WorldWideScience

Sample records for plasmodial surface anion

  1. 76 FR 2130 - Prospective Grant of Exclusive License: Inhibitors of the Plasmodial Surface Anion Channel as...

    Science.gov (United States)

    2011-01-12

    ... Plasmodial Surface Anion Channel as Antimalarials AGENCY: National Institutes of Health, Public Health... January 28, 2010, both applications entitled ``Inhibitors of the Plasmodial Surface Anion Channel As...: The subject technologies are antimalarial small molecule inhibitors of the plasmodial surface...

  2. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    Directory of Open Access Journals (Sweden)

    Abdullah A. B. Bokhari

    2014-01-01

    Full Text Available Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC, an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development.

  3. Anionic surface binders

    Directory of Open Access Journals (Sweden)

    Aljaž-Rožič Mateja

    2004-01-01

    Full Text Available The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When optical whiteners are used, the application of AKD binders is recommended. In the case of paper it is possible to substitute acrylate binders by AKD binders. The best results are obtained when the paper is first partly treated in bulk and subsequently surface treated.

  4. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  5. HEMATIN-REQUIRING PLASMODIAL MYXOMYCETE

    Science.gov (United States)

    Daniel, John W.; Kelley, Jacqueline; Rusch, Harold P.

    1962-01-01

    Daniel, John W. (University of Wisconsin, Madison), Jacqueline Kelley, and Harold P. Rusch. Hematin-requiring plasmodial myxomycete. J. Bacteriol. 84:1104–1110. 1962.—The myxomycete Physarum polycephalum, previously shown to require chick embryo extract for growth on a partially defined, soluble medium, grows as well if hematin or certain hemoproteins are substituted for the embryo extract. Hematin is also required as a growth factor if the organism is grown on a synthetic medium. Of the variety of porphyrins tested only iron protoporphyrin IX is utilized for growth by P. polycephalum. Protoporphyrin IX is inactive. Protein-bound iron porphyrin is active at one-tenth the concentration of free hematin. Although hematin completely replaces embryo extract, the extract activity has properties not characteristic of hematin or the hemoproteins tested: ladility to light and rapid plasmodial uptake. PMID:14024912

  6. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces.

    Science.gov (United States)

    Schwierz, Nadine; Horinek, Dominik; Netz, Roland R

    2013-02-26

    Using a two-step modeling approach, we address the full spectrum of direct, reversed, and altered ionic sequences as the charge of the ion, the charge of the surface, and the surface polarity are varied. From solvent-explicit molecular dynamics simulations, we extract single-ion surface interaction potentials for halide and alkali ions at hydrophilic and hydrophobic surfaces. These are used within Poisson-Boltzmann theory to calculate ion density and electrostatic potential distributions at mixed polar/unpolar surfaces for varying surface charge. The resulting interfacial tension increments agree quantitatively with experimental data and capture the Hofmeister series, especially the anomaly of lithium, which is difficult to obtain using continuum theory. Phase diagrams that feature different Hofmeister series as a function of surface charge, salt concentration, and surface polarity are constructed from the long-range force between two surfaces interacting across electrolyte solutions. Large anions such as iodide have a high hydrophobic surface affinity and increase the effective charge magnitude on negatively charged unpolar surfaces. Large cations such as cesium also have a large hydrophobic surface affinity and thereby compensate an external negative charge surface charge most efficiently, which explains the well-known asymmetry between cations and anions. On the hydrophilic surface, the size-dependence of the ion surface affinity is reversed, explaining the Hofmeister series reversal when comparing hydrophobic with hydrophilic surfaces.

  7. Oxidation of silicon surface with atomic oxygen radical anions

    Institute of Scientific and Technical Information of China (English)

    Wang Lian; Song Chong-Fu; Sun Jian-Qiu; Hou Ying; Li Xiao-Guang; Li Quan-Xin

    2008-01-01

    The surface oxidation of silicon (Si) wafers by atomic oxygen radical anions (O- anions) and the preparation of metal-oxide-semiconductor (MOS) capacitors on the O--oxidized Si substrates have been examined for the first time. The O- anions are generated from a recently developed O- storage-emission material of [Ca24Al28O64]4+.4O- (C12A7-O- for short). After it has been irradiated by an O- anion beam (0.5 μA/cm2) at 300℃ for 1-10 hours, the Si wafer achieves an oxide layer with a thickness ranging from 8 to 32 nm. X-ray photoelectron spectroscopy (XPS) results reveal that the oxide layer is of a mixture of SiO2, Si2O3, and Si2O distributed in different oxidation depths. The features of the MOS capacitor of are investigated by measuring capacitance-voltage (C - V) and current-voltage (Ⅰ - Ⅴ) curves. The oxide charge density is about 6.0×1011 cm-2 derived from the C - V curves. The leakage current density is in the order of 10-6 A/cm2 below 4 MV/cm, obtained from the Ⅰ - Ⅴ curves. The Oanions formed by present method would have potential applications to the oxidation and the surface-modification of materials together with the preparation of semiconductor devices.

  8. Anti-plasmodial activity of Ailanthus excelsa.

    Science.gov (United States)

    Dell'Agli, Mario; Galli, Germana V; Parapini, Silvia; Basilico, Nicoletta; Taramelli, Donatella; Said, Ataa; Rashed, Khaled; Bosisio, Enrica

    2008-02-01

    The anti-plasmodial activity of Ailanthus excelsa stem bark was investigated. The methanolic extract inhibited in vitro growth of chloroquine-sensitive (D10) and resistant strains (W2) of Plasmodium falciparum (IC50 4.6 and 2.8 microg/ml, respectively). The effect was retained in the chloroform fraction (3.1 and 2.1 microg/ml, respectively). The anti-plasmodial activity could be ascribed to the impairment of haemoglobin degradation through the inhibition of plasmepsin II activity (IC50 of 13.43+/-1.74 microg/ml) and of the haem detoxification to haemozoin.

  9. Ternary Complexation on Bacterial Surfaces: Implications for Subsurface Anion Transport

    Science.gov (United States)

    Maclean, L. C.; Higginbottom, C. M.; Fowle, D. A.

    2002-12-01

    The physical, chemical, and biological controls on contaminant mobilities in aquatic ecosystems must be determined to establish the threat that contamination poses to the environment. Quantitative models of contaminant mobilities are required as a prerequisite to guide remediation efforts and to prioritize the potential hazard to the ecosystem of each contaminated site. It is well established that mineral surface adsorption is an important control on contaminant mobilities, and many studies have utilized thermodynamics to quantify metal/organic adsorption in order to yield predictive models of contaminant transport. However, these models of contaminant transport may not be representative of the reactions which control contaminant mobilities as most mineral surfaces are coated with organic acids, bacteria, and extracellular polymers. Numerous laboratory studies have demonstrated that bacterial cell walls have a high affinity for binding metal cations, and field studies indicate that a significant proportion of bacteria cells and associated extracellular matrices are coated with small scale hydrous metal oxides. The small size of bacteria, and in many cases the nanoscale of their associated mineral phases, suggests these bacteria-mineral composites may represent a large proportion of surface area exposed to fluid flow. Therefore, due to the affinity of bacterial cell walls for cations and biominerals, bacteria may also have a significant impact on anionic contaminant mobility in many natural systems. The extent of metal-bacteria adsorption reactions varies drastically as a function of pH and solution chemistry. Current adsorption models have focused on the interactions of positively charged metal cations with bacterial surfaces, however in many oxidizing environments metals such as Cr exist as anions or anionic complexes. We have studied the ability of non-metabolizing cells of the bacterial species Bacillus subtilis and Shewanella putrifaciens to adsorb aqueous Cr

  10. Surface electrochemistry of CO on Pt(111): Anion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Lucas, C.A.; Rodes, A.; Stamenkovic, V.; Ross, P.N.

    2001-07-30

    In-situ studies of CO adsorption by surface x-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy techniques are used to create the link between the macroscopic kinetic rates of CO oxidation and the microscopic level of understanding the structure/site occupancy of CO on Pt(111). A remarkable difference in activity was observed between alkaline and acid solutions. In alkaline solution the oxidation of CO proceeds at low overpotential (<0.2 V) by the surface reaction between the adsorbed CO and OH, the latter forming selectively in the hydrogen underpotential potential region at defect sites. In acid solution these sites are blocked by specific adsorption of anions, and consequently in a solution containing Br{sup -} the ignition potential is shifted positively by 0.6 V. Anions of supporting electrolytes also have dramatic effects on both the potential range of stability and the domain size of the p(2x2)-3CO structure which is formed at 0.05 V. The stability/domain size of this structure increases from KOH (ca. 30 {angstrom} between 0.05 < E < 0.3V), to HClO{sub 4} (ca. 140 {angstrom} between 0.05 < E < 0.6V) to HClO{sub 4} + Br{sup -} (ca 350 {angstrom} between 0.05 < E < 0.8V). The larger the ordered domains of the p(2x2)-CO{sub ad} structure are, the less active the surface is towards CO oxidation.

  11. Chemotaxis in the Plasmodial Slime Mold, Physarum polycephalum.

    Science.gov (United States)

    Bozzone, Donna M.; Martin, Denise A.

    1998-01-01

    Describes a biology unit designed so that students pose their own questions and perform experiments to answer these questions. Plasmodial slime mold is employed as the focus of the study with background information about the mold provided. (DDR)

  12. Plasmodial incompatibility in the myxomycetes: a review

    Directory of Open Access Journals (Sweden)

    Haskins EF

    2012-03-01

    Full Text Available Two myxomycete phaneroplasmodia of the same species undergo somatic fusion only if they are phenotypically identical for a complex genetic incompatibility system. This system consists of a three tiered polygenic complex with dominant and recessive alleles. Thus, plasmodia must be phenotypically identical for approximately 16 loci in order to fuse (CC and Cc are phenotypically identical, but different from cc. The first level of the system (having a minimum of seven Fus loci controls membrane fusion, and it apparently prevents fusion unless the two plasmodia have identical membrane or slime sheath components. The second level (having a minimum of six Cz loci produces a rapid lysis of a small mixed region, of the two plasmodia, if membrane fusion has occurred. This lysis is directional in that it targets the recessive phenotype, and it is apparently triggered by some pre-formed substances when they come into contact with a different plasmodium. The third level (having a minimum of three Let loci comes into play if membrane fusion occurs and there is no rapid lysis of the mixed plasmodium. It produces a slow lethal reaction, which targets and degrades the nuclei of the recessive phenotype. This reaction occurs over a period of five to twenty hours and requires the synthesis of new RNA and proteins. Since, this complex system produces a minimum of 65,536 different incompatibility phenotypes, it is highly unlikely that any two phaneroplasmodia will undergo a successful fusion unless they are very closely related. Species with aphaneroplasmoida apparently have a similar system, but species with small protoplasmodia do not appear to undergo any type of plasmodial fusion.

  13. Anti-Plasmodial Assessment of Four Different Iranian Propolis Extracts.

    Science.gov (United States)

    Afrouzan, Houshang; Zakeri, Sedigheh; Abouie Mehrizi, Akram; Molasalehi, Sara; Tahghighi, Azar; Shokrgozar, Mohamad Ali; Es-Haghi, Ali; Dinparast Djadid, Navid

    2017-05-01

    Eradication of malaria will depend on discovery of new intervention tools such as anti-malarial drugs. Due to the increasing interest in the application of propolis against significant clinical pathogenic agents, the aim of the present investigation was to evaluate the anti-plasmodial effect of Iranian propolis extracts against chloroquine (CQ)-sensitive Plasmodium falciparum 3D7 and Plasmodium berghei (ANKA strain). Crude samples of honeybee (Apis mellifera) propolis were collected from four provinces in northern (Kalaleh, Golestan), northeastern (Chenaran, Razavi Khorasan), central (Taleghan, Alborz) and western (Morad Beyg, Hamedan) areas of Iran with different types of flora. The dried propolis samples were extracted with three different solvents, including ethanol 70% (EtOH), ethyl acetate (EA) and dichloromethane (DCM). All extracts were shown to have in vitro anti-plasmodial activity with IC50 ranging from 16.263 to 80.012 µg/mL using parasite lactate dehydrogenase (pLDH) assay. The DCM extract of Morad Beyg propolis indicated the highest anti-plasmodial activity (IC50: 16.263 ± 2.910 μg/mL; P = 0.027, Kruskal-Wallis H-test). The samples were also evaluated in mice for their in vivo anti-plasmodial effect. The curative effect against established infection (Rane test) showed that both extracts at all doses (50, 100, and 200 mg/kgBW) produced anti-plasmodial activity against the parasite. Furthermore, using gas chromatography-mass spectrometry (GC-MS), the quantity of flavonoids in DCM and EtOH 70% extracts were found to be 7.42% and 3.10%, respectively. The potent anti-plasmodial activity of both EtOH 70% and DCM extracts of the propolis of Morad Beyg, Hamedan suggests further analyses of individual components to assess its utilization as anti-malarial drugs.

  14. Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces.

    Science.gov (United States)

    Zhao, Yingjie; Cotelle, Yoann; Avestro, Alyssa-Jennifer; Sakai, Naomi; Matile, Stefan

    2015-09-16

    Here we provide experimental evidence for anion-π catalysis of enamine chemistry and for asymmetric anion-π catalysis. A proline for enamine formation on one side and a glutamic acid for nitronate protonation on the other side are placed to make the enamine addition to nitroolefins occur on the aromatic surface of π-acidic naphthalenediimides. With increasing π acidity of the formally trifunctional catalysts, rate and enantioselectivity of the reaction increase. Mismatched and more flexible controls reveal that the importance of rigidified, precisely sculpted architectures increases with increasing π acidity as well. The absolute configuration of stereogenic sulfoxide acceptors at the edge of the π-acidic surface has a profound influence on asymmetric anion-π catalysis and, if perfectly matched, affords the highest enantio- and diastereoselectivity.

  15. Application of surface complexation models to anion adsorption by natural materials

    Science.gov (United States)

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  16. Modern immunological approaches to assess malaria transmission and immunity and to diagnose plasmodial infection

    Directory of Open Access Journals (Sweden)

    C. T. Daniel-Ribeiro

    1992-01-01

    Full Text Available The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.

  17. An Unusual Variation of Surface Tension with Concentration of.Mixed Cationic-anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    肖进新; 暴艳霞

    2001-01-01

    There are two platforms in the surface tension vs. concentration curve (γ-lgC curve) of cationic-anionic surfactant mixtures. The first platform is the same as that of common surfactant solution, and the cross point is the CMC. After the CMC, the mixtures form precipitate. At higher concentration, the mixtures form homogeneous sloution.When the mixtures form homogeneous solution at high concentration. surface tension increases with concentration, the becomes constant.So the γ-lgC curve exhibits the second platform. The surface tension at the second platform increases by increasing molar ratio of two surfactants and polar group size of surfactants, and decreases with adding inorganic salts.

  18. Preparation of polyamide 6/silica nanocomposites from silica surface initiated ring-opening anionic polymerization

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Polyamide 6/silica nanocomposites were synthesized by in situ ring-opening anionic polymerization of ε-caprolactam in the presence of sodium caprolactamate as a catalyst and caprolactam-functionalized silica as an initiator. The initiator precursor, isocyanate-functionalized silica, was prepared by directly reacting commercial silica with excess toluene 2,4-diisocyanate. This polymerization was found to occur in a highly efficient manner at relatively low reaction temperature (170°C and short reaction times (6 h. FTIR spectroscopy was utilized to follow the introduction and consumption of isocyanate groups on the silica surface. Thermogravimetric analysis indicated that the polyamide 6 was successfully grown from the silica surface. Transmission electron microscopy was utilized to image polymer-functionalized silica, showing fine dispersion of silica particles and their size ranging from 20 to 40 nm.

  19. Dependence of surface-enhanced Raman scattering from Calf thymus DNA on anions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Dependence of surface-enhanced Raman scattering (SERS) from Calf thymus DNA on anions is investigated.With the silver colloid,the bands at 732,960 and 1333 cm-1 for adenine (A),1466 cm-1 for deoxyribose,and 1652 cm-1 for the C=O group of thymine (T) are observably enhanced.With the presence of the Cl- or SO42- anions,the bands at 732 and 1326/1329 cm-1 for the symmetric stretching and skeletal vibrational modes of adenine (A) are dramatically enhanced,and the enhancement effect with the SO24- ion is more than that with the Cl- ion.The experimental results show that the DNA molecule can be adsorbed on the silver colloid particles through the C6N and N7 of adenine (A),the C=O of thymine (T) and deoxyribose.Moreover,the formed hydrogen bonding of the Cl- or S2O4- ions to the C6NH2 group of adenine (A) can induce larger C6N electronegativity,which is favor for the C6N/N7 cooperative adsorption on the (Ag)+n colloid particles.

  20. Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids.

    Science.gov (United States)

    Bujak, Emil; Pretto, Francesca; Neri, Dario

    2015-08-01

    Phosphatidylserine (PS) and other anionic phospholipids, which become exposed on the surface of proliferating endothelial cells, tumor cells and certain leukocytes, have been used as targets for the development of clinical-stage biopharmaceuticals. One of these products (bavituximab) is currently being investigated in Phase 3 clinical trials. There are conflicting reports on the ability of bavituximab and other antibodies to recognize PS directly or through beta-2 glycoprotein 1, a serum protein that is not highly conserved across species. Here, we report on the generation and characterization of two fully human antibodies directed against phosphatidylserine. One of these antibodies (PS72) bound specifically to phosphatidylserine and to phosphatidic acid, but did not recognize other closely related phospholipids, while the other antibody (PS41) also bound to cardiolipin. Both PS72 and PS41 stained 8/9 experimental tumor models in vitro, but both antibodies failed to exhibit a preferential tumor accumulation in vivo, as revealed by quantitative biodistribution analysis. Our findings indicate that anionic phospholipids are exposed and accessible in most tumor types, but cast doubts about the possibility of efficiently targeting tumors in vivo with PS-specific reagents.

  1. Interaction between zwitterionic surface activity ionic liquid and anionic surfactant: Na(+)-driven wormlike micelles.

    Science.gov (United States)

    Wang, Xiaoqing; Wang, Ruitao; Zheng, Yan; Sun, Limei; Yu, Li; Jiao, Jingjing; Wang, Rui

    2013-02-14

    The physicochemical properties of the mixed zwitterionic surface activity ionic liquid/anionic surfactant (N-alkyl-N'-carboxymethyl imidazolium inner salts/sodium dodecyl sulfate, [N-C(12), N'-CO(2)-Im]/SDS) at various molar ratios (R(1) = C([N-C(12),N'-CO(2)-Im])/(C([N-C(12),N'-CO(2)-Im]) + C(SDS)) were investigated by surface tension and steady-state fluorescence measurements. The results show that the mixed [N-C(12), N'-CO(2)-Im]/SDS system has a much lower cmc value and higher surface activity than individual surfactant. Compared with the mixed zwitterionic betaine surfactant/SDS system, the mixture studied exhibits a stronger synergism, i.e., more negative interaction parameters (β(m) and β(σ)). Through addition of NaCl, the wormlike micelles (WMs) could be formed in a [N-C(12), N'-CO(2)-Im]/SDS system. Steady and dynamic rheology was employed to characterize the WMs with different surfactant ratio (R(1)), NaCl concentration, and temperature. An optimal composition, viz., C(T) = 60 mM, R(1) = 0.45, and C(NaCl) = 0.10 M, was detected to form the strongest and longest wormlike micelles. Compared with the WMs formed by a traditional zwitterionic C(12) betaine/anionic surfactant mixture (e.g., laurylamidopropyl betaine/SDS), the WMs studied have a stronger network structure, which is expected to have potential applications in some fields, such as in nanomaterials synthesis, personal care products, and flooding liquid for tertiary oil recovery.

  2. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    Science.gov (United States)

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples.

  3. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface

    Science.gov (United States)

    Li, Kui; Zhao, Yaolin; Zhang, Peng; He, Chaohui; Deng, Jia; Ding, Shujiang; Shi, Weiqun

    2016-12-01

    The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one Isbnd O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d5/2 peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S2- ion of chalcopyrite.

  4. Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Yoo; Xantheas, Sotiris S.

    2017-03-21

    The effect of the Hofmeister anion series on the structure and stability of proteins is often discussed using simple systems such as a water-vapor interface with the assumption that the vapor region mimics the hydrophobic surface. Microscopic theories suggest that the Hofmeister anion series is highly correlated with the different contributions of the various ions to the surface tension of such a water-vapor interface. Proteins, however, have both hydrophobic and hydrophilic regions rather than just a pure hydrophobic one. Using a solvated parallel β -sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces as a more realistic model to represent a protein surface, we investigated the interaction of such a system with hydrophilic-like (SO42-) and hydrophobic-like (ClO4-) anions via Born-Oppenheimer Molecular Dynamics (BOMD) simulations. We found that both the SO42- and ClO4- anions prefer to reside on the hydrophilic rather than on the hydrophobic surface of the parallel β -sheet layer. In addition, our simulations suggest that the ClO4- ions not only penetrate towards the peptide groups through the hydrophilic residues, but also allow water molecules to penetrate as well to form water-peptide hydrogen bonds, while the SO42- ions stabilize the interface of the water-hydrophilic surface. Our results render a plausible explanation of why hydrophobic-like Hofmeister anions act as protein denaturants. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  5. Myxosporean plasmodial infection associated with ulcerative lesions in young-of-the-year Atlantic menhaden in a tributary of the Chesapeake Bay, and possible links to Kudoa clupeidae

    Science.gov (United States)

    Reimschuessel, R.; Gieseker, C.M.; Driscoll, C.; Baya, A.; Kane, A.S.; Blazer, V.S.; Evans, J.J.; Kent, M.L.; Moran, J.D.W.; Poynton, S.L.

    2003-01-01

    Ulcers in Atlantic menhaden Brevoortia tyrannus (Latrobe) (Clupeidae), observed along the USA east coast, have been attributed to diverse etiologies including bacterial, fungal and, recently, harmful algal blooms. To understand the early pathogenesis of these lesions, we examined juvenile Atlantic menhaden collected during their seasonal presence in Chesapeake Bay tributaries from April to October 1999 and from March to August 2000. We conducted histopathological examinations of young-of-the-year fish from the Pocomoke River tributary, which has a history of fish mortalities and high lesion prevalence. Kudoa clupeidae (Myxozoa: Myxosporea) spores were present in the muscles of fish collected in both years. Of the fish assessed by histology in April, 5 to 14% were infected, while in May 90 to 96% were infected. Infection rates remained high during the summer. Mature spores were primarily located within myomeres and caused little or no observable pathological changes. Ultrastructure showed spores with capsulogenic cells bearing filamentous projections, and a basal crescentic nucleus with mottled nucleoplasm containing cleaved, condensed chromatin. Also, a highly invasive plasmodial stage of a myxozoan was found in the lesions of juvenile Atlantic menhaden. The plasmodia were observed in fish collected between May and July, with the maximum occurrence in late June 1999 and late May 2000. Plasmodia penetrated and surrounded muscle bundles, causing grossly observable raised lesions in 73% of all fish infected with this invasive stage. Plasmodia were also detected in the visceral organs, branchial arches, and interocular muscles of some fish. Some of the invasive extrasporogonic plasmodial lesions were associated with ulcers and chronic inflammatory infiltrates. The plasmodial stage appeared to slough out of the tissue with subsequent evidence of wound healing. Ultrastructure showed plasmodia with an elaborate irregular surface, divided into distinct ectoplasm and

  6. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  7. Anion-π catalysis: bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on π-acidic surfaces.

    Science.gov (United States)

    Liu, Le; Cotelle, Yoann; Klehr, Juliane; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2017-05-01

    Anion-π interactions have been introduced recently to catalysis. The idea of stabilizing anionic intermediates and transition states on π-acidic surfaces is a new fundamental concept. By now, examples exist for asymmetric enolate, enamine, iminium and transamination chemistry, and the first anion-π enzyme has been created. Delocalized over large aromatic planes, anion-π interactions appear particularly attractive to stabilize extensive long-distance charge displacements during domino processes. Moving on from the formation of cyclohexane rings with five stereogenic centers in one step on a π-acidic surface, we here focus on asymmetric anion-π catalysis of domino reactions that afford bicyclic products with quaternary stereogenic centers. Catalyst screening includes a newly synthesized, better performing anion-π version of classical organocatalysts from cinchona alkaloids, and anion-π enzymes. We find stereoselectivities that are clearly better than the best ones reported with conventional catalysts, culminating in unprecedented diastereospecificity. Moreover, we describe achiral salts as supramolecular chirality enhancers and report the first artificial enzyme that operates in neutral water with anion-π interactions, i.e., interactions that are essentially new to enzymes. Evidence in support of contributions of anion-π interactions to asymmetric catalysis include increasing diastereo- and enantioselectivity with increasing rates, i.e., asymmetric transition-state stabilization in the presence of π-acidic surfaces and inhibition with the anion selectivity sequence NO3(-) > Br(-) > BF4(-) > PF6(-).

  8. Response surface methodology to optimize gradient ion chromatographic separation of inorganic anions and organic acids in tobacco leaves

    Institute of Scientific and Technical Information of China (English)

    Rui Qi Wang; Na Ni Wang; Jia Jie Zhang; Yan Zhu

    2011-01-01

    The separation optimization of nine organic and inorganic anions in tobacco leaves using gradient ion chromatography by response surface methodology was investigated. In order to achieve this goal the usefulness of the chromatographic response function (CRF) for the evaluation of the two different chromatographic performance goals (resolution and analysis time) was tested. The experiments were performed according to a Box-Behnken design response surface experimental design.

  9. In vitro Anti Plasmodial Activity of Enicostemma littorale

    Directory of Open Access Journals (Sweden)

    Sanket Soni

    2009-01-01

    Full Text Available Problem statement: Malaria is a prevalent disease in India. The problem of drug resistance is worsening. Hence, new effective and affordable antimalarial drugs are very much needed. The long-established use of quinine and the more recent introduction of artemisinin as highly effective anti malarials demonstrate that plant species are an important resource for the discovery of new anti malarial agents. Approach: Majority of the plants belonging to Gentianaceae family were proven as good antimalarials containing swertiamarin as a common marker. Enicostemma littorale (Gentianaceae is also known from traditional knowledge for treatment of visham jwara and is rich in swertiamarin amongst all of the plants belonging to same family. In view of this, initial screening had been undertaken. Our laboratory had also been working on the same for its antidiabetic activity. Results: This was first report to demonstrate anti plasmodial activity of Enicostemma littorale (Gentianaceae against Plasmodium falciparum. Methanolic extract of plant and swertiamarin isolated from it showed promising results in vitro in schizont maturation inhibition assay having IC50 of 529.045 and 12 µg mL-1 respectively. We also reported a simple and rapid method for isolation of swertiamarin which was applicable at commercial scale. Conclusion: The present study represented the potential antimalarial action of plant and its active phytoconstituent, may give new lead to researchers in field of antimalarial drug discovery.

  10. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands.

  11. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.

    Science.gov (United States)

    Love, Catherine; Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2013-09-10

    The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.

  12. Microscopic nature of mobile fluoride anions on sp2 carbon surfaces

    Science.gov (United States)

    Shin, Dongbin; Jung, Hyun; Han, Sang Soo; Choi, Cheol Ho; Lee, Hosik; Park, Noejung

    2013-05-01

    We use ab initio theories to investigate the configuration of the mobile fluoride acceptor anions on sp2-bonded carbon materials. We find that trifluoride anion (F3-1) is bound onto the graphene plane through ionic interaction, shifting the Fermi level rigidly without perturbing the π electron structures. This suggests that the F3-1 can easily migrate, generating hole carriers in graphitic materials. On the other hand, the monatomic fluoride anion is not stable against the formation of the C-F bond, and F2 molecule does not adsorb. We suggest that the widely debated semi-ionic C-F bond is not a relevant model for fluorinated graphites.

  13. Synchronization in a Plasmodial Strand of Physarum Polycephalum as a One-Dimensionally Coupled Oscillator System

    Science.gov (United States)

    Hu, Zi-Song; Takahashi, Kengo; Tsuchiya, Yoshimi

    1994-02-01

    Transient behaviors in self-sustained oscillation of a plasmodial strand of Physarum polycephalum have been investigated for various external loads under isotonic conditions. Synchronization between divisions of the strand has been observed in its formation process, which shows that the plasmodial strand can be considered as a one-dimensionally coupled oscillator system. The synchronization has been found to proceed faster with increasing external load applied to the strand. It has furthermore been found that the rate of increase of the amplitude of oscillation increases with the load, whereas the temporal behavior of its period is independent of the load. These results show that the oscillators themselves in the plasmodial strand do not depend on the external load, but the coupling between these oscillators is strongly affected with the external load. The experimental results have also been simulated on the basis of one-dimensionally coupled van der Pol equations.

  14. Surface-enhanced Raman scattering of perchlorate on cationic-modified silver nanofilms - Effect of inorganic anions

    Science.gov (United States)

    Hao, Jumin; Han, Mei-Juan; Meng, Xiaoguang; Weimer, Wayne; Wang, Qingwu K.

    2015-02-01

    Surface-enhanced Raman scattering (SERS) has emerged as one of the most sensitive spectroscopic analysis methods for the detection of environmental contaminants in water, including perchlorate (ClO4-). However, as with other commonly used analytical techniques, analysis of realistic environmental samples by SERS presents a challenge due to complex chemical components coexisting in the samples. In this work, we investigated the influence of inorganic anions (particularly oxyanions) on SERS spectra of ClO4- using a cationic thiol modified silver nanofilm substrate (Cys-Ag/rCu). The results show that the anions present in the samples did not shift the ClO4- characteristic band positions, but did decrease signal intensities due to their competitive binding with the -NH3+ groups of cationic thiol molecules immobilized on the substrates. The pH changes caused by both the dissociation of H2PO4- and the hydrolysis of HCO3- may also play a non-negligible role. The selectivity of the Cys-Ag/rCu substrate towards these anions was determined to be in the following order: ClO4- > SO42- > HCO3-, NO3- > Cl- > H2PO4-, indicating preferential adsorption of ClO4- ions. In the solutions with multiple anions present, the ClO4- SERS spectra were affected simultaneously by all the coexisting anions. Calibration curves with very good linear relationships were successfully obtained, demonstrating the great potential of quantitative detection of aqueous ClO4- in the matrix.

  15. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    Science.gov (United States)

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant

    DEFF Research Database (Denmark)

    Arnò, Barbara; D'Annessa, Ilda; Tesauro, Cinzia;

    2013-01-01

    , but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples......A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme...... in the modulation of the topoisomerase IB activity....

  17. Fluoride removal mechanism of bayerite/boehmite nanocomposites: roles of the surface hydroxyl groups and the nitrate anions.

    Science.gov (United States)

    Jia, Yong; Zhu, Bai-Sheng; Jin, Zhen; Sun, Bai; Luo, Tao; Yu, Xin-Yao; Kong, Ling-Tao; Liu, Jin-Huai

    2015-02-15

    Three-dimensional feather like bayerite/boehmite nanocomposites were synthesized by a facile one-pot hydrothermal method. The obtained nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The removal properties toward fluoride were investigated, including adsorption kinetics, adsorption isotherm, and influences of pH and coexisting anions. The maximal adsorption capacity was 56.80 mg g(-1) at pH 7.0, which is favorable compared to those reported in the literature using other adsorbents. The coexisting of sulfate and bicarbonate inhibited the fluoride removal especially at high concentrations. Furthermore, the removal mechanism was revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that both of the surface hydroxyl groups and the nitrate anions were participated in the ion-exchange process.

  18. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    Science.gov (United States)

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Combined experimental and quantum chemical study on the adsorption mechanism of phosphorous anions on the hydrotalcite surfaces

    Science.gov (United States)

    Mishima, Kenji; Zhang, Shuang; Minagawa, Sho; Kano, Naoki

    2016-08-01

    In the present work, the hydrotalcite-like compound [Mg6Al2(OH)16]CO3ṡ nH2O (shorted as MgAl-CO3) is synthesized and the adsorption of phosphorous anions, their adsorption performance on the surface of hydrotalcites, and its mechanism are analyzed. To theoretically clarify the adsorption mechanism and adsorption structures, we perform quantum chemistry calculations of reactants, locally stable states, transition states, and products among phosphorous anion, water, and hydrotalcite in a variety of pH ranges. The experimental result shows that the efficiency of phosphate removal does not depend on pH of the solution, with which the numerical results are consistent. In particular, we identify the factors of influencing the adsorption ratio in different pH ranges from the quantum chemistry calculations: the stability of locally stable states, and the energies and locations of potential barriers along the reaction pathway relative to those of the locally stable states. The results suggest that hydrotalcites synthesized in this work are suitable as sorbent materials for the adsorption and removal of phosphorous anions from aqueous solutions.

  20. Ab Initio Computational Study of Chromate Molecular Anion Adsorption on the Surfaces of Pristine and B- or N-Doped Carbon Nanotubes and Graphene

    Science.gov (United States)

    Hizhnyi, Yuriy; Nedilko, Sergii; Borysiuk, Viktor; Shyichuk, Andrii

    2017-01-01

    Density functional theory (DFT) computations of the electronic structures of undoped, B- and N-doped CNT(3,3), CNT(5,5) carbon nanotubes, and graphene with adsorbed chromate anions CrO4 2- were performed within molecular cluster approach. Relaxed geometries, binding energies, charge differences of the adsorbed CrO4 2- anions, and electronic wave function contour plots were calculated using B3LYP hybrid exchange-correlation functional. Oscillator strengths of electronic transitions of CrO4 2- anions adsorbed on the surfaces of studied carbon nanostructures were calculated by the TD-DFT method. Calculations reveal covalent bonding between the anion and the adsorbents in all studied adsorption configurations. For all studied types of adsorbent structures, doping with N strengthens chemical bonding with CrO4 2- anions, providing a 2-eV increase in binding energies comparatively to adsorption of the anion on undoped adsorbents. Additional electronic transitions of CrO4 2- anions appear in the orange-green spectral region when the anions are adsorbed on the N-doped low-diameter carbon nanotubes CNT(3,3) and CNT(5,5).

  1. Au/HClO4 interface: Influence of preparation technique of the electrode surface and specific anion adsorption

    Directory of Open Access Journals (Sweden)

    A HAMMADI

    2007-12-01

    Full Text Available We present electrochemical impedance spectra made on gold alloy containing 30% silver electrodes of various roughnesses in aqueous perchlorate acid solution as supporting electrolyte in the absence and the presence of mM of specifically adsorbed halide ions X (X = Br-, Cl-, I-, at potentials where the dominant electrode process is the adsorption of the above anions. Efforts were mainly concentrated on the importance of surface preparation technique of the electrode and its influence on impedance spectra. Atomic scale inhomogeneities are introduced by mechanical treatment and can be decreased by annealing. Due to the annealing the double layer behaves as (almost an ideal capacitance in the absence of specific adsorption though surface roughness remains the same. A study of the related impedance behaviour in the presence of adsorbates even at very low concentrations (10-4M, revealed capacitance dispersion increasing with the extent of specific anion adsorption at the gold/silver surface.

  2. A Global Analytical Representation of the Potential Energy Surface of the FHF(-) Anion.

    Science.gov (United States)

    Cornaton, Yann; Marquardt, Roberto

    2016-08-04

    A global analytical representation of the potential energy hypersurface of the lowest adiabatic electronic state of the FHF(-) anion is derived from ab initio calculations at the coupled cluster level of theory with full single and double and perturbative triple excitations using explicitly correlated atomic basis functions. The new compact function of interatomic distances combines covalent short-range and long-range electrostatic interaction forms and assesses accurately both the lowest reaction channels between the F(-) and HF fragments, with reaction enthalpies to within 1 kJ mol(-1), as well as vibrational terms to within 1.5 cm(-1) deviation from experimental values.

  3. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  4. Efficient floating diffuse functions for accurate characterization of the surface-bound excess electrons in water cluster anions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2017-01-25

    In this work, the effect of diffuse function types (atom-centered diffuse functions versus floating functions and s-type versus p-type diffuse functions) on the structures and properties of three representative water cluster anions featuring a surface-bound excess electron is studied and we find that an effective combination of such two kinds of diffuse functions can not only reduce the computational cost but also, most importantly, considerably improve the accuracy of results and even avoid incorrect predictions of spectra and the EE shape. Our results indicate that (a) simple augmentation of atom-centered diffuse functions is beneficial for the vertical detachment energy convergence, but it leads to very poor descriptions for the singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO) distributions of the water cluster anions featuring a surface-bound excess electron and thus a significant ultraviolet spectrum redshift; (b) the ghost-atom-based floating diffuse functions can not only contribute to accurate electronic calculations of the ground state but also avoid poor and even incorrect descriptions of the SOMO and the LUMO induced by excessive augmentation of atom-centered diffuse functions; (c) the floating functions can be realized by ghost atoms and their positions could be determined through an optimization routine along the dipole moment vector direction. In addition, both the s- and p-type floating functions are necessary to supplement in the basis set which are responsible for the ground (s-type character) and excited (p-type character) states of the surface-bound excess electron, respectively. The exponents of the diffuse functions should also be determined to make the diffuse functions cover the main region of the excess electron distribution. Note that excessive augmentation of such diffuse functions is redundant and even can lead to unreasonable LUMO characteristics.

  5. Effect of synergistic adsorption of anion surfactants and heavy metal ions onto kaolinite surfaces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The experiments were performed in solution for the synergistic adsorption of dodecylbenzene sulfonate and copper ions onto kaolinite surfaces. The results showed that the former enhances the binding constant of copper ions onto kaolinite surfaces, but copper ions deduce the binding constant of odecylbenzene sulfonate onto kaolinite surfaces.At the same time, they depress the proton release or absorb each other during their adsorption on kaolinite surfaces.

  6. Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao

    2001-08-13

    Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.

  7. Anti-plasmodial and anti-leishmanial activity of conformationally restricted pentamidine congeners.

    Science.gov (United States)

    Huang, Tien L; Vanden Eynde, Jean Jacques; Mayence, Annie; Donkor, Isaac O; Khan, Shabana I; Tekwani, Babu L

    2006-08-01

    A library of 52 pentamidine congeners in which the flexible pentyldioxy linker in pentamidine was replaced with various restricted linkers was tested for in-vitro activity against two Plasmodium falciparum strains and Leishmania donovani. The tested compounds were generally more effective against P. falciparum than L. donovani. The most active compounds against the chloroquine-sensitive (D6, Sierra Leone) and -resistant (W2, Indochina) strains of P. falciparum were bisbenzamidines linked with a 1,4-piperazinediyl or 1, 4-homopiperazinediyl moiety, with IC50 values (50% inhibitory concentration, inhibiting parasite growth by 50% in relation to drug-free control) as low as 7 nM based on the parasite lactate dehydrogenase assay. Seven piperazine-linked bisbenzamidines substituted at the amidinium nitrogens with a linear alkyl group of 3-6 carbons (22, 25, 27, 31) or cycloalkyl group of 4, 6 or 7 carbons (26, 32, 34) were more potent (IC50pentamidine as anti-plasmodial agents. The most active anti-leishmanial agents were 4,4'-[1,4-phenylenebis(methyleneoxy)]bisbenzenecarboximidamide (2, IC50 approximately 0.290 microM) and 1,4-bis[4-(1H-benzimidazol-2-yl)phenyl] piperazine (44, IC50 approximately 0.410 microM), which were 10- and 7-fold more potent than pentamidine (IC50 approximately 2.90 microM). Several of the more active anti-plasmodial agents (e.g. 2, 31, 33, 36-38) were also potent anti-leishmanial agents, indicating broad antiprotozoal properties. However, a number of analogues that showed potent anti-plasmodial activity (1, 18, 21, 22, 25-28, 32, 43, 45) were not significantly active against the Leishmania parasite. This indicates differential modes of anti-plasmodial and anti-leishmanial actions for this class of compounds. These compounds provide important structure-activity relationship data for the design of improved chemotherapeutic agents against parasitic infections.

  8. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: Enhanced gene silencing and reduced adversed effects in vitro

    DEFF Research Database (Denmark)

    Zeng, Xianghui; de Groot, A. M.; Sijts, Alice

    2015-01-01

    not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA–peptidomimetic nanocomplex core...... of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA–peptidomimetic nano...... a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids...

  9. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries.

    Science.gov (United States)

    Faria, P C C; Orfão, J J M; Pereira, M F R

    2004-04-01

    The influence of the surface chemical groups of an activated carbon on the removal of different classes of dyes is evaluated. Starting from the same material (NORIT GAC 1240 PLUS), the following treatments were carried out in order to produce a series of samples with different surface chemical properties but with no major differences in their textural properties: oxidation in the liquid phase with 6M HNO(3) and 10 M H(2)O(2) (acid materials) and heat treatment at 700 degrees C in H(2) or N(2) flow (basic materials). The specific micropores volume and mesopores surface area of the materials were obtained from N(2) adsorption equilibrium isotherms at 77K. The surface chemistry was characterised by temperature programmed desorption, by the determination of the point of zero charge (pH(pzc)) and by the evaluation of the acidity/basicity of the samples. Elemental and proximate analyses were also carried out. Equilibrium isotherms of selected dyes (an acid, a basic and a reactive dye) on the mentioned samples were obtained and the results discussed in relation to their surface chemistry. In general, the Langmuir model provided the best fit for the adsorption data. It is shown that the surface chemistry of the activated carbon plays a key role in dye adsorption performance. The basic sample obtained by thermal treatment under H(2) flow at 700 degrees C is the best material for the adsorption of all the tested dyes.

  10. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  11. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface.

    Science.gov (United States)

    Nie, Shengqiang; Xue, Jimin; Lu, Yi; Liu, Yeqiu; Wang, Dongsheng; Sun, Shudong; Ran, Fen; Zhao, Changsheng

    2012-12-01

    In this study, a novel triblock copolymer of poly (styrene-co-acrylic acid)-b-poly (vinyl pyrrolidone)-b-poly(styrene-co-acrylic acid) (P(St-co-AA)-b-PVP-b-P(St-co-AA)) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and used for the modification of blood contacting surface of polyethersulfone (PES) membrane to improve blood compatibility. The synthesized block copolymer can be directly blended with PES to prepare PES membranes by a liquid-liquid phase separation technique. The compositions and structure of the PES membranes are characterized by thermogravimetric analysis (TGA), ATR-FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM); the surface charge density of the modified PES membrane was measured by Zeta-potential; the blood compatibility of the PES membranes was assessed by detecting bovine serum albumin (BSA) and bovine serum fibrinogen (BFG) adsorption, platelet adhesion, activated partial thromboplastin time (APTT), platelet activation, and thrombin-antithrombin III (TAT) generation. The results indicated that the blood compatibility of the modified PES membrane was improved due to the membrane surface modification by blending the amphiphilic block copolymer and the surface segregation of the block copolymer.

  12. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  13. Different plasma-based strategies to improve the interaction of anionic dyes with polyester fabrics surface

    Science.gov (United States)

    Salem, Tarek; Pleul, Dieter; Nitschke, Mirko; Müller, Martin; Simon, Frank

    2013-01-01

    Low-pressure plasma treatments with subsequent immobilization of functional macromolecules from aqueous solution have gained an increasing popularity for its applications in new industrial processes. In this work, two different strategies to endow polyester fabrics (PET) with accessible primary amino groups are compared. (a) NH2 groups were produced directly using low-pressure ammonia plasma. (b) Negatively charged groups were introduced by low-pressure oxygen plasma to hydrophilize the fabric surfaces and used as anchor groups for the immobilization of water-borne polyelectrolyte copolymers poly(vinyl amine-co-vinyl amide) (PVAm). To study the effects of these surface modifications, a combination of various surface-sensitive characterization techniques such as X-ray photoelectron spectroscopy (XPS), streaming potential measurements and time-dependent contact angle measurements were used. Furthermore, the influence of the pre-treatments on the interaction of PET fabrics with water-soluble dyes was evaluated. For that purpose, color strength and fastness tests were carried out to prove the effectiveness of pre-treatments.

  14. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    Science.gov (United States)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  15. Surface characterization of imidazolium-based ionic liquids with cyano-functionalized anions at the gas-liquid interface using sum frequency generation spectroscopy.

    Science.gov (United States)

    Peñalber, Chariz Y; Grenoble, Zlata; Baker, Gary A; Baldelli, Steven

    2012-04-21

    Advancement in the field of ionic liquid technology requires a comprehensive understanding of their surface properties, as a wide range of chemical reactions occur mainly at interfaces. As essential media currently used in several technological applications, their accurate molecular level description at the gas-liquid interface is of utmost importance. Due to the high degree of chemical information provided in the vibrational spectrum, vibrational spectroscopy gives the most detailed model for molecular structure. The inherently surface-sensitive technique, sum frequency generation (SFG) spectroscopy, in combination with bulk-sensitive vibrational spectroscopic techniques such as FTIR and Raman, has been used in this report to characterize the surface of cyano-containing ionic liquids, such as [BMIM][SCN], [BMIM][DCA], [BMIM][TCM] and [EMIM][TCB] at the gas-liquid interface. By structural variation of the anion while keeping the cation constant, emphasis on the molecular arrangement of the anion at the gas-liquid interface is reported, and its subsequent role (if any) in determining the surface molecular orientation of the cation. Vibrational modes seen in the C-H stretching region revealed the presence of the cation at the gas-liquid interface. The cation orientation is independent of the type of cyano-containing anion, however, a similar arrangement at the surface as reported in previous studies was found, with the imidazolium ring lying flat at the surface, and the alkyl chains pointing towards the gas phase. SFG results show that all three anions of varying symmetry, namely, [DCA](-) (C(2v)), [TCM](-)(D(3h)) and [TCB](-) (T(d)) in ionic liquids [BMIM]DCA], [BMIM][TCM] and [EMIM][TCB] are significantly tilted from the surface plane, while the linear [SCN](-) in [BMIM][SCN] exhibited poor ordering, as seen in the absence of its C-N stretching mode in the SFG vibrational spectra.

  16. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    Science.gov (United States)

    Rajabi, Hamid Reza; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-01

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe3O4 MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe3O4/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient.

  17. Ab initio constructed diabatic surfaces of NO{sub 2} and the photodetachment spectra of its anion

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Saikat; Mukherjee, Bijit; Sardar, Subhankar; Adhikari, Satrajit, E-mail: pcsa@iacs.res.in [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2015-12-28

    A thorough investigation has been performed for electronic structure, topological effect, and nuclear dynamics of NO{sub 2} molecule, where the adiabatic potential energy surfaces (PESs), conical intersections between the ground (X{sup 2}A{sub 1}) and the first excited state (A{sup 2}B{sub 2}), and the corresponding non-adiabatic coupling terms between those states are recalculated [Chem. Phys. 416, 11 (2013)] to achieve enough accuracy in dynamics. We employ beyond Born-Oppenheimer theory for these two state sub-Hilbert space to carry out adiabatic to diabatic transformation (ADT) to obtain the ADT angles and thereby, to construct single-valued, smooth, and continuous diabatic PESs. The analytic expressions for the adiabatic PESs and ADT angles are provided to represent a two-state three-mode diabatic Hamiltonian of NO{sub 2} for performing nuclear dynamics to calculate the photo-electron spectra of its anion. It appears that not only Jahn-Teller type coupling but also Renner-Teller interaction contributes significantly on the overall spectrum. The coupling between the electronic states (X{sup 2}A{sub 1} and A{sup 2}B{sub 2}) of NO{sub 2} is essentially through the asymmetric stretching mode, where the functional form of such interaction is distinctly symmetric and non-linear.

  18. [Spectral analysis of self-oscillating motility in isolated plasmodial strand of Physarum polycephalum].

    Science.gov (United States)

    Proskurin, S G; Avsievich, T I

    2014-01-01

    In this study the experimental dependencies of the velocity of shuttle endoplasmic motion in the isolated plasmodial strand of Physarum polycephalum obtained by laser Doppler microscopy are presented. The spectral analysis of the time dependencies of the endoplasm allows obtaining two distinct harmonic components. Influence of KCN and SHAM--inhibitors of cellular respiration--leads to a complete cessation of endoplasmic motion in the strand. After removal of the inhibitors the respiratory system becomes normal, gradually restoring the activity of both harmonic oscillation sources. Based on the spectral analysis the simulated time-dependent velocity of the endoplasmic motion is rather good consistent with experimental data.

  19. Unusual Complex Formation and Chemical Reaction of Haloacetate Anion on the Exterior Surface of Cucurbit[6]uril in the Gas Phase

    Science.gov (United States)

    Choi, Tae Su; Ko, Jae Yoon; Heo, Sung Woo; Ko, Young Ho; Kim, Kimoon; Kim, Hugh I.

    2012-10-01

    Noncovalent interactions of cucurbit[6]uril (CB[6]) with haloacetate and halide anions are investigated in the gas phase using electrospray ionization ion mobility mass spectrometry. Strong noncovalent interactions of monoiodoacetate, monobromoacetate, monochloroacetate, dichloroacetate, and trichloroacetate on the exterior surface of CB[6] are observed in the negative mode electrospray ionization mass spectra. The strong binding energy of the complex allows intramolecular SN2 reaction of haloacetate, which yields externally bound CB[6]-halide complex, by collisional activation. Utilizing ion mobility technique, structures of exteriorly bound CB[6] complexes of haloacetate and halide anions are confirmed. Theoretically determined low energy structures using density functional theory (DFT) further support results from ion mobility studies. The DFT calculation reveals that the binding energy and conformation of haloacetate on the CB[6] surface affect the efficiency of the intramolecular SN2 reaction of haloacetate, which correlate well with the experimental observation.

  20. DIVERSITY AND DISTRIBUTION OF PLASMODIAL MYXOMYCETES (SLIME MOLDS FROM LA MESA ECOPARK, QUEZON CITY, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    THOMAS EDISON E. DELA CRUZ

    2010-10-01

    Full Text Available Myxomycetes are ubiquitous in terrestrial forest ecosystems. Thus, this research study looks at the taxonomic diversity and distribution of plasmodial myxomycetes in La Mesa Ecopark in Quezon City, Philippines. A total of 240 moist chambers were prepared from four substrates (aerial and ground leaf litter, twigs and barks collected within this ecopark. Following incubation of moist chambers for eight weeks, a total of 28 species belonging to 10 genera were collected and identified: Arcyria (3, Diderma (2, Didymium (5, Lamproderma (2, Perichaena (3, Physarum (8, Macbrideola (1, Metatrichia (1, Trichia (1 and Stemonitis (2. Highest myxomycete yield (85% was observed in aerial leaf litter. In terms of taxonomic diversity, highest diversity was observed in bark microhabitats, although the lowest number of species was recorded in it. Assessment of their abundance and distribution showed similarities in species composition between aerial and ground leaf litter. This research study is the first report of plasmodial myxomycetes in La Mesa Ecopark in Quezon City, Philippines.

  1. Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.

    Science.gov (United States)

    Zhu, Xiang; Niu, Xiangheng; Zhao, Hongli; Tang, Jie; Lan, Minbo

    2015-05-15

    Monitoring of reactive oxygen species like superoxide anion (O2(∙-)) turns to be of increasing significance considering their potential damages to organism. In the present work, we fabricated a novel O2(∙-) electrochemical sensor through immobilizing superoxide dismutase (SOD) onto a Pt-Pd/MWCNTs hybrid modified electrode surface. The Pt-Pd/MWCNTs hybrid was synthesized via a facile one-step alcohol-reduction process, and well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The immobilization of SOD was accomplished using a simple drop-casting method, and the performance of the assembled enzyme-based sensor for O2(∙-) detection was systematically investigated by several electrochemcial techniques. Thanks to the specific biocatalysis of SOD towards O2(∙-) and the Pt-Pd/MWCNTs - promoted fast electron transfer at the fabricated interface, the developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 40-1550 μM (R(2)=0.9941), with a sensitivity of 0.601 mA cm(-2) mM(-1) and a detection limit of 0.71 μM (S/N=3). In addition, the favorable biocompatibility of this electrode interface endows the prepared biosensor with excellent long-term stability (a sensitivity loss of only 3% over a period of 30 days). It is promising that the proposed sensor will be utilized as an effective tool to quantitatively monitor the dynamic changes of O2(∙-) in biological systems.

  2. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-15

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe{sub 3}O{sub 4} MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe{sub 3}O{sub 4}/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient. - Highlights: • Synthesis of nano-sized modified iron oxide magnetic particles. • Characterization of the modified MNPs by XRD, TEM, VSM, FT-IR techniques. • Design of experiments for removal of SY dye using MNPs. • Adsorption isotherm and kinetic investigation of the reaction.

  3. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  4. Mobility of the conserved glycine 155 is required for formation of the active plasmodial Pdx1 dodecamer

    NARCIS (Netherlands)

    Knoeckel, Julia; Jordanova, Rositsa; Mueller, Ingrid B.; Wrenger, Carsten; Groves, Matthew R.

    2009-01-01

    Background: Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro. Methods: Static and dynamic light scatterin

  5. Mobility of the conserved glycine 155 is required for formation of the active plasmodial Pdx1 dodecamer

    NARCIS (Netherlands)

    Knoeckel, Julia; Jordanova, Rositsa; Mueller, Ingrid B.; Wrenger, Carsten; Groves, Matthew R.

    2009-01-01

    Background: Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro. Methods: Static and dynamic light scatterin

  6. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    Science.gov (United States)

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa.

  7. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides

    Directory of Open Access Journals (Sweden)

    Kaushik Naveen K

    2012-08-01

    Full Text Available Abstract Background A lack of vaccine and rampant drug resistance demands new anti-malarials. Methods In vitro blood stage anti-plasmodial properties of several de novo-designed, chemically synthesized, cationic, amphipathic, helical, antibiotic peptides were examined against Plasmodium falciparum using SYBR Green assay. Mechanistic details of anti-plasmodial action were examined by optical/fluorescence microscopy and FACS analysis. Results Unlike the monomeric decapeptides {(Ac-GXRKXHKXWA-NH2 (X = F,ΔF (Fm, ΔFm IC50 >100 μM}, the lysine-branched,dimeric versions showed far greater potency {IC50 (μM Fd 1.5 , ΔFd 1.39}. The more helical and proteolytically stable ΔFd was studied for mechanistic details. ΔFq, a K-K2 dendrimer of ΔFm and (ΔFm2 a linear dimer of ΔFm showed IC50 (μM of 0.25 and 2.4 respectively. The healthy/infected red cell selectivity indices were >35 (ΔFd, >20 (ΔFm2 and 10 (ΔFq. FITC-ΔFd showed rapid and selective accumulation in parasitized red cells. Overlaying DAPI and FITC florescence suggested that ΔFd binds DNA. Trophozoites and schizonts incubated with ΔFd (2.5 μM egressed anomalously and Band-3 immunostaining revealed them not to be associated with RBC membrane. Prematurely egressed merozoites from peptide-treated cultures were found to be invasion incompetent. Conclusion Good selectivity (>35, good resistance index (1.1 and low cytotoxicity indicate the promise of ΔFd against malaria.

  8. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  9. Langmuir aggregation of Nile blue and safranine T on sodium dodecylbenzenesulfonate surface and its application to quantitative determination of anionic detergent.

    Science.gov (United States)

    Gao, Hong-Wen; Ye, Qing-Song; Liu, Wei-Guo

    2002-04-01

    We studied the interaction of sodium dodecylbenzenesulfonate (SDBS) with Nile Blue (NB) and Safranine T (ST) by a spectral correction technique. The aggregations of NB and ST on an SDBS surface obeyed Langmuir isothermal adsorption. The adsorption ratios of NB and ST to SDBS were both 0.5, and the adsorption constants of the aggregates were 1.80 x 10(5) and 9.49 x 10(4). The aggregations were applied to the quantitative determination of anion detergent in samples; the recovery of SDBS was between 90.3 and 106% together with an RSD of 3.78%.

  10. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression

    Directory of Open Access Journals (Sweden)

    Jennina Taylor-Wells

    2014-01-01

    Full Text Available The organic anion transporting polypeptides (OATPs encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1 mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL, spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  11. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression.

    Science.gov (United States)

    Taylor-Wells, Jennina; Meredith, David

    2014-01-01

    The organic anion transporting polypeptides (OATPs) encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1) mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL), spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  12. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-21

    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on sample grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.

  13. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.

  14. Progress in plasmodial differentiation improves regularity of oscillating contractions in Physarum polycephalum.

    Science.gov (United States)

    Helf, Matthias; Achenbach, Friedhelm

    2007-01-01

    Based on the knowledge about subcellular morphogenetic processes in the acellular slime mold Physarum polycephalum, we hypothesized that during differentiation of undifferentiated endoplasm to the highly differentiated complex structure of the contractile apparatus of this organism, the regularity of oscillating contractions must improve. We measured the endogenous contraction automaticity starting from the de novo generation within minutes after sampling small portions of undifferentiated endoplasm. The standard deviation of the normalized period duration of these samples was compared to the respective values of radial contractions of differentiated protoplasmic plasmodial strands. The mean normalized standard deviation in endoplasmic drops was 28.3+/-12.2%. Respective values in protoplasmic strands were 10.0+/-3.7%. The difference between the experimental groups was highly significant (pPhysarum require the complex structure of the sophisticated contractile apparatus, represented by the circular plasmalemma invagination system of protoplasmic strands, while the regularity is lower in stages, where the differentiation is still in progress. We believe that this is due to deficits in coordination capabilities, which need a directional and spatially oriented protoplasmic streaming as a precondition.

  15. C lostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    Science.gov (United States)

    Willing, Stephanie E.; Candela, Thomas; Shaw, Helen Alexandra; Seager, Zoe; Mesnage, Stéphane; Fagan, Robert P.

    2015-01-01

    Summary Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria. PMID:25649385

  16. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae and identification of urospermal A-15-O-acetate as the main active compound

    Directory of Open Access Journals (Sweden)

    Jansen Olivia

    2012-08-01

    Full Text Available Abstract Background Natural products could play an important role in the challenge to discover new anti-malarial drugs. In a previous study, Dicoma tomentosa (Asteraceae was selected for its promising anti-plasmodial activity after a preliminary screening of several plants traditionally used in Burkina Faso to treat malaria. The aim of the present study was to further investigate the anti-plasmodial properties of this plant and to isolate the active anti-plasmodial compounds. Methods Eight crude extracts obtained from D. tomentosa whole plant were tested in vitro against two Plasmodium falciparum strains (3D7 and W2 using the p-LDH assay (colorimetric method. The Peters’ four-days suppressive test model (Plasmodium berghei-infected mice was used to evaluate the in vivo anti-plasmodial activity. An in vitro bioguided fractionation was undertaken on a dichloromethane extract, using preparative HPLC and TLC techniques. The identity of the pure compound was assessed using UV, MS and NMR spectroscopic analysis. In vitro cytotoxicity against WI38 human fibroblasts (WST-1 assay and haemolytic activity were also evaluated for extracts and pure compounds in order to check selectivity. Results The best in vitro anti-plasmodial results were obtained with the dichloromethane, diethylether, ethylacetate and methanol extracts, which exhibited a high activity (IC50 ≤ 5 μg/ml. Hot water and hydroethanolic extracts also showed a good activity (IC50 ≤ 15 μg/ml, which confirmed the traditional use and the promising anti-malarial potential of the plant. The activity was also confirmed in vivo for all tested extracts. However, most of the active extracts also exhibited cytotoxic activity, but no extract was found to display any haemolytic activity. The bioguided fractionation process allowed to isolate and identify a sesquiterpene lactone (urospermal A-15-O-acetate as the major anti-plasmodial compound of the plant (IC50 Conclusions The present study

  17. Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives – their stability, complexation ability in solution or when deposited on solid anionic surface

    Directory of Open Access Journals (Sweden)

    Martin Popr

    2015-02-01

    Full Text Available The thermal stability of the monosubstituted cationic cyclodextrin (CD derivatives PEMEDA-β-CD and PEMPDA-β-CD, which differ in their substituent linker length (ethylene and propylene, respectively, was studied via 1H NMR experiments. PEMPDA-β-CD exhibited higher resistance towards the Hofmann degradation and was chosen as a more suitable host molecule for further studies. Inclusion properties of PEMPDA-β-CD in solution with a series of simple aromatic guests (salicylic acid, p-methoxyphenol and p-nitroaniline were determined by isothermal titration calorimetry (ITC and compared to the native β-CD. Permanently charged cationic CD derivatives were successfully deposited on the anionic solid surface of polymeric Nafion® 117 membrane via electrostatic interactions. Deposition kinetics and coverage of the surface were determined by ELSD. Finally, the ability of the CD derivatives bound to the solid surface to encapsulate aromatic compounds from aqueous solution was measured by UV–vis spectroscopy. The obtained results are promising for future industrial applications of the monosubstituted β-CD derivatives, because the preparation of cationic CD derivatives is applicable in large scale, without the need of chromatographic purification. Their ionic deposition on a solid surface is simple, yet robust and a straightforward process as well.

  18. Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions.

    Science.gov (United States)

    Wang, Ling-Yuan; Wang, Shao-Wei; Chen, Wan-Ru

    2016-06-01

    Aromatic organoarsenical roxarsone (ROX) is a common additive for livestock feed. This arsenic containing pollutant could be discharged into the environment through agricultural application of animal manure, and pose potential threats to both humans and the wider environment. In this study, the influence of pH, competing anions and metal ions on the adsorption and desorption of ROX on goethite were investigated in order to understand their mobility in the environment. Both hydroxide ions and phosphate are common substances in the environment, and both are potential competing anions for ROX. Our results showed the addition of phosphate desorbed more ROX than the addition of hydroxide ions. As pH increased, the effect of phosphate did not show much difference to that of hydroxide ion. The results indicate that the presence of phosphate will greatly increase the mobility of ROX at low pH. Six common metal ions, including Zn(2+), Cu(2+), Fe(3+), Mn(2+), Mg(2+), and Ca(2+), were tested and all spiked metal ions enhanced the stability of ROX adsorption on the surface of goethite, and led to less desorption when phosphate was added. The results demonstrate that metal ions may form complex/surface precipitation with ROX to enhance its adsorption. The effect from Fe(3+), Zn(2+) and Cu(2+) was more pronounced than other metal ions, which might result from the fact that these three metal ions tend to associate with hydroxide ions and decrease the pH. The results of this research may shed light on the environmental fate and transportation of aromatic organoarsenicals in soil.

  19. The assembly of the plasmodial PLP synthase complex follows a defined course.

    Directory of Open Access Journals (Sweden)

    Ingrid B Müller

    Full Text Available BACKGROUND: Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP. For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers. METHODOLOGY/PRINCIPAL FINDINGS: Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK, amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows a defined pathway and that inhibition of this assembly results in an inactive holoenzyme.

  20. Adsorption of halide anions at the Pt(111)-solution interface studied by {bold {ital in situ}} surface x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, C.A.; Markovic, N.M.; Ross, P.N. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-03-01

    In this paper we present x-ray scattering results of iodide, bromide, and chloride adsorption onto the Pt(111) surface in solution. Iodide forms two commensurate adlayer structures, a ({radical}(7){times}{radical}(7))R19.1{degree} phase and a hexagonal (3{times}3) phase, which coexist on the Pt surface. Formation of the (3{times}3) phase appears to be kinetically limited, whereas the {radical}(7) phase shows a hysteretic effect as a function of the electrode potential, associated with an order-disorder transition. Bromide forms a series of high-order commensurate structures on Pt(111) that are poorly ordered unless the size of the unit cell is small. No ordered structures for chloride adsorption are observed and specular x-ray reflectivity results suggest that the chloride coverage at low potential is too small to form a close-packed monolayer on the surface. The differences between the structures formed by the adsorbed anions, and the differences between results for Pt(111) and Au(111), are discussed in terms of the strength of the metal-halide interaction. {copyright} {ital 1997} {ital The American Physical Society}

  1. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-π interactions for graphene-based receptors.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Marek, Radek

    2014-02-14

    Measuring the binding energy or scanning the potential energy surface (PES) of the charged molecular systems in the presence of an external electric field (EEF) requires a careful evaluation of the origin-dependency of the energy of the system and references. Scanning the PES for charged or purely ionic systems for obtaining the intrinsic energy barriers needs careful analysis of the electric work applied on ions by the EEF. The binding energy in the presence of an EEF is different from that in the absence of an electric field as the binding energy is an anisotropic characteristic which depends on the orientation of molecules with respect to the EEF. In this contribution we discuss various aspects of the PES and the concept of binding energy in the presence of an EEF. In addition, we demonstrate that the anion-π bonding properties can be modulated by applying a uniform EEF, which has a more pronounced effect on the larger, more polarizable π-systems. An analogous behavior is presumed for cation-π systems. We predict that understanding the phenomenon introduced in the present account has enormous potential, for example, for separating charged species on the surface of polarizable two-dimensional materials such as graphene or the surface of carbon nanotubes, in desalination of water.

  2. Analysis of the impacts of major anion variations on surface water acidity particularly with regard to conifer harvesting: case studies from Wales and Northern England

    Directory of Open Access Journals (Sweden)

    C. Neal

    1998-01-01

    Full Text Available Data on the water quality of streams draining a range of acidic and acid sensitive, mainly afforested, upland catchments in mid- and north-Wales and northern-England are described to investigate the acidification effects of conifer harvesting in relation to natural variability. Most sites show a large range in pH and major cation and major anion concentrations. The waters draining from the smaller catchments are more acidic and aluminium bearing reflecting a higher proportion of runoff from the acidic soils in each area. However, there is often a less acidic component of runoff under base-flow conditions due to ground-water contributions particularly within the larger streams. Higher concentrations of nitrate occur for sites which have been felled although declines in concentration occur several years after felling. Multiple regression analysis reveals the importance of cation exchange and within catchment acidification associated with sulphate and nitrate generation. Sulphate also has a component associated with weathering but the patterns vary from catchment to catchment. Analysis of the influence of changing anion concentrations associated with tree harvesting reveals that the acidification induced by increases in nitrate can be offset or reversed by the lowering of chloride and sulphate concentrations due to decreased atmospheric scavenging by the vegetation, reduced evapotranspiration and increased surface runoff diluting the acidity generated. It is concluded that contemporary UK forestry guidelines with an emphasis on phased harvesting of catchments over several years and careful harvesting methodologies can alleviate most problems of stream acidification associated with felling activities and in some cases can reverse the acidification pattern.

  3. Surface Modification of Anionic Polyurethane with Silk Fibroin Peptide and Its Effects on the Culture of Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-hao; WU Zheng-yu; LI Ming-zhong; BAI Lun; SHENG Wei-hua

    2007-01-01

    The surface modification of the anionicpolyurethane(APU) film was carried out by immersing it insilk fibroin peptide(SFP) solution for 12 h and then treatingwith low temperature plasma glow discharge. The physicalproperties and moisture permeability of modified films wereexamined. The results showed that SFP-modified APU filmshad better moisture permeability than oleophilicpolyurethane, as well as modified APU films kept goodflexibility. Modified APU films could overcome rigid andbrittle weaks of silk fibroin films. The morphology of SFPon the APU film was corpuscular aggregations. The water-contact angle measurement indicated that the change ofhydrophilicity and the element chemical analysis suggestedthat the SFP-modified film surface was enriched withnitrogen atoms. The biocompatibility of APU films may beimproved due to the change of surface compooents. Cellviability and proliferation of rat embryo dermal fibroblastsseeded on control films, APU films and SFP-modified APUfilms were evaluated by MTT assay and viable cell counts,respectively. The results indicated that the APU filmmodified by SFP protein showed the proliferation offibroblasts on the film, and that the compound interface hadgood stability in the air. Results also showed thatpresoaking treatment for APU films was effective toaccomplish the goal of surface modification.

  4. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: laboratory and model assessment of the degradation kinetics, and comparison with field data.

    Science.gov (United States)

    Sur, Babita; De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with OH. NCP has a polychromatic photolysis quantum yield Φ(NCP)=(1.27±0.22)·10(-5), a rate constant with OH k(NCP,)(OH)=(1.09±0.09)·10(10) M(-1) s(-1), a rate constant with (1)O(2)k(NCP,1O2)=(2.15±0.38)·10(7) M(-1) s(-1), a rate constant with the triplet state of anthraquinone-2-sulphonate k(NCP,3AQ2S*)=(5.90±0.43)·10(8) M(-1) s(-1), and is poorly reactive toward CO(3)(-). The k(NCP,3AQ2S*) value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhône delta (Southern France).

  5. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  6. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants.

    Science.gov (United States)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang

    2013-05-24

    Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Co-infection restrains Litomosoides sigmodontis filarial load and plasmodial P. yoelii but not P. chabaudi parasitaemia in mice

    Directory of Open Access Journals (Sweden)

    Karadjian Gregory

    2014-01-01

    Full Text Available Infection with multiple parasite species is clearly the norm rather than the exception, in animals as well as in humans. Filarial nematodes and Plasmodium spp. are important parasites in human public health and they are often co-endemic. Interactions between these parasites are complex. The mechanisms underlying the modulation of both the course of malaria and the outcome of filarial infection are poorly understood. Despite increasing activity in recent years, studies comparing co- and mono-infections are very much in their infancy and results are contradictory at first sight. In this study we performed controlled and simultaneous co-infections of BALB/c mice with Litomosoides sigmodontis filaria and with Plasmodium spp. (Plasmodium yoelii 17 XNL or Plasmodium chabaudi 864VD. An analysis of pathological lesions in the kidneys and lungs and a parasitological study were conducted at different times of infection. Whatever the plasmodial species, the filarial recovery rate was strongly decreased. The peak of parasitaemia in the plasmodial infection was decreased in the course of P. yoelii infection but not in that of P. chabaudi. Regarding pathological lesions, L. sigmodontis can reverse lesions in the kidneys due to the presence of both Plasmodium species but does not modify the course of pulmonary lesions. The filarial infection induces granulomas in the lungs.

  8. Vibrational Spectroscopy of Microhydrated Conjugate Base Anions

    NARCIS (Netherlands)

    Asmis, K. R.; Neumark, D. M.

    2012-01-01

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aeros

  9. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology.

    Science.gov (United States)

    Wu, Hu; Yang, Ran; Li, Ruihua; Long, Chao; Yang, Hu; Li, Aimin

    2015-09-01

    In this study, an amphoteric grafting chitosan-based flocculant (carboxymethyl chitosan-graft-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride, denoted as CMC-g-PDMC) was applied to removal of the anionic and cationic dyes, acid Green 25 (AG25) and Basic Bright Yellow (7GL), from water. Flocculation conditions have been optimized by response surface methodology (RSM) on the basis of central composite design (CCD) using flocculant dosage, initial solution pH and temperature as input variables. The second-order and cubic regression models, which have been both tested by the analysis of variance (ANOVA), were constructed to link the output response (the dye removal factor) with the aforementioned input variables, respectively. The second-order regression model well described the process of AG25 removal, whereas the cubic one is more suitable for that of 7GL. The effects of those variables on the flocculation performance of CMC-g-PDMC for removal of the two dyes containing opposite charges from aqueous solutions have been studied, and the flocculation mechanisms including the interactive effects between various influencing factors have been discussed in detail also.

  10. A combined chemical, spectroscopic and ab initio modelling approach to surface reactivity: application to the retention of anions by siderite; Approche couplee chimique, spectroscopiques et de modelisation ab initio a la reactivite de surface: application a la retention des anions par la siderite

    Energy Technology Data Exchange (ETDEWEB)

    Badaut, V.; Schlegel, M.; Zeller, Ph.; Moutiers, G.

    2010-07-01

    {sup 79}Selenium may be one of the few radioelements possibly migrating out of nuclear geological repositories. Selenium may yet be retain this Se, but the possible interactions between Se and siderite are yet poorly known. In this work, the interactions between selenium oxi-anions - selenate and selenite - and siderite were investigated. Solution experiments have showed that dissolved selenite ({<=} 10{sup -3} M) is quantitatively immobilized by siderite (75 g/L) after 48 h of reaction time, when selenate is only partly immobilized after 10 days. In the selenite case, XAS showed that immobilized selenium is initially present as Se(IV) probably sorbed on siderite surface. After 10 days of reaction, selenite ions are quantitatively reduced and form poorly crystalline elementary selenium. On the other hand, selenate retained b y siderite does not appear to be significantly reduced over the probed timescale (10 days). To better understand the mechanism of selenite reduction by siderite, the properties of bulk and perfect surfaces of siderite were modelled using DFT. The properties of the valence electrons could be correctly described only if the symmetry of the fundamental state electronic density is lower than the experimental crystallographic symmetry. We we modelled the retention of simple molecules as O{sub 2} or H{sub 2}O on siderite and magnesite (10-14) perfect surfaces. Our results are in good agreement with the literature. Finally, the modelling of selenite surface complexes on magnesite is performed with and without hydration. (authors)

  11. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  12. In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds.

    Science.gov (United States)

    Hoppe, T; Kutschera, U

    2010-06-01

    In his Origin of Species (John Murray, London, 1859), Charles Darwin described the theory of descent with modification by means of natural selection and postulated that all life may have evolved from one or a few simple kinds of organisms. However, Darwin's concept of evolutionary change is entirely based on observations of populations of animals and plants. He briefly mentioned 'lower algae', but ignored amoebae, bacteria and other micro-organisms. In 1859, Anton de Bary, the founder of mycology and plant pathology, published a seminal paper on the biology and taxonomy of the plasmodial slime molds (myxomycetes). These heterotrophic protists are known primarily as a large composite mass, the plasmodium, in which single nuclei are suspended in a common 'naked' cytoplasm that is surrounded by a plasma membrane. Here we summarize the contents of de Bary's 1859 publication and highlight the significance of this scientific classic with respect to the establishment of the kingdom Protoctista (protists such as amoebae), the development of the protoplasmic theory of the cell, the introduction of the concept of symbiosis and the rejection of the dogma of spontaneous generation. We describe the life cycle of the myxomycetes, present new observations on the myxamoebae and propose a higher-order phylogeny based on elongation factor-1 alpha gene sequences. Our results document the congruence between the morphology-based taxonomy of the myxomycetes and molecular data. In addition, we show that free-living amoebae, common protists in the soil, are among the closest living relatives of the myxomycetes and conclude that de Bary's 'Amoeba-hypothesis' on the evolutionary origin of the plasmodial slime molds may have been correct.

  13. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  14. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  15. Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement.

    Science.gov (United States)

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; You, Shao-hong; Hu, Xi; Tan, Xiao-fei; Chen, An-wei; Guo, Fang-ying

    2015-05-01

    The present work evaluated the effects of six inorganic electrolyte anions on Cu(II) removal using aminated Fe3O4/graphene oxide (AMGO) in single- and multi-ion systems. A 2(6-2) fractional factorial design (FFD) was employed for assessing the effects of multiple anions on the adsorption process. The results indicated that the Cu(II) adsorption was strongly dependent on pH and could be significantly affected by inorganic electrolyte anions due to the changes in Cu(II) speciation and surface charge of AMGO. In the single-ion systems, the presence of monovalent anions (Cl(-), ClO4(-), and NO3(-)) slightly increased the Cu(II) adsorption onto AMGO at low pH, while the Cu(II) adsorption was largely enhanced by the presence of SO4(2-), CO3(2-), and HPO4(2-). Based on the estimates of major effects and interactions from FFD, the factorial effects of the six selected species on Cu(II) adsorption in multi-ion system were in the following sequence: HPO4(2-)>CO3(2-)>Cl(-)>SO4(2-)>NO3(-)=ClO4(-), and the combined factors of AD (Cl(-)×SO4(2-)) and EF (Cl(-)×SO4(2-)) had significant effects on Cu(II) removal.

  16. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq.

    Science.gov (United States)

    Annan, Kofi; Sarpong, K; Asare, C; Dickson, R; Amponsah, Ki; Gyan, B; Ofori, M; Gbedema, Sy

    2012-10-01

    Herbal remedies of Adenia cissampeloides, Terminalia ivorensis, and Elaeis guineensis among others have been used in Ghana for the treatment of various ailments including malaria. However, most of these remedies have not been scientifically investigated. This study, therefore, seeks to investigate the anti-plasmodial activity of these plants. The ethanolic extracts of A. cissampeloides stem, T. ivorensis stem bark, and E. guineensis leaves were tested for in vitro anti-plasmodial activity against chloroquine-resistant strains of Plasmodium falciparum. Thin blood films were used to assess the level of parasitemia and growth inhibition of the extracts. The IC (50) of A. cissampeloides, T. ivorensis, and E. guineensis were 8.521, 6.949, and 1.195 μg/ml, respectively, compared to artesunate with IC(50) of 0.031 μg/ml. The result of this study appears to confirm the folkloric anti-malarial use these plants.

  17. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis

    OpenAIRE

    Kirmizibekmez, H.; Calis, I.; Perozzo, R.; Brun, R.; Donmez, A. A.; van der Linden, A.; Rudi, P.; Tasdemir, Deniz

    2004-01-01

    Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2S,4R)-2-carboxy-4-(E)-p-coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2S,4R)-1,1-dimethyl-4-(E)-p-coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, gluco...

  18. Chemical, spectroscopic, and ab initio modelling approach to interfacial reactivity applied to anion retention by siderite; Approche couplee chimique, spectroscopique et de modelisation ab initio a la reactivite de surface: application a la retention des anions par la siderite

    Energy Technology Data Exchange (ETDEWEB)

    Badaut, V.

    2010-07-15

    Among the many radionuclides contained in high-level nuclear waste, {sup 79}Se was identified as a potential threat to the safety of long term underground storage. However, siderite (FeCO{sub 3}) is known to form upon corrosion of the waste container, and the impact of this mineral on the fate of selenium was not accounted for. In this work, the interactions between selenium oxyanions - selenate and selenite - and siderite were investigated. To this end, both experimental characterizations (solution chemistry, X-ray Absorption Spectroscopy - XAS) and theoretical studies (ab initio modelling using Density Functional Theory - DFT) were performed. Selenite and selenate ({<=} 10{sup 3} M) retention experiments by siderite suspensions (75 g/L) at neutral pH in reducing glovebox (5 % H{sub 2}) showed that selenite is quantitatively immobilized by siderite after 48 h of reaction time, when selenate is only partly immobilized after 10 days. In the selenite case, XAS showed that immobilized selenium is initially present as Se(IV) probably sorbed on siderite surface. After 10 days of reaction, selenite ions are quantitatively reduced and form poorly crystalline elementary selenium. Selenite retention and reduction kinetics are therefore distinct. On the other hand, the fraction of immobilized selenate retained in the solid fraction does not appear to be significantly reduced over the probed timescale (10 days). For a better understanding of the reduction mechanism of selenite ions by siderite, the properties of bulk and perfect surfaces of siderite were modelled using DFT. We suggest that the properties of the valence electrons can be correctly described only if the symmetry of the fundamental state electronic density is lower than the experimental crystallographic symmetry. We then show that the retention of simple molecules as O{sub 2} or H{sub 2}O on siderite and magnesite (10{sup -14}) perfect surfaces (perfect cleavage plane, whose surface energy is the lowest according

  19. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling

    CSIR Research Space (South Africa)

    Becker, JVW

    2011-10-01

    Full Text Available . Steenkamp V, Mathivha E, Gouws MC, Van Rensburg CE: Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. J Ethnopharmacol 2004, 95:353-357. 13. Steenkamp V, Gouws MC: Cytotoxicity of six... pharmacolo- gical properties: anti-bacterial, anti-helmintic, anti-viral, anti-plasmodial, anti-spasmodic, wound healing, analgesic and anti-inflammatory [8-11]. A previous study reported the anti-bacterial and anti-inflammatory properties of the root...

  20. Potentiometric anion selective sensors

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Reinhoudt, David N.

    1999-01-01

    In comparison with selective receptors (and sensors) for cationic species, work on the selective complexation and detection of anions is of more recent date. There are three important components for a sensor, a transducer element, a membrane material that separates the transducer element and the aqu

  1. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch. Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq

    Directory of Open Access Journals (Sweden)

    Kofi Annan

    2012-01-01

    Full Text Available Background: Herbal remedies of Adenia cissampeloides, Terminalia ivorensis, and Elaeis guineensis among others have been used in Ghana for the treatment of various ailments including malaria. However, most of these remedies have not been scientifically investigated. Objective: This study, therefore, seeks to investigate the anti-plasmodial activity of these plants. Materials and Methods: The ethanolic extracts of A. cissampeloides stem, T. ivorensis stem bark, and E. guineensis leaves were tested for in vitro anti-plasmodial activity against chloroquine-resistant strains of Plasmodium falciparum. Thin blood films were used to assess the level of parasitemia and growth inhibition of the extracts. Results: The IC 50 of A. cissampeloides, T. ivorensis, and E. guineensis were 8.521, 6.949, and 1.195 μg/ml, respectively, compared to artesunate with IC 50 of 0.031 μg/ml. Conclusion: The result of this study appears to confirm the folkloric anti-malarial use these plants.

  2. Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area

    Directory of Open Access Journals (Sweden)

    Dell’Agli Mario

    2012-07-01

    Full Text Available Abstract Background Sardinia is a Mediterranean area endemic for malaria up to the last century. During a screening study to evaluate the anti-plasmodial activity of some aromatic plants traditionally used in Sardinia, Myrtus communis (myrtle, Myrtaceae, Satureja thymbra (savory, Lamiaceae, and Thymus herba-barona (caraway thyme, Lamiaceae were collected in three vegetative periods: before, during and after flowering. Methods The essential oils were obtained by steam distillation, fractionated by silica gel column chromatography and analysed by GC-FID-MS. Total oil and three main fractions were tested on D10 and W2 strains of Plasmodium falciparum in vitro. Larvicidal and adulticidal activities were tested on Anopheles gambiae susceptible strains. Results The essential oil of savory, rich in thymol, was the most effective against P. falciparum with an inhibitory activity independent from the time of collection (IC50 17–26 μg/ml on D10 and 9–11 μg/ml on W2. Upon fractionation, fraction 1 was enriched in mono-sesquiterpenoid hydrocarbons; fraction 2 in thymol (73-83%; and fraction 3 contained thymol, carvacrol and terpinen-4-ol, with a different composition depending on the time of collection. Thymol-enriched fractions were the most active on both strains (IC50 20–22 μg/ml on D10 and 8–10 μg/ml on W2 and thymol was confirmed as mainly responsible for this activity (IC50 19.7± 3.0 and 10.6 ± 2.0 μg/ml on D10 and W2, respectively. The essential oil of S. thymbra L. showed also larvicidal and adulticidal activities. The larvicidal activity, expressed as LC50, was 0.15 ± 0.002; 0.21 ± 0.13; and 0.15 ± 0.09 μg/ml (mean ± sd depending on the time of collection: before, during and after flowering, respectively. Conclusions This study provides evidence for the use of essential oils for treating malaria and fighting the vector at both the larval and adult stages. These findings open the possibility for further

  3. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    Science.gov (United States)

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  4. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    Science.gov (United States)

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  5. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  6. In vitro and in vivo silencing of plasmodial dhs and eIf-5a genes in a putative, non-canonical RNAi-related pathway

    Directory of Open Access Journals (Sweden)

    Schwentke Andreas

    2012-06-01

    Full Text Available Abstract Background Deoxyhypusine synthase (DHS catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway. Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection. Results 293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS. Conclusions Infection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2–9

  7. Vibrational spectroscopy of microhydrated conjugate base anions.

    Science.gov (United States)

    Asmis, Knut R; Neumark, Daniel M

    2012-01-17

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water

  8. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    Science.gov (United States)

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. HPLC quantification of uncarine D and the anti-plasmodial activity of alkaloids from leaves of Mitragyna inermis (Willd.) O. Kuntze.

    Science.gov (United States)

    Fiot, Julien; Baghdikian, Béatrice; Boyer, Laurent; Mahiou, Valérie; Azas, Nadine; Gasquet, Monique; Timon-David, Pierre; Balansard, Guy; Ollivier, Evelyne

    2005-01-01

    An efficient system for the analysis of the total alkaloids extracted from leaves of Mitragyna inermis (Willd.) O. Kuntze (Rubiaceae) by HPLC using a reversed-phase column is described. The chromatographic conditions allowed the separation of indole and oxindole alkaloids in leaf extracts, and the quantification of uncarine D in samples collected in Burkina Faso and Mali. The HPLC method described was validated for its specificity, linearity and precision using an internal standard (naphthalene). The concentrations of uncarine D in various extracts were compared with their in vitro anti-plasmodial activity. The anti-proliferative activity on chloroquine-resistant strain (W2) of Plasmodium falciparum was not correlated with the concentration of uncarine D in leaves.

  10. A flow cytometry-based workflow for detection and quantification of anti-plasmodial antibodies in vaccinated and naturally exposed individuals

    DEFF Research Database (Denmark)

    Ajua, Anthony; Engleitner, Thomas; Esen, Meral;

    2012-01-01

    information about natural exposure and vaccine immunogenicity. A novel, cytometry-based workflow for the quantitative detection of anti-plasmodial antibodies in human serum is presented. METHODS: Fixed red blood cells (RBCs), infected with late stages of P. falciparum were utilized to detect malaria......-specific antibodies by flow cytometry with subsequent automated data analysis. Available methods for data-driven analysis of cytometry data were assessed and a new overlap subtraction algorithm (OSA) based on open source software was developed. The complete workflow was evaluated using sera from two GMZ2 malaria...... vaccine trials in semiimmune adults and pre-school children residing in a malaria endemic area. RESULTS: Fixation, permeabilization, and staining of infected RBCs were adapted for best operation in flow cytometry. As asexual vaccine candidates are designed to induce antibody patterns similar to semi...

  11. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis.

    Science.gov (United States)

    Kirmizibekmez, Hasan; Calis, Ihsan; Perozzo, Remo; Brun, Reto; Dönmez, Ali A; Linden, Anthony; Rüedi, Peter; Tasdemir, Deniz

    2004-08-01

    Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2 S,4 R)-2-carboxy-4-( E)- p-coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2 S,4 R)-1,1-dimethyl-4-( E)- p-coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, glucopyranosyl-(1-->G (i)-6)-martynoside and integrifolioside B, two flavone glycosides, luteolin 7- O-beta- D-glucopyranoside ( 10) and chrysoeriol 7- O-beta- D-glucopyranoside ( 11), a lignan glycoside liriodendrin, an acetophenone glycoside 4-hydroxyacetophenone 4- O-(6'- O-beta- D-apiofuranosyl)-beta- D-glucopyranoside and three caffeic acid esters, chlorogenic acid, 3-O-caffeoylquinic acid methyl ester and 5- O-caffeoylshikimic acid were isolated. The structures of the pure compounds were elucidated by means of spectroscopic methods (UV, IR, MS, 1D and 2D NMR, [alpha] (D)) and X-ray crystallography. Compounds 10 and 11 were determined to be the major anti-malarial principles of the crude extract (IC (50) values of 2.4 and 5.9 micrograms/mL, respectively). They also exhibited significant leishmanicidal activity (IC (50) = 1.1 and 4.1 micrograms/mL, respectively). The inhibitory potential of the pure metabolites against plasmodial enoyl-ACP reductase (FabI), which is the key regulator of type II fatty acid synthases (FAS-II) in P. falciparum, was also assessed. Compound 10 showed promising FabI inhibiting effect (IC (50) = 10 micrograms/mL) and appears to be the first anti-malarial natural product targeting FabI of P. falciparum.

  12. Role of N-glycosylation in cell surface expression and protection against proteolysis of the intestinal anion exchanger SLC26A3.

    Science.gov (United States)

    Hayashi, Hisayoshi; Yamashita, Yukari

    2012-03-01

    SLC26A3 is a Cl(-)/HCO(3)(-) exchanger that plays a major role in Cl(-) absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.

  13. Resonant spectra of quadrupolar anions

    CERN Document Server

    Fossez, K; Nazarewicz, W; Michel, N; Garrett, W R; Płoszajczak, M

    2016-01-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as extreme halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-molecule problem using a non-adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational ban...

  14. Neutral Resonant Ionization in Hydrogen Anion Production

    Science.gov (United States)

    Vogel, John

    2013-09-01

    Dissociative ionization of molecules causes gas phase H- but fails to explain anion intensity. Atomic collisions on surfaces with reduced work function give anions, but also fail to explain intensity, lowered electron density, and diagnostics. Neutral resonant ionization of H(2s) atoms to ion pairs is here predicted with a very high cross section. H(2s,p) atoms are resonant with numerous short-lived excited states (``resonances'') of H- as well as the putative doubly-excited stable state of H- which resists production by other means. This state decays through 1Σu+ (2s σu2) to a singly excited ion pair, leaving both proton and anion with 3.8 eV energy. H(2s,p) atoms arise from dissociative recombination of trihydrogen ion (H3+)which dominates ion content of hydrogen plasmas. Initial H(2s,p) are resonantly produced by ground state Cs atoms or excited Ar, Kr, and Xe atoms, but these initiators are not needed to sustain anion production. This theory may explain the intense ion source at Cal Tech that produced 1.5 mA/cm2 H3 in the mid-1980's (1). A full CRM calculation is not complete, but equilibrium calculations suggest that >1 mA/cm2 H- may be predicted.

  15. Selective adsorption of volatile hydrocarbons and gases in high surface area chalcogels containing [ES3]3- anions (E = As, Sb)

    KAUST Repository

    Ahmed, Ejaz

    2014-11-25

    We describe the sol-gel synthesis of the two new chalcogels KFeSbS3 and NaFeAsS3, which demonstrate excellent adsorption selectivity for volatile hydrocarbons and gases. These predominantly mesoporous materials have been synthesized by reacting Fe(OAc)2 with K3SbS3 or Na3AsS3 in a formamide/water mixture at room temperature. Aerogels obtained after supercritical drying have BET surface areas of 636 m2/g and 505 m2/g for KFeSbS3 and NaFeAsS3, respectively, with pore sizes in the micro- (below 2 nm), meso- (2-50 nm), and macro- (above 50 nm) regions.

  16. One pot synthesis of nanosized anion doped TiO{sub 2}: Effect of irradiation of sound waves on surface morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharotri, Nidhi, E-mail: nidhisliet11@gmail.com; Sud, Dhiraj, E-mail: author-suddhiraj@yahoo.com [Department of Chemistry, Sant Longowal Institute of Engineering and Technology, (Deemed University), Longowal 148106, Sangrur, Punjab (India)

    2015-08-28

    Commercialization of AOP’s for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO{sub 2} has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO{sub 2} (3.0-3.23 eV) with absorption cut off ∼ 380 nm, enables it to harness only a small fraction (∼ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO{sub 2} photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO{sub 2} nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  17. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    Science.gov (United States)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  18. Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells.

    Science.gov (United States)

    Unni, Sreekuttan M; Bhange, Siddheshwar N; Illathvalappil, Rajith; Mutneja, Nisha; Patil, Kasinath R; Kurungot, Sreekumar

    2015-01-21

    Nitrogen-doped carbon morphologies have been proven to be better alternatives to Pt in polymer-electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single-walled carbon nanohorn (SWCNH) with urea at 800 °C. The resulting nitrogen-doped carbon nanohorn shows a high surface area of 1836 m2 g(-1) along with an increased electron conductivity, which are the pre-requisites of an electrocatalyst. The nitrogen-doped nanohorn annealed at 800 °C (N-800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N-800, the present catalyst shows a clear 4-electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half-wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N-800 provides a maximum power density of 30 mW cm(-2) under anion-exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt-free electrode for AEMFCs.

  19. Adsorption of inorganic anionic contaminants on surfactant modified minerals

    Directory of Open Access Journals (Sweden)

    MAGDALENA TOMASEVIC-CANOVIC

    2003-11-01

    Full Text Available Organo-mineral complexes were obtained by treatment of aluminosilicate minerals (zeolite, bentonite and diatomaceous earth with a primary amine (oleylamine and an alkyl ammonium salt (stearyldimethylbenzyl ammonium chloride. The modification of the zeolite surface was carried out in two steps. The first step was treatment of the zeolite with 2 M HCl. This acid treatment of the zeolite increased its affinity for neutral molecules such as surface-active amines. The second step of the modification was the adsorption of oleylamine on the acid treated zeolite. Four types of organo-mineral complexes were prepared and their anion adsorption properties were compared to those of organo-zeolite. The adsorption of sulphate, bichromate and dihydrogenphosphate anions on the organo-mineral complexes was investigated. The anion adsorption measurements showed that the most efficient adsorbent for anion water pollutants was the primary amine modified H+-form zeolite.

  20. Anionic phospholipids modulate peptide insertion into membranes.

    Science.gov (United States)

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  1. Resonant spectra of quadrupolar anions

    Science.gov (United States)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  2. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae: identification of its main active constituent, structure-activity relationship studies and gene expression profiling

    Directory of Open Access Journals (Sweden)

    van Heerden Fanie R

    2011-10-01

    Full Text Available Abstract Background Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. Methods Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls, followed by oligonucleotide microarray- and data analysis. Results The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 μM against a chloroquine-sensitive strain (D10 of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action

  3. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  4. Pentaarylfullerenes as noncoordinating cyclopentadienyl anions

    NARCIS (Netherlands)

    Bouwkamp, Marco W.; Meetsma, Auke

    2009-01-01

    The first example of an early-transition-metal complex involving a pentaarylfullerene was prepared. Instead of half-sandwich complexes, solvent separated ion pairs were obtained in which the pentaarylfullerene moiety acts as noncoordinating cyclopentadienyl anion.

  5. Lowest autodetachment state of the water anion

    Science.gov (United States)

    Houfek, Karel; Čížek, Martin

    2016-05-01

    The potential energy surface of the ground state of the water anion H2O- is carefully mapped using multireference CI calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O-+H2 and OH-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The autodetachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O- + H2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slighly off the linear geometry and is separated by a saddle from the autodetachment region. The autodetachment region is directly accessible from the OH-+H asymptote. For the molecular geometries in the autodetachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Use of a selective inhibitor to define the chemotherapeutic potential of the plasmodial hexose transporter in different stages of the parasite's life cycle.

    Science.gov (United States)

    Slavic, Ksenija; Delves, Michael J; Prudêncio, Miguel; Talman, Arthur M; Straschil, Ursula; Derbyshire, Elvira T; Xu, Zhengyao; Sinden, Robert E; Mota, Maria M; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev; Staines, Henry M

    2011-06-01

    During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC₅₀) of 11 μM. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC₅₀s in the region of 250 μM (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.

  7. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  8. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  9. Ion-selective electrode and anion gap range: What should the anion gap be?

    Directory of Open Access Journals (Sweden)

    Sadjadi SA

    2013-06-01

    Full Text Available Seyed-Ali Sadjadi, Rendell Manalo, Navin Jaipaul, James McMillan Jerry L Pettis Memorial Veterans Medical Center, Loma Linda University School of Medicine, Loma Linda, CA, USA Background: Using flame photometry technique in the 1970s, the normal value of anion gap (AG was determined to be 12 ± 4 meq/L. However, with introduction of the autoanalyzers using an ion-selective electrode (ISE, the anion gap value has fallen to lower levels. Methods: A retrospective study of US veterans from a single medical center was performed to determine the value of the anion gap in subjects with normal renal function and normal serum albumin and in patients with lactic acidosis and end-stage renal disease on dialysis. Results: In 409 patients with an estimated glomerular filtration rate ≥60 mL/min/1.73 m2 body surface area and serum albumin ≥4 g/dL, the mean AG was 7.2 ± 2 (range 3–11 meq/L. In 299 patients with lactic acidosis (lactate level ≥4 meq/L and 68 patients with end-stage renal disease on dialysis, the mean AG was 12.5 meq/L and 12.4 meq/L, respectively. A value <2 meq/L should be considered a low anion gap and a possible clue to drug intoxication and paraproteinemic disorders. Conclusion: With the advent of ISE for measurement of analytes, the value of the anion gap has fallen. Physicians need to be aware of the normal AG value in their respective institutions, and laboratories need to have an established value for AG based on the type of instrument they are using. Keywords: acidosis, electrolytes, ESRD

  10. Amide-based Fluorescent Macrocyclic Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG, Zhen-Ya(曾振亚); XU, Kuo-Xi(徐括喜); HE, Yong-Bing(何永炳); LIU, Shun-Ying(刘顺英); WU, Jin-Long(吴进龙); WEI, Lan-Hua(隗兰华); MENG, Ling-Zhi(孟令芝)

    2004-01-01

    Two fluorescent anion receptors (1 and 2) based on amide macrocycle were synthesized and corresponding fluorescence quenching induced by anion complexation was observed in different degree. Receptors form 1: 1 complexes with anions by hydrogen bonding interactions. Receptor 1 bound anions in the order of F->Cl->H2PO4->CH3COO->>Br-, I- and receptor 2 showed high selectivity to F- over other anions.

  11. Neutral and anionic superhalogen hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Swierszcz, Iwona [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Anusiewicz, Iwona, E-mail: iwonaa@chem.univ.gda.pl [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)

    2011-05-26

    Graphical abstract: The energy profile for the Na(OH){sub 2}{sup -} anionic hydroxide formation according to the NaOH+OH{sup -}{yields}Na(OH){sub 2}{sup -} reaction. Display Omitted Highlights: {yields} The superhalogen hydroxides and their anions were studied at the CCSD(T)/6-311++G(3df,3pd) level. {yields} All anionic superhalogen hydroxides were found to be thermodynamically stable. {yields} The VDE values calculated for the M(OH){sub k+1}{sup -} anions exceed 4 eV in all cases. {yields} The largest VDEs were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} (6.21 eV). - Abstract: The properties of superhalogen M(OH){sub k+1}{sup -} anions and their M(OH){sub k+1} neutral parents (where M = Li, Na, K, Be, Mg, Ca, B, Al, Ga) were investigated at the ab initio CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level of theory. All the M(OH){sub k+1}{sup -} anions and some of their M(OH){sub k+1} neutral parents (k is the maximal formal valence of M) were found to be thermodynamically stable against the fragmentations (OH, OH{sup -}, O{sub 2} or H{sub 2}O loss). The vertical electron detachment energies (VDE) of the M(OH){sub k+1}{sup -} anions were calculated with the OVGF method and using the 6-311++G(3df,3pd) basis sets. The VDE values calculated for the anions studied exceed 4 eV in all cases, whereas the largest values of the electron binding energies were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} anions (6.21 eV). Finally, formation of most of the species considered was predicted to be spontaneous due to the lack of kinetic barriers for these processes and their thermodynamic favorability.

  12. Solubility and transport of cationic and anionic patterned nanoparticles

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia; Olvera de La Cruz, Monica

    2012-02-01

    Diffusion and transport of nanoparticles (NPs) though nanochannels is important for desalination, drug delivery, and biomedicine. Their surface composition dictate their efficiency separating them by reverse osmosis, delivering into into cells, as well as their toxicity. We analyze bulk diffusion and transport through nanochannels of NPs with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. The cationic NPs are more affected by the patterns, less water soluble, and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. For equivalent patterns, anionic NPs solubilize more than cationic NPs since the Coulomb interaction of free anionic NPs, which are much stronger than hydrophobic NP-water interactions, are about twice that of cationic NPs.

  13. Anions in Nucleic Acid Crystallography.

    Science.gov (United States)

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.

  14. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  15. Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH.

    Science.gov (United States)

    Poniková, Slavomíra; Antošová, Andrea; Demjén, Erna; Sedláková, Dagmar; Marek, Jozef; Varhač, Rastislav; Gažová, Zuzana; Sedlák, Erik

    2015-09-01

    We have explored an effect of Hofmeister anions, Na2SO4, NaCl, NaBr, NaNO3, NaSCN and NaClO4, on stability and amyloid fibrillization of hen egg white lysozyme at pH 2.7. The stability of the protein was analyzed by differential scanning calorimetry. The Hofmeister effect of the anions was assessed by the parameter dT trs/d[anion] (T trs, transition temperature). We show that dT trs/d[anion] correlates with anion surface tension effects and anion partition coefficients indicating direct interactions between anions and lysozyme. The kinetic of amyloid fibrillization of lysozyme was followed by Thioflavin T (ThT) fluorescence. Negative correlation between dT trs/d[anion] and the nucleation rate of fibrillization in the presence of monovalent anions indicates specific effect of anions on fibrillization rate of lysozyme. The efficiency of monovalent anions to accelerate fibrillization correlates with inverse Hofmeister series. The far-UV circular dichroism spectroscopy and atomic force microscopy findings show that conformational properties of fibrils depend on fibrillization rate. In the presence of sodium chloride, lysozyme forms typical fibrils with elongated structure and with the secondary structure of the β-sheet. On the other hand, in the presence of both chaotropic perchlorate and kosmotropic sulfate anions, the fibrils form clusters with secondary structure of β-turn. Moreover, the acceleration of fibril formation is accompanied by decreased amount of the formed fibrils as indicated by ThT fluorescence. Taken together, our study shows Hofmeister effect of monovalent anions on: (1) lysozyme stability; (2) ability to accelerate nucleation phase of lysozyme fibrillization; (3) amount, and (4) conformational properties of the formed fibrils.

  16. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  17. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  18. pH值和阴离子对吡啶2,6-二羧酸在金纳米颗粒表面的增强拉曼散射的影响%Influence of pH Value and Anion on Surface Enhanced Raman Scattering of 2,6-Pyridinedicarboxylic Acid on Gold Nanoparticle Suface

    Institute of Scientific and Technical Information of China (English)

    罗伟琪; 成汉文; 宦双燕; 温国丽; 陈媛媛; 沈国励; 俞汝勤

    2011-01-01

    Surface enhanced Raman scattering (SERS) was used for the detection of 2 , 6-pyridinedicar boxylic acid (DPA) , a biomarker for bacterial spores. The gold nanoparticles of 60 nm diameters were immobilized on a polished Au electrode using PVP as an adhesive layer. We demonstrated that the fabricated SERS substrates were steady and highly sensitive. The influence of pH and anions about the adsorption mechanism of DPA on colloidal gold nanoparticles has been examined by SERS. The results showed that using a gold nanoparticle/polyvinylpyrrolidone/gold substrate (AuNPs/PVP/Au)for detection of DPA exhibited a maximum enhancement of SERS signal at low pH, however the SERS features and intensity of DPA were found to weaken when pH was greater than pKa2. The effect of different anions on the adsorption mechanism of this molecule was also investigated, the SERS effect on Au NPs-Au substrate had changed, since the anions may replace the partial sites of the citrate on the gold surface. Owing to the different adsorption mechanism of the three anions, the difference of SERS intensity was observed on the addition of different anions.%表面增强拉曼散射(SERS)被用于检测细菌芽抱中的一种重要的标志物吡啶2,6-羧酸(DPA).以聚乙烯吡啶烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底.通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附的影响.结果表明:在强酸条件下,DPA在Au NPs/PVP/Au基底上的SERS信号能达到最大增强;当pH值大于DPA二级解离常数时,DPA的SERS特征逐渐减弱.在DPA中引入不同酸根盐时,后者会取代纳米金表面的柠檬酸根所占的部分位点,改变Au NPs-Au基底的SERS增强性能.3种酸根吸附性能不同,所以获得的光谱强度存在差异.

  19. Organic superconductors with an incommensurate anion structure

    Directory of Open Access Journals (Sweden)

    Tadashi Kawamoto and Kazuo Takimiya

    2009-01-01

    Full Text Available Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF(AuI20.436 and (MDT-ST(I30.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene-1,3-diselena-4,6-dithiapentalene, and q is the reciprocal lattice vector of the anion lattice. The selection rule of the reconstructing vectors is associated with the magnitude of the incommensurate potential. The considerably large interlayer transfer integral and three-dimensional superconducting properties are due to the direct donor–donor interactions coming from the characteristic corrugated conducting sheet structure. The materials with high superconducting transition temperature, Tc, have large ratios of the observed cyclotron masses to the bare ones, which indicates that the strength of the many-body effect is the major determinant of Tc. (MDT-TS(AuI20.441 shows a metal–insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene-1,3,4,6-tetrathiapentalene, and the insulating phase is an antiferromagnet with a high Néel temperature (TN=50 K and a high spin–flop field (Bsf=6.9 T. There is a possibility that this material is an incommensurate Mott insulator. Hydrostatic pressure suppresses the insulating state and induces superconductivity at Tc=3.2 K above 1.05 GPa, where Tc rises to the maximum, Tcmax=4.9 K at 1.27 GPa. This compound shows a usual temperature–pressure phase diagram, in which the superconducting phase borders on the antiferromagnetic insulating phase, despite the unusual band filling.

  20. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  1. Deflocculation of Cellulosic Suspensions with Anionic High Molecular Weight Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Markus Heikki Juhani Korhonen

    2014-04-01

    Full Text Available Pulp fibers have a strong tendency to form flocs in water suspensions, which may cause their undesirable distribution in the paper sheets. This flocculation can be controlled by adding, e.g., an anionic high molecular weight polyelectrolyte in the fiber suspension. The objective of this study was to investigate the effect of anionic polyelectrolytes on deflocculation kinetics, dewatering, and rheology of cellulosic suspensions. The results showed that both microfibrillated cellulose (MFC and macroscopic pulp fibers can be dispersed using anionic polyacrylamides (APAM. The higher the molecular weight of APAM, the higher is its effect. Adsorption experiments illustrate that anionic polyelectrolytes do not strongly attach to cellulose surfaces but they can be partly entrapped or can disperse nanocellulose fibrils (increase the swelling. Based on rheological experiments, the MFC network became weaker with APAM addition. Similar to the flocculation mechanism of cellulosic materials with polymers, deflocculation is also time dependent. Deflocculation occurs very rapidly, and the maximum deflocculation level is achieved within a few seconds. When mixing is continued, the floc size starts to increase again. Also dewatering was found to be strongly dependent on the contact time with the APAMs. These results indicate that the positive effects of anionic deflocculants are quickly diminished due to shear forces, and therefore, the best deflocculating effect is achieved using as short a contact time as possible.

  2. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  3. Binding Hydrated Anions with Hydrophobic Pockets.

    Science.gov (United States)

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  4. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  5. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  6. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  7. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  8. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  9. The interaction of certain inorganic anions with clays and soils

    NARCIS (Netherlands)

    Haan, de F.A.M.

    1965-01-01

    Interaction between anions and soil colloids was governed by 2 antagonistic processes, anion exclusion and positive anion adsorption. The predominantly negative charge on the colloids caused anion repulsion; positively charged sites and chemisorption resulted in positive

  10. Ionol (BHT) produces superoxide anion.

    Science.gov (United States)

    Smirnova, E G; Lyubimov, Yu I; Malinina, T G; Lyubimova, E Yu; Alexandrushkina, N I; Vanyushin, B F; Kolesova, G M; Yaguzhinsky, L S

    2002-11-01

    In aqueous medium etiolated wheat seedlings release superoxide anion (O2*-). Interaction of a synthetic antioxidant, butylated hydroxytoluene (BHT, ionol), with oxygen in the aqueous medium is accompanied by O2*- formation. This suggests that under certain conditions BHT behaves as a prooxidant. A natural antioxidant, superoxide dismutase (SOD), and also a wound healing preparation, emulsified denatured placenta (EDP), do not exhibit the prooxidant properties. In contrast to BHT, they reduce O2*- production by the etiolated wheat seedling system.

  11. Hosting anions. The energetic perspective.

    Science.gov (United States)

    Schmidtchen, Franz P

    2010-10-01

    Hosting anions addresses the widely spread molecular recognition event of negatively charged species by dedicated organic compounds in condensed phases at equilibrium. The experimentally accessible energetic features comprise the entire system including the solvent, any buffers, background electrolytes or other components introduced for e.g. analysis. The deconvolution of all these interaction types and their dependence on subtle structural variation is required to arrive at a structure-energy correlation that may serve as a guide in receptor construction. The focus on direct host-guest interactions (lock-and-key complementarity) that have dominated the binding concepts of artificial receptors in the past must be widened in order to account for entropic contributions which constitute very significant fractions of the total free energy of interaction. Including entropy necessarily addresses the ambiguity and fuzziness of the host-guest structural ensemble and requires the appreciation of the fact that most liquid phases possess distinct structures of their own. Apparently, it is the perturbation of the intrinsic solvent structure occurring upon association that rules ion binding in polar media where ions are soluble and abundant. Rather than specifying peculiar structural elements useful in anion binding this critical review attempts an illumination of the concepts and individual energetic contributions resulting in the final observation of specific anion recognition (95 references).

  12. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals

    Science.gov (United States)

    Starodubov, S. S.; Nechaev, I. V.; Vvedenskii, A. V.

    2016-01-01

    Gas-phase adsorption of formaldehyde and gas- and liquid-phase adsorption of the methanediol anion on the (111) face of copper, silver, and gold was modeled in terms of the density functional theory and the cluster model of the metal single-crystal surface. In the gas phase, formaldehyde was found to be physically adsorbed on the metals, while the methanediol anion was found to be chemisorbed. It exists on the surface in two different stable states. In aqueous solution, the H3CO 2 - anion can spontaneously dissociate into the formate ion and two hydrogen atoms.

  13. Adsorption of an anionic dispersant on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering, Chemical & Metallurgical Engineering Faculty

    2001-12-01

    Since coal is not a homogeneous substance but a mixture of carbonaceous materials and mineral matter, it has a variety of surface properties. Therefore, it is not easy to control the properties of coal suspensions by simply adjusting variables, such as pH and/or electrolyte. A chemical agent needs to be added to control the properties of the coal suspensions. The adsorption behavior of an anionic dispersant in the presence of a wetting agent using some Turkish lignite samples was investigated. The effects of dispersant concentration, temperature and pH on the dispersant adsorption were studied systematically, and the experimental results are presented. Pellupur B69 as a dispersant, commercial mixture of formaldehyde condensate sodium salt of naphthalene sulphonic acid, and Texapon N{sub 2}5 as a wetting agent, a sodium lauryl ether sulfate, have been used.

  14. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  15. Surfactant behavior of "ellipsoidal" dicarbollide anions: a molecular dynamics study.

    Science.gov (United States)

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-05-18

    We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).

  16. Vibrational Autodetachment in Nitroalkane Anions

    Science.gov (United States)

    Adams, Christopher L.; Weber, J. Mathias

    2010-06-01

    Nitroalkanes have electron affinities ge 1370 cm-1, well below the excitation energies for CH stretching modes, with the excess charge localized on the nitro group. Upon absorption of an IR photon in a CH stretching vibrational mode, the absorbed energy is redistributed in the molecule. If enough energy is transferred to the NO2 stretching/wagging modes, the excess electron residing on the nitro group is emitted. Vibrational autodetachment (VAD) spectra encode information regarding intramolecular vibrational relaxation (IVR) processes leading up to electron emission. We present VAD photoelectron spectroscopy of polyatomic molecular anions and discuss how a VAD photoelectron spectrum can be modeled.

  17. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  18. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  19. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    Science.gov (United States)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  20. Tunable electronic interactions between anions and perylenediimide.

    Science.gov (United States)

    Goodson, Flynt S; Panda, Dillip K; Ray, Shuvasree; Mitra, Atanu; Guha, Samit; Saha, Sourav

    2013-08-07

    Over the past decade anion-π interaction has emerged as a new paradigm of supramolecular chemistry of anions. Taking advantage of the electronic nature of anion-π interaction, we have expanded its boundaries to charge-transfer (CT) and formal electron transfer (ET) events by adjusting the electron-donating and accepting abilities of anions and π-acids, respectively. To establish that ET, CT, and anion-π interactions could take place between different anions and π-acids as long as their electronic and structural properties are conducive, herein, we introduce 3,4,9,10-perylenediimide (PDI-1) that selectively undergoes thermal ET from strong Lewis basic hydroxide and fluoride anions, but remains electronically and optically silent to poor Lewis basic anions, as ET and CT events are turned OFF. These interactions have been fully characterized by UV/Vis, NMR, and EPR spectroscopies. These results demonstrate the generality of anion-induced ET events in aprotic solvents and further refute a notion that strong Lewis basic hydroxide and fluoride ions can only trigger nucleophilic attack to form covalent bonds instead of acting as sacrificial electron donors to π-acids under appropriate conditions.

  1. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  2. Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water.

    Science.gov (United States)

    Chen, Ming; Jafvert, Chad T

    2017-07-05

    Surfactant micelles combined with ultrafiltration can partially, or sometimes nearly completely, separate various ionic and nonionic pollutants from water. To this end, the selectivity of aqueous micelles composed of either cetyltrimethylammonium (CTA(+)) bromide or cetylpyridinium (CP(+)) chloride toward many environmentally relevant anions (IO3(-), F(-), Cl(-), HCO3(-), NO2(-), Br(-), NO3(-), H2PO4(-), HPO4(2-), SO4(2-), and CrO4(2-)) was investigated. Selectivity coefficients of CTA(+) micelles (with respect to Br(-)) and CP(+) micelle (with respect to Cl(-)) for these anions were evaluated using a simple thermodynamic ion exchange model. The sequence of anion affinity for the CTA(+) micelles and for the CP(+) micelles were the same, with decreasing affinity occurring in the order of: CrO4(2-) > SO4(2-) > HPO4(2-) > NO3(-) > Br(-) > NO2(-) > Cl(-) > HCO3(-) > H2PO4(-) ≈ F(-). From the associated component mass balance and ion exchange (i.e., mass action) equations, an overall speciation model was developed to predict the distribution of all anions between the aqueous and micellar pseudophase for complex ionic mixtures. Experimental results of both artificial and real surface waters were in good agreement to model predictions. Further, the results indicated that micelles combined with ultrafiltration may be a potential technology for nutrient and other pollutant removal from natural or effluent waters.

  3. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  4. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  5. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  6. Anion stripping as a general method to create cationic porous framework with mobile anions.

    Science.gov (United States)

    Mao, Chengyu; Kudla, Ryan A; Zuo, Fan; Zhao, Xiang; Mueller, Leonard J; Bu, Xianhui; Feng, Pingyun

    2014-05-28

    Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.

  7. Molecular dynamics simulation of anionic clays containing glutamic acid

    Science.gov (United States)

    Xu, Qian; Ni, Zheming; Yao, Ping; Li, Yuan

    2010-08-01

    Supra-molecular structure of glutamic acid intercalated ZnAl layered double hydroxides (Glu-ZnAl-LDH) was modeled by molecular dynamics (MD) methods. Hydrogen bonding, hydration and swelling properties of Glu-LDH have been investigated. For Nw layers and anions. When A-W type H-bonds gradually reached a saturation state, water molecules continued to form hydrogen bonds with the hydroxyls of the layers. The L-W type H-bonds gradually substituted the L-A type H-bonds and Glu anions moved to the center of an interlayer and then separated with the layers. Last, a well-ordered structural water layer was formed on the surface hydroxyls of Glu-LDH. The lower releasing content of Glu-LDH maybe was influenced by the lower balance hydration energy and existence of L-A type H-bonds in high water content.

  8. Aqueous extraction of anions from coal and fly ash followed by ion-chromatographic determination

    Directory of Open Access Journals (Sweden)

    Tasić Aleksandra M.

    2016-01-01

    Full Text Available Three different techniques were applied for the aqueous extraction of anions from coal and fly ash: rotary mixer- and ultrasonic-assisted extraction with different duration time, and microwave-assisted extraction at different temperatures. Validation showed that the ion-chromatographic method was suitable for the analysis of anions in coal and fly ash extracts. The variations in the amounts of anions using different extraction times during rotary-assisted extraction were minimal for all investigated anions. The efficiency of ultrasound-assisted extraction of anions from coal depended on the sonication time and was highest at 30 min. The ultrasound-assisted extraction was less efficient for the extraction of anions from fly ash than rotary-assisted extraction. Increase of temperature in the microwave-assisted extraction had a positive effect on the amounts of all anions extracted from coal and sulphate from fly ash, while the amounts of fluoride and chloride in fly ash extracts decreased. The microwave-assisted extraction of coal at 150°C was compared with standard ASTM methods, and results were in good agreement only for chloride. Changes in the pH value and conductivity during ultrasound-assisted extraction were measured in order to explain changes on the surface of coal particles in contact with water and different processes that occur under environmental conditions. [Projekat Ministarstva nauke Republike Srbije, br. 172030, br. 176006 i br. III43009

  9. Interactions between Hofmeister anions and the binding pocket of a protein.

    Science.gov (United States)

    Fox, Jerome M; Kang, Kyungtae; Sherman, Woody; Héroux, Annie; Sastry, G Madhavi; Baghbanzadeh, Mostafa; Lockett, Matthew R; Whitesides, George M

    2015-03-25

    This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to—and to alter the charge and hydration structure of—polar, nonpolar, and topographically complex concavities on the surfaces of proteins.

  10. Supramolecular electron transfer by anion binding.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; D'Souza, Francis; Sessler, Jonathan L

    2012-10-11

    Anion binding has emerged as an attractive strategy to construct supramolecular electron donor-acceptor complexes. In recent years, the level of sophistication in the design of these systems has advanced to the point where it is possible to create ensembles that mimic key aspects of the photoinduced electron-transfer events operative in the photosynthetic reaction centre. Although anion binding is a reversible process, kinetic studies on anion binding and dissociation processes, as well as photoinduced electron-transfer and back electron-transfer reactions in supramolecular electron donor-acceptor complexes formed by anion binding, have revealed that photoinduced electron transfer and back electron transfer occur at time scales much faster than those associated with anion binding and dissociation. This difference in rates ensures that the linkage between electron donor and acceptor moieties is maintained over the course of most forward and back electron-transfer processes. A particular example of this principle is illustrated by electron-transfer ensembles based on tetrathiafulvalene calix[4]pyrroles (TTF-C4Ps). In these ensembles, the TTF-C4Ps act as donors, transferring electrons to various electron acceptors after anion binding. Competition with non-redox active substrates is also observed. Anion binding to the pyrrole amine groups of an oxoporphyrinogen unit within various supramolecular complexes formed with fullerenes also results in acceleration of the photoinduced electron-transfer process but deceleration of the back electron transfer; again, this is ascribed to favourable structural and electronic changes. Anion binding also plays a role in stabilizing supramolecular complexes between sulphonated tetraphenylporphyrin anions ([MTPPS](4-): M = H(2) and Zn) and a lithium ion encapsulated C(60) (Li(+)@C(60)); the resulting ensemble produces long-lived charge-separated states upon photoexcitation of the porphyrins.

  11. Anion conductance selectivity mechanism of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  12. Molecular anions sputtered from fluorides

    CERN Document Server

    Gnaser, H

    2002-01-01

    The emission of negatively charged ions from different fluoride samples (LiF, CaF sub 2 , LaF sub 3 and HfF sub 4) induced by sputtering with a 14.5-keV Cs sup + ion beam was studied. Sputtered ions were detected in a high-sensitivity double-focusing mass spectrometer. In particular, the possible existence of small doubly charged negative molecular ions was investigated. But whereas singly charged species of the general type MF sub n sup - (where M represents a metal atom) were detected with high abundances, stable dianions were observed in an unambiguous way only for one molecule: HfF sub 6 sup 2 sup -. The flight time through the mass spectrometer of approx 35 mu s establishes a lower limit with respect to the intrinsic lifetime of this doubly charged ion. For singly charged anions abundance distributions and, in selected cases, emission-energy spectra were recorded. For two ion species (Ca sup - and HfF sub 5 sup -) isotopic fractionation effects caused by the (velocity dependent) ionization process were d...

  13. Anion photoelectron imaging spectroscopy of glyoxal

    Science.gov (United States)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  14. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.

    Science.gov (United States)

    Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika

    2014-01-01

    A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology.

  15. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  16. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    intrinsic factors and solvent effects is the enhanced reactivity of α-nucleophiles – nucleophiles with a lone-pair adjacent to the attacking site – referred to as the α-effect. This thesis concerns the reactivity of microsolvated anions and in particular how the presence of a single solvent molecule affects...... the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  17. Photostability enhancement of anionic natural dye by intercalation into hydrotalcite.

    Science.gov (United States)

    Kohno, Yoshiumi; Totsuka, Koichi; Ikoma, Shuji; Yoda, Keiko; Shibata, Masashi; Matsushima, Ryoka; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2009-09-01

    The aim of this study is the improvement of the photostability of several natural anionic dyes, carmine (CM), carthamus yellow (CY), and annatto dye (ANA), by complexation with hydrotalcite. The composite of the dyes and hydrotalcite is prepared by the coprecipitation method. CM is successfully intercalated in the hydrotalcite layer when the amount of introduced CM is large. The photostability of CM in CM/HT composites is superior to the CM adsorbed on silica surface. The effect of the stability enhancement is larger when the amount of introduced CM exceeds 0.23 g/g-host, or when the layer charge density of the hydrotalcite is larger. CY is also stabilized by complexation with hydrotalcite, whereas ANA is not stabilized by complexation with hydrotalcite. The photostability of an anionic natural dye can be improved by intercalation into the hydrotalcite layer, if the dye has a hydrophilic nature and a rather planar structure. The intercalated dye is stabilized by the protection from the attack of the atmospheric oxygen. In addition, contribution of the electrostatic interaction between the positively charged hydrotalcite layer and the intercalated anionic dye is also proposed.

  18. Conformational equilibrium of talin is regulated by anionic lipids.

    Science.gov (United States)

    Ye, Xin; McLean, Mark A; Sligar, Stephen G

    2016-08-01

    A critical step in the activation of integrin receptors is the binding of talin to the cytoplasmic domain of the β subunits. This interaction leads to separation of the integrin α and β transmembrane domains and significant conformational changes in the extracellular domains, resulting in a dramatic increase in integrin's affinity for ligands. It has long been shown that the membrane bilayer also plays a critical role in the talin-integrin interaction. Anionic lipids are required for proper interaction, yet the specificity for specific anionic headgroups is not clear. In this report, we document talin-membrane interactions with bilayers of controlled composition using Nanodiscs and a FRET based binding and structural assay. We confirm that recruitment of the talin head domain to the membrane surface is governed by charge in the absence of other adapter proteins. In addition, measurement of the donor-acceptor distance is consistent with the hypothesis that anionic lipids promote a conformational change in the talin head domain allowing interaction of the F3 domain with the phospholipid bilayer. The magnitude of the F3 domain movement is altered by the identity of the phospholipid headgroup with phosphatidylinositides promoting the largest change. Our results suggest that phoshpatidylinositol-4,5-bisphosphate plays key a role in converting talin head domain to a conformation optimized for interactions with the bilayer and subsequently integrin cytoplasmic tails.

  19. A new class of organocatalysts: sulfenate anions.

    Science.gov (United States)

    Zhang, Mengnan; Jia, Tiezheng; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2014-09-26

    Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst.

  20. Fluorescence-lifetime-based sensors for anions

    Science.gov (United States)

    Teichmann, Maria; Draxler, Sonja; Kieslinger, Dietmar; Lippitsch, Max E.

    1997-05-01

    Sensing of anions has been investigated using the fluorescence decaytime as the information carrier. The sensing mechanism is based on the coextraction of an anion and a proton, and the presence of a fluorophore with a rather long fluorescence decaytime inside the membrane to act as a pH indicator. The relevant theory is discussed shortly. As an example a sensor for nitrate is shown, and the influence of ionic additives on the working function has been investigated.

  1. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.

    Science.gov (United States)

    Tang, Ya-Li; Shi, Yong-Hui; Zhao, Wei; Hao, Gang; Le, Guo-Wei

    2008-12-01

    Antimicrobial molecules from insects may serve as a potentially significant group of antibiotics. To identify the effect of antimicrobial peptides (AMPs) on bacterial membrane and obtain further insight in the mechanism of membrane transport of AMPs, the interaction of surface potential and permeation of a novel antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly was examined using liposomes from bacterial lipids extract. Compared with the cationic AMPs, MDpep5 cannot completely disrupt membrane. The uptake of MDpep5 by bacterial liposomes was dependent on the membrane surface potential. The mutual inhibition of the transport of MDpep5 through the cell membrane was caused by the change in surface potential due to the binding of MDpep5 to the membrane. Furthermore, formation of MDpep5-enriched lipid aggregates could lead to the disorder of the bilayer structure. Based on our experimental data, we propose that MDpep5 initiated its antimicrobial activity by profoundly disordering the structure and affecting physical properties of bacterial membrane when binding to the phospholipid which accounts for its bactericidal activity.

  2. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  3. Neutral pyrimidine C-H donor as anion receptor

    Institute of Scientific and Technical Information of China (English)

    袁迎雪; 吴娜娜; 韩逸飞; 宋相志; 王洪波

    2016-01-01

    Anion receptors including pyrimidine subunit were designed and synthesized and their binding abilities with various anions were investigated by fluorescence and 1H NMR titration experiments. DFT calculations provided some information for anion recognition. It is confirmed that both of two new pyrimidine anion receptors have the selectivity for Cl−.

  4. Denture polymers with antimicrobial properties: a review of the development and current status of anionic poly(methyl methacrylate) polymers.

    Science.gov (United States)

    Raj, Periathamby Antony; Dentino, Andrew R

    2013-09-01

    The denture base polymer poly(methyl methacrylate) (PMMA) is highly susceptible for microbial colonization resulting in denture-associated infections. Over the years research has focused on ways to modify the PMMA properties via surface and chemical modification. These studies led to the development of new denture polymers that include anionic PMMA polymers. The new anionic polymers presented the possibility of compromising the physical and mechanical properties required for denture fabrication. These obstacles were overcome by generating anionic PMMA polymers with physical and mechanical properties suitable for denture fabrication. A large body of literature is available on the anionic PMMA polymers, their antimicrobial properties and their potential for the commercial and clinical application as dental biomaterials. This article describes a review and evaluation of the anionic PMMA polymers for their suitability to serve as denture base polymers, their antimicrobial properties, their efficacy to prevent denture-induced infection and their safety in the oral environment.

  5. Metal-Anion Pairing at Oxide/Water Interfaces: Theoretical and Experimental Investigations from the Nanoscale to the Macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Heather [The Ohio State Univ., Columbus, OH (United States)

    2016-11-14

    We combine the use of several techniques including bulk adsorption experiments, X-ray absorption, infrared, total internal reflection Raman, and vibrational sum frequencygeneration (XAS, IR, TIR-Raman, VSFG) spectroscopies, and molecular modeling to investigate ion adsorption at mineral surfaces. XAS and TIR-Raman provides data on how the metal binds to the surface (e.g., monodentate, bidentate), IR provides data on bulk anion adsorption at mineral surfaces from aqueous solutions, and VSFG provides surface specific data on anion adsorption at the mineral surface as well as impact of adsorbed metal-anion pairs on water structure at the mineral surface. Molecular modeling is used to guide spectroscopic data interpretation by providing information on water structure around ions in solution and the structure of metal-anion complexes in aqueous solutions. In addition, molecular modeling is used to provide insight into water structure at mineral surfaces, the surface sites involved in ion adsorption, and the distribution of ion pairs between aqueous solution and the mineral surface. Our studies have focused on systems involving alkaline earth metal (Mg2+, Ca2+, Sr2+, Ba2+) and heavy metal (Co2+, Cd2+) cations. The anions we have selected for studyinclude Cl-, NO3-, ClO4-, SO42-, SeO32-, and SeO42-. Ion adsorption and the potential formation ofternary complexes on silica (quartz, amorphous silica), alumina (corundum and gibbsite), and ferric iron oxides (goethite and hematite) are under investigation.

  6. Studies of anions sorption on natural zeolites.

    Science.gov (United States)

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method.

  7. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  8. Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory

    KAUST Repository

    Savizi, Iman Shahidi Pour

    2011-04-01

    Specific adsorption of anions to electrode surfaces may alter the rates of electrocatalytic reactions. Density functional theory (DFT) methods are used to predict the adsorption free energy of acetate and phosphate anions as a function of Pt(1 1 1) electrode potential. Four models of the electrode potential are used including a simple vacuum slab model, an applied electric field model with and without the inclusion of a solvating water bi-layer, and the double reference model. The linear sweep voltammogram (LSV) due to anion adsorption is simulated using the DFT results. The inclusion of solvation at the electrochemical interface is necessary for accurately predicting the adsorption peak position. The Langmuir model is sufficient for predicting the adsorption peak shape, indicating coverage effects are minor in altering the LSV for acetate and phosphate adsorption. Anion adsorption peak positions are determined for solution phase anion concentrations present in microbial fuel cells and microbial electrolysis cells and discussion is provided as to the impact of anion adsorption on oxygen reduction and hydrogen evolution reaction rates in these devices. © 2011 Elsevier Ltd. All rights reserved.

  9. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  10. Potentiometric response and mechanism of anionic recognition of heterocalixarene-based ion selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shishkanova, T.V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)]. E-mail: tatiana.shishkanova@vscht.cz; Sykora, D. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Sessler, J.L. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-0615 (United States); Kral, V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2007-03-28

    The ion selective electrode (ISE)-based potentiometric approach is shown to be an effective means of characterizing the anion recognition sites in the molecular receptor calix[2]pyridino[2]pyrrole (CPP). In particular, potentiometric pH-measurements involving the use of experimental PVC-membranes based on CPP revealed the existence of both mono- and diprotonated forms of the receptor under readily accessible conditions. Based on these analyses, apparent surface protonation constants for this heterocalixarene were found to lie between 8.5-8.9 (pK {sub B1}) and 3.3-3.8 (pK {sub B2}). CPP was found to interact with targeted anionic analytes based on both coulombic and hydrogen bond interactions, as inferred from varying the kinds of ionic sites present within the membrane phase. Potentiometric selectivity studies revealed that CPP preferred 'Y-shaped' anions (e.g. acetate, lactate, benzoate) over spherical anions (e.g. fluoride and chloride), fluoride over chloride within the set of spherical anions, and the ortho-isomer over the corresponding meta- and para-isomers in the case of hydroxybenzoate (salicylate and congeners). In the context of this study, the advantages of potentiometric determinations of acetylsalicylic acid using optimized PVC-membranes based on CPP relative to more conventional PVC-membrane ISEs based on traditional anion exchanger were also demonstrated.

  11. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    Science.gov (United States)

    Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-05

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible.

  12. Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes.

    Science.gov (United States)

    Attard, Gary A; Brew, Ashley; Hunter, Katherine; Sharman, Jonathan; Wright, Edward

    2014-07-21

    The voltammetry of Pt{111}, Pt{100}, Pt{110} and Pt{311} single crystal electrodes as a function of perchloric acid concentration (0.05-2.00 M) has been studied in order to test the assertion made in recent reports by Watanabe et al. that perchlorate anions specifically adsorb on polycrystalline platinum. Such an assertion would have significant ramifications for our understanding of electrocatalytic processes at platinum surfaces since perchlorate anions at low pH have classically been assumed not to specifically adsorb. For Pt{111}, it is found that OHad and electrochemical oxide states are both perturbed significantly as perchloric acid concentration is increased. We suggest that this is due to specific adsorption of perchlorate anions competing with OHad for adsorption sites. The hydrogen underpotential deposition (H UPD) region of Pt{111} however remains unchanged although evidence for perchlorate anion decomposition to chloride on Pt{111} is reported. In contrast, for Pt{100} no variation in the onset of electrochemical oxide formation is found nor any shift in the potential of the OHad state which normally results from the action of specifically adsorbing anions. This suggests that perchlorate anions are non-specifically adsorbed on this plane although strong changes in all H UPD states are observed as perchloric acid concentration is increased. This manifests itself as a redistribution of charge from the H UPD state situated at more positive potential to the one at more negative potential. For Pt{110} and Pt{311}, marginal changes in the onset of electrochemical oxide formation are recorded, associated with specific adsorption of perchlorate. Specific adsorption of perchlorate anions on Pt{111} is deleterious to electrocatalytic activity in relation to the oxygen reduction reaction (ORR) as measured using a rotating disc electrode (RDE) in a hanging meniscus configuration. This study supports previous work suggesting that a large component of the ORR

  13. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides.

    Science.gov (United States)

    Theiss, Frederick L; Couperthwaite, Sara J; Ayoko, Godwin A; Frost, Ray L

    2014-03-01

    The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F(-),BF4(-)), chlorine (Cl(-),ClO4(-)), bromine (Br(-),BrO3(-)) and iodine (I(-),IO3(-)) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M(2+):M(3+) cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.

  14. Metrohm Intelligent Partial Loop Technology and Inline Ultrafiltration for the Determination of Anions in Surface Water%单标多点校正组合英蓝超滤测定地表水中多种阴离子

    Institute of Scientific and Technical Information of China (English)

    姜成; 崔艳

    2012-01-01

      建立了利用组合单标多点校正和英蓝超滤单元的离子色谱法测定地表水中 F-、 Cl-、NO3-、 SO42-4种离子的方法,方法操作简便,灵敏度高,线性范围广,抗干扰能力强,可同时快速测定不同数量级浓度的离子,降低了配置标准品和样品前处理的复杂性,减少了因前处理带来的干扰。%  The article established a method to determine F-, Cl-, NO3-, SO42- four ions in surface water by ion chromatography using Metrohm intelligent Partial Loop Technology and the inline ul-trafiltration components. The method is simple, and has high sensitivity, wide range of linearity, great anti-interference performance, can quickly determine the concentration of ions of different magnitudes simultaneously . The method can reduce the complexity of preparing standard samples and sample pretreatment.

  15. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    Science.gov (United States)

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.

  16. Electrochemical characterization of surface-bound redox polymers derived from 1,1'-bis(((3-(triethoxysilyl)propyl)amino)carbonyl)cobaltocenium: charge transport, anion binding, and use in photoelectrochemical hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.A.; Mallouk, T.E.; Daube, K.A.; Wrighton, M.S.

    1985-09-25

    This paper describes the behavior of electrode-bound redox material derived from the hydrolysis of the -Si(OEt)/sub 3/ groups of 1,1'-bis(((3-(triethoxysilyl)propyl)amino)carbonyl)cobaltocenium (I). Surfaces of the conventional electrodes SnO/sub 2/ and Pt derivatized with I have a reversible electrochemical response in H/sub 2/O/electrolyte; the E/sup 0/' is pH independent at -0.62 V vs. SCE. The photoelectrochemical behavior of p-type Si photocathodes derivatized with I reveals that the photoreduction of the cobaltocenium derivative can be effected at an electrode potential approx. 500 mV more positive than on metallic electrodes, consistent with the known behavior of p-type Si photocathodes. When polymer from I is deposited on p-type Si and subsequently coated with a small amount of Rh or Pd (approx. 10/sup -7/ mol/cm/sup 2/), the photoelectrochemical generation of H/sub 2/ is possible with 632.8-nm (approx. 15 mW/cm/sup 2/) radiation and efficiencies in the vicinity of 2%. The polymer derived from I is more optically transparent and more durable at negative potentials than redox polymers derived from vilogen monomers. Potential-step measurements and steady-state-current measurements for mediated redox processes show that the charge-transport rate for the polymer derived from I is about the same as for polymers from viologen monomers. 32 references, 8 figures.

  17. An anionic surfactant for EOR applications

    Science.gov (United States)

    Sagir, Muhammad; Tan, Isa M.; Mushtaq, Muhammad

    2014-10-01

    This work is to investigate the new anionic surfactants for the Enhanced Oil Recovery (EOR) application. Sulfonated anionic surfactant was produced by attaching SO3 to an ethoxylated alcohol to increase the performance of the surfactant. Methallyl chloride and ethoxylated alcohol was reacted followed by the reaction with sodium bisulfite to produce anionic sulfonated surfactant in 80.3 % yield. The sulfonation reaction parameters such as reactants mole ratio, reaction temperature and catalyst amount were optimized. The generation and stability of foam from the synthesized surfactant is also tested and results are reported. The synthesized novel surfactant was further investigated for the effect on the CO2 mobility in porous media and the findings are presented here. This in house developed surfactant has a great potential for CO2- EOR applications.

  18. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.

    Science.gov (United States)

    Zatirakha, A V; Smolenkov, A D; Shpigun, O A

    2016-01-21

    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture.

  19. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  20. Templating irreversible covalent macrocyclization by using anions.

    Science.gov (United States)

    Kataev, Evgeny A; Kolesnikov, Grigory V; Arnold, Rene; Lavrov, Herman V; Khrustalev, Victor N

    2013-03-11

    Inorganic anions were used as templates in the reaction between a diamine and an activated diacid to form macrocyclic amides. The reaction conditions were found to perform the macrocyclization sufficiently slow to observe a template effect. A number of analytical methods were used to clarify the reaction mechanisms and to show that the structure of the intermediate plays a decisive role in determining the product distribution. For the macrocyclization under kinetic control, it was shown that the amount of a template, the conformational rigidity of building blocks, and the anion affinities of reaction components and intermediates are important parameters that one should take into consideration to achieve high yields.

  1. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  2. Krebs cycle anions in metabolic acidosis.

    Science.gov (United States)

    Bowling, Francis G; Morgan, Thomas J

    2005-10-05

    For many years it has been apparent from estimates of the anion gap and the strong ion gap that anions of unknown identity can be generated in sepsis and shock states. Evidence is emerging that at least some of these are intermediates of the citric acid cycle. The exact source of this disturbance remains unclear, because a great many metabolic blocks and bottlenecks can disturb the anaplerotic and cataplerotic pathways that enter and leave the cycle. These mechanisms require clarification with the use of tools such as gas chromatography-mass spectrometry.

  3. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  4. Adsorption of anionic polyelectrolytes to dioctadecyldimethylammonium bromide monolayers

    Science.gov (United States)

    Engelking, J.; Menzel, H.

    Monolayers of dioctadecyldimethylammonium bromide (DODA) at the air/water interface were used as model for charged surfaces to study the adsorption of anionic polyelectrolytes. After spreading on a pure water surface the monolayers were compressed and subsequently transferred onto a polyelectrolyte solution employing the Fromherz technique. The polyelectrolyte adsorption was monitored by recording the changes in surface pressure at constant area. For poly(styrene sulfonate) and carboxymethylcellulose the plot of the surface pressure as function of time gave curves which indicate a direct correlation between the adsorbed amount and surface pressure as well as a solely diffusion controlled process. In the case of rigid rod-like poly(p-phenylene sulfonate)s the situation is more complicated. Plotting the surface pressure as function of time results in a curve with sigmoidal shape, characterized by an induction period. The induction period can be explained by a domain formation, which can be treated like a crystallization process. Employing the Avrami expression developed for polymer crystallization, the change in the surface pressure upon adsorption of rigid rod-like poly(p-phenylene sulfonate)s can be described.

  5. Solvent-dependent enthalpic versus entropic anion binding by biaryl substituted quinoline based anion receptors.

    Science.gov (United States)

    Sun, Zhan-Hu; Albrecht, Markus; Raabe, Gerhard; Pan, Fang-Fang; Räuber, Christoph

    2015-01-08

    Anion receptors based on an 8-thiourea substituted quinoline with pentafluorinated (1a) or nonfluorinated (1b) biarylamide groups in the 2-position show similar binding of halide anions with somewhat higher association constants for the more acidic fluorinated derivative. Surprisingly, binding affinities for the halides in the case of the nonfluorinated 1b are similar in nonpