent virosomal malaria vaccine

    Directory of Open Access Journals (Sweden)

    Boato Francesca

    2009-12-01

    Full Text Available Abstract Background Clinical profiling of two components for a synthetic peptide-based virosomal malaria vaccine has yielded promising results, encouraging the search for additional components for inclusion in a final multi-valent vaccine formulation. This report describes the immunological characterization of linear and cyclized synthetic peptides comprising amino acids 211-237 of Plasmodium falciparum merozoite surface protein (MSP-3. Methods These peptides were coupled to phosphatidylethanolamine (PE; the conjugates were intercalated into immunopotentiating reconstituted influenza virosomes (IRIVs and then used for immunizations in mice to evaluate their capacity to elicit P. falciparum cross-reactive antibodies. Results While all MSP-3-derived peptides were able to elicit parasite-binding antibodies, stabilization of turn structures by cyclization had no immune-enhancing effect. Therefore, further pre-clinical profiling was focused on FB-12, a PE conjugate of the linear peptide. Consistent with the immunological results obtained in mice, all FB-12 immunized rabbits tested seroconverted and consistently elicited antibodies that interacted with blood stage parasites. It was observed that a dose of 50 μg was superior to a dose of 10 μg and that influenza pre-existing immunity improved the immunogenicity of FB-12 in rabbits. FB-12 production was successfully up-scaled and the immunogenicity of a vaccine formulation, produced according to the rules of Good Manufacturing Practice (GMP, was tested in mice and rabbits. All animals tested developed parasite-binding antibodies. Comparison of ELISA and IFA titers as well as the characterization of a panel of anti-FB-12 monoclonal antibodies indicated that at least the majority of antibodies specific for the virosomally formulated synthetic peptide were parasite cross-reactive. Conclusion These results reconfirm the suitability of IRIVs as a carrier/adjuvant system for the induction of strong humoral

  2. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia

    Science.gov (United States)

    2013-01-02

    Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia Shannon Takala-Harrisona...resistant Plasmodium falcipa- rum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of...molecular markers Artemisinin-based combination therapies (ACTs) are the lead-ing treatment for Plasmodium falciparum malaria (1), and their use with

  3. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine;

    2013-01-01

    Plasmodium falciparum is responsible for most cases of severe malaria and causes >1 million deaths every year. The particular virulence of this Plasmodium species is highly associated with the expression of certain members of the Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) family...

  4. High prevalence of mutations in the dihydrofolate reductase gene of Plasmodium falciparum in isolates from Tanzania without evidence of an association to clinical sulfadoxine/pyrimethamine resistance

    DEFF Research Database (Denmark)

    Jelinek, T; Rønn, A M; Curtis, J;

    1997-01-01

    Recently the efficacy of sulfadoxine/pyrimethamine (S/P) in treatment of uncomplicated falciparum malaria in Tanzania has been seriously compromised by the development of resistance. The occurrence of active site mutations in the Plasmodium falciparum gene sequence coding for dihydrofolate...... resistance to the S/P combination. It has been proposed earlier that sulfadoxine could itself act on DHFR, because of a false dihydrofolate produced by drug metabolism through DHPS and dihydrofolate synthase. The results of this treatment study suggest that such a possibility is unlikely....... reductase (DHFR) is known to confer resistance to pyrimethamine. This study investigates the occurrence of these mutations in infected blood samples taken from Tanzanian children before treatment with S/P and their relationship to parasite breakthrough by day 7. The results confirm the occurrence of one...

  5. Polymorphism in the Plasmodium falciparum chloroquine-resistance transporter protein links verapamil enhancement of chloroquine sensitivity with the clinical efficacy of amodiaquine

    Directory of Open Access Journals (Sweden)

    Warhurst David C

    2003-09-01

    Full Text Available Abstract Background Chloroquine accumulates in the acidic digestive vacuole of the intraerythrocytic malaria parasite, and prevents the detoxication of haematin released during haemoglobin digestion. Changes in protein PfCRT in the digestive vacuole membrane of growing intra-erythrocytic stages of Plasmodium falciparum are crucial for resistance. Expressed in yeast, PfCRT resembles an anion channel. Depressed anion channel function could increase intralysosomal pH to reduce entry of basic drug, or enhanced function could reduce drug interaction with target haematin. The most important resistance-associated change is from positively-charged lysine-76 to neutral threonine which could facilitate drug efflux through a putative channel. It has been proposed that the resistance-reversing effect of verapamil is due to hydrophobic binding to the mutated PfCRT protein, and replacement of the lost positive charge, which repels the access of 4-aminoquinoline cations, thus partially restoring sensitivity. Desethylamodiaquine, the active metabolite of amodiaquine, which has significant activity in chloroquine-resistance, may also act similarly on its own. Methods Changes in physicochemical parameters in different CQ-resistant PfCRT sequences are analysed, and correlations with drug activity on lines transfected with different alleles of the pfcrt gene are examined. Results and conclusions The results support the idea that PfCRT is a channel which, in resistant parasites, can allow efflux of chloroquine from the digestive vacuole. Activity of the chloroquine/verapamil combination and of desethylamodiaquine both correlate with the mean hydrophobicity of PfCRT residues 72-76. This may partly explain clinical-resistance to amodiaquine found in the first chloroquine-resistant malaria cases from South America and enables tentative prediction of amodiaquine's clinical activity against novel haplotypes of PfCRT.

  6. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar.

    Directory of Open Access Journals (Sweden)

    Myat P Kyaw

    Full Text Available BACKGROUND: Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries. METHODS: A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia, parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope, and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels. RESULTS: The median (range parasite clearance half-life and time were 4.8 (2.1-9.7 and 60 (24-96 hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours in approximately 1/3 of infections. Fourteen of 52 participants (26.9% had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics. CONCLUSIONS: A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of

  7. Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar

    Science.gov (United States)

    Kyaw, Myat P.; Nyunt, Myat H.; Chit, Khin; Aye, Moe M.; Aye, Kyin H.; Aye, Moe M.; Tarning, Joel; Imwong, Mallika; Jacob, Christopher G.; Rasmussen, Charlotte; Perin, Jamie; Ringwald, Pascal; Nyunt, Myaing M.

    2013-01-01

    Background Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries. Methods A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels. Results The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics. Conclusions A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin

  8. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Science.gov (United States)

    Engelbrecht, Dewaldt; Durand, Pierre Marcel; Coetzer, Thérèsa Louise

    2012-01-01

    Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction. PMID:22287973

  9. Morbidity and mortality associated with Plasmodium vivax and Plasmodium falciparum infection in a tertiary care kidney hospital

    Directory of Open Access Journals (Sweden)

    Salman Imtiaz

    2015-01-01

    Full Text Available Malaria is a disease of tropical regions and both types of plasmodia, i.e. Plasmodium falciparum and Plasmodium vivax, cause significant morbidity and mortality. P. vivax was thought to be benign and cause less morbidity and mortality. Many reports showed the devastating effect of vivax malaria too. We compared the clinical symptoms, laboratory markers, treatment and outcome of both the plasmodia. This is a retrospective analysis of 95 patients admitted to The Kidney Center, Karachi in a duration of 15 years (1997-2012; 45 patients with falciparum malaria and 50 patients with vivax malaria, and compared the clinical presentation, laboratory workup, treatment and outcome in both groups. The two groups constitute a mixed population of diabetes, chronic kidney disease (CKD and hemodialysis patients. Both plasmodia have an equal clinical impact in terms of fever and rigors, anorexia, nausea, feeling of dyspnea, change in the mental status, changes in the urine color, diarrhea, volume depletion and pedal edema. However, patients with falciparum had significantly more vomiting (P = 0.02, oliguria (P = 0.003 and jaundice (P = 0.003. Laboratory parameters also showed a severe impact of falciparum, as there was more severe anemia and kidney and liver dysfunction. More patients were treated with dialysis and blood transfusion in the falciparum group. The outcome in the two groups was not significantly different in terms of death and days of hospitalization. Falciparum malaria has a higher clinical impact than the vivax malaria, but vivax is not as benign as it was once thought to be. It also has devastating effects on vulnerable populations like patients with CKD and diabetes.

  10. Ex Vivo Drug Susceptibility Testing and Molecular Profiling of Clinical Plasmodium falciparum Isolates from Cambodia from 2008 to 2013 Suggest Emerging Piperaquine Resistance.

    Science.gov (United States)

    Chaorattanakawee, Suwanna; Saunders, David L; Sea, Darapiseth; Chanarat, Nitima; Yingyuen, Kritsanai; Sundrakes, Siratchana; Saingam, Piyaporn; Buathong, Nillawan; Sriwichai, Sabaithip; Chann, Soklyda; Se, Youry; Yom, You; Heng, Thay Kheng; Kong, Nareth; Kuntawunginn, Worachet; Tangthongchaiwiriya, Kuntida; Jacob, Christopher; Takala-Harrison, Shannon; Plowe, Christopher; Lin, Jessica T; Chuor, Char Meng; Prom, Satharath; Tyner, Stuart D; Gosi, Panita; Teja-Isavadharm, Paktiya; Lon, Chanthap; Lanteri, Charlotte A

    2015-08-01

    Cambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.

  11. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    Energy Technology Data Exchange (ETDEWEB)

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K

    2004-05-19

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.

  12. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  13. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali

    Science.gov (United States)

    Adomako-Ankomah, Yaw; Chenoweth, Matthew S.; Durfee, Katelyn; Doumbia, Saibou; Konate, Drissa; Doumbouya, Mory; Keita, Abdoul S.; Nikolaeva, Daria; Tullo, Gregory S.; Anderson, Jennifer M.; Fairhurst, Rick M.; Daniels, Rachel; Volkman, Sarah K.; Diakite, Mahamadou; Long, Carole A.

    2017-01-01

    The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1–65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk. PMID:28158202

  14. Loss of cellular immune reactivity during acute Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G; Abu-Zeid, Y A;

    1991-01-01

    Sixteen patients suffering from acute Plasmodium falciparum malaria were studied. All were residents of an area of unstable malaria-transmission in Eastern Sudan. Blood-samples were drawn at diagnosis, and 7 and 30 days later. Blood-samples from thirteen donors, drawn outside the malaria...... convalescence. Five donors examined by fluorescence-activated cell sorting (FACS) showed no increase in surface expression of IL-2 receptor on peripheral lymphocytes. The data indicate that acute P. falciparum malaria causes a depletion of antigen-reactive T-cells from the peripheral circulation, probably due...

  15. Loss of cellular immune reactivity during acute Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G; Abu-Zeid, Y A

    1991-01-01

    Sixteen patients suffering from acute Plasmodium falciparum malaria were studied. All were residents of an area of unstable malaria-transmission in Eastern Sudan. Blood-samples were drawn at diagnosis, and 7 and 30 days later. Blood-samples from thirteen donors, drawn outside the malaria...... convalescence. Five donors examined by fluorescence-activated cell sorting (FACS) showed no increase in surface expression of IL-2 receptor on peripheral lymphocytes. The data indicate that acute P. falciparum malaria causes a depletion of antigen-reactive T-cells from the peripheral circulation, probably due...

  16. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum -infected erythrocytes

    National Research Council Canada - National Science Library

    Przyborski, Jude M; Miller, Susanne K; Rohrbach, Petra; Pfahler, Judith M; Crabb, Brendan S; Henrich, Philipp P; Lanzer, Michael

    2005-01-01

    The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts...

  17. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.

    Science.gov (United States)

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V; Rizk, Shahir S; Njimoh, Dieudonne L; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M; Wiest, Olaf; Haldar, Kasturi

    2015-04-30

    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.

  18. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru

    DEFF Research Database (Denmark)

    Villasis, Elizabeth; Lopez-Perez, Mary; Torres, Katherine

    2012-01-01

    , PfRh2a and PfRh2b and IgG3 response for PfRh2a were also negatively correlated with parasitaemia. Conclusions: These data suggest that falciparum malaria patients who develop clinical immunity (asymptomatic parasitaemia) in a low transmission setting such as the Peruvian Amazon have antibody......Background: Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturally...

  19. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten

    2015-01-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentiall......Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs......—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population....

  20. Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Amit Roy

    2011-01-01

    Full Text Available Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs.

  1. 3-Halo Chloroquine Derivatives Overcome Plasmodium falciparum Chloroquine Resistance Transporter-Mediated Drug Resistance in P. falciparum.

    Science.gov (United States)

    Edaye, Sonia; Tazoo, Dagobert; Bohle, D Scott; Georges, Elias

    2015-12-01

    Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.

  2. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on t...... microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion....

  3. Genes for Glycosylphosphatidylinositol Toxin Biosynthesis in Plasmodium falciparum

    OpenAIRE

    Delorenzi, Mauro; Sexton, Adrienne; Shams-Eldin, Hosam; Schwarz, Ralph T.; Speed, Terry; Schofield, Louis

    2002-01-01

    About 2.5 million people die of Plasmodium falciparum malaria every year. Fatalities are associated with systemic and organ-specific inflammation initiated by a parasite toxin. Recent studies show that glycosylphosphatidylinositol (GPI) functions as the dominant parasite toxin in the context of infection. GPIs also serve as membrane anchors for several of the most important surface antigens of parasite invasive stages. GPI anchoring is a complex posttranslational modification produced through...

  4. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish (UAB); (NIMR)

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  5. CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites.

    Science.gov (United States)

    Lee, Marcus Cs; Fidock, David A

    2014-01-01

    The development of the CRISPR-Cas system is revolutionizing genome editing in a variety of organisms. The system has now been used to manipulate the genome of Plasmodium falciparum, the most lethal malaria-causing species. The ability to generate gene deletions or nucleotide substitutions rapidly and economically promises to accelerate the analysis of novel drug targets and to help elucidate the function of specific genes or gene families, while complementing genome-wide association studies.

  6. CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites

    OpenAIRE

    Lee, Marcus CS; David A Fidock

    2014-01-01

    The development of the CRISPR-Cas system is revolutionizing genome editing in a variety of organisms. The system has now been used to manipulate the genome of Plasmodium falciparum, the most lethal malaria-causing species. The ability to generate gene deletions or nucleotide substitutions rapidly and economically promises to accelerate the analysis of novel drug targets and to help elucidate the function of specific genes or gene families, while complementing genome-wide association studies.

  7. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria

    OpenAIRE

    Bukirwa, Hasifa; Unnikrishnan, B; Kramer, Christine V; Sinclair, David; Nair, Suma; Tharyan, Prathap

    2014-01-01

    Background The World Health Organization (WHO) recommends that people with uncomplicated Plasmodium falciparum malaria are treated using Artemisinin-based Combination Therapy (ACT). ACT combines three-days of a short-acting artemisinin derivative with a longer-acting antimalarial which has a different mode of action. Pyronaridine has been reported as an effective antimalarial over two decades of use in parts of Asia, and is currently being evaluated as a partner drug for artesunate. Objective...

  8. Aislamiento y mantenimiento in vitro de Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Blanca Pardave L

    1997-07-01

    Full Text Available Se aislaron 08 cepas de Plasmodium falciparum a partir de 10 pacientes. Luego fueron adaptadas y mantenidas en cultivo in vitro durante 60 días en eritrocitos humanos grupo O, en medio RPMI 1640 enriquecido con plasma humano grupo O, bajo una atmósfera de 5% de CO2, 5% de O2 y 90% de Nitrógeno y luego preservados a -70ºC.

  9. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia

    DEFF Research Database (Denmark)

    Staalsoe, T; Megnekou, R; Fievét, N

    2001-01-01

    Otherwise clinically immune women in areas endemic for malaria are highly susceptible to Plasmodium falciparum malaria during their first pregnancy. Pregnancy-associated malaria (PAM) is characterized by placental accumulation of infected erythrocytes that adhere to chondroitin sulfate A (CSA...

  10. Immune response to soluble exoantigens of Plasmodium falciparum may contribute to both pathogenesis and protection in clinical malaria: evidence from a longitudinal, prospective study of semi-immune African children

    DEFF Research Database (Denmark)

    Riley, E M; Jakobsen, P H; Allen, S J

    1991-01-01

    Some soluble exoantigens of Plasmodium have lipopolysaccharide (LPS)-like properties and are believed to contribute to the pathogenesis of acute malaria. We have studied cellular and humoral immune responses to several purified exoantigens of Plasmodium falciparum in a cohort of children and comp...

  11. Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression

    Science.gov (United States)

    2014-01-01

    Background Liver involvement in severe Plasmodium falciparum infection is commonly a significant cause of morbidity and mortality among humans. The clinical presentation of jaundice often reflects a certain degree of liver damage. This study investigated the liver pathology of severe P. falciparum malaria as well as the regulation and occurrence of apoptosis in cellular components of formalin-fixed, paraffin-embedded liver tissues. Methods The liver tissues used in the study came from patients who died from P. falciparum malaria with hyperbilirubinaemia (total bilirubin (TB) ≥ 51.3 μmol/L or 3 mg/dl) (12 cases), P. falciparum malaria without hyperbilirubinaemia (TB falciparum malaria were associated with higher TB level. Significant correlations were found between NF-κB p65 expression and apoptosis in Kupffer cells and lymphocytes in the portal tracts. Conclusions Hyperplastic Kupffer cells and portal tract inflammation are two main features found in the liver tissues of severe P. falciparum malaria cases. In addition, NF-κB is associated with Kupffer cells and lymphocyte apoptosis in severe P. falciparum malaria. PMID:24636003

  12. Changing trends in prevalence of different Plasmodium species with dominance of Plasmodium falciparum malaria infection in Aligarh (India).

    Science.gov (United States)

    Khan, Haris M; Shujatullah, Fatima; Ashfaq, Mohammad; Raza, Adil

    2011-01-01

    To determine the prevalence of malaria in Aligarh and analyze species dominance in different years over a decade. Diagnosis of malaria was done using microscopy as gold standard, rapid antigen detection assays and quantitative buffy coat (QBC) assays. Giemsa stained blood smear examination was done, thick and thin films were examined for presence of different Plasmodium spp. Rapid antigen detection assays employing detection of HRP-2 and parasite lactate dehydrogenase antigen (pLDH) by immunochromatography was done in patients whose blood smear found to be negative by conventional Giemsa slide examination. QBC was done in cases where there is strong clinical suspicion of malaria with blood smear negative, in patients with chronic malaria, splenomegaly, or in those patients who had inadequate treatment and for post-treatment follow up. Plasmodium vivax and Plasmodium falciparum were only species detected in our hospital. Overall prevalence of malaria in Aligarh was found to be 8.8%. The maximum prevalence of 20.1% was observed in year 2008 and lowest 2.3% in 2002. High prevalence of malaria is observed in this part of country with dominance of both species particularly Plasmodium falciparum should be monitored and factors accounting for occurrence should be studied to employ effective control measures. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  13. Changing trends in prevalence of different Plasmodium species with dominance of Plasmodium falciparum malaria infection in Aligarh (India)

    Institute of Scientific and Technical Information of China (English)

    Haris M Khan; Fatima Shujatullah; Mohammad Ashfaq; Adil Raza

    2011-01-01

    Objective: To determine the prevalence of malaria in Aligarh and analyze species dominance in different years over a decade. Methods: Diagnosis of malaria was done using microscopy as gold standard, rapid antigen detection assays and quantitative buffy coat (QBC) assays. Giemsa stained blood smear examination was done, thick and thin films were examined for presence of different Plasmodium spp. Rapid antigen detection assays employing detection of HRP-2 and parasite lactate dehydrogenase antigen (pLDH) by immunochromatography was done in patients whose blood smear found to be negative by conventional Giemsa slide examination. QBC was done in cases where there is strong clinical suspicion of malaria with blood smear negative, in patients with chronic malaria, splenomegaly, or in those patients who had inadequate treatment and for post-treatment follow up. Results: Plasmodium vivax and Plasmodium falciparum were only species detected in our hospital. Overall prevalence of malaria in Aligarh was found to be 8.8%. The maximum prevalence of 20.1% was observed in year 2008 and lowest 2.3% in 2002.Conclusions:High prevalence of malaria is observed in this part of country with dominance of both species particularly Plasmodium falciparum should be monitored and factors accounting for occurrence should be studied to employ effective control measures.

  14. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    Science.gov (United States)

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds.

  15. [Research Progress on Artemisinin Resistance in Plasmodium falciparum].

    Science.gov (United States)

    Zhang, Yi-long; Pan, Wei-qing

    2015-12-01

    Artemisinin (ART) is a novel and effective antimalarial drug discovered in China. As recommended by the World Health Organization, the ART-based combination therapies (ACTs) have become the first-line drugs for the treatment of falciparum malaria. ART and its derivatives have contributed greatly to the effective control of malaria globally, leading to yearly decrease of malaria morbidity and mortality. However, there have recently been several reports on the resistance of Plasmodium falciparum to ART in Southeast Asia. This is deemed a serious threat to the global malaria control programs. In this paper, we reviewed recent research progress on ART resistance to P. falciparum, including new tools for resistance measurement, resistance-associated molecular markers, and the origin and spread of the ART-resistant parasite strains.

  16. Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Daniel G Wootton

    Full Text Available UNLABELLED: The objective of this study was to determine the appropriate dose of artesunate for use in a fixed dose combination therapy with chlorproguanil-dapsone (CPG-DDS for the treatment of uncomplicated falciparum malaria. METHODS: Open-label clinical trial comparing CPG-DDS alone or with artesunate 4, 2, or 1 mg/kg at medical centers in Blantyre, Malawi and Farafenni, The Gambia. The trial was conducted between June 2002 and February 2005, including 116 adults (median age 27 years and 107 children (median age 38 months with acute uncomplicated Plasmodium falciparum malaria. Subjects were randomized into 4 groups to receive CPG-DDS alone or plus 4, 2 or 1 mg/kg of artesunate once daily for 3 days. Assessments took place on Days 0-3 in hospital and follow-up on Days 7 and 14 as out-patients. Efficacy was evaluated in the Day 3 per-protocol (PP population using mean time to reduce baseline parasitemia by 90% (PC90. A number of secondary outcomes were also included. Appropriate artesunate dose was determined using a pre-defined decision matrix based on primary and secondary outcomes. Treatment emergent adverse events were recorded from clinical assessments and blood parameters. Safety was evaluated in the intent to treat (ITT population. RESULTS: In the Day 3 PP population for the adult group (N = 85, mean time to PC90 was 19.1 h in the CPG-DDS group, significantly longer than for the +artesunate 1 mg/kg (12.5 h; treatment difference -6.6 h [95%CI -11.8, -1.5], 2 mg/kg (10.7 h; -8.4 h [95%CI -13.6, -3.2] and 4 mg/kg (10.3 h; -8.7 h [95%CI -14.1, -3.2] groups. For children in the Day 3 PP population (N = 92, mean time to PC90 was 21.1 h in the CPG-DDS group, similar to the +artesunate 1 mg/kg group (17.7 h; -3.3 h [95%CI -8.6, 2.0], though the +artesunate 2 mg/kg and 4 mg/kg groups had significantly shorter mean times to PC90 versus CPG-DDS; 14.4 h (treatment difference -6.4 h [95%CI -11.7, -1.0] and 12.8 h (-7.4 h [95%CI -12.9, -1

  17. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Magistrado, Pamela; Salanti, Ali; Tuikue Ndam, Nicaise G;

    2008-01-01

    Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental inter...... on the surface of infected erythrocytes from placenta. Importantly, this was achieved with cross-reactive antibodies against VAR2CSA....

  18. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti

  19. Malária por Plasmodium falciparum: estudos proteômicos Plasmodium falciparum malaria: proteomic studies

    Directory of Open Access Journals (Sweden)

    Rodrigo Siqueira-Batista

    2012-12-01

    Full Text Available A despeito dos avanços no tratamento e das campanhas de prevenção e de controle da malária nos distintos continentes nos quais a moléstia grassa, a entidade mórbida permanece com significativa relevância no mundo contemporâneo. O Plasmodium falciparum é o grande responsável pela malária grave, caracterizada por distúrbios em diferentes órgãos e sistemas, com possibilidade de evolução ao óbito. Embora incipientes, os estudos proteômicos na malária têm trazido boas perspectivas para melhor compreensão dos aspectos biológicos do Plasmodium, assim como dos mecanismos fisiopatológicos, diagnósticos, terapêuticos e profiláticos da enfermidade. Desse modo, o objetivo do presente artigo é apresentar uma breve revisão das aplicações da análise proteômica na malária por P. falciparum.Despite advances in treatment and campaigns for prevention and control of malaria on the various continents where it is still rampant, this disease remains significantly relevant to the contemporary world. Plasmodium falciparum is the organism that is mainly responsible for severe malaria, which is characterized by disturbances in different organs and systems, with possibly fatal outcomes. Although incipient, proteomic studies of malaria have yielded favorable prospects for elucidating the biological aspects of Plasmodium as well as the pathophysiological, diagnostic, prophylactic, and therapeutic mechanisms of the disease. Thus, the aim of the present article is to present a brief review of the applications of proteomic analysis in P. falciparum malaria.

  20. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    Science.gov (United States)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  1. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection.

    Science.gov (United States)

    Berna, Amalia Z; McCarthy, James S; Wang, Rosalind X; Saliba, Kevin J; Bravo, Florence G; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C

    2015-10-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

  2. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum.

    Science.gov (United States)

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E M; Mongan, Arthur E; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef; Suzuki, Yutaka

    2014-09-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions.

  3. Distribution of two species of malaria, Plasmodium falciparum and Plasmodium vivax, on Lombok Island, Indonesia.

    Science.gov (United States)

    Nagao, Yoshiro; Dachlan, Yoes Prijatna; Soedarto; Hidajati, Sri; Yotopranoto, Subagyo; Kusmartisnawati; Subekti, Sri; Ideham, Bariah; Tsuda, Yoshio; Kawabata, Masato; Takagi, Masahiro; Looareesuwan, Somchai

    2003-09-01

    Medical and entomological surveys were conducted to determine the risk factors of Plasmodium falciparum and P. vivax infections on Lombok Island, Indonesia, to find the risk factors and the main mosquito vectors for each malaria. Multivariate longitudinal analysis demonstrated two significant risk factors for infection with P. falciparum: disappearance of P. vivax parasitemia (p<0.001) and a specific study site (p<0.001). In contrast, younger age (p=0.024) and the interpolated virtual density of An. subpictus (p=0.041) were significantly associated with increased risk of infection with P. vivax. Thus, it seems that the distribution of P. vivax was determined largely by the presence of An. subpictus, whilst that of P. falciparum was influenced by antagonism with P. vivax. This result shows the importance of following-up treated P. vivax patients to identify recrudescence of P. falciparum in this area.

  4. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    Science.gov (United States)

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  5. Plasmodium falciparum drug resistance in Angola

    OpenAIRE

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information ...

  6. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    Science.gov (United States)

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  7. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    Science.gov (United States)

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  8. Soluble products of inflammatory reactions are not induced in children with asymptomatic Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; McKay, V; N'Jie, R;

    1996-01-01

    A proportion of children with Plasmodium falciparum infection have a high parasitaemia without accompanying fever, indicative of different clinical thresholds of parasitaemia. Higher levels of IL-10, IL-1Ra and sIL-4R but not sIL-2R were found in children with P. falciparum malaria, compared...... with levels in children with asymptomatic P. falciparum infections and in healthy children. Concentrations of IL-10 and IL-1Ra were correlated with levels of parasitaemia, but the association of cytokine levels with disease was independent of the association with parasitaemia. Children may tolerate a high...... parasitaemia by neutralizing the parasite-derived toxins. When studying potential anti-toxic molecules we found that children with symptomatic infections had lower concentrations of a phospholipid-binding molecule, beta 2-glycoprotein I (beta 2-GPI), compared with children with asymptomatic infections...

  9. Increased plasma levels of soluble IL-2R are associated with severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S; Theander, T G;

    1994-01-01

    Plasma samples from children with mild and severe Plasmodium falciparum malaria and from children with unrelated diseases were collected to investigate whether the clinical outcome of infection was associated with plasma factors which reflected the activity of different cells of the immune system....... Children with severe P. falciparum malaria had significantly higher plasma levels of soluble IL-2R than children with mild malaria. Plasma levels of IL-2R and levels of parasitaemia were significantly correlated. Neither parasitaemia nor plasma levels of tumour necrosis factor-alpha (TNF-alpha), IL-6......, lymphotoxin (LT), interferon-gamma (IFN-gamma), IL-4, soluble IL-4R or soluble CD8 differed significantly between the two groups of children with malaria. High plasma levels of soluble CD8 were associated with failure of lymphocytes to produce IFN-gamma in vitro following stimulation with P. falciparum...

  10. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure

    DEFF Research Database (Denmark)

    Jepsen, Micha Phill Grønholm; Röser, Dennis; Christiansen, Michael

    2012-01-01

    . falciparum malaria was calculated by comparing travelers with clinical malaria (n=52) and non-exposed blood donors (n=119). The index was evaluated on blood donors with suspected malaria exposure (n=249) and compared to the diagnostic performance of IFAT. At a specificity of 95.8 %, the MPA discrimination...... from the MPA exhibits similar diagnostic performance as IFAT for detection of P. falciparum malaria. Combining the antibody response against multiple antigens in a discrimination index increased the sensitivity of the MPA and reduced the readout to a single value....... performance of a multiplex assay for detection of antibodies against Plasmodium falciparum in donor blood using IFAT as a comparator. A multiplex assay (MPA) containing the antigens GLURP-R0, GLURP-R2, MSP3, MSP1 hybrid and AMA1 was constructed using xMAP® technology. A discrimination index for exposure to P...

  11. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum.

    Science.gov (United States)

    Clark, Martha A; Goheen, Morgan M; Fulford, Anthony; Prentice, Andrew M; Elnagheeb, Marwa A; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M; Kasthuri, Raj S; Cerami, Carla

    2014-07-25

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria.

  12. Sharing of antigens between Plasmodium falciparum and Anopheles albimanus Antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus

    Directory of Open Access Journals (Sweden)

    Albina Wide

    2006-12-01

    Full Text Available The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF, red blood cells infected with Plasmodium falciparum (EPfs, and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA, and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.Epítopes de antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus fueron identificados. Diferentes grupos de conejos fueron inmunizados con: extracto crudo de mosquito hembra de An. albimanus (EAaH, glóbulos rojos infectados con P. falciparum (EPfs y la vacuna antimalárica sintética SPf66. Los anticuerpos policlonales producidos en conejos fueron evaluados por ELISA, inmunoensayo simultáneo de múltiples antígenos (MABA e Immunoblotting. Todos los extractos resultaron inmunogénicos cuando se evaluaron por ELISA, MABA e Immunoblotting. Diez moléculas fueron identificadas en los mosquitos hembras y diez en los antígenos de

  13. Influence of common variants of TLR4 and TLR9 on clinical outcomes of Plasmodium falciparum malaria in Odisha, India.

    Science.gov (United States)

    Kar, Avishek; Panigrahi, Subhendu; Tripathy, Sagnika; Mohapatra, Manoj K; Tayung, Kumananda; Dhangadamajhi, Gunanidhi

    2015-12-01

    In malaria, the toll-like receptors (TLRs) have recently emerged as major player of innate immunity. However, implication of TLR variants on clinical manifestations of malaria is conflicting. The present study aims to provide relevant information of growing interest in understanding the role of TLR4D299G, TLR9T-1237C and TLR9T-1486C polymorphisms on clinical outcomes of malaria. We genotyped TLR4D299G, TLR9T-1237C and TLR9T-1486C polymorphisms by PCR-RFLP methods and subsequently analyzed in 200 uncomplicated patients and 200 severe patients. Further, the severe malaria categorized into sub-clinical groups such as cerebral malaria (CM), non-cerebral severe malaria (NCSM), single organ dysfunction (SOD) and multi-organ dysfunctions (MODS) are analyzed. The TLR9-1237CC genotype was observed at significantly low frequency in MODS (p=0.0008), while in heterozygous state (TC) it was proportionately more frequent in SOD (p=0.087) as compared to mild malaria. The TLR9T-1486C heterozygote was more common in all categories of severe malaria. However, pair wise LD analysis revealed significant linkage between T-1237C and T-1486C, whereas haplotype analysis showed significantly low frequency of C-T haplotype in CM (p=0.005, pc=0.02) and high frequency of T-C haplotype in NCSM as compared to mild malaria. Although TLR9-1237C could be a risk factor for severe malaria in heterozygous state, negative association of CC genotype with MODS warrants caution of segregating severe malaria into its sub-clinical groups while interpreting data. Further, clinical outcome in malaria was observed to be apparently modulated by LD between TLR9 promoter variants. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Transportproteiner som drug-targets hos Plasmodium falciparum. Nye perspektiver i behandlingen af malaria

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Colding, Hanne

    2006-01-01

    The malaria parasite, Plasmodium falciparum, infects and replicates in human erythrocytes. Through the use of substrate-specific transport proteins, P. falciparum takes up nutrients from the erythrocyte's cytoplasm. The sequencing and publishing of the P. falciparum genome have made it possible...

  15. Plasmodium falciparum Malaria Endemicity in Indonesia in 2010

    Science.gov (United States)

    Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Kusriastuti, Rita; Wismarini, Desak M.; Tarmizi, Siti N.; Baird, J. Kevin; Hay, Simon I.

    2011-01-01

    Background Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. Methods Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. Results We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. Conclusion While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of

  16. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is...

  17. Reduced erythrocyte deformability associated with hypoargininemia during Plasmodium falciparum malaria.

    Science.gov (United States)

    Rey, Juliana; Buffet, Pierre A; Ciceron, Liliane; Milon, Geneviève; Mercereau-Puijalon, Odile; Safeukui, Innocent

    2014-01-20

    The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = -0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature.

  18. Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy?

    Science.gov (United States)

    Cheng, Qin; Kyle, Dennis E; Gatton, Michelle L

    2012-12-01

    Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria in over 100 countries and is the cornerstone of malaria control and elimination programs in these areas. However, despite the high potency and rapid parasite killing action of ART derivatives there is a high rate of recrudescence associated with ART monotherapy and recrudescence is not uncommon even when ACT is used. Compounding this problem are reports that some parasites in Cambodia, a known foci of drug resistance, have decreased in vivo sensitivity to ART. This raises serious concerns for the development of ART resistance in the field even though no major phenotypic and genotypic changes have yet been identified in these parasites. In this article we review available data on the characteristics of ART, its effects on Plasmodium falciparum parasites and present a hypothesis to explain the high rate of recrudescence associated with this potent class of drugs and the current enigma surrounding ART resistance.

  19. Sickle Cell Trait Protects Against Plasmodium falciparum Infection

    Science.gov (United States)

    Billo, Mounkaila A.; Johnson, Eric S.; Doumbia, Seydou O.; Poudiougou, Belco; Sagara, Issaka; Diawara, Sory I.; Diakité, Mahamadou; Diallo, Mouctar; Doumbo, Ogobara K.; Tounkara, Anatole; Rice, Janet; James, Mark A.; Krogstad, Donald J.

    2012-01-01

    Although sickle cell trait protects against severe disease due to Plasmodium falciparum, it has not been clear whether sickle trait also protects against asymptomatic infection (parasitemia). To address this question, the authors identified 171 persistently smear-negative children and 450 asymptomatic persistently smear-positive children in Bancoumana, Mali (June 1996 to June 1998). They then followed both groups for 2 years using a cohort-based strategy. Among the 171 children with persistently negative smears, the median time for conversion to smear-positive was longer for children with sickle trait than for children without (274 vs. 108 days, P sickle trait than for children without (190 vs. 365 days; P = 0.02). These protective effects of sickle trait against asymptomatic P. falciparum infection under conditions of natural transmission were demonstrable using a cohort-based approach but not when the same data were examined using a cross-sectional approach. PMID:23035141

  20. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014.

    Science.gov (United States)

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar; Pradines, Bruno

    2016-05-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August-December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted.

  1. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi.

    Directory of Open Access Journals (Sweden)

    Alison T Isaacs

    2011-04-01

    Full Text Available Transposon-mediated transformation was used to produce Anopheles stephensi that express single-chain antibodies (scFvs designed to target the human malaria parasite, Plasmodium falciparum. The scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that inhibit either ookinete invasion of the midgut or sporozoite invasion of salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10, were fused to an Anopheles gambiae antimicrobial peptide, Cecropin A. Previously-characterized Anopheles cis-acting DNA regulatory elements were included in the transgenes to coordinate scFv production with parasite development. Gene amplification and immunoblot analyses showed promoter-specific increases in transgene expression in blood-fed females. Transgenic mosquito lines expressing each of the scFv genes had significantly lower infection levels than controls when challenged with P. falciparum.

  2. PENGEMBANGAN BIAKAN IN-VITRO PLASMODIUM FALCIPARUM SECARA KONTINU

    Directory of Open Access Journals (Sweden)

    Sekar Tuti

    2012-09-01

    Full Text Available To support malaria research on its' serology/immunology, chemotherapy, drug sensitivity aspects etc. especially for falciparum malaria, a large amount of antigen (parasites is needed. These antigen could not be obtained from patients in the field only. Considering this situation, attempts have been made to develop a Plasmodium falciparum continuous culture   in-vitro following a method introduced  by Trager and Jensen (1976. In our laboratory, the parasite grew and multiplied nicely for 60 days. During that period of cultivation, a large amount of parasites (mostly mature trophozoite and schizont stages have been collected for antigen production. Several tubes of mostly young trophozoites stage have been preserved, it can be cultured again in the future or transported to another laboratory for further culture.

  3. Pharmacophore model for pentamidine analogs active against Plasmodium falciparum.

    Science.gov (United States)

    Athri, Prashanth; Wenzler, Tanja; Tidwell, Richard; Bakunova, Svetlana M; Wilson, W David

    2010-12-01

    Pentamidine and its analogs constitute a class of compounds that are known to be active against Plasmodium falciparum, which causes the most dangerous malarial infection. Malaria is a widespread disease known to affect hundreds of millions of people and presents a perceivable threat of spreading. Hence, there is a need for well-defined scaffolds that lead to new, effective treatment. Here we present a pentamidine-based pharmacophore constructed using GALAHAD that would aid targeted synthesis of leads with enhanced properties, as well as the development of lead scaffolds. The study was supported by high-quality biological in vitro data of 22 compounds against the P. falciparum strains NF54 and K1. The model established reveals the importance of hydrophobic phenyl rings with polar oxygen and amidine substituents and the hydrophobic linking chain for the activity against malaria.

  4. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Directory of Open Access Journals (Sweden)

    Genton Blaise

    2006-12-01

    Full Text Available Abstract Artemisinin-based combination therapies (ACTs are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance.

  5. Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Bejon, Philip; Turner, Louise; Lavstsen, Thomas

    2011-01-01

    Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree of ...... of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations....

  6. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria.

    Science.gov (United States)

    Wang, Sibao; Dos-Santos, André L A; Huang, Wei; Liu, Kun Connie; Oshaghi, Mohammad Ali; Wei, Ge; Agre, Peter; Jacobs-Lorena, Marcelo

    2017-09-29

    The huge burden of malaria in developing countries urgently demands the development of novel approaches to fight this deadly disease. Although engineered symbiotic bacteria have been shown to render mosquitoes resistant to the parasite, the challenge remains to effectively introduce such bacteria into mosquito populations. We describe a Serratia bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito midgut, female ovaries, and male accessory glands and spreads rapidly throughout mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium effector proteins, and the recombinant strains inhibit development of Plasmodium falciparum in mosquitoes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Wanted Plasmodium falciparum, dead or alive

    Directory of Open Access Journals (Sweden)

    Fatimata Sow

    2015-07-01

    Full Text Available Mechanisms of cell death in unicellular parasites have been subjects of debate for the last decade, with studies demonstrating evidence of apoptosis or non-apoptosis like mechanisms, including necrosis, and autophagy. Recent clarifications on the definition of regulated or accidental cell death by The Nomenclature Committee on Cell Death provides an opportunity to reanalyze some data, re-evaluate conclusions in the light of parasite diversity, and to propose alternative arguments in the context of malaria drug resistance, considering lack of really new drugs in the pipeline. Deciphering the mechanisms of death may help in detection of new drug targets and the design of innovative drugs. However, classifications have been evolving rapidly since initial description of “programmed cell death”, leading to some uncertainty as to whether Plasmodium cell death is accidental or regulated.

  8. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  9. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    Directory of Open Access Journals (Sweden)

    Lindsey S Garver

    2009-03-01

    Full Text Available Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway-mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort

  10. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    Science.gov (United States)

    Garver, Lindsey S; Dong, Yuemei; Dimopoulos, George

    2009-03-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway-mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort development of P. falciparum

  11. Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.

    Science.gov (United States)

    Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda

    2017-01-03

    Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other

  12. Nuclear factor kappa B in urine sediment: a useful indicator to detect acute kidney injury in Plasmodium falciparum malaria.

    Science.gov (United States)

    Punsawad, Chuchard; Viriyavejakul, Parnpen

    2014-03-07

    Acute kidney injury (AKI) is one of the major complications of Plasmodium falciparum malaria, especially among non-immune adults. It has recently been revealed that activation of transcription factor nuclear factor kappa B (NF-κB) induces pro-inflammatory gene expression involved in the development of progressive renal inflammatory diseases. The aim of this study was to determine whether urinary sediment NF-κB p65 can act as a biomarker for AKI in patients with P. falciparum malaria. Urinary sediments from malaria patients, including Plasmodium vivax malaria, uncomplicated P. falciparum malaria, complicated P. falciparum malaria without AKI (serum creatinine-Cr falciparum malaria with AKI (Cr ≥3 mg/dl) were used to determine NF-κB p65 level by sandwich enzyme-linked immunosorbent assay (ELISA). Urinary sediments obtained from healthy controls were used as a normal baseline. Correlations between levels of urinary sediment NF-κB p65 and pertinent clinical data were analysed. Urinary sediment NF-κB p65 levels were significantly increased on the day of admission (day 0) and on day 7 post-treatment in complicated P. falciparum malaria patients with AKI, compared with those without AKI (p=0.001, p falciparum malaria.

  13. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    Science.gov (United States)

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  14. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria

    Science.gov (United States)

    Bukirwa, Hasifa; Unnikrishnan, B; Kramer, Christine V; Sinclair, David; Nair, Suma; Tharyan, Prathap

    2014-01-01

    Background The World Health Organization (WHO) recommends that people with uncomplicated Plasmodium falciparum malaria are treated using Artemisinin-based Combination Therapy (ACT). ACT combines three-days of a short-acting artemisinin derivative with a longer-acting antimalarial which has a different mode of action. Pyronaridine has been reported as an effective antimalarial over two decades of use in parts of Asia, and is currently being evaluated as a partner drug for artesunate. Objectives To evaluate the efficacy and safety of artesunate-pyronaridine compared to alternative ACTs for treating people with uncomplicated P. falciparum malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; ClinicalTrials.gov; the metaRegister of Controlled Trials (mRCT); and the WHO International Clinical Trials Search Portal up to 16 January 2014. We searched reference lists and conference abstracts, and contacted experts for information about ongoing and unpublished trials. Selection criteria Randomized controlled trials of artesunate-pyronaridine versus other ACTs in adults and children with uncomplicated P. falciparum malaria. For the safety analysis, we also included adverse events data from trials comparing any treatment regimen containing pyronaridine with regimens not containing pyronaridine. Data collection and analysis Two authors independently assessed trial eligibility and risk of bias, and extracted data. We combined dichotomous data using risk ratios (RR) and continuous data using mean differences (MD), and presented all results with a 95% confidence interval (CI). We used the GRADE approach to assess the quality of evidence. Main results We included six randomized controlled trials enrolling 3718 children and adults. Artesunate-pyronaridine versus artemether-lumefantrine In two multicentre trials, enrolling

  15. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi

    OpenAIRE

    Barber Bridget E; William Timothy; Grigg Matthew J; Yeo Tsin W; Anstey Nicholas M

    2013-01-01

    Abstract Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy perfor...

  16. Clinical trials of chemotherapy for falciparum malaria.

    Science.gov (United States)

    Winstanley, P; Olliaro, P

    1998-02-01

    Plasmodium falciparum remains one of the World's most prevalent and devastating pathogens. Mainly for economic reasons, the parasite's ability to develop resistance to drugs has not been matched by the rate at which new compounds are developed. Even so, there are new drugs (or new combinations of old drugs) currently under investigation, or in the process of development (at the moment): Pyronaridine, a well-tolerated, synthetic drug that may have utility for multi-resistant falciparum malaria in many parts of the world; however,problems remain over the formulation of this drug (which is a major determinant of its bioavailability) and its eventual cost. Chlorproguanil-dapsone (lap dap) is being studied as a possible low-cost'successor' to pyrimethamine-sulfadoxine; the utility of chlorproguanil-dapsone as 'salvage' therapy for clinical cases of pyrimethamine-sulfadoxine failure has yet to be tested in clinical trials. Atovaquone-proguanil (malarone) has utility against multi-resistant parasites; however, it is likely to be expensive (but is currently being provided free-of-charge in certain areas of Africa). Artemether-benflumetol (coartemether) combines the advantages of artemether (a rapid reduction in parasite load) with a second drug that reduces the risk of recrudescence; the cost of this combination is unclear. Rectal artesunate is being studied as an intervention to reduce the proportion of children with falciparum malaria who deteriorate to severe disease; the formulation is appropriate for use in rural health centres.

  17. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  18. Molecular mechanisms and biological importance of Plasmodium falciparum erythrocyte rosetting

    Directory of Open Access Journals (Sweden)

    Mats Wahlgren

    1992-01-01

    Full Text Available Rosetting, i.e. the spontaneous binding of uninfected to malaria infected erythrocytes and endothelial cytoadherence may hinder the blood flow and lead to serve Plasmodium falciparum malaria. Falciparum isolates obtained from unconscious patients all form rosettes and/or express a significantly higher man rosetting rate than isolates from patients with uncomplicated malaria. Furthermore, sera of patients with cerebral malaria are devoid of anti-rosetting activity while sera from patients with mild disease carry high levels of anti-rosetting antibodies. The presence of anti-rosetting antibodies also seems important for the efficient interaction of rosetting infected rbc and leucocytes. Two parasite derived rosetting ligands of Mr 22k and Mr28K named "rosettins, have been found on the surface of rosetting infected erythrocytes. CD36 has in at least some strains of parasites been found to function as a rosetting receptor on the uninfectederythrocyte. Heparin disrupts rosettes of P. falciparum in vitro and inhibits the sequestration of rosetting cells ex vivo. In conclusion, rosetting seems a crucial factor in the development of cerebral malaria and treatment of patients with anti-rosetting substances might become an effectivew adjunct in the treatment of severe malaria.

  19. The role of Plasmodium falciparum food vacuole plasmepsins.

    Science.gov (United States)

    Liu, Jun; Gluzman, Ilya Y; Drew, Mark E; Goldberg, Daniel E

    2005-01-14

    Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in cultured parasites. Parasite clones with deletions in each of the individual PM I, PM II, and HAP genes as well as clones with a double PM IV/PM I disruption have been generated. All of these clones lack the corresponding PMs, are viable, and appear morphologically normal. PM II and PM IV/I disruptions have longer doubling times than the 3D7 parental line in rich RPMI medium. This appears to be because of a decreased level of productive progeny rather than an increased cell cycle time. In amino acid-limited medium, all four knockouts exhibit slower growth than the parental strain. Compared with 3D7, knock-out clone sensitivity to aspartic and cysteine protease inhibitors is changed minimally. These results suggest substantial functional redundancy and have important implications for the design of antimalarial drugs. The slow growth phenotype may explain why P. falciparum has maintained four plasmepsin genes with overlapping functions.

  20. Capture ELISA for IgM antibodies against Plasmodium falciparum glutamate rich protein

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Borre, M B; Petersen, E

    1992-01-01

    This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta-galactos......This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta...

  1. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes

    Science.gov (United States)

    Saiwaew, Somporn; Sritabal, Juntima; Piaraksa, Nattaporn; Keayarsa, Srisuda; Ruengweerayut, Ronnatrai; Utaisin, Chirapong; Sila, Patima; Niramis, Rangsan; Udomsangpetch, Rachanee; Charunwatthana, Prakaykaew; Pongponratn, Emsri; Pukrittayakamee, Sasithon; Leitgeb, Anna M.; Wahlgren, Mats; Lee, Sue J.; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.; Chotivanich, Kesinee

    2017-01-01

    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria. PMID:28249043

  2. Possible clinical failure of artemether-lumefantrine in an italian traveler with uncomplicated falciparum malaria.

    Science.gov (United States)

    Repetto, Ernestina C; Traverso, Antonio; Giacomazzi, Claudio G

    2011-01-01

    Artemisinin-combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in endemic areas with multidrug resistant Plasmodium falciparum. We report a case of possible artemether-lumefantrine clinical failure in an Italian traveler with uncomplicated P. falciparum malaria imported from Democratic Republic of Congo.

  3. Possible Clinical Failure of Artemether-Lumefantrine in an Italian Traveler with Uncomplicated Falciparum Malaria.

    Science.gov (United States)

    Repetto, Ernestina C.; Traverso, Antonio; Giacomazzi, Claudio G.

    2011-01-01

    Artemisinin-combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in endemic areas with multidrug resistant Plasmodium falciparum. We report a case of possible artemether-lumefantrine clinical failure in an Italian traveler with uncomplicated P. falciparum malaria imported from Democratic Republic of Congo. PMID:22084655

  4. Paludismo por Plasmodium falciparum adquirido en África subsahariana Plasmodium falciparum malaria acquired in Subsaharian Africa

    Directory of Open Access Journals (Sweden)

    Ricardo Durlach

    2009-02-01

    Full Text Available El objetivo de este trabajo es presentar los casos de paludismo por Plasmodium falciparum ocurridos en viajeros provenientes del África tropical, atendidos en el Hospital Alemán. Se definió paludismo de origen africano como la infección adquirida en un país del África subsahariana, diagnosticado y tratado en la Argentina. El diagnóstico se realizó por la clínica y la microscopía óptica en frotis de sangre periférica coloreados con Giemsa. Se revieron las historias clínicas de 11 pacientes adultos -cinco turistas y seis marineros mercantes- no oriundos de área endémica, sin condición inmunosupresora, ni morbilidad asociada, internados entre 1993 y 2007. El rango de edad fue de 21 a 48 años; nueve hombres y dos mujeres. Los pacientes fueron clasificados retrospectivamente en malaria grave (seis o no grave (cinco según cumplieran con uno o más de los criterios de gravedad de la Organización Mundial de la Salud. Todos presentaron fiebre como signo más significativo. Como complicaciones graves se observaron casos de insuficiencia renal, epistaxis, hemoglobinuria, hipoglucemia, edema pulmonar, acidosis y coma. Tres pacientes requirieron internación en la unidad de terapia intensiva. Todos sobrevivieron y solamente tres habían recibido la quimioprofilaxis correcta antes de viajar. El tratamiento se realizó con una o más de las siguientes drogas: mefloquina, quinidina, clindamicina y cotrimoxazol.The purpose of this paper is to present the cases of malaria caused by Plasmodium falciparum in travelers coming from tropical Africa, who were treated at the Hospital Alemán (Buenos Aires. African malaria was defined as an infection acquired in any country within Africa, diagnosed and treated in Argentina. Diagnostic tools included clinical features and optic microscopy with Giemsa stained peripheral blood films. We reviewed the medical records of 11 adult patients -five tourists and six sailors- with no history of malaria

  5. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    Science.gov (United States)

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  6. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sylke Müller

    2015-06-01

    Full Text Available Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.

  7. Is Fc gamma receptor IIA (FcγRIIA) polymorphism associated with clinical malaria and Plasmodium falciparum specific antibody levels in children from Burkina Faso?

    DEFF Research Database (Denmark)

    Cherif, Mariama K; Sanou, Guillaume S; Bougouma, Edith C;

    2015-01-01

    In the present study, the influences of FcγRIIA polymorphism on susceptibility to malaria and antibody responses to Plasmodium falciparum antigens were analyzed in children. We recruited 96 healthy children between 3 and 10 years at the beginning of the high transmission season and we followed up...

  8. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  9. Binding of Plasmodium falciparum to CD36 can be shielded by the glycocalyx

    DEFF Research Database (Denmark)

    Hempel, Casper; Wang, Christian William; Kurtzhals, Jorgen Anders Lindholm

    2017-01-01

    Background: Plasmodium falciparum-infected erythrocytes sequester in the microcirculation due to interaction between surface-expressed parasite proteins and endothelial receptors. Endothelial cells are covered in a carbohydrate-rich glycocalyx that shields against undesired leukocyte adhesion...

  10. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion

    DEFF Research Database (Denmark)

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-01-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were...

  11. Drug resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum malaria in Mlimba, Tanzania

    NARCIS (Netherlands)

    Mbugi, E.V.; Mutayoba, B.M.; Malisa, A.L.; Balthazary, S.T.; Nyambo, T.B.; Mshinda, H.

    2006-01-01

    Background - Sulphadoxine-pyrimethamine (SP) has been and is currently used for treatment of uncomplicated Plasmodium falciparum malaria in many African countries. Nevertheless, the response of parasites to SP treatment has shown significant variation between individuals. Methods - The genes for

  12. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies

    National Research Council Canada - National Science Library

    Griffin, Jamie T; Hollingsworth, T Deirdre; Okell, Lucy C; Churcher, Thomas S; White, Michael; Hinsley, Wes; Bousema, Teun; Drakeley, Chris J; Ferguson, Neil M; Basáñez, María-Gloria; Ghani, Azra C

    2010-01-01

    .... We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus...

  13. Plasmodium falciparum population dynamics in a cohort of pregnant women in Senegal

    DEFF Research Database (Denmark)

    Guitard, Juliette; Andersen, Pernille; Ermont, Caroline

    2010-01-01

    Background: Pregnant women acquire protective antibodies that cross-react with geographically diverse placental Plasmodium falciparum isolates, suggesting that surface molecules expressed on infected erythrocytes by pregnancy-associated malaria (PAM) parasites have conserved epitopes and, that de...

  14. Evaluation of a rapid whole blood immunochromatographic assay for the diagnosis of Plasmodium falciparum and Plasmodium vivax malaria.

    Science.gov (United States)

    Fernando, S D; Karunaweera, N D; Fernando, W P

    2004-03-01

    Microscopic examination of blood smears is the 'gold standard' for malaria diagnosis, but is labour intensive and requires skilled operators. Plasmodium vivax malaria accounts for up to 70% of infections in Sri Lanka. The objective of this study was to determine the effectiveness of an immunochromatographic test which can detect both the species of Plasmodium, P. vivax and P. falciparum, present in Sri Lanka. Prospective study from May 2001 to March 2002. All persons above 5 years of age who presented to the Malaria Research Station, Kataragama or the Anti-malaria Clinic, Kurunegala, with a history of fever were recruited to the study. Thick and thin blood smears were examined for malarial parasites. The rapid diagnostic test (RDT), ICT Malaria P.f/P.v (AMRAD ICT, Australia) was performed simultaneously by an independent investigator. The severity of clinical disease of all patients was evaluated. The study sample comprised 328 individuals of whom 126 (38%) were infected, 102 with P. vivax (31.1%) and 24 with P. falciparum (7.3%). The RDT was found to be highly sensitive (100%) and specific (100%) for the diagnosis of P. falciparum when compared with field microscopy. The sensitivity for the diagnosis of P. vivax malaria was only 70%. When P. vivax parasitaemia was greater than 5000 parasites/microL the RDT was 96.2% sensitive. A significant association was noted between the band intensity on the dipstick and both peripheral blood parasitaemia (p ICT Malaria P.f/P.v test can be used in Sri Lanka in the absence of microscopists.

  15. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  16. How is childhood development of immunity to Plasmodium falciparum enhanced by certain antimalarial interventions?

    Directory of Open Access Journals (Sweden)

    Schellenberg David

    2007-12-01

    Full Text Available Abstract The development of acquired protective immunity to Plasmodium falciparum infection in young African children is considered in the context of three current strategies for malaria prevention: insecticide-impregnated bed nets or curtains, anti-sporozoite vaccines and intermittent preventive therapy. Evidence is presented that each of these measures may permit attenuated P. falciparum blood-stage infections, which do not cause clinical malaria but can act as an effective blood-stage "vaccine". It is proposed that the extended serum half-life, and rarely considered liver-stage prophylaxis provided by the anti-folate combination sulphadoxine-pyrimethamine frequently lead to such attenuated infections in high transmission areas, and thus contribute to the sustained protection from malaria observed among children receiving the combination as intermittent preventative therapy or for parasite clearance in vaccine trials.

  17. In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia.

    Science.gov (United States)

    Baird, J K; Wiady, I; Fryauff, D J; Sutanihardja, M A; Leksana, B; Widjaya, H; Kysdarmanto; Subianto, B

    1997-06-01

    A survey of resistance to chloroquine by Plasmodium vivax and P. falciparum was conducted during May 1995 at three mesoendemic villages 30 km southeast of Nabire, near the central northern coast of Irian Jaya, Indonesia. The prevalence of malaria at Urusumu (n = 157), Margajaya (n = 573), and Topo (n = 199) was 18%. 9%, and 9%, respectively, with spleen rates among children of 79%, 10%, and 27%. Infected patients among those screened formed a study population of 64 subjects eligible for a 28-day in vivo test of resistance to chloroquine. Sixty-three patients successfully completed the test; 45 males and 18 females 1-60 years of age, of whom 29 were Javanese transmigrants of five years residence in Irian Jaya and 34 were native to Irian Jaya. The seven-day day cumulative incidence of therapeutic failure for P. vivax and P. falciparum was 15% (n = 34) and 30% (n = 37). The 14- and 28-day estimates of cumulative incidence were 45% and 64% for P. vivax and 58% and 89% for P. falciparum. Almost all recurrences appeared in the face of ordinarily effective levels of chloroquine and its major metabolite, desethylchloroquine, in whole blood (> or = 100 ng/ml). Four infections by P. malariae in subjects enrolled in this study cleared by day 2 and none reappeared within 28 days. Chloroquine no longer provides effective therapy for falciparum or vivax malaria along the northern coast of Irian Jaya, Indonesia.

  18. MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN.

    Science.gov (United States)

    Sharifi-Sarasiabi, Khojasteh; Haghighi, Ali; Kazemi, Bahram; Taghipour, Niloofar; Mojarad, Ehsan Nazemalhosseini; Gachkar, Latif

    2016-01-01

    In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment.

  19. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S D; Hviid, L;

    1993-01-01

    Plasma levels of antibodies against phosphatidylinositol (PI), phosphatidylcholine (PC) and cardiolipin (CL) were measured by enzyme-linked immunosorbent assay (ELISA) in patients from malaria endemic area of Sudan and The Gambia. Some Sudanese adults produced IgM antibodies against all three types...... of phospholipids (PL) during an acute Plasmodium falciparum infection. The anti-PL antibody titre returned to preinfection levels in most of the donors 30 days after the disease episode. IgG titres against PI, PC and CL were low. In Gambian children with malaria, IgM antibody titres against PI and PC were...... significantly higher in those with severe malaria than in those with mild malaria. These results show that a proportion of malaria patients produce anti-PL antibodies during infection and that titres of these antibodies are associated with the severity of disease....

  20. Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum.

    Science.gov (United States)

    Mita, Toshihiro

    2010-06-01

    The emergence and spread of Plasmodium falciparum parasite resistant to sulfadoxine and pyrimethamine (SP) poses a serious public health problem. Resistance is caused by point mutations in dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps), the two key enzymes in the folate biosynthetic pathway. The use of microsatellite markers flanking pfdhfr has recently shown that the invasion of limited resistant lineages may explain the widespread SP resistance in many endemic regions. In Africa, however, multiple indigenous origins of pfdhfr triple mutants have been demonstrated. More new independent lineages and routes of geographical spread of resistance may be found by further molecular evolutionary analyses using samples from various endemic regions. Here, I review recent studies about the history of SP usage and the evolution and spread of resistant lineages while addressing the technical issue of microsatellite analysis.

  1. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  2. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice

    Science.gov (United States)

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean- François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  3. Plasmodium vivax and Plasmodium falciparum are Common Malaria Species in Pakistan

    Directory of Open Access Journals (Sweden)

    Tauseef Ahmad

    2016-06-01

    Full Text Available The microbes have a diverse nature, it makes human laugh and cry. Some microbes are fruitful for humans while others are harmful. Infectious diseases are a key problem in the modern world. In the last few decades, million of peoples have died from different diseases, including bacterial, viral, fungal, parasitic, etc. Among these diseases, malaria is one of the major health problems for developing countries including Pakistan. This study was undertaken to provide baseline information about the prevalence of malaria, species distribution and to contribute to the data regarding epidemiology in Pakistan. For a collection of literature, the electronic search engine was used, using different key words i.e. prevalence, species distribution, epidemiology of malaria in Pakistan, etc. The time frame of the obtained articles was from 2000 to 2014. The two species of malaria Plasmodium vivax and Plasmodium falciparum are common in Pakistan. [Biomed Res Ther 2016; 3(6.000: 666-672

  4. Protection against Plasmodium falciparum malaria by PfSPZ Vaccine

    Science.gov (United States)

    Epstein, Judith E.; Paolino, Kristopher M.; Richie, Thomas L.; Sedegah, Martha; Singer, Alexandra; Ruben, Adam J.; Chakravarty, Sumana; Stafford, April; Ruck, Richard C.; Eappen, Abraham G.; Billingsley, Peter F.; Manoj, Anita; Moser, Kara; Nielsen, Robin; Tosh, Donna; Cicatelli, Susan; Ganeshan, Harini; Case, Jessica; Padilla, Debbie; Davidson, Silas; Saverino, Elizabeth; Murshedkar, Tooba; Gunasekera, Anusha; Twomey, Patrick S.; Reyes, Sharina; Moon, James E.; James, Eric R.; KC, Natasha; Li, Minglin; Abot, Esteban; Belmonte, Arnel; Hauns, Kevin; Belmonte, Maria; Huang, Jun; Vasquez, Carlos; Remich, Shon; Carrington, Mary; Abebe, Yonas; Tillman, Amy; Hickey, Bradley; Regules, Jason; Villasante, Eileen; Sim, B. Kim Lee

    2017-01-01

    BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [–35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research

  5. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies

    DEFF Research Database (Denmark)

    Muellenbeck, Matthias F; Ueberheide, Beatrix; Amulic, Borko

    2013-01-01

    Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaire...... that constant immune activation rather than impaired memory function leads to the accumulation of AtM in malaria. Understanding the memory B cell response to natural Pf infection may be key to the development of a malaria vaccine that induces long-lived protection.......Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired....... We show at the single cell level that natural Pf infection induces the development of classical memory B cells (CM) and atypical memory B cells (AtM) that produce broadly neutralizing antibodies against blood stage Pf parasites. CM and AtM contribute to anti-Pf serum IgG production, but only AtM show...

  6. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    Science.gov (United States)

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  7. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Biswas S

    2001-10-01

    Full Text Available BAKGROUND: The spread of drug resistance in Plasmodium falciparum has made the situation essential to look into new effective therapeutic agents like antibiotics. Azithromycin is a potential, chemotherapeutic agent which possesses antimalarial activity and favourable pharmacokinetic properties. It is an azalide microbiocide derived semi-synthetically from macrolide erythromycin. Like other antibiotics, the azalide azithromycin has ability to inhibit protein synthesis on 70S ribosomes. SETTINGS: Experimental study. SUBJECTS AND METHODS: The parasiticidal profile was studied in five chloroquine sensitive and five chloroquine resistant P. falciparum isolates obtained from various places of India. The antimalarial activity was evaluated in P. falciparum schizont maturation by short term culture for 24 hours and by exposing the parasites to the drug for 96 hours. Parasites synchronized at ring stage were put for culture with various concentrations of azithromycin dihydrate (0.01-40 micro/ml. RESULTS: At highest concentration (40 micro/ml, parasite growth was inhibited totally in all 10 isolates. Antimalarial activity at 96 hours was greater than at 24 hours in both chloroquine sensitive and resistant parasites, which may indicate that the inhibition of parasite growth may occur at clinically achievable concentration of the drug when parasites were exposed for several asexual cycles. CONCLUSION: Azithromycin shows a potential for eventual use alone or in combination in the treatment of chloroquine sensitive and resistant P. falciparum malaria.

  8. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used ...

  9. Lack of Evidence for Chloroquine-Resistant Plasmodium falciparum Malaria, Leogane, Haiti

    Science.gov (United States)

    Neuberger, Ami; Zhong, Kathleen; Kain, Kevin C

    2012-01-01

    Plasmodium falciparum malaria in Haiti is considered chloroquine susceptible, although resistance transporter alleles associated with chloroquine resistance were recently detected. Among 49 patients with falciparum malaria, we found neither parasites carrying haplotypes associated with chloroquine resistance nor instances of chloroquine treatment failure. Continued vigilance to detect emergence of chloroquine resistance is needed. PMID:22932030

  10. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...

  11. Lymphocyte response to purified Plasmodium falciparum antigens during and after malaria

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1986-01-01

    The peripheral blood lymphocyte response to affinity purified soluble Plasmodium falciparum antigens from in vitro cultures was studied in seven patients with acute falciparum malaria, on eight occasions, and in 15 persons having had malaria, at various times post infection, on 24 occasions. During...

  12. Lack of evidence for chloroquine-resistant Plasmodium falciparum malaria, Leogane, Haiti.

    Science.gov (United States)

    Neuberger, Ami; Zhong, Kathleen; Kain, Kevin C; Schwartz, Eli

    2012-09-01

    Plasmodium falciparum malaria in Haiti is considered chloroquine susceptible, although resistance transporter alleles associated with chloroquine resistance were recently detected. Among 49 patients with falciparum malaria, we found neither parasites carrying haplotypes associated with chloroquine resistance nor instances of chloroquine treatment failure. Continued vigilance to detect emergence of chloroquine resistance is needed.

  13. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    NARCIS (Netherlands)

    Breitling, L.P.; Fendel, R.; Mordmueller, B.; Adegnika, A.A.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring o

  14. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  15. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    Science.gov (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  16. A new world malaria map: Plasmodium falciparum endemicity in 2010

    Directory of Open Access Journals (Sweden)

    Gething Peter W

    2011-12-01

    Full Text Available Abstract Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR and the basic reproductive number (PfR. Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR surveys were used in a model-based geostatistical (MBG prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The

  17. In vivo efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in Central Ethiopia

    Directory of Open Access Journals (Sweden)

    Jima Daddi

    2011-07-01

    Full Text Available Abstract Background In vivo efficacy assessments of the first-line treatments for Plasmodium falciparum malaria are essential for ensuring effective case management. In Ethiopia, artemether-lumefantrine (AL has been the first-line treatment for uncomplicated P. falciparum malaria since 2004. Methods Between October and November 2009, we conducted a 42-day, single arm, open label study of AL for P. falciparum in individuals >6 months of age at two sites in Oromia State, Ethiopia. Eligible patients who had documented P. falciparum mono-infection were enrolled and followed according to the standard 2009 World Health Organization in vivo drug efficacy monitoring protocol. The primary and secondary endpoints were PCR uncorrected and corrected cure rates, as measured by adequate clinical and parasitological response on days 28 and 42, respectively. Results Of 4426 patients tested, 120 with confirmed falciparum malaria were enrolled and treated with AL. Follow-up was completed for 112 patients at day 28 and 104 patients at day 42. There was one late parasitological failure, which was classified as undetermined after genotyping. Uncorrected cure rates at both day 28 and 42 for the per protocol analysis were 99.1% (95% CI 95.1-100.0; corrected cure rates at both day 28 and 42 were 100.0%. Uncorrected cure rates at day 28 and 42 for the intention to treat analysis were 93.3% (95% CI 87.2-97.1 and 86.6% (95% CI 79.1-92.1, respectively, while the corrected cure rates at day 28 and 42 were 94.1% (95% CI 88.2-97.6 and 87.3% (95% CI 79.9-92.7, respectively. Using survival analysis, the unadjusted cure rate was 99.1% and 100.0% adjusted by genotyping for day 28 and 42, respectively. Eight P. falciparum patients (6.7% presented with Plasmodium vivax infection during follow-up and were excluded from the per protocol analysis. Only one patient had persistent parasitaemia at day 3. No serious adverse events were reported, with cough and nausea/vomiting being the

  18. Glycerol inhibits water permeation through Plasmodium falciparum aquaglyceroporin.

    Science.gov (United States)

    Chen, Liao Y

    2013-01-01

    Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation through aquaglyceroporin that conducts both glycerol and water? This paper provides an affirmative answer to this question of essential importance to the protein's functions. On the basis of the chemical-potential profile of glycerol from the extracellular bulk region, throughout PfAQP's conducting channel, to the cytoplasmic bulk region, this study shows the existence of a bound state of glycerol inside aquaglyceroporin's permeation pore, from which the dissociation constant is approximately 14μM. A glycerol molecule occupying the bound state occludes the conducting pore through which permeating molecules line up in single file by hydrogen-bonding with one another and with the luminal residues of aquaglyceroporin. In this way, glycerol inhibits permeation of water and other permeants through aquaglyceroporin. The biological implications of this theory are discussed and shown to agree with the existent in vitro data. It turns out that the structure of aquaglyceroporin is perfect for the van der Waals interactions between the protein and glycerol to cause the existence of the bound state deep inside the conducting pore and, thus to play an unexpected but significant role in aquaglyceroporin's functions.

  19. Molecular Aspects of Plasmodium falciparum Infection during Pregnancy

    Directory of Open Access Journals (Sweden)

    Nicaise Tuikue Ndam

    2007-01-01

    Full Text Available Cytoadherence of Plasmodium-falciparum-parasitized red blood cells (PRBCs to host receptors is the key phenomenon in the pathological process of the malaria disease. Some of these interactions can originate poor outcomes responsible for 1 to 3 million annual deaths mostly occurring among children in sub-Saharan Africa. Pregnancy-associated malaria (PAM represents an important exception of the disease occurring at adulthood in malaria endemic settings. Consequences of this are shared between the mother (maternal anemia and the baby (low birth weight and infant mortality. Demonstrating that parasites causing PAM express specific variant surface antigens (VSAPAM, including the P. falciparum erythrocyte membrane protein 1 (PfEMP1 variant VAR2CSA, that are targets for protective immunity has strengthened the possibility for the development of PAM-specific vaccine. In this paper, we review the molecular basis of malaria pathogenesis attributable to the erythrocyte stages of the parasites, and findings supporting potential anti-PAM vaccine components evidenced in PAM.

  20. Serum enzymes activities in Plasmodium falciparum infection in Southern Pakistan

    Directory of Open Access Journals (Sweden)

    Koay Yen Chin

    2011-05-01

    Full Text Available Objective: Serum levels of lactate dehydrogenase (LDH,aspartate aminotranferase (AST, alanine aminotransferase(ALT, and alkaline phosphatase (ALP were assessed todetermine the liver functions of patients infected withPlasmodium falciparum. The enzyme activities were assessedin 60 malarial patients and a control group of 44 people.Materials and Methods: The data for the study was collectedfrom the survey conducted from Liaquat University of medicaland health sciences Hospital, Hyderabad, Pakaistan. Sample of60 patients aged between 20 and 50 years were collected. Acontrol group of 44 healthy individual adults was also assessedfor comparative purposes. All the malaria patients who visitedthe OPD during the study period enrolled in the study.Results: The LDH activity in male patients was found to be674.89 ± 33.354 IU/L. This is above the control LDH activity of296.59 ± 14.476 IU/L. Similarly, in female patients, the serumLDH activity of 580.25 ± 24.507 IU/L is over twice the controlfemale serum LDH activity of 302.18 ± 18.082 IU/L. Furtherone-way anova test was performed to find any significance ininfected and control male and female.Conclusion: Hepatic dysfunction was found to be associated toP. falciparum malaria infection.

  1. Targeting glycolysis in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    van Niekerk, David D; Penkler, Gerald P; du Toit, Francois; Snoep, Jacky L

    2016-02-01

    Glycolysis is the main pathway for ATP production in the malaria parasite Plasmodium falciparum and essential for its survival. Following a sensitivity analysis of a detailed kinetic model for glycolysis in the parasite, the glucose transport reaction was identified as the step whose activity needed to be inhibited to the least extent to result in a 50% reduction in glycolytic flux. In a subsequent inhibitor titration with cytochalasin B, we confirmed the model analysis experimentally and measured a flux control coefficient of 0.3 for the glucose transporter. In addition to the glucose transporter, the glucokinase and phosphofructokinase had high flux control coefficients, while for the ATPase a small negative flux control coefficient was predicted. In a broader comparative analysis of glycolytic models, we identified a weakness in the P. falciparum pathway design with respect to stability towards perturbations in the ATP demand. The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.bio.vu.nl/database/vanniekerk1. The SEEK-study including the experimental data set is available at DOI 10.15490/seek.1. 56 (http://dx.doi.org/10.15490/seek.1. 56). © 2015 FEBS.

  2. Atorvastatin prevents Plasmodium falciparum cytoadherence and endothelial damage

    Directory of Open Access Journals (Sweden)

    Soubrier Florent

    2011-02-01

    Full Text Available Abstract Background The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC to human endothelial cells (EC induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders. Methods The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models. Results Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites. Conclusions These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.

  3. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion.

    Directory of Open Access Journals (Sweden)

    Gavin J Wright

    2014-03-01

    Full Text Available All the symptoms and pathology of malaria are caused by the intraerythrocytic stages of the Plasmodium parasite life cycle. Because Plasmodium parasites cannot replicate outside a host cell, their ability to recognize and invade erythrocytes is an essential step for both parasite survival and malaria pathogenesis. This makes invasion a conceptually attractive vaccine target, especially because it is one of the few stages when the parasite is directly exposed to the host humoral immune system. This apparent vulnerability, however, has been countered by the parasite, which has evolved sophisticated molecular mechanisms to evade the host immune response so that parasites asymptomatically replicate within immune individuals. These mechanisms include the expansion of parasite invasion ligands, resulting in multiple and apparently redundant invasion "pathways", highly polymorphic parasite surface proteins that are immunologically distinct, and parasite proteins which are poorly immunogenic. These formidable defences have so far thwarted attempts to develop an effective blood-stage vaccine, leading many to question whether there really is an exploitable chink in the parasite's immune evasion defences. Here, we review recent advances in the molecular understanding of the P. falciparum erythrocyte invasion field, discuss some of the challenges that have so far prevented the development of blood-stage vaccines, and conclude that the parasite invasion ligand RH5 represents an essential pinch point that might be vulnerable to vaccination.

  4. Exitoso cultivo in vitro de gametocitos de Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Silvia Blair

    2008-12-01

    Full Text Available Introducción. Los estadios sexuales de Plasmodium falciparum han sido menos estudiados que los estadios asexuales. Al parecer, esto se debe a la carencia de cultivos estandarizados in vitro y a la dificultad de reconocer sus estadios de desarrollo. Estos hechos no permiten el estudio de aspectos biológicos, aspectos metabólicos, expresión de genes y síntesis de proteínas durante los estadios sexuales, temas de interés en la investigación de nuevos medicamentos antipalúdicos, principalmente los aislados de plantas, y la identificación de un potencial blanco contra Plasmodium. Objetivos. Establecer un cultivo in vitro de gametocitos, con la identificación de sus cinco estadios de desarrollo, y asegurar su continua producción. Materiales y métodos. El cultivo in vitro de gametocitos se realizó a partir de la cepa NF54 de P. falciparum en medio RPMI, con determinación de la parasitemia asexual y sexual, adición de glóbulos rojos A-Rh+ sólo el primer día de cultivo y cambio diario del medio con adición de mezcla de gases (90% N2, 5% O2; 5% CO2, asegurándose que el cultivo se mantuviera a 37 °C. Cuando la parasitemia asexual estuvo entre 3% y 5%, se comenzó a agregar el doble de volumen de medio. Resultados. Se obtuvieron gametocitos en estadios I, II y III a partir del día 11 de cultivo y estadios IV y V a partir del día 14 de cultivo. Conclusiones. Se estandarizó un cultivo in vitro para estadios sexuales de P. falciparum que puede usarse para futuros estudios de evaluación de compuestos, naturales o sintéticos, que actúen sobre los gametocitos, lo cual podría permitir el desarrollo de nuevas estrategias de control contra el paludismo.

  5. Fatal Plasmodium falciparum, Clostridium perfringens, and Candida spp. Coinfections in a Traveler to Haiti

    Science.gov (United States)

    Genrich, Gillian L.; Bhatnagar, Julu; Paddock, Christopher D.; Zaki, Sherif R.

    2009-01-01

    Malaria is one of the most common causes of febrile illness in travelers. Coinfections with bacterial, viral, and fungal pathogens may not be suspected unless a patient fails to respond to malaria treatment. Using novel immunohistochemical and molecular techniques, Plasmodium falciparum, Clostridium perfringens, and Candida spp. coinfections were confirmed in a German traveler to Haiti. Plasmodium falciparum-induced ischemia may have increased this patient's susceptibility to C. perfringens and disseminated candidiasis leading to his death. When a patient presents with P. falciparum and shock and is unresponsive to malaria treatment, secondary infections should be suspected to initiate appropriate treatment. PMID:20339463

  6. IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice.

    Directory of Open Access Journals (Sweden)

    Robert Schwenk

    Full Text Available The availability of a highly purified and well characterized circumsporozoite protein (CSP is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP. A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE of CS/D in combination with the Toll-Like Receptor 4 (TLR4 agonist Glucopyranosyl Lipid A (GLA/SE, or one of two TLR7/8 agonists: R848 (un-conjugated or 3M-051 (covalently conjugated. Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive T(H1/T(H2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants

  7. In vitro Potentiation of Antimalarial Activities by Daphnetin Derivatives Against Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    FANG HUANG; LIN-HUA TANG; LIN-QIAN YU; YI-CHANG NI; QIN-MEI WANG; FA-JUN NAN

    2006-01-01

    Objective To screen the antimalarial compounds of daphnetin derivatives against Plasmodium falciparum in vitro. Method Plasmodium faciparum (FCC1) was cultured in vitro by a modified method of Trager and Jensen. Antimalarial compounds were screened by microscopy-based assay and microfluorimetric method. Results DA79 and DA78 showed potent antimalarial activity against Plasmodium falciparum cultured in vitro. Conclusion Though the relationship between the structures of daphnetin derivatives and their antimalarial activities has not been clarified yet, this study may provide a new direction for discovery of more potential antimalarial compounds.

  8. High-Dose Chloroquine for Treatment of Chloroquine-Resistant Plasmodium falciparum Malaria.

    Science.gov (United States)

    Ursing, Johan; Rombo, Lars; Bergqvist, Yngve; Rodrigues, Amabelia; Kofoed, Poul-Erik

    2016-04-15

    Due to development of multidrug-resistant Plasmodium falciparum new antimalarial therapies are needed. In Guinea-Bissau, routinely used triple standard-dose chloroquine remained effective for decades despite the existence of "chloroquine-resistant" P. falciparum. This study aimed to determine the in vivo efficacy of higher chloroquine concentrations against P. falciparum with resistance-conferring genotypes. Standard or double-dose chloroquine was given to 892 children aged <15 years with uncomplicated malaria during 3 clinical trials (2001-2008) with ≥ 35 days follow-up. The P. falciparum resistance-conferring genotype (pfcrt 76T) and day 7 chloroquine concentrations were determined. Data were divided into age groups (<5, 5-9, and 10-14 years) because concentrations increase with age when chloroquine is prescribed according to body weight. Adequate clinical and parasitological responses were 14%, 38%, and 39% after standard-dose and 66%, 84%, and 91% after double-dose chloroquine in children aged <5, 5-9, and 10-14 years, respectively, and infected with P. falciparum genotypes conferring chloroquine resistance (n = 195, P < .001). In parallel, median chloroquine concentrations were 471, 688, and 809 nmol/L for standard-dose and 1040, 1494, and 1585 nmol/L for double-dose chloroquine. Chloroquine resistance is dose dependent and can be overcome by higher, still well-tolerated doses. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. A cross strain Plasmodium falciparum microarray optimized for the transcriptome analysis of Plasmodium falciparum patient derived isolates

    KAUST Repository

    Subudhi, Amit Kumar

    2016-07-20

    Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic\\'s Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

  10. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.

  11. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Alvaro Molina-Cruz

    2014-08-01

    Full Text Available Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.

  12. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants

    DEFF Research Database (Denmark)

    Barfod, Lea; Dobrilovic, Tina; Magistrado, Pamela

    2010-01-01

    Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chond......Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes...

  13. Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study

    Science.gov (United States)

    Smith, Clare M.; Jerkovic, Ante; Truong, Thy Thuc; Foote, Simon J.; McCarthy, James S.; McMorran, Brendan J.

    2017-01-01

    Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase. PMID:28176804

  14. Pyronaridine-Artesunate combination for the treatment of acute uncomplicated Plasmodium falciparum malaria in paediatric patients in Gabon

    OpenAIRE

    Schreier, Annette

    2010-01-01

    Artemisinin-based combination therapies (ACTs) are now the recommended first-line drugs for the treatment of acute uncomplicated Plasmodium falciparum malaria in many endemic regions and the development of novel therapy options, especially for the use in children, is a major aim in malaria research. This Phase II study intended to provide first clinical data about the new combination of pyronaridine and artesunate for the use in paediatric patients. 60 children were assigned to the four s...

  15. Adding a single low-dose of primaquine (0.25 mg/kg) to artemether-lumefantrine did not compromise treatment outcome of uncomplicated Plasmodium falciparum malaria in Tanzania: a randomized, single-blinded clinical trial.

    Science.gov (United States)

    Mwaiswelo, Richard; Ngasala, Billy; Jovel, Irina; Aydin-Schmidt, Berit; Gosling, Roland; Premji, Zul; Mmbando, Bruno; Björkman, Anders; Mårtensson, Andreas

    2016-08-26

    The World Health Organization (WHO) recently recommended the addition of a single low-dose of the gametocytocidal drug primaquine (PQ) to artemisinin-based combination therapy (ACT) in low transmission settings as a component of pre-elimination or elimination programmes. However, it is unclear whether that influences the ACT cure rate. The study assessed treatment outcome of artemether-lumefantrine (AL) plus a single PQ dose (0.25 mg/kg) versus standard AL regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. A randomized, single-blinded, clinical trial was conducted in Yombo, Bagamoyo district, Tanzania. Acute uncomplicated P. falciparum malaria patients aged ≥1 year, with the exception of pregnant and lactating women, were enrolled and treated with AL plus a single PQ dose (0.25 mg/kg) or AL alone under supervision. PQ was administered together with the first AL dose. Clinical and laboratory assessments were performed at 0, 8, 24, 36, 48, 60, and 72 h and on days 7, 14, 21, and 28. The primary end-point was a polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) on day 28. Secondary outcomes included: fever and asexual parasitaemia clearance, proportion of patients with PCR-determined parasitaemia on day 3, and proportion of patients with Pfmdr1 N86Y and Pfcrt K76T on days 0, 3 and day of recurrent infection. Overall 220 patients were enrolled, 110 were allocated AL + PQ and AL, respectively. Parasite clearance by microscopy was fast, but PCR detectable parasitaemia on day 3 was 31/109 (28.4 %) and 29/108 (26.9 %) in patients treated with AL + PQ and AL, respectively (p = 0.79). Day 28 PCR-adjusted ACPR and re-infection rate was 105/105 (100 %) and 101/102 (99 %) (p = 0.31), and 5/107 (4.7 %) and 5/8 (4.8 %) (p = 0.95), in AL + PQ and AL arm, respectively. There was neither any statistically significant difference in the proportion of Pfmdr1 N86Y or Pfcrt K76T

  16. Molecular surveillance for drug-resistant Plasmodium falciparum in clinical and subclinical populations from three border regions of Burma/Myanmar: cross-sectional data and a systematic review of resistance studies

    Science.gov (United States)

    2012-01-01

    Background Confirmation of artemisinin-delayed parasite clearance in Plasmodium falciparum along the Thai-Myanmar border has inspired a global response to contain and monitor drug resistance to avert the disastrous consequences of a potential spread to Africa. However, resistance data from Myanmar are sparse, particularly from high-risk areas where limited health services and decades of displacement create conditions for resistance to spread. Subclinical infections may represent an important reservoir for resistance genes that confer a fitness disadvantage relative to wild-type alleles. This study estimates the prevalence of resistance genotypes in three previously unstudied remote populations in Myanmar and tests the a priori hypothesis that resistance gene prevalence would be higher among isolates collected from subclinical infections than isolates collected from febrile clinical patients. A systematic review of resistance studies is provided for context. Methods Community health workers in Karen and Kachin States and an area spanning the Indo-Myanmar border collected dried blood spots from 988 febrile clinical patients and 4,591 villagers with subclinical infection participating in routine prevalence surveys. Samples positive for P. falciparum 18 s ribosomal RNA by real-time PCR were genotyped for P. falciparum multidrug resistance protein (pfmdr1) copy number and the pfcrt K76T polymorphism using multiplex real-time PCR. Results Pfmdr1 copy number increase and the pfcrt K76 polymorphism were determined for 173 and 269 isolates, respectively. Mean pfmdr1 copy number was 1.2 (range: 0.7 to 3.7). Pfmdr1 copy number increase was present in 17.5%, 9.6% and 11.1% of isolates from Karen and Kachin States and the Indo-Myanmar border, respectively. Pfmdr1 amplification was more prevalent in subclinical isolates (20.3%) than clinical isolates (6.4%, odds ratio 3.7, 95% confidence interval 1.1 - 12.5). Pfcrt K76T prevalence ranged from 90-100%. Conclusions Community

  17. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  18. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    Science.gov (United States)

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  19. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Villasis Elizabeth

    2012-10-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL and the Reticulocyte Binding-Like (PfRh proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturally acquired immunity and immunity generated by parasite blood stage vaccine candidates. The hypotheses tested in this study were 1 that antibody responses against specific P. falciparum invasion ligands (EBL and PfRh differ between symptomatic and asymptomatic individuals living in the low-transmission region of the Peruvian Amazon and 2, such antibody responses might have an association, either direct or indirect, with clinical immunity observed in asymptomatically parasitaemic individuals. Methods ELISA was used to assess antibody responses (IgG, IgG1 and IgG3 against recombinant P. falciparum invasion ligands of the EBL (EBA-175, EBA-181, EBA-140 and PfRh families (PfRh1, PfRh2a, PfRh2b, PfRh4 and PfRh5 in 45 individuals infected with P. falciparum from Peruvian Amazon. Individuals were classified as having symptomatic malaria (N=37 or asymptomatic infection (N=8. Results Antibody responses against both EBL and PfRh family proteins were significantly higher in asymptomatic compared to symptomatic individuals, demonstrating an association with clinical immunity. Significant differences in the total IgG responses were observed with EBA-175, EBA-181, PfRh2b, and MSP119 (as a control. IgG1 responses against EBA-181, PfRh2a and PfRh2b were significantly higher in the asymptomatic individuals. Total IgG antibody responses against PfRh1, PfRh2a, PfRh2b, PfRh5, EBA-175, EBA-181 and MSP119 proteins were negatively correlated with level of parasitaemia. IgG1 responses against EBA-181, PfRh2a and PfRh2b and IgG3 response for PfRh2a were also negatively correlated with parasitaemia. Conclusions These data suggest that falciparum malaria patients who develop

  20. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  1. The prognostic value of schizontaemia in imported Plasmodium falciparum malaria

    Science.gov (United States)

    2012-01-01

    Background In Plasmodium falciparum infection, peripheral parasite counts do not always correlate well with the sequestered parasite burden. As erythrocytes parasitized with mature trophozoites and schizonts have a high tendency to adhere to the microvascular endothelium, they are often absent in peripheral blood samples. The appearance of schizonts in peripheral blood smears is thought to be a marker of high sequestered parasite burden and severe disease. In the present study, the value of schizontaemia as an early marker for severe disease in non-immune individuals with imported malaria was evaluated. Methods All patients in the Rotterdam Malaria Cohort diagnosed with P. falciparum malaria between 1 January 1999 and 1 January 2012 were included. Thick and thin blood films were examined for the presence of schizontaemia. The occurrence of WHO defined severe malaria was the primary endpoint. The diagnostic performance of schizontaemia was compared with previously evaluated biomarkers C-reactive protein and lactate. Results Schizonts were present on admission in 49 of 401 (12.2%) patients. Patients with schizontaemia were more likely to present with severe malaria, a more complicated course and had longer duration of admission in hospital. Schizontaemia had a specificity of 0.95, a sensitivity of 0.53, a negative predictive value of 0.92 and a positive predictive value of 0.67 for severe malaria. The presence of schizonts was an independent predictor for severe malaria. Conclusion Absence of schizonts was found to be a specific marker for exclusion of severe malaria. Presence of schizonts on admission was associated with a high positive predictive value for severe malaria. This may be of help to identify patients who are at risk of a more severe course than would be expected when considering peripheral parasitaemia alone. PMID:22929647

  2. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  3. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

    Directory of Open Access Journals (Sweden)

    Gil José

    2002-10-01

    Full Text Available Abstract Background The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem. Methods In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF, quinine (QUIN and amodiaquine (AMQ of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP. Results The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52, 62% (32/52, and 58% (18/31, respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79% of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i CQ resistance / pfcrt 76T (P = 0.001, and ii MF resistance / pfmdr1 86N (P Conclusions i In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii pfmdr1 86N appears to be a good predictor of in vitro MF resistance.

  4. Origin and evolution of sulfadoxine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sumiti Vinayak

    2010-03-01

    Full Text Available The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated, a large proportion of the isolates (19.3% contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each

  5. Origin and evolution of sulfadoxine resistant Plasmodium falciparum.

    Science.gov (United States)

    Vinayak, Sumiti; Alam, Md Tauqeer; Mixson-Hayden, Tonya; McCollum, Andrea M; Sem, Rithy; Shah, Naman K; Lim, Pharath; Muth, Sinuon; Rogers, William O; Fandeur, Thierry; Barnwell, John W; Escalante, Ananias A; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R; Udhayakumar, Venkatachalam

    2010-03-26

    The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.

  6. Spatial prediction of Plasmodium falciparum prevalence in Somalia

    Directory of Open Access Journals (Sweden)

    Shewchuk Tanya

    2008-08-01

    Full Text Available Abstract Background Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Methods Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. Results For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of Conclusion The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.

  7. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    Directory of Open Access Journals (Sweden)

    Kendjo Eric

    2003-06-01

    Full Text Available Abstract Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57% had microscopic parasitaemia; 139 (64%of them were primigravidae, 38 (40% in their second pregnancy and 180 (64% were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.

  8. An open randomized clinical trial in comparing two artesunate-based combination treatments on Plasmodium falciparum malaria in Nigerian children: artesunate/sulphamethoxypyrazine/pyrimethamine (fixed dose over 24 hours versus artesunate/amodiaquine (fixed dose over 48 hours

    Directory of Open Access Journals (Sweden)

    Sowunmi Akintunde

    2010-12-01

    Full Text Available Abstract Background Several studies have demonstrated the efficacy of artemisinin-combination therapy (ACT across malaria zones of the world. Fixed dose ACT with shorter courses and fewer tablets may be key determinants to ease of administration and compliance. Methods Children aged one year to 13 years presenting with uncomplicated Plasmodium falciparum malaria were recruited in Ibadan, south-western Nigeria. A total of 250 children each were randomly assigned to receive three doses of artesunate/sulphamethoxypyrazine/pyrimethamine (AS + SMP (12 hourly doses over 24 hours or three doses of artesunate/amodiaquine (AS + AQ (daily doses over 48 hours. Efficacy and safety of the two drugs were assessed using a 28-day follow-up and the primary outcome was PCR- corrected parasitological cure rate and clinical response. Results There were two (0.4% early treatment failures, one in each treatment arm. The PCR corrected cure rates for day 28 was 97.9% in the AS + AQ arm and 95.6% in the AS + SMP arm (p = 0.15. The re-infection rate was 1.7% in the AS + AQ arm and 5.7% in the AS + SMP arm (p = 0.021. The fever clearance time was similar in the two treatment groups: 1 - 2 days for both AS + SMP and AS + AQ (p = 0.271. The parasite clearance time was also similar in the two treatment groups with 1 - 7 days for AS + SMP and 1 - 4 days for AS + AQ (p = 0.941. The proportion of children with gametocytes over the follow-up period was similar in both treatment groups. Serious Adverse Events were not reported in any of the patients and in all children, laboratory values (packed cell volume, liver enzymes, bilirubin remained within normal levels during the follow-up period but the packed cell volume was significantly lower in the AS + SMP group. Conclusions This study demonstrates that AS + SMP FDC given as three doses over 24 hours (12-hour intervals has similar efficacy as AS + AQ FDC given as three doses over 48 hours (24-hour interval for the treatment of

  9. Malaria in pregnancy in rural Mozambique: the role of parity, submicroscopic and multiple Plasmodium falciparum infections.

    Science.gov (United States)

    Saute, Francisco; Menendez, Clara; Mayor, Alfredo; Aponte, John; Gomez-Olive, Xavier; Dgedge, Martinho; Alonso, Pedro

    2002-01-01

    Falciparum malaria affects pregnant women, especially primigravidae, but before malaria control programmes targeted to them can be designed, a description of the frequency and parity pattern of the infection is needed. There is little information on the frequency and effect of submicroscopic malaria infection, as well as on multiplicity of Plasmodium falciparum genotypes in pregnancy. This study aimed to describe the prevalence of malaria parasitaemia and anaemia and their relation to parity and age in pregnant women, during two malaria transmission seasons in a rural area of southern Mozambique. It also tried to assess the frequency and effect on anaemia of submicroscopic and multiple falciparum infections. A total of 686 pregnant women were enrolled in three cross-sectional community-based surveys during different transmission seasons in rural southern Mozambique. In each survey a questionnaire was administered on previous parity history, the gestational age was assessed, the axillary temperature recorded and both haematocrit and malaria parasitaemia were determined. We used polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis to determine submicroscopic and multiple P. falciparum infections in a subsample of women. A total of 156 women (23%) had microscopic parasitaemia, of which 144 (92%) were asexual forms of P. falciparum. The prevalence of clinical malaria was 18 of 534 (3%), that of anaemia, 382 of 649 (59%). In a multivariate analysis age but not parity was associated with an increased risk of microscopic parasitaemia. Anaemia was associated with microscopic P. falciparum parasitaemia. Both malaria parasitaemia and anaemia were more frequent during the rainy season. Although not statistically significant, submicroscopic infections tended to be more frequent among grand-multiparous pregnant women. Subpatent infections were not associated with increased anaemia. Multiplicity of infection was not associated with either

  10. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;

    2014-01-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute....... In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed...

  11. Effects of point mutations in Plasmodium falciparum dihydrofolate reductase and dihydropterate synthase genes on clinical outcomes and in vitro susceptibility to sulfadoxine and pyrimethamine.

    Directory of Open Access Journals (Sweden)

    David J Bacon

    Full Text Available BACKGROUND: Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G] and septuplet (BR/51I/108N/164L and 437G/540E/581G with geometric means of 76 nM (35-166 nM, 582 nM (49-6890- nM and 4909 (3575-6741 nM nM for sulfadoxine and 33 nM (22-51 nM, 81 nM (19-345 nM, and 215 nM (176-262 nM for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L or dihydropteroate synthase (540E predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L vs 23.7% (I164; relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E vs 37.5% (K540; relative risk = 2.58; 95% CI: 1.88 - 3.73. Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to

  12. Protein-based signatures of functional evolution in Plasmodium falciparum.

    Science.gov (United States)

    Gardner, Kate B; Sinha, Ipsita; Bustamante, Leyla Y; Day, Nicholas Pj; White, Nicholas J; Woodrow, Charles J

    2011-09-14

    It has been known for over a decade that Plasmodium falciparum proteins are enriched in non-globular domains of unknown function. The potential for these regions of protein sequence to undergo high levels of genetic drift provides a fundamental challenge to attempts to identify the molecular basis of adaptive change in malaria parasites. Evolutionary comparisons were undertaken using a set of forty P. falciparum metabolic enzyme genes, both within the hominid malaria clade (P. reichenowi) and across the genus (P. chabaudi). All genes contained coding elements highly conserved across the genus, but there were also a large number of regions of weakly or non-aligning coding sequence. These displayed remarkable levels of non-synonymous fixed differences within the hominid malaria clade indicating near complete release from purifying selection (dN/dS ratio at residues non-aligning across genus: 0.64, dN/dS ratio at residues identical across genus: 0.03). Regions of low conservation also possessed high levels of hydrophilicity, a marker of non-globularity. The propensity for such regions to act as potent sources of non-synonymous genetic drift within extant P. falciparum isolates was confirmed at chromosomal regions containing genes known to mediate drug resistance in field isolates, where 150 of 153 amino acid variants were located in poorly conserved regions. In contrast, all 22 amino acid variants associated with drug resistance were restricted to highly conserved regions. Additional mutations associated with laboratory-selected drug resistance, such as those in PfATPase4 selected by spiroindolone, were similarly restricted while mutations in another calcium ATPase (PfSERCA, a gene proposed to mediate artemisinin resistance) that reach significant frequencies in field isolates were located exclusively in poorly conserved regions consistent with genetic drift. Coding sequences of malaria parasites contain prospectively definable domains subject to neutral or nearly

  13. Protein-based signatures of functional evolution in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Day Nicholas PJ

    2011-09-01

    Full Text Available Abstract Background It has been known for over a decade that Plasmodium falciparum proteins are enriched in non-globular domains of unknown function. The potential for these regions of protein sequence to undergo high levels of genetic drift provides a fundamental challenge to attempts to identify the molecular basis of adaptive change in malaria parasites. Results Evolutionary comparisons were undertaken using a set of forty P. falciparum metabolic enzyme genes, both within the hominid malaria clade (P. reichenowi and across the genus (P. chabaudi. All genes contained coding elements highly conserved across the genus, but there were also a large number of regions of weakly or non-aligning coding sequence. These displayed remarkable levels of non-synonymous fixed differences within the hominid malaria clade indicating near complete release from purifying selection (dN/dS ratio at residues non-aligning across genus: 0.64, dN/dS ratio at residues identical across genus: 0.03. Regions of low conservation also possessed high levels of hydrophilicity, a marker of non-globularity. The propensity for such regions to act as potent sources of non-synonymous genetic drift within extant P. falciparum isolates was confirmed at chromosomal regions containing genes known to mediate drug resistance in field isolates, where 150 of 153 amino acid variants were located in poorly conserved regions. In contrast, all 22 amino acid variants associated with drug resistance were restricted to highly conserved regions. Additional mutations associated with laboratory-selected drug resistance, such as those in PfATPase4 selected by spiroindolone, were similarly restricted while mutations in another calcium ATPase (PfSERCA, a gene proposed to mediate artemisinin resistance that reach significant frequencies in field isolates were located exclusively in poorly conserved regions consistent with genetic drift. Conclusion Coding sequences of malaria parasites contain

  14. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  15. Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Mourier, Tobias; Carret, Celine; Kyes, Sue;

    2008-01-01

    We undertook a genome-wide search for novel noncoding RNAs (ncRNA) in the malaria parasite Plasmodium falciparum. We used the RNAz program to predict structures in the noncoding regions of the P. falciparum 3D7 genome that were conserved with at least one of seven other Plasmodium spp. genome seq...

  16. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    Science.gov (United States)

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  17. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  18. A bicomponent Plasmodium falciparum investigational vaccine composed of protein-peptide conjugates.

    Science.gov (United States)

    Kubler-Kielb, Joanna; Majadly, Fathy; Biesova, Zuzana; Mocca, Christopher P; Guo, Chunyan; Nussenzweig, Ruth; Nussenzweig, Victor; Mishra, Satish; Wu, Yimin; Miller, Louis H; Keith, Jerry M; Liu, Teh-Yung; Robbins, John B; Schneerson, Rachel

    2010-01-19

    There is yet no licensed vaccine against malaria, a serious human disease affecting mostly children, with an annual death rate of about one million. Plasmodia, the malaria-causing parasites, have two obligatory hosts: mammals or birds, in which they multiply asexually, and mosquitoes with sexual multiplication. The most common and serious type of malaria is caused by Plasmodium falciparum. The circumsporozoite protein (CSP), a major surface antigen of sporozoites, is a protective antigen. A unique feature of P. falciparum CSP is its large central domain composed of over 30 tetrapeptide repeats of Asn-Ala-Asn-Pro (NANP). Several NANP peptide-protein conjugates were tested clinically but elicited a low level of CSP antibodies for a short duration. To provide a CSP-based candidate vaccine, we investigated recombinant CSP and NANP conjugates of various peptide lengths, with different N-terminal amino acids, bound at different ratios to various carrier proteins. Injected into mice, CSP alone and CSP or NANP conjugates induced antibodies with booster responses and were positive by the sporozoite immunofluorescent assay. The use of the mosquito stage P. falciparum ookinete surface protein, Pfs25, cross-linked onto itself as a carrier for NANP, induced in mice high levels of uniquely long-lasting antibodies to both vaccine components with secondary biological activities, that will provide immunity to liver infection by sporozoites and block transmission by mosquitoes.

  19. In vitro antiplasmodial activity of marine sponge Clathria vulpina extract against chloroquine sensitive Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sundaram Prasanna Kumar

    2014-02-01

    Full Text Available Objective: To explore the antiplasmodial potential of marine sponge Clathria vulpina (C. vulpina against chloroquine sensitive Plasmodium falciparum (P. falciparum. Methods: The marine sponge C. vulpina was collected from Thondi coast, authenticated and subjected for extraction by soaking in ethanol:water mixture (3:1 ratio. The percentage of extract was calculated. Filter sterilized extracts (100, 50, 25, 12.5, 6.25, 3.125 μg/mL were screened for antiplasmodial activity against chloroquine sensitive P. falciparum. The extract was also tested for its hemolytic activity. Results: The percentage yield of extract of C. vulpina was found to be 4.8%. The crude extract of C. vulpina showed excellent antiplasmodial activity (IC 50=14.75 μg/mL which was highly comparable to the positive control chloroquine (IC50=7 μg/mL. Statistical analysis reveals that the significant antiplasmodial activity (P<0.05 was observed between the concentrations and the time of exposure. The chemical injury to erythrocytes was also carried out, which showed that there were no morphological changes in erythrocytes by the ethanolic extracts of sponges after 48 h of incubation. The extract showed slight hemolytic activity which almost equal to chloroquine at 100 μg/mL concentration (1.023%. Conclusions: The marine sponge C. vulpina can be used as a putative antiplasmodial drug after completing successful clinical trials.

  20. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I.

    Science.gov (United States)

    Buguliskis, Jeffrey S; Casta, Louis J; Butz, Charles E; Matsumoto, Yoshihiro; Taraschi, Theodore F

    2007-10-01

    We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.

  1. Polycyclic amines as chloroquine resistance modulating agents in Plasmodium falciparum.

    Science.gov (United States)

    Joubert, Jacques; Kapp, Erika; Taylor, Dale; Smith, Peter J; Malan, Sarel F

    2016-02-15

    Pentacycloundecylamines (PCUs) and adamantane amines, such as NGP1-01 (1) and amantadine, have shown significant channel blocking activities. They are postulated to act as chemosensitizers and circumvent the resistance of the plasmodia parasite against chloroquine (CQ) by inhibiting the p-glycoprotein efflux pump and enabling the accumulation of CQ inside the parasite digestive vacuole. Twelve polycyclic amines containing either a PCU or adamantane amine moiety conjugated to different aromatic functionalities through various tethered linkers were selected based on their channel blocking abilities and evaluated as potential chemosensitizers. Compounds 2, 4, 5 and 10 showed significant voltage-gated calcium channel (VGCC) blocking ability (IC50=0.27-35 μM) and were able to alter the CQ IC50 in differing degrees (45-81%) in the multidrug resistant Plasmodium falciparum Dd2 isolate. Among them, the PCU-dansyl amine compound (4) displayed the best potential to act as a chemosensitizer against the Dd2 strain at a 1 μM concentration (RMI=0.19) while displaying moderate antiplasmodial activity (Dd2 IC50=6.25 μM) and low in vitro cytotoxicity against a mammalian cell line (CHO, IC50=119 μM). Compounds 2 and 10 also showed some promising chemosensitizing abilities (RMI=0.36 and 0.35 respectively). A direct correlation was found between the VGCC blocking ability of these polycyclic amines and their capacity to act as CQ resistance modulating agents.

  2. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  3. The SLC4A1 gene is under differential selective pressure in primates infected by Plasmodium falciparum and related parasites

    OpenAIRE

    Steiper, Michael E.; Walsh, Fiona; Zichello, Julia M.

    2012-01-01

    Malaria is a disease caused by Plasmodium parasites and is responsible for high mortality in humans. This disease is caused by four different species of Plasmodium though the main source of mortality is Plasmodium falciparum. Humans have a number of genetic adaptations that act to combat Plasmodium. One adaptation is a deletion in the SLC4A1 gene that leads to Southeast Asian ovalocytosis (SAO). There is evidence that SAO erythrocytes are resistant to multiple Plasmodium species. Here we anal...

  4. Effect of acute Plasmodium falciparum malaria on reactivation and shedding of the eight human herpes viruses.

    Directory of Open Access Journals (Sweden)

    Arnaud Chêne

    Full Text Available Human herpes viruses (HHVs are widely distributed pathogens. In immuno-competent individuals their clinical outcomes are generally benign but in immuno-compromised hosts, primary infection or extensive viral reactivation can lead to critical diseases. Plasmodium falciparum malaria profoundly affects the host immune system. In this retrospective study, we evaluated the direct effect of acute P. falciparum infection on reactivation and shedding of all known human herpes viruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6, HHV-7, HHV-8. We monitored their presence by real time PCR in plasma and saliva of Ugandan children with malaria at the day of admission to the hospital (day-0 and 14 days later (after treatment, or in children with mild infections unrelated to malaria. For each child screened in this study, at least one type of HHV was detected in the saliva. HHV-7 and HHV-6 were detected in more than 70% of the samples and CMV in approximately half. HSV-1, HSV-2, VZV and HHV-8 were detected at lower frequency. During salivary shedding the highest mean viral load was observed for HSV-1 followed by EBV, HHV-7, HHV-6, CMV and HHV-8. After anti-malarial treatment the salivary HSV-1 levels were profoundly diminished or totally cleared. Similarly, four children with malaria had high levels of circulating EBV at day-0, levels that were cleared after anti-malarial treatment confirming the association between P. falciparum infection and EBV reactivation. This study shows that acute P. falciparum infection can contribute to EBV reactivation in the blood and HSV-1 reactivation in the oral cavity. Taken together our results call for further studies investigating the potential clinical implications of HHVs reactivation in children suffering from malaria.

  5. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    Science.gov (United States)

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species.

  6. [Evaluation of imported Plasmodium falciparum malaria cases: the use of polymerase chain reaction in diagnosis].

    Science.gov (United States)

    Demiraslan, Hayati; Erdoğan, Emrah; Türe, Zeynep; Kuk, Salih; Yazar, Süleyman; Metan, Gökhan

    2013-10-01

    Malaria affecting almost half of the world population continues to be an important health problem. Although domestic malaria cases have been decreasing in Turkey recently, cases caused by Plasmodium falciparum have increased due to the frequent travelling to Africa. The aims of this study were to evaluate demographic characteristics, clinical and laboratory findings in cases with falciparum malaria who attended to our clinic in 2012-2013 period, and the impact of polymerase chain reaction (PCR) for diagnosis. Nine patients evaluated were all male with a mean age of 34.3 (age range: 18-48) years, with the history of travel to Africa. Six cases did not take prophylaxis against malaria and other three cases used insufficient time. Mean duration of symptoms after return was 18.4 (range: 1-75) days, and the patients were admitted to the clinic within a mean of 5.2 (range: 1-15) days. Two patients had leucopenia, two patients had anemia, and eight patients had thrombocytopenia on admission. Alanine aminotransferase (ALT) levels in four cases and total bilirubin levels of six cases were over upper normal limits. Definitive diagnosis of cases was performed with the detection of ring and/or gametocytes forms of the parasite in Giemsa-stained peripheral blood smears. Furthermore, samples from seven patients were studied by nested PCR by using genus (Plasmodium rPLU 1 and 5) and species (rFAL 1 and 2, rVIV 1 and 2, rMAL 1 and 2, rOVA 1 and 2) specific primers. All of these seven samples yielded positive results with primers specific for P.falciparum ssrRNA. In the treatment, arthemeter/lumefantrin and doxycycline combination was used in seven patients, while intravenous artesunate and doxycycline combination was given to two patients, resulting with complete cure. Mean duration for the resolving of fever was 3.3 days, and mean duration for clearing the parasitemia from peripheral blood was 4.9 days. Initial ALT values and the duration of fever resolution (-796; p= 0.010), as

  7. HUBUNGAN KEPADATAN PARASIT DENGAN MANIFESTASI KLINIS PADA MALARIA Plasmodium FALCIPARUM DAN Plasmodium VIVAX

    Directory of Open Access Journals (Sweden)

    Rossa Avrina

    2012-07-01

    Full Text Available Malaria is still a public health problem in Indonesia. The clinical manifestation of malaria is varied, and many factors may influence its clinical manifestation. Despite the species of malaria, density of parasitemia is known related to the severity or malignancy of malaria. It is worth to analyse the clinical and laboratory data of malaria cases in monitoring dihydroartemisinin-piperaquine (DHP treatment. The extended analysed was done to assess the relationship between density of parasitemia and clinical manifestations. A subset data of monitoring DHP treatment in subjects with uncomplicated falciparum and vivax malaria in Kalimantan and Sulawesi which were consist of clinical and laboratory day-0 data was used in analysing. Clinical data were recorded through anamnesis and physical examination. Parasite density was counted by health centre microscopist and then cross-checked by certified microscopists of the Natiional Institute of Health Reseach and Development. Haemoglobin level was also measured  by health centre analyst using the existing Sahli hemoglobinmeter. For parasite density category, median is used for cut off point. In P.falciparum malaria, the cut off point is 5588/µl  and in P.vivax malaria is 3375/µl.  The relationship between parasite density and clinical manifestation in falciparum and vivax malaria was determined by bivariate and multivariate analysis with logistic regression using SPSS 17 software. The most of subject with P.falciparum and P.vivax malaria are children (<15 yeras old, male, and non indigenous. From analysis bivariate, variabels that can be analyzed by multivariate in P.falciparum malaria (p<0,25 are children under 15 years old (p=0,0 12 and Sulawesi island where subject live(p=0,163 and In P.vivax malaria is children under 15 years old (p=0,218. Because of other variables are considered biologicaly related to parasite density, therefore all variabel are analyzed with multivariate. From multivariate

  8. Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites

    Science.gov (United States)

    2011-07-29

    286, ’JC 30, pp Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites*[i] Received for...7500 and󈧏Sun BioMedical Technologies Inc., Ridgecrest, California 93555 Invasion of hepatocytes by Plasmodium sporozoites depos- ited by Anopheles...expression profiling of human HepG2-A16liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and

  9. Non-falciparum malaria in Dakar: a confirmed case of Plasmodium ovale wallikeri infection.

    Science.gov (United States)

    Diallo, Mamadou A; Badiane, Aida S; Diongue, Khadim; Deme, Awa; Lucchi, Naomi W; Gaye, Marie; Ndiaye, Tolla; Ndiaye, Mouhamadou; Sene, Louise K; Diop, Abdoulaye; Gaye, Amy; Ndiaye, Yaye D; Samb, Diama; Yade, Mamadou S; Ndir, Omar; Udhayakumar, Venkatachalam; Ndiaye, Daouda

    2016-08-24

    Plasmodium ovale is rarely described in Senegal. A case of clinical malaria due to P. ovale wallikeri in West Central of Senegal is reported. A 34-year-old male baker in Dakar, with no significant previous medical history, was admitted to a health clinic with fever and vomiting. Fever had been lasting for 4 days with peaks every 48 h. As monospecific Plasmodium falciparum HRP-2 RDT was negative, he was treated with antibiotics. However, owing to persisting symptoms, he was referred to the emergency unit of the Youssou Mbargane Diop Hospital, Dakar, Senegal. Clinical examination found impaired general condition. All other physical examinations were normal. Laboratory tests showed anaemia (haemoglobin 11.4 g/dl), severe thrombocytopaenia (platelets 30 × 10(9)/mm(3)), leukopenia (3650/mm(3)), lymphocytopenia (650/mm(3)). Renal function was normal as indicated by creatininaemia and uraemia (11 mg/l and 0.25 g/l, respectively) and liver enzymes were slightly elevated (aspartate aminotransferase 77 UI/l and alanine aminotransferase 82 UI/l). Blood smear evaluations in Parasitology Laboratory of Aristide Le Dantec Hospital showed malaria parasites of the species P. ovale with a 0.08 % parasitaemia. Molecular confirmation was done by real time PCR targeting the 18S rRNA gene. The P. ovale infection was further analysed to species level targeting the potra gene and was identified as P. ovale wallikeri. According to the hospital's malaria treatment guidelines for severe malaria, treatment consisted of intravenous quinine at hour 0 (start of treatment) and 24 h after initial treatment, followed by artemether-lumefantrine 24 h later. A negative microscopy was noted on day 3 post-treatment and the patient reported no further symptoms. Malaria due to non-falciparum species is probably underestimated in Senegal. RDTs specific to non-falciparum species and/or pan specific RDTs should be included as tools of diagnosis to fight against malaria in Senegal. In addition

  10. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway.

    Science.gov (United States)

    Costa, F T M; Avril, M; Nogueira, P A; Gysin, J

    2006-12-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  11. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    Directory of Open Access Journals (Sweden)

    F.T.M. Costa

    2006-12-01

    Full Text Available Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM. This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  12. Tracing the origins and signatures of selection of antifolate resistance in island populations of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Pinto João

    2010-06-01

    Full Text Available Abstract Background Resistance of the malaria parasite Plasmodium falciparum to sulfadoxine-pyrimethamine (SP has evolved worldwide. In the archipelago of São Tomé and Principe (STP, West Africa, although SP resistance is highly prevalent the drug is still in use in particular circumstances. To address the evolutionary origins of SP resistance in these islands, we genotyped point mutations at P. falciparum dhfr and dhps genes and analysed microsatellites flanking those genes. Methods Blood samples were collected in July and December 2004 in three localities of São Tomé Island and one in Principe Island. Species-specific nested-PCR was used to identify P. falciparum infected samples. Subsequently, SNPs at the dhfr and dhps genes were identified through PCR-RFLP. Isolates were also analysed for three microsatellite loci flanking the dhfr gene, three loci flanking dhps and four loci located at putative neutral genomic regions. Results An increase of resistance-associated mutations at dhfr and dhps was observed, in particular for the dhfr/dhps quintuple mutant, associated with clinical SP failure. Analysis of flanking microsatellites suggests multiple independent introductions for dhfr and dhps mutant haplotypes, possibly from West Africa. A reduced genetic diversity and increased differentiation at flanking microsatellites when compared to neutral loci is consistent with a selective sweep for resistant alleles at both loci. Conclusions This study provides additional evidence for the crucial role of gene flow and drug selective pressures in the rapid spread of SP resistance in P. falciparum populations, from only a few mutation events giving rise to resistance-associated mutants. It also highlights the importance of human migration in the spread of drug resistant malaria parasites, as the distance between the islands and mainland is not consistent with mosquito-mediated parasite dispersal.

  13. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites.

    Science.gov (United States)

    Samad, Hanif; Coll, Francesc; Preston, Mark D; Ocholla, Harold; Fairhurst, Rick M; Clark, Taane G

    2015-04-01

    Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86 k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima's D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and

  14. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa, F.T.M.; Avril, M.; Nogueira,P.A.; Gysin, J

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  15. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa,F.T.M.; Avril, M.; Nogueira, P. A; Gysin, J.

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  16. Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases

    OpenAIRE

    Straimer, Judith; Lee, Marcus CS; Lee, Andrew H.; Zeitler, Bryan; Williams, April E.; Pearl, Jocelynn R.; Zhang, Lei; Rebar, Edward J.; Gregory, Philip D.; Llinás, Manuel; Urnov, Fyodor D; David A Fidock

    2012-01-01

    Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger hom...

  17. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Vestergaard, Lasse S; Lusingu, John

    2004-01-01

    The slow acquisition of protection against Plasmodium falciparum malaria probably reflects the extensive diversity of important antigens. The variant surface antigens (VSA) that mediate parasite adhesion to a range of host molecules are regarded as important targets of acquired protective immunity......, is geographically and temporally conserved raises hopes for the feasibility of developing VSA-based vaccines specifically designed to accelerate naturally acquired immunity, thereby enhancing protection against severe and life-threatening P. falciparum malaria....

  18. Tracking Origins and Spread of Sulfadoxine-Resistant Plasmodium falciparum dhps Alleles in Thailand▿

    OpenAIRE

    Alam, Md Tauqeer; Vinayak, Sumiti; Congpuong, Kanungnit; Wongsrichanalai, Chansuda; Satimai, Wichai; Slutsker, Laurence; Escalante, Ananias A.; Barnwell, John W.; Udhayakumar, Venkatachalam

    2010-01-01

    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thail...

  19. A Replicating Adenovirus Capsid Display Recombinant Elicits Antibodies against Plasmodium falciparum Sporozoites in Aotus nancymaae Monkeys

    OpenAIRE

    Karen, Kasey A.; Deal, Cailin; Adams, Robert J; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A.; Xie, Jane; Zavala,Fidel; Ketner, Gary

    2014-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodie...

  20. Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis.

    Science.gov (United States)

    Gardiner, Donald L; Dixon, Matthew W A; Spielmann, Tobias; Skinner-Adams, Tina S; Hawthorne, Paula L; Ortega, Maria R; Kemp, David J; Trenholme, Katharine R

    2005-04-01

    Gametocytogenesis is fundamental for transmission of the malaria parasite Plasmodium falciparum from the human host to the mosquito vector, yet very little is understood about what triggers the switch between asexual reproduction and gametocytogenesis. Arresting the progression through the sexual cycle would block transmission of this disease. Here we identify a novel gene in P. falciparum that when genetically silenced reduces gametocyte production by a factor of 6, and when complemented up-regulates gametocyte-specific gene transcription.

  1. Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum

    OpenAIRE

    Ranford-Cartwright, Lisa C; Mwangi, Jonathan M.

    2012-01-01

    We review the principles of linkage analysis of experimental genetic crosses and their application to Plasmodium falciparum. Three experimental genetic crosses have been performed using the human malaria parasite P. falciparum. Linkage analysis of the progeny of these crosses has been used to identify parasite genes important in phenotypes such as drug resistance, parasite growth and virulence, and transmission to mosquitoes. The construction and analysis of genetic maps has been used to char...

  2. Recombinant Plasmodium falciparum glutamate rich protein; purification and use in enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Dziegiel, M; Borre, Mette; Jepsen, S

    1991-01-01

    A method for purification of a recombinant Plasmodium falciparum protein produced in E. coli and its use in an enzyme-linked immunosorbent assay (ELISA) is described. The cloned gene fragment encodes GLURP,489-1271 the carboxy-terminal 783 amino acid residue portion of a 1271 amino acid residue P...... of the immunogenicity of a possible future P. falciparum vaccine utilizing epitopes from GLURP....

  3. Plasmodium falciparum Na+/H+ Exchanger 1 Transporter Is Involved in Reduced Susceptibility to Quinine ▿

    OpenAIRE

    Henry, Maud; Briolant, Sébastien; Zettor, Agnès; Pelleau, Stéphane; Baragatti, Meili; Baret, Eric; Mosnier, Joel; Amalvict, Rémy; Fusai, Thierry; Rogier, Christophe; Pradines, Bruno

    2009-01-01

    Polymorphisms in the Plasmodium falciparum crt (Pfcrt), Pfmdr1, and Pfmrp genes were not significantly associated with quinine (QN) 50% inhibitory concentrations (IC50s) in 23 strains of Plasmodium falciparum. An increased number of DNNND repeats in Pfnhe-1 microsatellite ms4760 was associated with an increased IC50 of QN (P = 0.0007). Strains with only one DNNND repeat were more susceptible to QN (mean IC50 of 154 nM). Strains with two DNNND repeats had intermediate susceptibility to QN (mea...

  4. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole;

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  5. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM...

  6. Monitoring PfMDR1 transport in Plasmodium falciparum.

    Science.gov (United States)

    Reiling, Sarah J; Rohrbach, Petra

    2015-07-15

    The Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite's cytosol into the digestive vacuole (DV). Transport of a substrate into another intracellular compartment influences drug availability at its site of action, therefore making the parasite more susceptible or resistant to a drug. Fluo-4 is a known fluorescent substrate that can be used as a molecular tool to investigate transport dynamics of PfMDR1 in many parasite strains. Six P. falciparum strains with varying PfMDR1 mutations were loaded with Fluo-4 AM. Accumulation of the fluorophore in the DV was measured using confocal microscopy. The role of a key amino acid mutation was verified using selected parasite clones with point mutations at PfMDR1 amino acid position 1042. Equal expression of PfMDR1 was confirmed by Western blot. Fluo-4 was transported by PfMDR1 into the DV of most drug-sensitive and -resistant parasites. Asparagine at PfMDR1 amino acid position 1042 was crucial for Fluo-4 transport, while the N1042D substitution abolished Fluo-4 transport. Competition studies of Fluo-4 with chloroquine, quinine and mefloquine were performed on parasites harbouring asparagine at position 1042. A distinct Fluo-4 transport inhibition pattern for each tested anti-malarial drug was observed in parasite strains of different genetic background. This study demonstrates that Fluo-4 can be used to investigate PfMDR1 transport dynamics in both drug-sensitive and -resistant parasites. Furthermore, direct evidence of altered Fluo-4 transport in PfMDR1 is linked to a single amino acid mutation in the substrate binding pocket. This system offers a great tool to investigate the role of substrate transport by PfMDR1 and the mutations necessary to support transport, which would lead to new insights for the development of novel anti-malarial drugs.

  7. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti.

    Science.gov (United States)

    Elbadry, Maha A; Existe, Alexandre; Victor, Yves S; Memnon, Gladys; Fukuda, Mark; Dame, John B; Yowell, Charles A; Okech, Bernard A

    2013-11-19

    In Haiti where chloroquine (CQ) is widely used for malaria treatment, reports of resistance are scarce. However, recent identification of CQ resistance genotypes in one site is suggestive of an emerging problem. Additional studies are needed to evaluate genetic mutations associated with CQ resistance, especially in the Plasmodium falciparum multi-drug resistance-1 gene (pfmdr1) while expanding the already available information on P. falciparum CQ transporter gene (pfcrt) in Haiti. Blood samples were collected on Whatman filter cards (FTA) from eight clinics spread across Haiti. Following the confirmation of P. falciparum in the samples, PCR protocols were used to amplify regions of pfmdr1and pfcrt codons of interest, (86, 184, 1034, 1042, and 1246) and (72-76), respectively. Sequencing and site-specific restriction enzyme digestions were used to analyse these DNA fragments for the presence of single nucleotide polymorphisms (SNPs) known to confer resistance to anti-malarial drugs. P. falciparum infection was confirmed in160 samples by amplifying a segment of the P. falciparum 18S small subunit ribosomal RNA gene (pfssurrna). The sequence of pfmdr1 in 54 of these samples was determined between codons 86,184 codons 1034, 1042 and 1246. No sequence differences from that of the NF54 clone 3D7 were found among the 54 samples except at codon 184, where a non-silent mutation was found in all samples predicted to alter the amino acid sequence replacing tyrosine with phenylalanine (Y184F). This altered sequence was also confirmed by restriction enzyme digestion. The sequence of pfmdr1 at codons 86, 184, 1034 and 1042 encoded the NFSN haplotype. The sequence of pfcrt codons 72-76 from 79 samples was determined and found to encode CVMNK, consistent with a CQ sensitive genotype. The presence of the Y184F mutation in pfmdr1 of P. falciparum parasites in Haiti may have implications for resistance to antimalarial drugs. The absence of mutation in pfcrt at codon 76 among 79

  8. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Directory of Open Access Journals (Sweden)

    Catherine J Merrick

    Full Text Available Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3 in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  9. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Science.gov (United States)

    Merrick, Catherine J; Jiang, Rays H Y; Skillman, Kristen M; Samarakoon, Upeka; Moore, Rachel M; Dzikowski, Ron; Ferdig, Michael T; Duraisingh, Manoj T

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  10. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  11. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  12. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children

    DEFF Research Database (Denmark)

    Murungi, Linda M; Sondén, Klara; Llewellyn, David

    2016-01-01

    Severe malaria (SM) is a life-threatening complication of infection withPlasmodium falciparum Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging...... and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within...... a longitudinal birth cohort of children (n= 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1...

  13. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections

    Directory of Open Access Journals (Sweden)

    Rodrigo Nunes Rodrigues-da-Silva

    2014-04-01

    Full Text Available Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.

  14. The use of activated protein C in severe Plasmodium falciparum malaria.

    Science.gov (United States)

    Rankin, L G; Austin, D L H

    2007-06-01

    A 56-year-old man presented to a peripheral hospital in New Zealand with severe Plasmodium falciparum malaria with cerebral involvement and subsequently developed multi-system organ failure. Activated protein C was used in an attempt to stop the cascade of events into multi-organ failure. Severe infection with P. falciparum is life-threatening and appears to activate a hypercoagulable state similar to that of severe sepsis. Activated protein C is currently used in the treatment of severe sepsis and may provide a new adjuvant therapy for severe P. falciparum malaria.

  15. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish (UAB)

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparum ARFGAP.

  16. Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    Science.gov (United States)

    2009-08-01

    parasitological responses [23]. To distinguish between recrudescence and reinfection, malaria parasites collected on day of enrollment (day 0) and day of...Alejandro Llanos-Cuentas4, Coralith Garcia4, Lelv Solari4, Dennis Kyle5, Alan J. Magill3 1 Parasitology Program, Naval Medical Research Center...objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite

  17. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface...... is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion...... of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly...

  18. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm

    2009-09-01

    Full Text Available Abstract Background Sequestration of parasitized red blood cells in the microvasculature of major organs involves a sequence of events that is believed to contribute to the pathogenesis of severe falciparum malaria. Plasmodium falciparum infections are commonly composed of multiple subpopulations of parasites with varied adhesive properties. A key question is: do these subpopulations compete for adhesion to endothelium? This study investigated whether, in a laboratory model of cytoadherence, there is competition in binding to endothelium between pRBC infected with P. falciparum of variant adhesive phenotypes, particularly under flow conditions. Methods Four different P. falciparum isolates, of known adherence phenotypes, were matched in pairs, mixed in different proportions and allowed to bind to cultured human endothelium. Using in vitro competitive static and flow-based adhesion assays, that allow simultaneous testing of the adhesive properties of two different parasite lines, adherence levels of paired P. falciparum isolates were quantified and analysed using either non-parametric Wilcoxon's paired signed rank test or Student paired test. Results Study findings show that P. falciparum parasite lines show marked differences in the efficiency of adhesion to endothelium. Conclusion Plasmodium falciparum variants will compete for adhesion to endothelia and variants can be ranked by their efficiency of binding. These findings suggest that variants from a mixed infection will not show uniform cytoadherence and so may vary in their ability to cause disease.

  19. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance.

    Science.gov (United States)

    Dogovski, Con; Xie, Stanley C; Burgio, Gaetan; Bridgford, Jess; Mok, Sachel; McCaw, James M; Chotivanich, Kesinee; Kenny, Shannon; Gnädig, Nina; Straimer, Judith; Bozdech, Zbynek; Fidock, David A; Simpson, Julie A; Dondorp, Arjen M; Foote, Simon; Klonis, Nectarios; Tilley, Leann

    2015-04-01

    Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART

  20. Assessing parasite clearance during uncomplicated Plasmodium falciparum infection treated with artesunate monotherapy in Suriname

    Directory of Open Access Journals (Sweden)

    Vreden SGS

    2016-11-01

    Full Text Available Stephen GS Vreden,1 Rakesh D Bansie,2 Jeetendra K Jitan,3 Malti R Adhin4 1Foundation for Scientific Research Suriname (SWOS, 2Department of Internal Medicine, Academic Hospital Paramaribo, 3Department of Public Health, Ministry of Health, 4Department of Biochemistry, Anton de Kom University of Suriname, Paramaribo, Suriname Background: Artemisinin resistance in Plasmodium falciparum is suspected when the day 3 parasitemia is >10% when treated with artemisinin-based combination therapy or if >10% of patients treated with artemisinin-based combination therapy or artesunate monotherapy harbored parasites with half-lives ≥5 hours. Hence, a single-arm prospective efficacy trial was conducted in Suriname for uncomplicated P. falciparum infection treated with artesunate-based monotherapy for 3 days assessing day 3 parasitemia, treatment outcome after 28 days, and parasite half-life. Methods: The study was conducted in Paramaribo, the capital of Suriname, from July 2013 until July 2014. Patients with uncomplicated Plasmodium falciparum infection were included and received artesunate mono-therapy for three days. Day 3 parasitaemia, treatment outcome after 28 days and parasite half-life were determined. The latter was assessed with the parasite clearance estimator from the WorldWide Antimalarial Resistance Network (WWARN. Results: Thirty-nine patients were included from July 2013 until July 2014. The day 3 parasitemia was 10%. Eight patients (20.5% could be followed up until day 28 and showed adequate clinical and parasitological response. Parasite half-life could only be determined from ten data series (25.7%. The median parasite half-life was 5.16 hours, and seven of these data series had a half-life ≥5 hours, still comprising 17.9% of the total data series. Conclusion: The low follow-up rate and the limited analyzable data series preclude clear conclusions about the efficacy of artesunate monotherapy in Suriname and the parasite half

  1. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  2. Predictors of Plasmodium falciparum malaria incidence in Chano Mille, South Ethiopia: a longitudinal study.

    Science.gov (United States)

    Loha, Eskindir; Lindtjørn, Bernt

    2012-09-01

    We assessed potential effects of local meteorological and environmental conditions, indoor residual spraying with insecticides, insecticide-treated nets (ITNs) use at individual and community levels, and individual factors on Plasmodium falciparum malaria incidence in a village in south Ethiopia. A cohort of 8,121 people was followed for 101 weeks with active and passive surveillance. Among 317 microscopically confirmed P. falciparum malaria episodes, 29.3% occurred among temporary residents. The incidence density was 3.6/10,000 person-weeks of observation. We observed higher malaria incidence among males, children 5-14 years of age, ITNs non-users, the poor, and people who lived closer to vector breeding places. Rainfall increased and indoor residual spraying with Deltamethrin reduced falciparum incidence. Although ITNs prevented falciparum malaria for the users, we did not find that free mass ITNs distribution reduced falciparum malaria on a village level.

  3. Potential impact of host immunity on malaria treatment outcome in Tanzanian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Theander Thor G

    2007-11-01

    Full Text Available Abstract Background In malaria endemic areas children may recover from malaria after chemotherapy in spite of harbouring genotypically drug-resistant Plasmodium falciparum. This phenomenon suggests that there is a synergy between drug treatment and acquired immunity. This hypothesis was examined in an area of moderately intense transmission of P. falciparum in Tanzania during a drug trail with sulphadoxine-pyrimethamine (SP or amodiaquine (AQ. Methods One hundred children with uncomplicated malaria were treated with either SP or AQ and followed for 28 days. Mutations in parasite genes related to SP and AQ-resistance as well as human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA, and IgG antibody responses to a panel of P. falciparum antigens were assessed and related to treatment outcome. Results Parasitological or clinical treatment failure (TF was observed in 68% and 38% of children receiving SP or AQ, respectively. In those with adequate clinical and parasitological response (ACPR compared to children with TF, and for both treatment regimens, prevalence and levels of anti-Glutamate-rich Protein (GLURP-specific IgG antibodies were significantly higher (P Conclusion These findings suggest that GLURP-specific IgG antibodies in this setting contribute to clearance of drug-resistant infections and support the hypothesis that acquired immunity enhances the clinical efficacy of drug therapy. The results should be confirmed in larger scale with greater sample size and with variation in transmission intensity.

  4. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia.

    Science.gov (United States)

    Mwanza, Sydney; Joshi, Sudhaunshu; Nambozi, Michael; Chileshe, Justin; Malunga, Phidelis; Kabuya, Jean-Bertin Bukasa; Hachizovu, Sebastian; Manyando, Christine; Mulenga, Modest; Laufer, Miriam

    2016-12-05

    Plasmodium falciparum resistance to anti-malarial drugs remains a major obstacle to malaria control and elimination. The parasite has developed resistance to every anti-malarial drug introduced for wide-scale treatment. However, the spread of resistance may be reversible. Malawi was the first country to discontinue chloroquine use due to widespread resistance. Within a decade of the removal of drug pressure, the molecular marker of chloroquine-resistant malaria had disappeared and the drug was shown to have excellent clinical efficacy. Many countries have observed decreases in the prevalence of chloroquine resistance with the discontinuation of chloroquine use. In Zambia, chloroquine was used as first-line treatment for uncomplicated malaria until treatment failures led the Ministry of Health to replace it with artemether-lumefantrine in 2003. Specimens from a recent study were analysed to evaluate prevalence of chloroquine-resistant malaria in Nchelenge district a decade after chloroquine use was discontinued. Parasite DNA was extracted from dried blood spots collected by finger-prick in pregnant women who were enrolling in a clinical trial. The specimens underwent pyrosequencing to determine the genotype of the P. falciparum chloroquine resistance transporter, the gene that is associated with CQ resistance. Three-hundred and two specimens were successfully analysed. No chloroquine-resistant genotypes were detected. The study found the disappearance of chloroquine-resistant malaria after the removal of chloroquine drug pressure. Chloroquine may have a role for malaria prevention or treatment in Zambia and throughout the region in the future.

  5. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Science.gov (United States)

    Tran, Tuan M.; Jones, Marcus B.; Ongoiba, Aissata; Bijker, Else M.; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G.; Whalen, Elizabeth; Presnell, Scott; O’Connell, Elise M.; Kayentao, Kassoum; Doumbo, Ogobara K.; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B.; Ottenhoff, Tom H. M.; Haks, Mariëlle C.; Traore, Boubacar; Kirkness, Ewen F.; Sauerwein, Robert W.; Crompton, Peter D.

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria. PMID:27506615

  6. Nonradioactive heteroduplex tracking assay for the detection of minority-variant chloroquine-resistant Plasmodium falciparum in Madagascar

    Directory of Open Access Journals (Sweden)

    Mwapasa Victor

    2009-03-01

    Full Text Available Abstract Background Strains of Plasmodium falciparum genetically resistant to chloroquine (CQ due to the presence of pfcrt 76T appear to have been recently introduced to the island of Madagascar. The prevalence of such resistant genotypes is reported to be low (P. falciparum isolates on the island. Previously, minority variant chloroquine resistant parasites were described in Malawian patients using an isotopic heteroduplex tracking assay (HTA, which can detect pfcrt 76T-bearing P. falciparum minority variants in individual patients that were undetectable by conventional PCR. However, as this assay required a radiolabeled probe, it could not be used in many resource-limited settings. Methods This study describes a digoxigenin (DIG-labeled chemiluminescent heteroduplex tracking assay (DIG-HTA to detect pfcrt 76T-bearing minority variant P. falciparum. This assay was compared to restriction fragment length polymorphism (RFLP analysis and to the isotopic HTA for detection of genetically CQ-resistant parasites in clinical samples. Results Thirty one clinical P. falciparum isolates (15 primary isolates and 16 recurrent isolates from 17 Malagasy children treated with CQ for uncomplicated malaria were genotyped for the pfcrt K76T mutation. Two (11.7% of 17 patients harboured genetically CQ-resistant P. falciparum strains after therapy as detected by HTA. RFLP analysis failed to detect any pfcrt K76T-bearing isolates. Conclusion These findings indicate that genetically CQ-resistant P. falciparum are more common than previously thought in Madagascar even though the fitness of the minority variant pfcrt 76T parasites remains unclear. In addition, HTAs for malaria drug resistance alleles are promising tools for the surveillance of anti-malarial resistance. The use of a non-radioactive label allows for the use of HTAs in malaria endemic countries.

  7. A genetic analysis of Plasmodium falciparum RNA polymerase II subunits in yeast.

    Science.gov (United States)

    Hazoume, Adonis; Naderi, Kambiz; Candolfi, Ermanno; Kedinger, Claude; Chatton, Bruno; Vigneron, Marc

    2011-04-01

    RNA polymerase II is an essential nuclear multi subunit enzyme that transcribes nearly the whole genome. Its inhibition by the alpha-amanitin toxin leads to cell death. The enzyme of Plasmodium falciparum remains poorly characterized. Using a complementation assay in yeast as a genetic test, we demonstrate that five Plasmodium putative RNA polymerase subunits are indeed functional in vivo. The active site of this enzyme is built from the two largest subunits. Using site directed mutagenesis we were able to modify the active site of the yeast RNA polymerase II so as to introduce Plasmodium or human structural motifs. The resulting strains allow the screening of chemical libraries for potential specific inhibitors.

  8. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    Science.gov (United States)

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  9. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    Science.gov (United States)

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru.

  10. The Exported Chaperone PfHsp70x Is Dispensable for the Plasmodium falciparum Intraerythrocytic Life Cycle.

    Science.gov (United States)

    Cobb, David W; Florentin, Anat; Fierro, Manuel A; Krakowiak, Michelle; Moore, Julie M; Muralidharan, Vasant

    2017-01-01

    Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum. IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is

  11. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  12. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe

    2005-11-01

    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  13. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  14. Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum

    NARCIS (Netherlands)

    Wrenger, Carsten; Mueller, Ingrid B.; Butzloff, Sabine; Jordanova, Rositsa; Lunev, Sergey; Groves, Matthew R.

    2012-01-01

    The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to

  15. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival.

    NARCIS (Netherlands)

    Kone, A.; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Gemert, G.J.A. van; Dara, A.; Niangaly, H.; Luty, A.J.F.; Doumbo, O.K.; Sauerwein, R.W.; Djimde, A.A.

    2010-01-01

    Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in

  16. Inhibition of Plasmodium falciparum oocyst production by membrane-permeant cysteine protease inhibitor E64d.

    NARCIS (Netherlands)

    Eksi, S.; Czesny, B.; Gemert, G.J.A. van; Sauerwein, R.W.; Eling, W.M.C.; Williamson, K.C.

    2007-01-01

    During asexual intraerythrocytic growth, Plasmodium falciparum utilizes hemoglobin obtained from the host red blood cell (RBC) as a nutrient source. Papain-like cysteine proteases, falcipains 2 and 3, have been reported to be involved in hemoglobin digestion and are targets of current antimalarial d

  17. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with His

  18. Plasmodium falciparum Serine/Threonine Phosphoprotein Phosphatases (PPP): From Housekeeper to 'Holy Grail'

    Science.gov (United States)

    Availability of complete genome sequence for Plasmodium falciparum has been useful in drawing a comprehensive metabolic map of the parasite. Distinct and unique metabolic characteristics of the parasite may be exploited as potential targets for new antimalarial drug discovery research. Reversible ph...

  19. Observations on the periodicity of Plasmodium falciparum gametocytes in natural human infections

    DEFF Research Database (Denmark)

    Magesa, S M; Mdira, Y K; Akida, J A

    2000-01-01

    The circadian periodicity of Plasmodium falciparum gametocytes in peripheral blood was analysed in a group of children from an holoendemic community of north-eastern Tanzania. No periodicity was observed with asexual stage parasites. Gametocytes were shown to display a diurnal subperiodic pattern...

  20. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Salcedo-Amaya, Adriana M; van Driel, Marc A; Alako, Blaise T

    2009-01-01

    Epigenome profiling has led to the paradigm that promoters of active genes are decorated with H3K4me3 and H3K9ac marks. To explore the epigenome of Plasmodium falciparum asexual stages, we performed MS analysis of histone modifications and found a general preponderance of H3/H4 acetylation and H3K4...

  1. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina

    2015-01-01

    Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interaction...

  2. Ingested human insulin inhibits the mosquito NF-¿B-dependent immune response to Plasmodium falciparum

    Science.gov (United States)

    We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms insulin can alter immune responsiveness through regulation of NF-kB transcription fa...

  3. High level of resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine in children in Tanzania

    DEFF Research Database (Denmark)

    Rønn, A M; Msangeni, H A; Mhina, J

    1996-01-01

    In many areas of tropical Africa affected by chloroquine-resistant Plasmodium falciparum, a combination of sulfadoxine and pyrimethamine (S-P) is used for alternative medication, especially in young children. In Magoda village in Muheza District, north-eastern Tanzania, 38 children 1-10 years...

  4. Distribution pattern of Plasmodium falciparum chloroquine transporter (pfcrt) gene haplotypes in Sri Lanka 1996-2006

    DEFF Research Database (Denmark)

    Zhang, Jenny J; Senaratne, Tharanga N; Daniels, Rachel

    2011-01-01

    Abstract. Widespread antimalarial resistance has been a barrier to malaria elimination efforts in Sri Lanka. Analysis of genetic markers in historic parasites may uncover trends in the spread of resistance. We examined the frequency of Plasmodium falciparum chloroquine transporter (pfcrt; codons 72...

  5. Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

    DEFF Research Database (Denmark)

    Rask, Thomas Salhøj; Hansen, Daniel Aaen; Theander, Thor G.

    2010-01-01

    The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development...

  6. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise G; Salanti, Ali; Bertin, Gwladys;

    2005-01-01

    Plasmodium falciparum parasites that bind to chondroitin sulphate A (CSA) express unique variant surface antigens that are involved in the placental sequestration that precipitates pregnancy-associated malaria (PAM). Two var gene subfamilies, var1csa and var2csa, have been associated with CSA bin...

  7. The efficacy of artemether in the treatment of Plasmodium falciparum malaria in Sudan

    DEFF Research Database (Denmark)

    Elhassan, I M; Satti, G H; Ali, A E

    1994-01-01

    The efficacy of artemether (a qinghaosu derivative) administered intramuscularly for the treatment of Plasmodium falciparum malaria was compared to quinine in an open randomized trial including 54 patients in eastern Sudan, where chloroquine resistance is common. The artemether treatment (5 d...

  8. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with

  9. Cytokine production and apoptosis among T cells from patients under treatment for Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kemp, K; Akanmori, B D; Adabayeri, V

    2002-01-01

    Available evidence suggests that Plasmodium falciparum malaria causes activation and reallocation of T cells, and that these in vivo primed cells re-emerge into the periphery following drug therapy. Here we have examined the cytokine production capacity and susceptibility to programmed cell death...

  10. Increased levels of soluble CD30 in plasma of patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kemp, Kåre; Kurtzhals, Jørgen; Akanmori, Bartholomew D

    2002-01-01

    Levels of soluble CD30 (sCD30) in serum were elevated in patients with Plasmodium falciparum malaria but showed decline following treatment. The levels of sCD30 in serum were correlated significantly with the expression of gamma interferon by peripheral T cells. These data suggest that CD30...

  11. Independent origin of Plasmodium falciparum antifolate super-resistance, Uganda, Tanzania, and Ethiopia

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Nag, Sidsel; Schousboe, Mette L

    2014-01-01

    Super-resistant Plasmodium falciparum threatens the effectiveness of sulfadoxine-pyrimethamine in intermittent preventive treatment for malaria during pregnancy. It is characterized by the A581G Pfdhps mutation on a background of the double-mutant Pfdhps and the triple-mutant Pfdhfr. Using sample...

  12. Soluble Plasmodium falciparum antigens contain carbohydrate moieties important for immune reactivity

    DEFF Research Database (Denmark)

    Jakobsen, P H; Theander, T G; Jensen, J B

    1987-01-01

    The importance of carbohydrate moieties for the antigenicity of purified soluble Plasmodium falciparum antigens from the asexual blood stage was tested. Digestion of the soluble antigens with alpha-D-galactosidase clearly affected the ability of the antigen to react with malaria-immune sera from ...

  13. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S;

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  14. Immunoglobulin M and G antibody responses to Plasmodium falciparum glutamate-rich protein

    DEFF Research Database (Denmark)

    Dziegiel, M; Rowe, P; Bennett, S;

    1993-01-01

    The aims of the present study were to describe the age-related immunoglobulin M (IgM) and IgG response to part of a 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum and to determine possible correlations of possession of these antibodies with malaria morbidity. IgM and IgG levels...

  15. A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria

    NARCIS (Netherlands)

    T. van Gool (Tom); M.E. van Wolfswinkel (Marlies); R. Koelewijn (Rob); P.P.A.M. van Thiel (Pieter); J. Jacobs (Jan); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2011-01-01

    textabstractBackground: Counts of malaria parasites in peripheral blood are important to assess severity of Plasmodium falciparum malaria. Thin and thick smears are routinely used for this purpose. Methods. In this study the Binax NOW® Malaria Test, an easy-to-perform rapid diagnostic test, with His

  16. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea.

    NARCIS (Netherlands)

    Fowkes, F.J.; Michon, P.; Pilling, L.; Ripley, R.M.; Tavul, L.; Imrie, H.J.; Woods, C.M.; Mgone, C.S.; Luty, A.J.F.; Day, K.P.

    2008-01-01

    BACKGROUND: The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of

  17. Purification, crystallization and preliminary X-ray analysis of the aspartate aminotransferase of Plasmodium falciparum

    NARCIS (Netherlands)

    Jain, Rishabh; Jordanova, Rositsa; Mueller, Ingrid B.; Wrenger, Carsten; Groves, Matthew R.

    Aspartate aminotransferases (EC 2.6.1.1) catalyse the conversion of aspartate and alpha-ketoglutarate to oxaloacetate and glutamate in a reversible manner. Thus, the aspartate aminotransferase of Plasmodium falciparum (PfAspAT) plays a central role in the transamination of amino acids. Recent

  18. The multiplicity of Plasmodium falciparum infections is associated with acquired immunity to asexual blood stage antigens.

    NARCIS (Netherlands)

    Mayengue, P.I.; Luty, A.J.F.; Rogier, C.; Baragatti, M.; Kremsner, P.G.; Ntoumi, F.

    2009-01-01

    We evaluated the relationship between immune response markers and the multiplicity of Plasmodium falciparum infections in order to assess the validity of the latter as an indicator of the acquisition of anti-malarial immunity. Parasite populations present during malaria episodes of 64 Gabonese child

  19. Drug resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum malaria in Mlimba, Tanzania

    NARCIS (Netherlands)

    Mbugi, E.V.; Mutayoba, B.M.; Malisa, A.L.; Balthazary, S.T.; Nyambo, T.B.; Mshinda, H.

    2006-01-01

    Background - Sulphadoxine-pyrimethamine (SP) has been and is currently used for treatment of uncomplicated Plasmodium falciparum malaria in many African countries. Nevertheless, the response of parasites to SP treatment has shown significant variation between individuals. Methods - The genes for dih

  20. Transgene optimization, immunogenicity and in vitro efficacy of viral vectored vaccines expressing two alleles of Plasmodium falciparum AMA1.

    OpenAIRE

    Sumi Biswas; Dicks, Matthew D. J.; Carole A Long; Remarque, Edmond J; Loredana Siani; Stefano Colloca; Cottingham, Matthew G; Holder, Anthony A.; Gilbert, Sarah C.; Hill, Adrian V.S.; Draper, Simon J

    2011-01-01

    BACKGROUND: Apical membrane antigen 1 (AMA1) is a leading candidate vaccine antigen against blood-stage malaria, although to date numerous clinical trials using mainly protein-in-adjuvant vaccines have shown limited success. Here we describe the pre-clinical development and optimization of recombinant human and simian adenoviral (AdHu5 and ChAd63) and orthopoxviral (MVA) vectors encoding transgene inserts for Plasmodium falciparum AMA1 (PfAMA1). METHODOLOGY/PRINCIPAL FINDINGS: AdHu5-MVA prime...

  1. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  2. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria.

    Science.gov (United States)

    Llewellyn, David; Miura, Kazutoyo; Fay, Michael P; Williams, Andrew R; Murungi, Linda M; Shi, Jianguo; Hodgson, Susanne H; Douglas, Alexander D; Osier, Faith H; Fairhurst, Rick M; Diakite, Mahamadou; Pleass, Richard J; Long, Carole A; Draper, Simon J

    2015-09-16

    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.

  3. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance.

    Science.gov (United States)

    Wongsrichanalai, C; Sibley, C H

    2013-10-01

    Following a decade-long scale up of malaria control through vector control interventions, the introduction of rapid diagnostic tests and highly efficacious Artemisinin-based Combination Therapy (ACT) along with other measures, global malaria incidence declined significantly. The recent development of artemisinin resistance on the Cambodia-Thailand border, however, is of great concern. This review encompasses the background of artemisinin resistance in Plasmodium falciparum, its situation, especially in the Greater Mekong Sub-region (GMS), and the responses taken to overcome this resistance. The difficulties in defining resistance are presented, particularly the necessity of measuring the clinical response to artemisinins using the slow parasite-clearance phenotype. Efforts to understand the molecular basis of artemisinin resistance and the search for molecular markers are reviewed. The markers, once identified, can be applied as an efficient tool for resistance surveillance. Despite the limitation of current surveillance methods, it is important to continue vigilance for artemisinin resistance. The therapeutic efficacy "in vivo study" network for monitoring antimalarial resistance in the GMS has been strengthened. GMS countries are working together in response to artemisinin resistance and aim to eliminate all P. falciparum parasites. These efforts are crucial since a resurgence of malaria due to drug and/or insecticide resistance, program cuts, lack of political support and donor fatigue could set back malaria control success in the sub-region and threaten malaria control and elimination if resistance spreads to other regions.

  4. High yield purification of Plasmodium falciparum merozoites for use in opsonizing antibody assays.

    Science.gov (United States)

    Hill, Danika L; Eriksson, Emily M; Schofield, Louis

    2014-07-17

    Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  

  5. Kinetics of B Cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against...

  6. Effect of meteorological variables on Plasmodium vivax and Plasmodium falciparum malaria in outbreak prone districts of Rajasthan, India.

    Science.gov (United States)

    Lingala, Mercy A L

    2017-03-09

    Malaria is a public health problem caused by Plasmodium parasite and transmitted by anopheline mosquitoes. Arid and semi-arid regions of western India are prone to malaria outbreaks. Malaria outbreak prone districts viz. Bikaner, Barmer and Jodhpur were selected to study the effect of meteorological variables on Plasmodium vivax and Plasmodium falciparum malaria outbreaks for the period of 2009-2012. The data of monthly malaria cases and meteorological variables was analysed using SPSS 20v. Spearman correlation analysis was conducted to examine the strength of the relationship between meteorological variables, P. vivax and P. falciparum malaria cases. Pearson's correlation analysis was carried out among the meteorological variables to observe the independent effect of each independent variable on the outcome. Results indicate that malaria outbreaks have occurred in Bikaner and Barmer due to continuous rains for more than two months. Rainfall has shown to be an important predictor of malaria outbreaks in Rajasthan. P. vivax is more significantly correlated with rainfall, minimum temperature (P<0.01) and less significantly with relative humidity (P<0.05); whereas P. falciparum is significantly correlated with rainfall, relative humidity (P<0.01) and less significantly with temperature (P<0.05). The determination of the lag period for P. vivax is relative humidity and for P. falciparum is temperature. The lag period between malaria cases and rainfall is shorter for P. vivax than P. falciparum. In conclusion, the knowledge generated is not only useful to take prompt malaria control interventions but also helpful to develop better forecasting model in outbreak prone regions. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, Keith Z. [Yeshiva Univ., New York, NY (United States); Ho, Meng-Chaio [Yeshiva Univ., New York, NY (United States); Cassera, Maria B. [Yeshiva Univ., New York, NY (United States); Clinch, Keith [Industrial Research Ltd., Lower Hutt (New Zealand); Crump, Douglas R. [Industrial Research Ltd., Lower Hutt (New Zealand); Rosario Jr., Irving [Yeshiva Univ., New York, NY (United States); Merino, Emilio F. [Yeshiva Univ., New York, NY (United States); Almo, Steve C. [Yeshiva Univ., New York, NY (United States); Tyler, Peter C. [Industrial Research Ltd., Lower Hutt (New Zealand); Schramm, Vern L. [Yeshiva Univ., New York, NY (United States)

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  8. Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry

    DEFF Research Database (Denmark)

    Staalsoe, T; Giha, H A; Dodoo, D;

    1999-01-01

    BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously...... been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias...... with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were...

  9. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Directory of Open Access Journals (Sweden)

    Branch OraLee H

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6 is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Methods Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Results Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008, but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Conclusions Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the

  10. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study.

    Science.gov (United States)

    Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Dek, Dalin; Try, Vorleak; Amato, Roberto; Blessborn, Daniel; Song, Lijiang; Tullo, Gregory S; Fay, Michael P; Anderson, Jennifer M; Tarning, Joel; Fairhurst, Rick M

    2016-03-01

    Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory

  11. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study

    Science.gov (United States)

    Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Dek, Dalin; Try, Vorleak; Amato, Roberto; Blessborn, Daniel; Song, Lijiang; Tullo, Gregory S; Fay, Michael P; Anderson, Jennifer M; Tarning, Joel; Fairhurst, Rick M

    2016-01-01

    Background Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin–piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. Methods In this prospective cohort study, we enrolled patients aged 2–65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin–piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. Findings Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations

  12. Artesunate-amodiaquine fixed dose combination for the treatment of Plasmodium falciparum malaria in India

    Directory of Open Access Journals (Sweden)

    Anvikar Anupkumar R

    2012-03-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT has been recommended for the treatment of falciparum malaria by the World Health Organization. Though India has already switched to ACT for treating falciparum malaria, there is need to have multiple options of alternative forms of ACT. A randomized trial was conducted to assess the safety and efficacy of the fixed dose combination of artesunate-amodiaquine (ASAQ and amodiaquine (AQ for the treatment of uncomplicated falciparum malaria for the first time in India. The study sites are located in malaria-endemic, chloroquine-resistant areas. Methods This was an open label, randomized trial conducted at two sites in India from January 2007 to January 2008. Patients between six months and 60 years of age having Plasmodium falciparum mono-infection were randomly allocated to ASAQ and AQ arms. The primary endpoint was 28-day PCR-corrected parasitological cure rate. Results Three hundred patients were enrolled at two participating centres, Ranchi, Jharkhand and Rourkela, Odisha. Two patients in AQ arm had early treatment failure while there was no early treatment failure in ASAQ arm. Late treatment failures were seen in 13 and 12 patients in ASAQ and AQ arms, respectively. The PCR-corrected cure rates in intent-to-treat population were 97.51% (94.6-99.1% in ASAQ and 88.65% (81.3-93.9% in AQ arms. In per-protocol population, they were 97.47% (94.2-99.2% and 88.30% (80-94% in ASAQ and AQ arms respectively. Seven serious adverse events (SAEs were reported in five patients, of which two were reported as related to the treatment. All SAEs resolved without sequel. Conclusion The fixed dose combination of ASAQ was found to be efficacious and safe treatment for P. falciparum malaria. Amodiaquine also showed acceptable efficacy, making it a suitable partner of artesunate. The combination could prove to be a viable option in case India opts for fixed dose combination ACT. Clinical trial registry

  13. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa;

    2013-01-01

    The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested...... in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P....... falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were...

  14. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.

    Science.gov (United States)

    Dennison, Nathan J; BenMarzouk-Hidalgo, Omar J; Dimopoulos, George

    2015-03-01

    Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.

  15. The novel oxygenated chalcone, 2,4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo

    DEFF Research Database (Denmark)

    Chen, M; Brøgger Christensen, S; Zhai, L

    1997-01-01

    growth of both a chloroquine-susceptible (3D7) and a chloroquine-resistant (Dd2) strain of Plasmodium falciparum in a [3H]hypoxanthine uptake assay. The in vivo activity of 2,4mbc was tested in mice infected with Plasmodium berghei or Plasmodium yoelii and in rats infected with P. berghei. 2,4mbc...

  16. Polymorphism of the merozoite surface protein-1 block 2 region in Plasmodium falciparum isolates from Mauritania.

    Science.gov (United States)

    Ahmedou Salem, Mohamed Salem O; Ndiaye, Magatte; OuldAbdallahi, Mohamed; Lekweiry, Khadijetou M; Bogreau, Hervé; Konaté, Lassana; Faye, Babacar; Gaye, Oumar; Faye, Ousmane; Mohamed Salem O Boukhary, Ali O

    2014-01-23

    The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania. Plasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification. K1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities. The polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.

  17. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Petersen, Wiebke; Külzer, Simone; Engels, Sonja; Zhang, Qi; Ingmundson, Alyssa; Rug, Melanie; Maier, Alexander G; Przyborski, Jude M

    2016-07-01

    Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte.

  18. Identification and characterization of a novel Plasmodium falciparum adhesin involved in erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Nidhi Hans

    Full Text Available Malaria remains a major health problem worldwide. All clinical symptoms of malaria are attributed to the asexual blood stages of the parasite life cycle. Proteins resident in apical organelles and present on the surface of P. falciparum merozoites are considered promising candidates for the development of blood stage malaria vaccines. In the present study, we have identified and characterized a microneme associated antigen, PfMA [PlasmoDB Gene ID: PF3D7_0316000, PFC0700c]. The gene was selected by applying a set of screening criteria such as transcriptional upregulation at late schizogony, inter-species conservation and the presence of signal sequence or transmembrane domains. The gene sequence of PfMA was found to be conserved amongst various Plasmodium species. We experimentally demonstrated that the transcript for PfMA was expressed only in the late blood stages of parasite consistent with a putative role in erythrocyte invasion. PfMA was localized by immunofluorescence and immuno-electron microscopy to be in the micronemes, an apical organelle of merozoites. The functional role of the PfMA protein in erythrocyte invasion was identified as a parasite adhesin involved in direct attachment with the target erythrocyte. PfMA was demonstrated to bind erythrocytes in a sialic acid independent, chymotrypsin and trypsin resistant manner and its antibodies inhibited P. falciparum erythrocyte invasion. Invasion of erythrocytes is a complex multistep process that involves a number of redundant ligand-receptor interactions many of which still remain unknown and even uncharacterized. Our work has identified and characterized a novel P. falciparum adhesin involved in erythrocyte invasion.

  19. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria

    DEFF Research Database (Denmark)

    Abdulla, S.; Adam, I.; Adjei, G. O.

    2015-01-01

    Background: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline v...

  20. Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum.

    Science.gov (United States)

    Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun

    2015-08-01

    The 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum. The PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated. A total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13-0.14 MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparum eba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparum eba-175. Plasmodium falciparum eba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.

  1. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi

    National Research Council Canada - National Science Library

    Drexler, Anna L; Pietri, Jose E; Pakpour, Nazzy; Hauck, Eric; Wang, Bo; Glennon, Elizabeth K K; Georgis, Martha; Riehle, Michael A; Luckhart, Shirley

    2014-01-01

    ...) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM...

  2. Diversidad genética de Plasmodium falciparum y sus implicaciones en la epidemiología de la malaria

    National Research Council Canada - National Science Library

    Judy Natalia Jiménez; Carlos Enrique Muskus; Iván Darío Vélez

    2005-01-01

    La diversidad genética le confiere a Plasmodium falciparum la capacidad de evadir la respuesta inmune del hospedero y producir variantes resistentes a medicamentos y a vacunas, aspectos que juegan un papel importante...

  3. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains i...

  4. Recrudescence of Plasmodium falciparum malaria contracted in Lombok, Indonesia after quinine/doxycycline and mefloquine: case report.

    Science.gov (United States)

    Tish, K N; Pillans, P I

    1997-07-11

    A patient is reported who contracted Plasmodium falciparum malaria in Lombok, Indonesia. The infection recrudesced after quinine/doxycycline and mefloquine. Treatment with halofantrine was successful after he developed cerebral malaria with recovery.

  5. Influence of host iron status on Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Martha A. Clark

    2014-05-01

    Full Text Available Iron deficiency affects one quarter of the world’s population and causes significant morbidity, including detrimental effects on immune function and cognitive development. Accordingly, the World Health Organization recommends routine iron supplementation in children and adults in areas with high prevalence of iron deficiency. However, a large body of clinical and epidemiological evidence has accumulated which clearly demonstrates that host iron deficiency is protective against falciparum malaria and that host iron supplementation may increase the risk of malaria. Although many effective antimalarial treatments and preventive measures are available, malaria remains a significant public health problem, in part because the mechanisms of malaria pathogenesis remain obscured by the complexities in the relationships between parasite virulence factors, host susceptibility traits, and the immune responses that modulate disease. Here we review (i the clinical and epidemiological data that describes the relationship between host iron status and malaria infection and (ii the progress being made to understand the biological basis for these clinical and epidemiological observations.

  6. [Stain hybridization method with pRepHind probe for the diagnosis of Plasmodium falciparum].

    Science.gov (United States)

    Moleón Borodowsky, I

    1992-01-01

    A study was conducted on the parasitemia detection level and the specificity of the pRepHind DNA probe for diagnosing Plasmodium falciparum by the stain hybridization method. The parasitemia detection level was studied by using dilutions of a P. falciparum in vitro culture, adjusted by direct microscopic examination to 1; 0.1; 0.01; 0.001; 0.0001 and 0.00001% of parasited red cells. Specificity was increased by using DNA extractions from P. Yoelii, P. berghei and human leucocytes. The results showed that the method was able to detect 0.0001% of parasitemia starting from DNA extractions of 100 L infected red cells. The pRepHind probe only detected specifically DNA from P. falciparum. It is concluded that the method is suitable for being used in the diagnosis of infection due to P. falciparum.

  7. Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors.

    Science.gov (United States)

    Ponder, Elizabeth L; Albrow, Victoria E; Leader, Brittany A; Békés, Miklós; Mikolajczyk, Jowita; Fonović, Urša Pečar; Shen, Aimee; Drag, Marcin; Xiao, Junpeng; Deu, Edgar; Campbell, Amy J; Powers, James C; Salvesen, Guy S; Bogyo, Matthew

    2011-06-24

    Small ubiquitin-related modifier (SUMO) is implicated in the regulation of numerous biological processes including transcription, protein localization, and cell cycle control. Protein modification by SUMO is found in Plasmodium falciparum; however, its role in the regulation of the parasite life cycle is poorly understood. Here we describe functional studies of a SUMO-specific protease (SENP) of P. falciparum, PfSENP1 (PFL1635w). Expression of the catalytic domain of PfSENP1 and biochemical profiling using a positional scanning substrate library demonstrated that this protease has unique cleavage sequence preference relative to the human SENPs. In addition, we describe a class of small molecule inhibitors of this protease. The most potent lead compound inhibited both recombinant PfSENP1 activity and P. falciparum replication in infected human blood. These studies provide valuable new tools for the study of SUMOylation in P. falciparum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Short report: polymorphisms in the chloroquine resistance transporter gene in Plasmodium falciparum isolates from Lombok, Indonesia.

    Science.gov (United States)

    Huaman, Maria Cecilia; Yoshinaga, Kazumi; Suryanatha, Aan; Suarsana, Nyoman; Kanbara, Hiroji

    2004-07-01

    The polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) and P. falciparum chloroquine resistance transporter (pfcrt) genes, which are associated with chloroquine resistance, were examined in 48 P. falciparum isolates from uncomplicated malaria patients from the West Lombok District in Indonesia. The point mutation N86Y in pfmdr1 was present in 35.4% of the isolates and mutation K76T in pfcrt was found in all but one of the samples studied. Identified pfcrt haplotypes were mainly identical to the Papua New Guinea type S(agt)VMNT (42 of 48, 87.5%), and a few isolates had the Southeast Asia type CVIET (5 of 48, 10.4%). Moreover, one P. falciparum isolate harbored the K76N mutation, giving rise to the haplotype CVMNN, which was not previously reported in field isolates. Our findings suggest that chloroquine resistance in this area might have the same origin as in Papua New Guinea.

  9. Pyronaridine-artesunate granules versus artemether-lumefantrine crushed tablets in children with Plasmodium falciparum malaria: a randomized controlled trial

    OpenAIRE

    Kayentao Kassoum; Doumbo Ogobara K; Pénali Louis K; Offianan André T; Bhatt Kirana M; Kimani Joshua; Tshefu Antoinette K; Kokolomami Jack HT; Ramharter Michael; de Salazar Pablo Martinez; Tiono Alfred B; Ouédraogo Alphonse; Bustos Maria Dorina G; Quicho Frederick; Borghini-Fuhrer Isabelle

    2012-01-01

    Abstract Background Children are most vulnerable to malaria. A pyronaridine-artesunate pediatric granule formulation is being developed for the treatment of uncomplicated Plasmodium falciparum malaria. Methods This phase III, multi-center, comparative, open-label, parallel-group, controlled clinical trial included patients aged ≤12 years, bodyweight ≥5 to 90% (P 3 times the upper limit of normal (ULN) and peak total bilirubin >2xULN (i.e. within the Hy’s law definition). Conclusions The pyron...

  10. The Severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Wang, Christian W; Lyimo, Eric

    2017-01-01

    By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte...

  11. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

    Science.gov (United States)

    Zani, Babalwa; Gathu, Michael; Donegan, Sarah; Olliaro, Piero L; Sinclair, David

    2014-01-01

    Background The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. Objectives To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. Selection criteria Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy’ and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrine In Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower

  12. Assessing the asymptomatic reservoir and dihydroartemisinin-piperaquine effectiveness in a low transmission setting threatened by artemisinin resistant Plasmodium falciparum.

    Science.gov (United States)

    Falq, Grégoire; Van Den Bergh, Rafael; De Smet, Martin; Etienne, William; Nguon, Chea; Rekol, Huy; Imwong, Mallika; Dondorp, Arjen; Kindermans, Jean-Marie

    2016-09-01

    In Cambodia, elimination of artemisinin resistance through direct elimination of the Plasmodium falciparum parasite may be the only strategy. Prevalence and incidence at district and village levels were assessed in Chey Saen district, Preah Vihear province, North of Cambodia. Molecular and clinical indicators for artemisinin resistance were documented. A cross sectional prevalence survey was conducted at village level in the district of Chey Saen from September to October 2014. Plasmodium spp. was assessed with high volume quantitative real-time polymerase chain reaction (qPCR). Plasmodium falciparum-positive samples were screened for mutations in the k13-propeller domain gene. Treatment effectiveness was established after 28 days (D28) using the same qPCR technique. Data from the provincial surveillance system targeting symptomatic cases, supported by Médecins Sans Frontières (MSF), were used to assess incidence. District P. falciparum prevalence was of 0.74 % [0.41; 1.21]; village prevalence ranged from 0 to 4.6 % [1.4; 10.5]. The annual incidence of P. falciparum was 16.8 cases per 1000 inhabitants in the district; village incidence ranged from 1.3 to 54.9 for 1000 inhabitants. Two geographical clusters with high number of cases were identified by both approaches. The marker for artemisinin resistance was found in six samples out of the 11 tested (55 %). 34.9 % of qPCR blood analysis of symptomatic patients were still positive at D28. The overall low prevalence of P. falciparum was confirmed in Chey Saen district in Cambodia, while there were important variations between villages. Symptomatic cases had a different pattern and were likely acquired outside the villages. It illustrates the importance of prevalence surveys in targeting interventions for elimination. Mutations in the k13-propeller domain gene (C580Y), conferring artemisinin resistance, were highly prevalent in both symptomatic and asymptomatic cases (realizing the absolute figures remain low

  13. Spatiotemporal dynamics and demographic profiles of imported Plasmodium falciparum and Plasmodium vivax infections in Ontario, Canada (1990-2009.

    Directory of Open Access Journals (Sweden)

    Mark P Nelder

    Full Text Available We examined malaria cases reported to Ontario's public health surveillance systems from 1990 through 2009 to determine how temporal scale (longitudinal, seasonal, spatial scale (provincial, health unit, and demography (gender, age contribute to Plasmodium infection in Ontario travellers. Our retrospective study included 4,551 confirmed cases of imported malaria reported throughout Ontario, with additional analysis at the local health unit level (i.e., Ottawa, Peel, and Toronto. During the 20-year period, Plasmodium vivax accounted for 50.6% of all cases, P. falciparum (38.6%, Plasmodium sp. (6.0%, P. ovale (3.1%, and P. malariae (1.8%. During the first ten years of the study (1990-1999, P. vivax (64% of all cases was the dominant agent, followed by P. falciparum (28%; however, during the second ten years (2000-2009 the situation reversed and P. falciparum (55% dominated, followed by P. vivax (30%. The prevalence of P. falciparum and P. vivax cases varied spatially (e.g., P. falciparum more prevalent in Toronto, P. vivax more prevalent in Peel, temporally (e.g. P. falciparum incidence increased during the 20-year study, and demographically (e.g. preponderance of male cases. Infection rates per 100,000 international travellers were estimated: rates of infection were 2× higher in males compared to females; rates associated with travel to Africa were 37× higher compared to travel to Asia and 126× higher compared to travel to the Americas; rates of infection were 2.3-3.5× higher in June and July compared to October through March; and rates of infection were highest in those 65-69 years old. Where exposure country was reported, 71% of P. falciparum cases reported exposure in Ghana or Nigeria and 63% of P. vivax cases reported exposure in India. Our study provides insights toward improving pre-travel programs for Ontarians visiting malaria-endemic regions and underscores the changing epidemiology of imported malaria in the province.

  14. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia

    DEFF Research Database (Denmark)

    Helleberg, Marie; Goka, Bamenla Q; Akanmori, Bartholomew D

    2005-01-01

    BACKGROUND: Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. MATERIALS AND METHODS: Blood was collected from patients with recent malaria and negative malaria microscopy....... Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal), aldolase and histidine rich protein 2 (Now malaria) were used to differentiate between patients with (1) no malaria, (2) recent cleared malaria, (3) persistent P. falciparum infection. Red cell distribution width (RDW), plasma levels...

  15. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Salcedo-Amaya, Adriana M; Cohen, Adrian

    2009-01-01

    Post-translational modifications (PTMs) of histone tails play a key role in epigenetic regulation of gene expression in a range of organisms from yeast to human, however, little is known about histone proteins from the parasite that causes malaria in humans, Plasmodium falciparum. We characterize...... comprehensive map of histone modifications in Plasmodium falciparum and highlight the utility of tandem MS for detailed analysis of peptides containing multiple PTMs....

  16. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is...

  17. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation.

    Science.gov (United States)

    Pessi, Gabriella; Kociubinski, Guillermo; Mamoun, Choukri Ben

    2004-04-20

    Plasmodium falciparum is the causative agent of the most severe form of human malaria. The rapid multiplication of the parasite within human erythrocytes requires an active production of new membranes. Phosphatidylcholine is the most abundant phospholipid in Plasmodium membranes, and the pathways leading to its synthesis are attractive targets for chemotherapy. In addition to its synthesis from choline, phosphatidylcholine is synthesized from serine via an unknown pathway. Serine, which is actively transported by Plasmodium from human serum and readily available in the parasite, is subsequently converted into phosphoethanolamine. Here, we describe in P. falciparum a plant-like S-adenosyl-l-methionine-dependent three-step methylation reaction that converts phosphoethanolamine into phosphocholine, a precursor for the synthesis of phosphatidylcholine. We have identified the gene, PfPMT, encoding this activity and shown that its product is an unusual phosphoethanolamine methyltransferase with no human homologs. P. falciparum phosphoethanolamine methyltransferase (Pfpmt) is a monopartite enzyme with a single catalytic domain that is responsible for the three-step methylation reaction. Interestingly, Pfpmt activity is inhibited by its product phosphocholine and by the phosphocholine analog, miltefosine. We show that miltefosine can also inhibit parasite proliferation within human erythrocytes. The importance of this enzyme in P. falciparum membrane biogenesis makes it a potential target for malaria chemotherapy.

  18. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1.

    Science.gov (United States)

    Mayer, D C Ghislaine; Cofie, Joann; Jiang, Lubin; Hartl, Daniel L; Tracy, Erin; Kabat, Juraj; Mendoza, Laurence H; Miller, Louis H

    2009-03-31

    In the war against Plasmodium, humans have evolved to eliminate or modify proteins on the erythrocyte surface that serve as receptors for parasite invasion, such as the Duffy blood group, a receptor for Plasmodium vivax, and the Gerbich-negative modification of glycophorin C for Plasmodium falciparum. In turn, the parasite counters with expansion and diversification of ligand families. The high degree of polymorphism in glycophorin B found in malaria-endemic regions suggests that it also may be a receptor for Plasmodium, but, to date, none has been identified. We provide evidence from erythrocyte-binding that glycophorin B is a receptor for the P. falciparum protein EBL-1, a member of the Duffy-binding-like erythrocyte-binding protein (DBL-EBP) receptor family. The erythrocyte-binding domain, region 2 of EBL-1, expressed on CHO-K1 cells, bound glycophorin B(+) but not glycophorin B-null erythrocytes. In addition, glycophorin B(+) but not glycophorin B-null erythrocytes adsorbed native EBL-1 from the P. falciparum culture supernatants. Interestingly, the Efe pygmies of the Ituri forest in the Democratic Republic of the Congo have the highest gene frequency of glycophorin B-null in the world, raising the possibility that the DBL-EBP family may have expanded in response to the high frequency of glycophorin B-null in the population.

  19. Bioinformatics analysis for structure and function ofCPR ofPlasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    ZhigangFan; Lingmin Zhang; GuogangYan; QiangWu; XiufengGan; Saifeng Zhong; GuifenLin

    2011-01-01

    Objective:To analyse the structure and function ofNADPH-cytochrome p450 reductase(CYPOR orCPR) fromPlasmodium falciparum (Pf), and to predict its’ drug target and vaccine target. Methods: The structure, function, drug target and vaccine target ofCPR fromPlasmodium falciparum were analyzed and predicted by bioinformatics methods.Results:PfCPR, which was olderCPR, had close relationship with theCPR from otherPlasmodium species, but it was distant from its hosts, such asHomo sapiens andAnopheles.PfCPR was located in the cellular nucleus ofPlasmodium falciparum.335aa-352aa and591aa -608aa were inserted the interior side of the nuclear membrane, while151aa-265aa was located in the nucleolus organizer regions.PfCPR had40 function sites and44 protein-protein binding sites in amino acid sequence. The teriary structure of 1aa-700aa was forcep-shaped with wings.15 segments ofPfCPR had no homology withHomo sapien CPR and most were exposed on the surface of the protein. These segments had25 protein-protein binding sites. While13other segments all possessed function sites. Conclusions: The evolution or genesis ofPlasmodium falciparum is earlier than those ofHomo sapiens. PfCPR is a possible resistance site of antimalarial drug and may involve immune evasion, which is associated with parasite of sporozoite in hepatocytes.PfCPR is unsuitable as vaccine target, but it has at least 13 ideal drug targets.

  20. Comparison of the antibody responses to Plasmodium vivax and Plasmodium falciparum antigens in residents of Mandalay, Myanmar

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Joo

    2011-08-01

    Full Text Available Abstract Background The aim of this study was to investigate the profile of antibodies against several antigens of Plasmodium vivax and Plasmodium falciparum in Mandalay, Myanmar. Methods Malaria parasites were identified by microscopic examination. To test the antibodies against P. vivax and P. falciparum in sera, an indirect immunofluorescence antibody test (IFAT was performed using asexual blood parasite antigens. An enzyme-linked immunosorbent assay (ELISA was performed with circumsporozoite protein (CSP, Pvs25 and Pvs28 recombinant proteins of transmission-blocking vaccine candidates for P. vivax, and liver stage specific antigen-1 and -3 (PfLSA-1, PfLSA-3 for P. falciparum. Results Fourteen patients among 112 were found to be infected with P. vivax and 26 with P. falciparum by thick smear examination. Twenty-three patients were found to be infected with P. vivax, 19 with P. falciparum and five with both by thin smear examination. Blood samples were divided into two groups: Group I consisted of patients who were positive for infection by microscopic examination, and Group II consisted of those who showed symptoms, but were negative in microscopic examination. In P. falciparum, IgG against the blood stage antigen in Group I (80.8% was higher than in Group II (70.0%. In P. vivax, IgG against the blood stage antigen in Group I (53.8% was higher than in Group II (41.7%. However, the positivity rate of the PvCSP VK210 subtype in Group II (40.0% was higher than in Group I (23.1%. Similarly for the PvCSP VK247 subtype, Group II (21.7% was higher than that for Group I (9.6%. A similar pattern was observed in the ELISA using Pvs25 and Pvs28: positive rates of Group II were higher than those for Group I. However, those differences were not shown significant in statistics. Conclusions The positive rates for blood stage antigens of P. falciparum were higher in Group I than in Group II, but the positive rates for antigens of other stages (PfLSA-1 and -3

  1. Comparison of the antibody responses to Plasmodium vivax and Plasmodium falciparum antigens in residents of Mandalay, Myanmar.

    Science.gov (United States)

    Kim, Tong-Soo; Kim, Hyung-Hwan; Kim, Jung-Yeon; Kong, Yoon; Na, Byoung-Kuk; Lin, Khin; Moon, Sung-Ung; Kim, Yeon-Joo; Kwon, Myoung-Hee; Sohn, Youngjoo; Kim, Hyuck; Lee, Hyeong-Woo

    2011-08-06

    The aim of this study was to investigate the profile of antibodies against several antigens of Plasmodium vivax and Plasmodium falciparum in Mandalay, Myanmar. Malaria parasites were identified by microscopic examination. To test the antibodies against P. vivax and P. falciparum in sera, an indirect immunofluorescence antibody test (IFAT) was performed using asexual blood parasite antigens. An enzyme-linked immunosorbent assay (ELISA) was performed with circumsporozoite protein (CSP), Pvs25 and Pvs28 recombinant proteins of transmission-blocking vaccine candidates for P. vivax, and liver stage specific antigen-1 and -3 (PfLSA-1, PfLSA-3) for P. falciparum. Fourteen patients among 112 were found to be infected with P. vivax and 26 with P. falciparum by thick smear examination. Twenty-three patients were found to be infected with P. vivax, 19 with P. falciparum and five with both by thin smear examination. Blood samples were divided into two groups: Group I consisted of patients who were positive for infection by microscopic examination, and Group II consisted of those who showed symptoms, but were negative in microscopic examination. In P. falciparum, IgG against the blood stage antigen in Group I (80.8%) was higher than in Group II (70.0%). In P. vivax, IgG against the blood stage antigen in Group I (53.8%) was higher than in Group II (41.7%). However, the positivity rate of the PvCSP VK210 subtype in Group II (40.0%) was higher than in Group I (23.1%). Similarly for the PvCSP VK247 subtype, Group II (21.7%) was higher than that for Group I (9.6%). A similar pattern was observed in the ELISA using Pvs25 and Pvs28: positive rates of Group II were higher than those for Group I. However, those differences were not shown significant in statistics. The positive rates for blood stage antigens of P. falciparum were higher in Group I than in Group II, but the positive rates for antigens of other stages (PfLSA-1 and -3) showed opposite results. Similar to P. falciparum, the

  2. Optimizing the HRP-2 In Vitro Malaria Drug Susceptibility Assay Using a Reference Clone to Improve Comparisons of Plasmodium falciparum Field Isolates

    Science.gov (United States)

    2012-09-13

    available soon. Optimizing the HRP-2 in vitro malaria drug susceptibility assay using a reference clone to improve comparisons of Plasmodium falciparum...Optimizing the HRP-2 in vitro malaria drug susceptibility assay using a reference clone to improve comparisons of Plasmodium falciparum field isolates 5a...Date: 13 September 2012 14. ABSTRACT Apparent emerging artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia requires development

  3. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific N...

  4. Combined measurement of soluble and cellular ICAM-1 among children with Plasmodium falciparum malaria in Uganda

    Directory of Open Access Journals (Sweden)

    Cserti-Gazdewich Christine M

    2010-08-01

    Full Text Available Abstract Background Intercellular adhesion molecule-1 (ICAM-1 is a cytoadhesion molecule implicated in the pathogenesis of Plasmodium falciparum malaria. Elevated levels of soluble ICAM-1 (sICAM-1 have previously been reported with increased malaria disease severity. However, studies have not yet examined both sICAM-1 concentrations and monocyte ICAM-1 expression in the same cohort of patients. To better understand the relationship of soluble and cellular ICAM-1 measurements in malaria, both monocyte ICAM-1 expression and sICAM-1 concentration were measured in children with P. falciparum infection exhibiting a spectrum of clinical severity. Methods Samples were analysed from 160 children, aged 0.5 to 10.8 years, with documented P. falciparum malaria in Kampala, Uganda. The patients belonged to one of three pre-study defined groups: uncomplicated malaria (UM, severe non-fatal malaria (SM-s, and fatal malaria (SM-f. Subset analysis was done on those with cerebral malaria (CM or severe malaria anaemia (SMA. Monocyte ICAM-1 was measured by flow cytometry. sICAM-1 was measured by enzyme immunoassay. Results Both sICAM-1 and monocyte cell-surface ICAM-1 followed a log-normal distribution. Median sICAM-1 concentrations increased with greater severity-of-illness: 279 ng/mL (UM, 462 ng/mL (SM-s, and 586 ng/mL (SM-f, p Conclusion In this cohort of children with P. falciparum malaria, sICAM-1 levels were associated with severity-of-illness. Patients with UM had higher monocyte ICAM-1 expression consistent with a role for monocyte ICAM-1 in immune clearance during non-severe malaria. Among the subsets of patients with either SMA or CM, monocyte ICAM-1 levels were higher in CM, consistent with the role of ICAM-1 as a marker of cytoadhesion. Categories of disease in pediatric malaria may exhibit specific combinations of soluble and cellular ICAM-1 expression.

  5. Regulation of antigenic variation in Plasmodium falciparum: censoring freedom of expression?

    Science.gov (United States)

    Duffy, Michael F; Reeder, John C; Brown, Graham V

    2003-03-01

    Plasmodium falciparum employs a strategy of clonal antigenic variation to evade the host immune response during the intraerythrocytic stage of its life cycle. The major variant parasite molecule is the P. falciparum erythrocyte membrane protein (PfEMP)1, which is encoded by the var multigene family. The parasite switches between different PfEMP1 molecules through regulation of var transcription. Recent studies have shed considerable light on this process, but much remains unknown. However, striking parallels between transcriptional control of var and genes in other organisms provide direction for future studies.

  6. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi.

    Science.gov (United States)

    Jaynes, J M; Burton, C A; Barr, S B; Jeffers, G W; Julian, G R; White, K L; Enright, F M; Klei, T R; Laine, R A

    1988-10-01

    Plasmodium falciparum and Trypanosoma cruzi were killed by two novel lytic peptides (SB-37 and Shiva-1) in vitro. Human erythrocytes infected with P. falciparum, and Vero cells infected with T. cruzi, were exposed to these peptides. The result, in both cases, was a significant decrease in the level of parasite infection. Furthermore, the peptides had a marked cytocidal effect on trypomastigote stages of T. cruzi in media, whereas host eukaryotic cells were unaffected by the treatments. In view of the worldwide prevalence of these protozoan diseases and the lack of completely suitable treatments, lytic peptides may provide new and unique chemotherapeutic agents for the treatment of these infections.

  7. Haptoglobin 1-1 is associated with susceptibility to severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Quaye, I K; Ekuban, F A; Goka, B Q

    2000-01-01

    The haptoglobin (Hp) phenotypes were determined by polyacrylamide-gel electrophoresis in plasma samples obtained in 1997 from 113 Plasmodium falciparum malaria patients (aged 1-12 years) with strictly defined cerebral malaria, severe malarial anaemia, or uncomplicated malaria and 42 age...... the reverse was seen with respect to Hp2-1 and Hp2-2. Our data suggest that the Hp1-1 phenotype is associated with susceptibility to P. falciparum malaria in general, and to the development of severe disease in particular....

  8. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics

    DEFF Research Database (Denmark)

    A-Elbasit, Ishraga E; Alifrangis, Michael; Khalil, Insaf F

    2007-01-01

    the effects of dhfr/dhps mutations on parasite characteristics other than SP resistance. METHOD: Parasite infections obtained from 153 Sudanese patients with uncomplicated falciparum malaria treated with SP or SP + chloroquine, were successfully genotyped at nine codons in the dhfr/dhps genes by PCR......BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) are enzymes of central importance in parasite metabolism. The dhfr and dhps gene mutations are known to be associated with sulphadoxine/pyrimethamine (SP) resistance. OBJECTIVE: To investigate...

  9. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  10. Plasmodium falciparum malaria occurring four years after leaving an endemic area.

    Science.gov (United States)

    Vantomme, B; Van Acker, J; Rogge, S; Ommeslag, D; Donck, J; Callens, S

    2016-04-01

    We present a case of a 52-year-old woman of Ghanaian origin who developed Plasmodium falciparum malaria 4 years after leaving Africa. She had not returned to an endemic area since. We hypothesize several possible scenarios to explain this infection, of which we believe recrudescence of P. falciparum is the most plausible. This occurred most likely as a consequence of waning immunity several years after leaving a high-transmission area. She recovered after a 3-day treatment with atovaquone/proguanil.

  11. Comparison of different PCR protocols for the detection and diagnosis of Plasmodium falciparum.

    Science.gov (United States)

    Oster, N; Abdel-Aziz, I Z; Stich, A; Coulibaly, B; Kouyatè, B; Andrews, K T; McLean, J E; Lanzer, M

    2005-11-01

    An assessment of differing PCR protocols for the diagnosis of Plasmodium falciparum infection was performed on samples from an area of holoendemic malaria transmission in western Burkina Faso. The PCR protocols had generally high sensitivities (>92%) and specificities (>69%), but the negative predictive values (NPV) were moderate and differed widely among the PCR protocols tested. These PCR protocols that amplified either the P. falciparum pfcrt gene or the small subunit ribosomal DNA were the most reliable diagnostic tools. However, the moderate NPV imply that more than one PCR protocol should be used for diagnosis in holoendemic areas.

  12. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*

    OpenAIRE

    Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasit...

  13. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania

    DEFF Research Database (Denmark)

    Minja, Daniel T R; Schmiegelow, Christentze; Mmbando, Bruno;

    2013-01-01

    Intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is a key strategy in the control of pregnancy-associated malaria. However, this strategy is compromised by widespread drug resistance from single-nucleotide polymorphisms in the Plasmodium falciparum...... dihydrofolate reductase and dihydropteroate synthetase genes. During September 2008-October 2010, we monitored a cohort of 924 pregnant women in an area of Tanzania with declining malaria transmission. P. falciparum parasites were genotyped, and the effect of infecting haplotypes on birthweight was assessed...

  14. Overlapping antigenic repertoires of variant antigens expressed on the surface of erythrocytes infected by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D;

    1999-01-01

    Antibodies against variable antigens expressed on the surface of Plasmodium falciparum-infected erythrocytes are believed to be important for protection against malaria. A target for these antibodies is the P. falciparum erythrocyte membrane protein 1, PfEMP1, which is encoded by around 50 var...... genes and undergoes clonal variation. Using agglutination and mixed agglutination tests and flow cytometry to analyse the recognition of variant antigens on parasitized erythrocytes by plasma antibodies from individuals living in Daraweesh in eastern Sudan, an area of seasonal and unstable malaria...

  15. Two cases of Plasmodium falciparum malaria in the Netherlands without recent travel to a malaria-endemic country.

    Science.gov (United States)

    Arends, Joop E; Oosterheert, Jan Jelrik; Kraaij-Dirkzwager, Marleen M; Kaan, Jan A; Fanoy, Ewout B; Haas, Pieter-Jan; Scholte, Ernst-Jan; Kortbeek, Laetitia M; Sankatsing, Sanjay U C

    2013-09-01

    Recently, two patients of African origin were given a diagnosis of Plasmodium falciparum malaria without recent travel to a malaria-endemic country. This observation highlights the importance for clinicians to consider tropical malaria in patients with fever. Possible transmission routes of P. falciparum to these patients will be discussed. From a public health perspective, international collaboration is crucial when potential cases of European autochthonous P. falciparum malaria in Europe re considered.

  16. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... if high levels of in vivo resistance are reflected at molecular level as well. METHODS: Finger prick blood samples (n=189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum...

  17. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    Science.gov (United States)

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  18. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Alyson M Auliff

    Full Text Available Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N and quadruple mutant (57L/58R/61M/117T pvdhfr-ts alleles into the P. falciparum genome. The majority (81% of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.

  19. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum.

    Science.gov (United States)

    Auliff, Alyson M; Balu, Bharath; Chen, Nanhua; O'Neil, Michael T; Cheng, Qin; Adams, John H

    2012-01-01

    Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.

  20. An innovative shape equation to quantify the morphological characteristics of parasitized red blood cells by Plasmodium falciparum and Plasmodium vivax.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Motevalli Haghi, Afsaneh; Faghihi, Shahab

    2013-04-01

    The morphology of red blood cells is affected significantly during maturation of malaria parasites, Plasmodium falciparum and Plasmodium vivax. A novel shape equation is presented that defines shape of parasitized red blood cells by P. falciparum (Pf-red blood cells) and P. vivax (Pv-red blood cells) at four stages of infection. The Giemsa-stained thin blood films are prepared using blood samples collected from healthy donors, patients having P. falciparum and P. vivax malaria. The diameter and thickness of healthy red blood cells plus Pf-red blood cells and Pv-red blood cells at each stage of infection are measured from their optical images using Olysia and Scanning Probe Image Processor softwares, respectively. Using diameters and thicknesses of parasitized red blood cells, a shape equation is fitted and relative two-dimensional shapes are plotted using MATHEMATICA. The shape of Pf-red blood cell drastically changes at ring stage as its thickness increases by 82%, while Pv-red blood cell remains biconcave (30% increase in thickness). By trophozoite and subsequent schizont stage, the Pf-red blood cell entirely loses its biconcave shape and becomes near spherical (diameter and thickness of ~8 µm). The Pv-red blood cell remains biconcave throughout the parasite development even though its volume increases. These results could have practical use for faster diagnosis, prediction, and treatment of human malaria and sickle-cell diseases.

  1. A Next-generation Genetically Attenuated Plasmodium falciparum Parasite Created by Triple Gene Deletion

    OpenAIRE

    Mikolajczak, Sebastian A.; Lakshmanan, Viswanathan; Fishbaugher, Matthew; Camargo, Nelly; Harupa, Anke; Kaushansky, Alexis; Douglass, Alyse N.; Baldwin, Michael; Healer, Julie; O'Neill, Matthew; Phuong, Thuan; Cowman, Alan; Kappe, Stefan H. I.

    2014-01-01

    Immunization with live-attenuated Plasmodium sporozoites completely protects against malaria infection. Genetic engineering offers a versatile platform to create live-attenuated sporozoite vaccine candidates. We previously generated a genetically attenuated parasite (GAP) by deleting the P52 and P36 genes in the NF54 wild-type (WT) strain of Plasmodium falciparum (Pf p52−/p36− GAP). Preclinical assessment of p52−/p36− GAP in a humanized mouse model indicated an early and severe liver stage gr...

  2. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  3. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country

    Directory of Open Access Journals (Sweden)

    Sitthi-amorn Chitr

    2009-07-01

    Full Text Available Abstract Background The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites. Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. Methods The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. Results A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 ± 0.17, where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai

  4. Efficacy and safety of the six-dose regimen of artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in adolescents and adults: A pooled analysis of individual patient data from randomized clinical trials

    NARCIS (Netherlands)

    E.A. Mueller; M. van Vugt; W. Kirch; K. Andriano; P. Hunt; P.I. de Palacios

    2006-01-01

    To demonstrate the superiority of the six-dose over the four-dose regimen of artemether-lumefantrine (co-artemether, Coartem (R)) in patients > 12 years, data from 11 randomized clinical trials were pooled and analyzed. A total of 1368 patients with uncomplicated Plasinodium falciparum malaria (six-

  5. Malária grave secundária a co-infecção por Plasmodium falciparum e Plasmodium ovale

    Directory of Open Access Journals (Sweden)

    Eduardo Ribeiro

    2013-03-01

    Full Text Available A malária é causada pela infeção por protozoários do género Plasmodium, sendo uma importante causa de doença, especialmente em países tropicais. O diagnóstico de malária é baseado na suspeita clínica e na deteção dos parasitas no sangue. O P. falciparum é a espécie que causa maior morbilidade e mortalidade. O efeito da co-infeção por múltiplas espécies sobre a evolução clínica não é certo. Se os doentes não forem tratados eficazmente na fase inicial, a doença pode evoluir para malária grave, cujas manifestações mais comuns no adulto são coma, acidose metabólica, insuficiência renal, icterícia grave, lesão pulmonar aguda e ARDS. A malária grave apresenta uma taxa de mortalidade alta, mesmo com tratamento adequado. Apresentamos o caso de um doente com malária grave, secundária a co-infecção pelo P. falciparum e P. ovale, com disfunção multiorgânica, que evoluiu favoravelmente após internamento na Unidade de Cuidados Intensivos. Malaria is caused by infection by protozoa of the genus Plasmodium, and is a major cause of disease, especially in tropical areas. The diagnosis of malaria is based on clinical suspicion and detection of the parasites in the blood. Plasmodium falciparum is the specie that causes most morbidity and mortality. The effect of multiple species co-infection on clinical outcomes of malaria is uncertain. If patients are not effectively treated in the early stages, the disease may progress to severe malaria, whose most common manifestations in adults are coma, metabolic acidosis, renal failure, severe jaundice, acute lung injury and ARDS. Severe malaria has a high mortality, even with appropriate treatment. We present a patient with severe malaria, secondary to co-infection by P. falciparum and P. ovale, with multiorgan dysfunction, which dramatically improved after admission on Intensive Care Unit.

  6. The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells.

    Science.gov (United States)

    Udomsangpetch, R; Todd, J; Carlson, J; Greenwood, B M

    1993-02-01

    The mechanisms by which the hemoglobin genotype AS protect against severe malaria are not fully understood. We have investigated the possibility that protection might be achieved through an inability of red blood cells (RBC) with the AS genotype to form rosettes with RBC infected by Plasmodium falciparum. No evidence was obtained to support this hypothesis because RBC with the AS genotype formed rosettes with wild isolates of P. falciparum as readily as RBC with the AA genotype. However, the previous finding that parasitized RBC form rosettes more readily with RBC belonging to group A or B than with RBC belonging to group O was confirmed even in fresh clinical isolates.

  7. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    Science.gov (United States)

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K.; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  8. International funding for malaria control in relation to populations at risk of stable Plasmodium falciparum transmission.

    OpenAIRE

    Snow, Robert W; Guerra, Carlos A; Mutheu, Juliette J; Simon I Hay

    2008-01-01

    Editors' Summary Background. Malaria is one of the most common infectious diseases in the world and one of the greatest global public health problems. The Plasmodium falciparum parasite causes approximately 500 million cases each year and over one million deaths. More than 40% of the world's population is at risk of malaria. The Millennium Development Goals (MDGs), established by the United Nations in 2000, include a target in Goal 6: ?to have halted by 2015 and begun to reverse the incidence...

  9. Purification of Components of the Translation Elongation Factor Complex of Plasmodium falciparum by Tandem Affinity Purification▿

    OpenAIRE

    2007-01-01

    Plasmodium falciparum is the causative agent of severe human malaria, responsible for over 2 million deaths annually. Of the 5,300 polypeptides predicted to control the parasite life cycle in mosquitoes and humans, 60% are of unknown function. A major challenge of malaria postgenomic biology is to understand how the 5,300 predicted proteins coexist and interact to perform the essential tasks that define the complex life cycle of the parasite. One approach to assign function to these proteins ...

  10. Impaired renal function in owl monkeys (Aotus nancymai infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    R. E. Weller

    1992-01-01

    Full Text Available Impaired renal function was observed in sixteen Aotus nancymai 25 and 3 months following infection with the Uganda Palo Alto strain of Plasmodium falciparum. Decrease were noted in the clearance of endogenous creatinine, creatinine excretion, and urine volume while increases were observed in serum urea nitrogen, urine protein, urine potassium, fractional excretion of phosphorus and potassium, and activities of urinary enzymes. The results were suggestive of glomerulonephropathy and chronic renal disease.

  11. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America, 5 Department of Parasitology , Division of Experimental... parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is

  12. Efficient CRISPR-Cas9–mediated genome editing in Plasmodium falciparum

    OpenAIRE

    Wagner, Jeffrey C; Platt, Randall J.; Goldfless, Stephen J.; ZHANG Feng; Niles, Jacquin C.

    2014-01-01

    Malaria is a major cause of global morbidity and mortality, and new strategies for treating and preventing this disease are needed. Here we show that the Streptococcus pyogenes Cas9 DNA endonuclease and single guide RNAs (sgRNAs) produced using T7 RNA polymerase (T7 RNAP) efficiently edit the Plasmodium falciparum genome. Targeting the genes encoding native knob-associated histidine-rich protein (kahrp) and erythrocyte binding antigen 175 (eba-175), we achieved high (≥50–100%) gene disruption...

  13. A redesigned CRISPR/Cas9 system for marker-free genome editing in Plasmodium falciparum

    OpenAIRE

    Lu, Junnan; TONG, Ying; Pan, Jiaqiang; Yang, Yijun; Liu, Quan; Tan, Xuefang; Zhao, Siting; Qin, Li; Chen, Xiaoping

    2016-01-01

    Background A highly efficient CRISPR/Cas9-based marker-free genome editing system has been established in Plasmodium falciparum (Pf). However, with the current methods, two drug-selectable markers are needed for episome retention, which may present hurdles for consecutive genome manipulations due to the limited number of available selectable markers. The loading capacity of donor DNA is also unsatisfactory due to the large size of the Cas9 nuclease and sgRNA co-expression system, which limits...

  14. Nanovaccines for Malaria Using Plasmodium falciparum Antigen Pfs25 Attached Gold Nanoparticles

    OpenAIRE

    Kumar, Rajesh; Ray, Paresh C; Datta, Dibyadyuti; Bansal, Geetha P.; Angov, Evelina; Kumar, Nirbhay

    2015-01-01

    Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinet...

  15. Detection of Plasmodium falciparum-infected red blood cells by optical stretching

    Science.gov (United States)

    Mauritz, Jakob M. A.; Tiffert, Teresa; Seear, Rachel; Lautenschläger, Franziska; Esposito, Alessandro; Lew, Virgilio L.; Guck, Jochen; Kaminski, Clemens F.

    2010-05-01

    We present the application of a microfluidic optical cell stretcher to measure the elasticity of malaria-infected red blood cells. The measurements confirm an increase in host cell rigidity during the maturation of the parasite Plasmodium falciparum. The device combines the selectivity and sensitivity of single-cell elasticity measurements with a throughput that is higher than conventional single-cell techniques. The method has potential to detect early stages of infection with excellent sensitivity and high speed.

  16. Detection of telomerase activity in Plasmodium falciparum using a nonradioactive method

    Directory of Open Access Journals (Sweden)

    Rubiano Claudia C

    2003-01-01

    Full Text Available A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7 parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.

  17. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion.

    Science.gov (United States)

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-06-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were observed upon incubation of synchronous parasite cultures in the presence of the triterpenoids, and when the parasite cultures were grown in a triterpenoid-free medium with erythrocytes preloaded with the triterpenoids.

  18. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria

    OpenAIRE

    Fry, Andrew E.; Griffiths, Michael J.; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T.; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N.; Marsh, Kevin; Malcolm E Molyneux

    2007-01-01

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across 3 African pop...

  19. Nanovaccines for Malaria Using Plasmodium falciparum Antigen Pfs25 Attached Gold Nanoparticles

    OpenAIRE

    kumar, Rajesh; Ray, Paresh C.; Datta, Dibyadyuti; Bansal, Geetha P.; Angov, Evelina; Kumar, Nirbhay

    2015-01-01

    Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinet...

  20. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  1. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    Science.gov (United States)

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.

  2. Regulation of Plasmodium falciparum Glideosome Associated Protein 45 (PfGAP45) Phosphorylation

    OpenAIRE

    Divya Catherine Thomas; Anwar Ahmed; Tim Wolf Gilberger; Pushkar Sharma

    2012-01-01

    The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideos...

  3. High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays

    OpenAIRE

    Hill, Danika L.; Eriksson, Emily M.; Schofield, Louis

    2014-01-01

    Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibito...

  4. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies.

    Directory of Open Access Journals (Sweden)

    Chim W Chan

    Full Text Available Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1 and the circumsporozoite protein (csp of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81-31.23% than in P. vivax (-0.53-3.99%. Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.

  5. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies.

    Science.gov (United States)

    Chan, Chim W; Sakihama, Naoko; Tachibana, Shin-Ichiro; Idris, Zulkarnain Md; Lum, J Koji; Tanabe, Kazuyuki; Kaneko, Akira

    2015-01-01

    Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81-31.23%) than in P. vivax (-0.53-3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.

  6. Assessment of Therapeutic Response of Plasmodium vivax and Plasmodium falciparum to Chloroquine in a Malaria Transmission Free Area in Colombia

    Directory of Open Access Journals (Sweden)

    Castillo Carmen Manuela

    2002-01-01

    Full Text Available In order to determine the frequency of therapeutic failures to chloroquine (CQ in patients with malaria due to either Plasmodium falciparum or P. vivax, and to explore the usefulness of a malaria-free city as a sentinel site to monitor the emergence of drug resistance, 53 patients (44 infected with P. vivax and 9 with P. falciparum were evaluated at the Laboratory of Parasitology, Universidad del Valle in Cali, Colombia. Patients received 25 mg/kg of CQ divided in three doses over 48 h; they were followed during 28 days according to WHO/PAHO protocols. While therapeutic failures to CQ in the P. vivax group were not detected, the proportion of therapeutic failures in the P. falciparum group was high (78% and consistent with the reports from endemic areas in Colombia. The diverse origin of cases presenting therapeutic failure confirmed that P. falciparum resistant to CQ is widespread in Colombia, and further supports the change in the national antimalarial drug scheme. Monitoring of drug resistance in malaria free areas would be useful to identify sites requiring efficacy evaluation, and in some situations could be the most appropriate alternative to collect information from endemic areas where therapeutic efficacy studies are not feasible.

  7. Soluble haemoglobin is a marker of recent Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bygbjerg, I C; Theander, T G;

    1997-01-01

    . falciparum malaria compared to the levels during acute disease. Thus, both soluble Hb and haptoglobin appear to be markers of recent P. falciparum infections. Very high levels of CRP protein were measured in some of the malaria patients at the day of treatment while lower levels were recorded 7 and 30 days...... after treatment. Soluble Hb levels were associated with malariometric parameters in a similar fashion to haptoglobin. The new Mab-based assay for measuring soluble Hb in the peripheral blood of malaria patients may be useful for future epidemiological studies of malaria....

  8. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi

    OpenAIRE

    Barber Bridget E; William Timothy; Grigg Matthew J; Yeo Tsin W; Anstey Nicholas M

    2013-01-01

    Abstract Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy perfor...

  9. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    Science.gov (United States)

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  10. Plasmodium falciparum malaria: Convergent evolutionary trajectories towards delayed clearance following artemisinin treatment.

    Science.gov (United States)

    Wilairat, Prapon; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2016-05-01

    Malaria is a major global health challenge with 300million new cases every year. The most effective regimen for treating Plasmodium falciparum malaria is based on artemisinin and its derivatives. The drugs are highly effective, resulting in rapid clearance of parasites even in severe P. falciparum malaria patients. During the last five years, artemisinin-resistant parasites have begun to emerge first in Cambodia and now in Thailand and Myanmar. At present, the level of artemisinin resistance is relatively low with clinical presentation of delayed artemisinin clearance (a longer time to reduce parasite load) and a small decrease in artemisinin sensitivity in cultured isolates. Nevertheless, multiple genetic loci associated with delayed parasite clearance have been reported, but they cannot account for a large portion of cases. Even the most well-studied kelch 13 propeller mutations cannot always predict the outcome of artemisinin treatment in vitro and in vivo. Here we propose that delayed clearance by artemisinin could be the result of convergent evolution, driven by multiple trajectories to overcome artemisinin-induced stress, but precluded to become full blown resistance by high fitness cost. Genetic association studies by several genome-wide approaches reveal linkage disequilibrium between multiple loci and delayed parasite clearance. Genetic manipulations at some of these loci already have resulted in loss in artemisinin sensitivity. The notion presented here is by itself consistent with existing evidence on artemisinin resistance and has the potential to be explored using available genomic data. Most important of all, molecular surveillance of artemisinin resistance based on multi-genic markers could be more informative than relying on any one particular molecular marker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region

    Directory of Open Access Journals (Sweden)

    Echeverry Diego F

    2013-01-01

    Full Text Available Abstract Background Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies. Results A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD. Most infections (81% contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs, with 32% of MLGs recovered from multiple (2 – 28 independent subjects. We observed extremely low genotypic richness (R = 0.42 and long persistence of MLGs through time (median = 537 days, range = 1 – 2,997 days. There was a high probability (>5% of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279 were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD decayed more rapidly (r2 = 0.17 for markers Conclusions We conclude that Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies.

  12. [Falciform anemia and Plasmodium falciparum malaria: a threat to flap survival?].

    Science.gov (United States)

    Mariéthoz, S; Pittet, B; Loutan, L; Humbert, J; Montandon, D

    1999-02-01

    Plasmodium falciparum malaria, a parasitic disease, and sickle cell anemia, a hereditary disease, are two diseases affecting erythrocyte cycle, occurring with a high prevalence in tropical Africa. They may induce microthrombosis inducing vaso-occlusion, organ dysfunction and flap necrosis. During the acute phase of Plasmodium falciparum malaria, destruction of parasitized and healthy erythrocytes, release of parasite and erythrocyte material into the circulation, and secondary host reaction occur. Plasmodium falciparum infected erythrocytes also sequester in the microcirculation of vital organs and may interfere with microcirculatory flow in the flap during the postoperative period. The lower legs of homozygous sickle cell anemia patients are areas of marginal vascularity where minor abrasions become foci of inflammation. Inflammation results in decreased local oxygen tension, sickling of erythrocytes, increased blood viscosity and thrombosis with consequent ischemia, tissue breakdown and leg ulcer. Tissue transfer has become the procedure of choice for reconstruction of the lower third of the leg although flaps may become necrotic. The aim of this study is to analyse circumstances predisposing to surgical complications and to define preventive and therapeutic measures. A review of the literature will describe the current research and the new perspectives to treat sickle cell anemia, for example hydroxyurea and vasoactive substances (pentoxifylline, naftidrofuryl, buflomedil).

  13. [Erythrocyte polymorphism in Mali: epidemiology and resistance mechanisms against severe Plasmodium falciparum malaria].

    Science.gov (United States)

    Doumbo, Ogobara

    2007-01-01

    Homo sapiens and Plasmodium falciparum have co-evolved since the beginning of agriculture, 10,000 to 20,000 years ago. By domesticating plants and animals, humans linked their destiny to one of the main vectors of malaria, Anopheles gambiae sl complex. The biological interaction between these three species led to exchanges of genes and biochemical processes with significant mutual influence. Humans acquired mutations with selective protective advantages against serious and fatal forms of this hemosporidiosis. This is the case of hemoglobin S, hemoglobin C, hemoglobin E, thalassemias, ovalocytosis and G6PD deficiency, among others. Many epidemiological studies published since 1949 have shown a geographic link between malaria and certain erythrocyte polymorphisms. The link with hemoglobin C was discovered only recently, in 2000, initially in Mali in the Dogon population, then in Burkina Faso. Epidemiological and molecular and cellular biology studies done in Mali and elsewhere showed that the C and S alleles, and G6PD deficiency [A-], conferred significant protection against lethal forms of Plasmodium falciparum malaria. Molecular genetic studies, based on functional genomics, transcriptomics and proteomics, provided possible explanations. Advances in molecular biology and a better understanding of the immune mechanisms underlying this protection will hopefully lead to the development of effective second- and third-generation malaria vaccines. Epidemiological and fundamental research efforts have identified some of the mechanisms by which these erythrocyte polymorphisms protect against the most lethal hematozoan parasite, Plasmodium falciparum.

  14. Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum

    Science.gov (United States)

    Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada

    The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.

  15. Cellulose filtration of blood from malaria patients for improving ex vivo growth of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Minja, Daniel T R; Jespersen, Jakob S;

    2017-01-01

    BACKGROUND: Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid...... and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS: In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates....... falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS: The cellulose-filtered parasites grew to higher parasitaemia...

  16. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    To explain the observation that acute Plasmodium falciparum malaria is associated with a transient inability of peripheral blood cells to respond to antigenic stimulation in vitro, we have postulated the disease-induced reallocation of peripheral lymphocytes, possibly by adhesion to inflamed...... endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  17. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Ofori, Michael F; Dodoo, Daniel; Staalsoe, Trine

    2002-01-01

    antibody responses to other parasite isolates are relatively unaffected. However, the detailed kinetics of this VSA antibody acquisition are unknown and hence were the aim of this study. We show that P. falciparum malaria in Ghanaian children generally caused a rapid and sustained increase in variant...... donors (the malaria patient). The data from this first detailed longitudinal study of acquisition of VSA antibodies support the hypothesis that naturally acquired protective immunity to P. falciparum malaria is mediated, at least in part, by VSA-specific antibodies.......In areas of intense Plasmodium falciparum transmission, protective immunity is acquired during childhood in parallel with acquisition of agglutinating antibodies to parasite-encoded variant surface antigens (VSA) expressed on parasitized red blood cells. In a semi-immune child in such an area...

  18. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors

    Science.gov (United States)

    Lai, Shengjie; Wardrop, Nicola A.; Huang, Zhuojie; Bosco, Claudio; Sun, Junling; Bird, Tomas; Wesolowski, Amy; Zhou, Sheng; Zhang, Qian; Zheng, Canjun; Li, Zhongjie; Tatem, Andrew J.; Yu, Hongjie

    2016-12-01

    Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011-2015, 8653 P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P = 0.006), parasite prevalence in Africa (P falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted.

  19. HUBUNGAN SENSISTIVITAS PLASMODIUM FALCIPARUM TERHADAP KOMBINASI PIRIMETAMIN/SULFADOKSIN DAN KLOROKUIN SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Sahat Ompusunggu

    2012-09-01

    Full Text Available An in vitro sensitivity test was conducted to study the sensitivity of Plasmodium falciparum against chloroquine and pyrimethamine/sulphadoxine combination. The relationship between sensitivity of the parasite to the two drugs was also studied. A total of 72 patients from five localities were examined during 1984-1985. Test against chloroquine was conduc­ted according to WHO method, while against pyrimethamine/sulphadoxine combination, a modified method of Nguyen Dinh and Payne and Eastham and Rieckmann was used. The results showed that there is no relationship between the sensitivity of P. falciparum against pyrimethamine/ sulphadoxine combination and chloroquine. It can be concluded that in case of chloroquine resistant P. falciparum, pyrimethamine/sulphadoxine combination could be applied as an alternative chemotherapy.

  20. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    -wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum......-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  1. An automated method for determining the cytoadhesion of Plasmodium falciparum-infected erythrocytes to immobilized cells

    DEFF Research Database (Denmark)

    Hempel, Casper; Boisen, Ida M; Efunshile, Akinwale;

    2015-01-01

    BACKGROUND: Plasmodium falciparum exports antigens to the surface of infected erythrocytes causing cytoadhesion to the host vasculature. This is central in malaria pathogenesis but in vitro studies of cytoadhesion rely mainly on manual counting methods. The current study aimed at developing...... an automated high-throughput method for this purpose utilizing the pseudoperoxidase activity of intra-erythrocytic haemoglobin. METHODS: Chinese hamster ovary (CHO) cells were grown to confluence in chamber slides and microtiter plates. Cytoadhesion of co-cultured P. falciparum, selected for binding to CHO...... using: i) binding of P. falciparum-infected erythrocytes to CHO cells over-expressing chondroitin sulfate A and ii) CHO cells transfected with CD36. Binding of infected erythrocytes including field isolates to primary endothelial cells was also performed. Data was analysed using linear regression...

  2. Genetically Determined Response to Artemisinin Treatment in Western Kenyan Plasmodium falciparum Parasites

    Science.gov (United States)

    Chebon, Lorna J.; Ngalah, Bidii S.; Ingasia, Luicer A.; Juma, Dennis W.; Muiruri, Peninah; Cheruiyot, Jelagat; Opot, Benjamin; Mbuba, Emmanuel; Imbuga, Mabel; Akala, Hoseah M.; Bulimo, Wallace; Andagalu, Ben; Kamau, Edwin

    2016-01-01

    Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p resistance in Kenya. PMID:27611315

  3. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles.

    Science.gov (United States)

    Kumar, Rajesh; Ray, Paresh C; Datta, Dibyadyuti; Bansal, Geetha P; Angov, Evelina; Kumar, Nirbhay

    2015-09-22

    Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinetes. The latter has undergone extensive evaluation in pre-clinical and phase I clinical trials and remains one of the leading target antigens for the development of TBV. Pfs25 has a complex tertiary structure characterized by four EGF-like repeat motifs formed by 11 disulfide bonds, and it has been rather difficult to obtain Pfs25 as a homogenous product in native conformation in any heterologous expression system. Recently, we have reported expression of codon-harmonized recombinant Pfs25 in Escherichia coli (CHrPfs25) and which elicited highly potent malaria transmission-blocking antibodies in mice. In the current study, we investigated CHrPfs25 along with gold nanoparticles of different shapes, size and physicochemical properties as adjuvants for induction of transmission blocking immunity. The results revealed that CHrPfs25 delivered with various gold nanoparticles elicited strong transmission blocking antibodies and suggested that gold nanoparticles based formulations can be developed as nanovaccines to enhance the immunogenicity of vaccine antigens.

  4. Plasmodium falciparum gametocyte sex ratios in children with acute, symptomatic, uncomplicated infections treated with amodiaquine

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2008-09-01

    Full Text Available Abstract Background Amodiaquine is frequently used as a partner drug in combination therapy or in some setting as monotherapy, but little is known about its effects on gametocyte production and sex ratio and its potential influence on transmission in Africa. The effects of amodiaquine on sexual stage parasites and gametocyte sex ratio, and the factors associated with a male-biased sex ratio were evaluated in 612 children with uncomplicated Plasmodium falciparum malaria who were treated with amodiaquine during the period 2000 – 2006 in an endemic area. Methods Clinical, parasitological and laboratory parameters were evaluated before treatment and during follow-up for 28–42 days, and according to standard methods. Gametocyte sex ratio was defined as the proportion of peripheral gametocytes that are male. Results Clinical recovery from illness occurred in all children. Gametocytaemia was detected in 66 patients (11% before treatment and in another 56 patients (9% after treatment. Gametocyte densities were significantly higher by days 3–7 following treatment compared with pre-treatment (P 20,000/μL, gametocytaemia Conclusion Amodiaquine may significantly increase gametocyte carriage, density and sex ratio, and may potentially influence transmission. It is possible that anaemia could have contributed to the increased sex ratio. These findings may have implications for malaria control efforts in Africa.

  5. Immunoglobulin M and G antibody responses to Plasmodium falciparum glutamate-rich protein

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Rowe, P; Bennett, S;

    1993-01-01

    The aims of the present study were to describe the age-related immunoglobulin M (IgM) and IgG response to part of a 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum and to determine possible correlations of possession of these antibodies with malaria morbidity. IgM and IgG levels...... in May and in October. Seropositivity rates increased with age to a maximum of 77% for IgM and 95% for IgG in adults. High prevalences of seropositivity were associated with certain human leukocyte antigen class II alleles (DRw8, DR9, DR7, DR4, DQw7, and DQw2) or haplotypes. The relationship between anti......-GLURP489-1271 antibodies and clinical immunity is not clear; asymptomatically infected children aged 5 to 8 years had significantly higher levels of IgG than clinically ill children of the same age, suggesting that antibodies to the carboxy-terminal part of the GLURP may contribute to immunity to P...

  6. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015.

    Science.gov (United States)

    Bhatt, S; Weiss, D J; Cameron, E; Bisanzio, D; Mappin, B; Dalrymple, U; Battle, K E; Moyes, C L; Henry, A; Eckhoff, P A; Wenger, E A; Briët, O; Penny, M A; Smith, T A; Bennett, A; Yukich, J; Eisele, T P; Griffin, J T; Fergus, C A; Lynch, M; Lindgren, F; Cohen, J M; Murray, C L J; Smith, D L; Hay, S I; Cibulskis, R E; Gething, P W

    2015-10-01

    Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.

  7. Neopterin and procalcitonin are suitable biomarkers for exclusion of severe Plasmodium falciparum disease at the initial clinical assessment of travellers with imported malaria

    NARCIS (Netherlands)

    R. te Witt (René); M.E. van Wolfswinkel (Marlies); P.L. Petit (Pieter); J.J. van Hellemond (Jaap); R. Koelewijn (Rob); A.F. van Belkum (Alex); P.J.J. van Genderen (Perry)

    2010-01-01

    textabstractBackground. Most clinicians in developed, non-malaria endemic countries have limited or no experience in making clinical assessments of malaria disease severity and subsequent decisions regarding the need for parenteral therapy or high-level monitoring in febrile patients with imported

  8. Plasmodium Falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques

    Directory of Open Access Journals (Sweden)

    N Kalantari

    2013-03-01

    Full Text Available Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an impor­tant trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive proper­ties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36, intercellu­lar cell adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule (V-CAM and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were meas­ured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding subpopula­tions may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.

  9. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.

    Science.gov (United States)

    Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

    2013-04-23

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.

  10. Artesunate Plus Amodiaquine (AS+AQ) Versus Artemether -Lumefantrine (AL) for the Treatment of Uncomplicated Plasmodium Falciparum Malaria in Sub-Saharan Africa-A Meta-Analysis

    OpenAIRE

    Bello, Shaibu O; Chika, Aminu; AbdulGafar, Jimoh O

    2010-01-01

    The purpose of this study is to summarize the available data on the efficacy of Artesunate plus Amodiaquine (AS+AQ) versus Artemether -Lumefantrine (AL) for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa using uncorrected parasitaemia as a clinically relevant endpoint. Studies and conference abstracts identified through Pubmed, Medline, Embase, Ansinet, AJOL, Bioline, Cochrane Infectious Diseases Group trials register, The Cochrane Controlled Trials Registe...

  11. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  12. Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria.

    Science.gov (United States)

    Karl, Stephan; Laman, Moses; Moore, Brioni R; Benjamin, John M; Salib, Mary; Lorry, Lina; Maripal, Samuel; Siba, Peter; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2016-08-01

    There are limited data on gametocytaemia risk factors before/after treatment with artemisinin combination therapy in children from areas with transmission of multiple Plasmodium species. We utilised data from a randomised trial comparing artemether-lumefantrine (AL) and artemisinin-naphthoquine (AN) in 230 Papua New Guinean children aged 0.5-5 years with uncomplicated malaria in whom determinants of gametocytaemia by light microscopy were assessed at baseline using logistic regression and during follow-up using multilevel mixed effects modelling. Seventy-four (32%) and 18 (8%) children presented with P. falciparum and P. vivax gametocytaemia, respectively. Baseline P. falciparum gametocytaemia was associated with Hackett spleen grade 1 (odds ratio (95% CI) 4.01 (1.60-10.05) vs grade 0; P<0.001) and haemoglobin (0.95 (0.92-0.97) per 1g/L increase; P<0.001), and P. falciparum asexual parasitaemia in slide-positive cases (0.36 (0.19-0.68) for a 10-fold increase; P=0.002). Baseline P. vivax gametocytaemia was associated with Hackett grade 2 (12.66 (1.31-122.56); P=0.028), mixed P. falciparum/vivax infection (0.16 (0.03-1.00); P=0.050), P. vivax asexual parasitaemia (5.68 (0.98-33.04); P=0.053) and haemoglobin (0.94 (0.88-1.00); P=0.056). For post-treatment P. falciparum gametocytaemia, independent predictors were AN vs AL treatment (4.09 (1.43-11.65)), haemoglobin (0.95 (0.93-0.97)), presence/absence of P. falciparum asexual forms (3.40 (1.66-0.68)) and day post-treatment (0.086 (0.82-0.90)) (P<0.001). Post-treatment P. vivax gametocytaemia was predicted by presence of P. vivax asexual forms (596 (12-28,433); P<0.001). Consistent with slow P. falciparum gametocyte maturation, low haemoglobin, low asexual parasite density and higher spleen grading, markers of increased prior infection exposure/immunity, were strong associates of pre-treatment gametocyte positivity. The persistent inverse association between P. falciparum gametocytaemia and haemoglobin during follow

  13. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    Science.gov (United States)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  14. El Niño and variations in the prevalence of Plasmodium vivax and P. falciparum in Vanuatu.

    Science.gov (United States)

    Gilbert, M; Brindle, R

    2009-12-01

    Malaria, both Plasmodium falciparum and P. vivax, is a major cause of morbidity in Vanuatu. As P. vivax is more prevalent in seasonal climates and P. falciparum in areas of more consistent rainfall, it is postulated that there will be a correlation between the ratio of vivax:falciparum and the El Niño Southern Oscillation (ENSO), which affects sea surface temperatures and rainfall. With changes in global climate, the frequency, duration and strength of the ENSO are expected to alter, influencing the pattern of malaria. The data showed no obvious correlation between ENSO and either cases of malaria or the vivax:falciparum ratio.

  15. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    Directory of Open Access Journals (Sweden)

    Anne C Teirlinck

    2011-12-01

    Full Text Available Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz and asexual blood-stage (PfRBC malaria parasites in naïve human volunteers undergoing single (n = 5 or multiple (n = 10 experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2 responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only 'adaptive' but also 'innate' lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO(+ CD62L(- effector memory (EM phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ(+IL-2(+ EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P

  16. A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst.

    Directory of Open Access Journals (Sweden)

    Sanjai Kumar

    Full Text Available There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP and native PfCSP from Oocysts (Pf Oocyst developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5-20 pg; R2 = 0.9505. We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1-4, R2 = 0.9795 and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5-3 pg of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes

  17. Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy

    Science.gov (United States)

    Abdi, Abdirahman I.; Kariuki, Symon M; Muthui, Michelle K.; Kivisi, Cheryl A.; Fegan, Gregory; Gitau, Evelyn; Newton, Charles R; Bull, Peter C.

    2015-01-01

    Retinopathy provides a window into the underlying pathology of life-threatening malarial coma (“cerebral malaria”), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called “DC8” and “DC13” have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called “group A” was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology. PMID:26657042

  18. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya

    Directory of Open Access Journals (Sweden)

    Hongo Gordon

    2010-12-01

    Full Text Available Abstract Background Malaria is the commonest cause of childhood morbidity in Western Kenya with varied heamatological consequences. The t study sought to elucidate the haemotological changes in children infected with malaria and their impact on improved diagnosis and therapy of childhood malaria. Methods Haematological parameters in 961 children, including 523 malaria-infected and 438 non-malaria infected, living in Kisumu West District, an area of malaria holoendemic transmission in Western Kenya were evaluated. Results The following parameters were significantly lower in malaria-infected children; platelets, lymphocytes, eosinophils, red blood cell count and haemoglobin (Hb, while absolute monocyte and neutrophil counts, and mean platelet volume (MPV were higher in comparison to non-malaria infected children. Children with platelet counts of Conclusion Children infected with Plasmodium falciparum malaria exhibited important changes in some haematological parameters with low platelet count and haemoglobin concentration being the two most important predictors of malaria infection in children in our study area. When used in combination with other clinical and microscopy, these parameters could improve malaria diagnosis in sub-patent cases.

  19. Assessment of Antimalarial Activity against Plasmodium falciparum and Phytochemical Screening of Some Yemeni Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alshawsh

    2009-01-01

    Full Text Available Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos socotrana and Boswellia elongata commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of Plasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured by in vitro micro test (Mark III according to World Health Organization (WHO 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50 values less than 4 µg/ml, namely the water extracts of A. fruticosa, A. indica and D. socotrana. Six extracts showed moderate activity with IC50 values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50 values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides.

  20. Gametocitos de Plasmodium vivax y Plasmodium falciparum: etapas relegadas en el desarrollo de vacunas Plasmodium vivax and Plasmodium falciparum gametocyte stages are neglected in vaccine development

    Directory of Open Access Journals (Sweden)

    Carla Contreras-Ochoa

    2004-02-01

    Full Text Available Los gametocitos de Plasmodium son los responsables de la transmisión del huésped vertebrado al mosquito vector. Sufren un proceso de desarrollo complejo a partir de parásitos asexuales, que no está completamente entendido, expresando proteínas y moléculas de adhesión específicas. Son capaces de inducir una respuesta inmune humoral específica con anticuerpos IgG, y celular específica, con producción de TNFa, IFNg y proliferación de linfocitos gd+, aun cuando existen respuestas inducidas en contra de las etapas previas del parásito (esporozoito, exo-eritrocítica y eritrocítica. Las vacunas destinadas a bloquear la transmisión del parásito no contemplan a los gametocitos circulantes en el huésped como blancos de acción, sino que van enfocadas contra antígenos expresados en los gametos y en las etapas posfertilización. El estudio de los mecanismos que regulan la producción de gametocitos y de la respuesta inmune contra éstos, ofrece una oportunidad para el desarrollo de estrategias adicionales para el control de la transmisión.Plasmodium gametocytes are responsible for transmission from the vertebrate host to the mosquito. Plasmodium gametocytes undergo a complex cycle from asexual stages, through a poorly understood process characterized by expression of stage-specific proteins and adhesion molecules. Gametocytes are capable of inducing specific humoral IgG, and cellular responses, which include induction of TNFa, IFNg and gd+ lymphocyte proliferation, in addition to immune responses to other stages of the parasite (sporozoite, exo-erythrocytic stages, erythrocytic stages. Although transmission-blocking vaccines against Plasmodium do not currently include components against the gametocytes (rather they focus on gametes, zygotes or ookinetes, stages which occur in the mosquito, further understanding of the mechanisms underlying gametocytogenesis and immune responses against these stages may provide additional strategies for

  1. Gametocitos de Plasmodium vivax y Plasmodium falciparum: etapas relegadas en el desarrollo de vacunas Plasmodium vivax and Plasmodium falciparum gametocyte stages are neglected in vaccine development

    OpenAIRE

    Carla Contreras-Ochoa; Ramsey, Janine M.

    2004-01-01

    Los gametocitos de Plasmodium son los responsables de la transmisión del huésped vertebrado al mosquito vector. Sufren un proceso de desarrollo complejo a partir de parásitos asexuales, que no está completamente entendido, expresando proteínas y moléculas de adhesión específicas. Son capaces de inducir una respuesta inmune humoral específica con anticuerpos IgG, y celular específica, con producción de TNFa, IFNg y proliferación de linfocitos gd+, aun cuando existen respuestas inducidas en con...

  2. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from em>P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S;

    2007-01-01

    Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas...... where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A PfEMP...

  3. Susceptibility of Anopheles campestris-like and Anopheles barbirostris species complexes to Plasmodium falciparum and Plasmodium vivax in Thailand.

    Science.gov (United States)

    Thongsahuan, Sorawat; Baimai, Visut; Junkum, Anuluck; Saeung, Atiporn; Min, Gi-Sik; Joshi, Deepak; Park, Mi-Hyun; Somboon, Pradya; Suwonkerd, Wannapa; Tippawangkosol, Pongsri; Jariyapan, Narissara; Choochote, Wej

    2011-02-01

    Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai) and F (Udon Thani) as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo) and F (Ayuttaya), as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai) were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.

  4. Susceptibility of Anopheles campestris-like and Anopheles barbirostris species complexes to Plasmodium falciparum and Plasmodium vivax in Thailand

    Directory of Open Access Journals (Sweden)

    Sorawat Thongsahuan

    2011-02-01

    Full Text Available Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai and F (Udon Thani as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo and F (Ayuttaya, as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.

  5. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Stéphanie Boström

    Full Text Available In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings.

  6. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    Science.gov (United States)

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds.

  7. Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Hempel, Casper; Hoyer, Nils; Staalsø, Trine

    2014-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) is taken up by parasitized red blood cells during malaria and stimulates intra-erythrocytic growth of Plasmodium falciparum in vitro. The cause and consequence of this uptake is not understood. METHODS: Plasmodium falciparum was cultured in vi...

  8. Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193 in field isolates and in W2 strain under pressure

    Directory of Open Access Journals (Sweden)

    Pradines Bruno

    2006-02-01

    Full Text Available Abstract Background Ferroquine (FQ, or SSR97193, is a novel antimalarial drug currently in phase I clinical trials. FQ is a unique organometallic compound designed to overcome the chloroquine (CQ resistance problem. FQ revealed to be equally active on CQ-sensitive and CQ-resistant Plasmodium falciparum laboratory strains and field isolates. FQ is also curative on rodent malaria parasites. As FQ will be tested in patients, the potential for resistance to this drug was evaluated. Methods The relationship between CQ-resistant transporter gene genotype and susceptibility to FQ were studied in 33 Cambodian P. falciparum field isolates previously studied for their in vitro response to CQ. In parallel, the ability of the CQ-resistant strain W2, to become resistant to FQ under drug pressure was assessed. Results The IC50 values for FQ in field isolates were found to be unrelated to mutations occurring in the P. falciparum chloroquine resistance transporter (PfCRT or to the level of expression of the corresponding mRNA. In vitro, under a drug pressure of 100 nM of FQ, transient survival was observed in only one of two experiments. Conclusion Field isolates studies and experimental drug pressure experiments showed that FQ overcomes CQ resistance, which reinforces the potential of this compound as a new antimalarial drug.

  9. Mitochondrial genes support a common origin of rodent malaria parasites and Plasmodium falciparum's relatives infecting great apes

    Directory of Open Access Journals (Sweden)

    Blanquart Samuel

    2011-03-01

    Full Text Available Abstract Background Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates. Results To distinguish between these mutually exclusive hypotheses on the origin of Plasmodium falciparum and its great ape infecting relatives, we performed a comprehensive phylogenetic analysis based on a data set of three mitochondrial genes from 33 to 84 malaria parasites. We showed that malarial mitochondrial genes have evolved slowly and are compositionally homogeneous. We estimated their phylogenetic relationships using Bayesian and maximum-likelihood methods. Inferred trees were checked for their robustness to the (i site selection, (ii assumptions of various probabilistic models, and (iii taxon sampling. Our results robustly support a common ancestry of rodent parasites and Plasmodium falciparum's relatives infecting great apes. Conclusions Our results refute the most common view of the origin of great ape malaria parasites, and instead demonstrate the robustness of a less well-established phylogenetic hypothesis, under which Plasmodium falciparum and its relatives infecting great apes are closely related to rodent parasites. This study sheds light

  10. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species.

    OpenAIRE

    Garver, Lindsey S.; Yuemei Dong; George Dimopoulos

    2009-01-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to depl...

  11. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community

    Directory of Open Access Journals (Sweden)

    Alvarez Eugenia

    2005-06-01

    Full Text Available Abstract Background There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections. Methods Passive case-detection (PCD during the malaria season (February-July and an active case-detection (ACD community-wide survey (March surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD occurred within at-risk zones, where 137 houses (573 persons were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses. Results The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones. Conclusion Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior.

  12. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Directory of Open Access Journals (Sweden)

    Cook Jackie

    2012-03-01

    Full Text Available Abstract Background In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. Methods In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP and Plasmodium vivax Merozoite Surface Protein-119 (MSP-119 were detected using Enzyme Linked Immunosorbent Assay (ELISA. The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART method. Results A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively. P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species. CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the

  13. Plasmodium falciparum Protein Microarray Antibody Profiles Correlate With Protection From Symptomatic Malaria in Kenya.

    Science.gov (United States)

    Dent, Arlene E; Nakajima, Rie; Liang, Li; Baum, Elisabeth; Moormann, Ann M; Sumba, Peter Odada; Vulule, John; Babineau, Denise; Randall, Arlo; Davies, D Huw; Felgner, Philip L; Kazura, James W

    2015-11-01

    Immunoglobulin G antibodies (Abs) to Plasmodium falciparum antigens have been associated with naturally acquired immunity to symptomatic malaria. We probed protein microarrays covering 824 unique P. falciparum protein features with plasma from residents of a community in Kenya monitored for 12 weeks for (re)infection and symptomatic malaria after administration of antimalarial drugs. P. falciparum proteins recognized by Abs from 88 children (aged 1-14 years) and 86 adults (aged ≥ 18 years), measured at the beginning of the observation period, were ranked by Ab signal intensity. Abs from immune adults reacted with a total 163 of 824 P. falciparum proteins. Children gradually acquired Abs to the full repertoire of antigens recognized by adults. Abs to some antigens showed high seroconversion rates, reaching maximal levels early in childhood, whereas others did not reach adult levels until adolescence. No correlation between Ab signal intensity and time to (re)infection was observed. In contrast, Ab levels to 106 antigens were significantly higher in children who were protected from symptomatic malaria compared with those who were not. Abs to antigens predictive of protection included P. falciparum erythrocyte membrane protein 1, merozoite surface protein (MSP) 10, MSP2, liver-stage antigen 3, PF70, MSP7, and Plasmodium helical interspersed subtelomeric domain protein. Protein microarrays may be useful in the search for malaria antigens associated with protective immunity. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2009-04-01

    Full Text Available Abstract Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from

  15. In vitro susceptibility to quinine and microsatellite variations of the Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1 gene: the absence of association in clinical isolates from the Republic of Congo

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2011-02-01

    Full Text Available Abstract Background Quinine is still recommended as an effective therapy for severe cases of Plasmodium falciparum malaria, but the parasite has developed resistance to the drug in some cases. Investigations into the genetic basis for quinine resistance (QNR suggest that QNR is complex and involves several genes, with either an additive or a pairwise effect. The results obtained when assessing one of these genes, the plasmodial Na+/H+ exchanger, Pfnhe-1, were found to depend upon the geographic origin of the parasite strain. Most of the associations identified have been made in Asian strains; in contrast, in African strains, the influence of Pfnhe on QNR is not apparent. However, a recent study carried out in Kenya did show a significant association between a Pfnhe polymorphism and QNR. As genetic differences may exist across the African continent, more field data are needed to determine if this association exists in other African regions. In the present study, association between Pfnhe and QNR is investigated in a series of isolates from central Africa. Methods The sequence analysis of the polymorphisms at the Pfnhe-1 ms4760 microsatellite and the evaluation of in vitro quinine susceptibility (by isotopic assay were conducted in 74 P. falciparum isolates from the Republic of Congo. Results Polymorphisms in the number of DNNND or NHNDNHNNDDD repeats in the Pfnhe-1 ms4760 microsatellite were not associated with quinine susceptibility. Conclusions The polymorphism in the microsatellite ms4760 in Pfnhe-1 that cannot be used to monitor quinine response in the regions of the Republic of Congo, where the isolates came from. This finding suggests that there exists a genetic background associated with geographic area for the association that will prevent the use of Pfnhe as a molecular marker for QNR. The contribution of Pfnhe to the in vitro response to quinine remains to be assessed in other regions, including in countries with different levels of

  16. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    Science.gov (United States)

    Knöckel, Julia; Molina-Cruz, Alvaro; Fischer, Elizabeth; Muratova, Olga; Haile, Ashley; Barillas-Mury, Carolina; Miller, Louis H

    2013-01-01

    Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.)-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.

  17. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    Science.gov (United States)

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made.

  18. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R;

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...... as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein...

  19. Falciparum malaria in the north of Laos: the occurrence and implications of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene haplotype SVMNT

    DEFF Research Database (Denmark)

    Dittrich, Sabine; Alifrangis, Michael; Stohrer, Jörg M;

    2005-01-01

    OBJECTIVE: The Pfcrt-gene encodes a transmembrane protein located in the Plasmodium falciparum digestive vacuole. Chloroquine resistant (CQR) strains of African and Southeast Asian origin carry the Pfcrt-haplotype (c72-76) CVIET, whereas most South American and Papua New Guinean CQR stains carry...

  20. Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum.

    Science.gov (United States)

    Laine, Larissa M; Biddau, Marco; Byron, Olwyn; Müller, Sylke

    2015-01-14

    PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle.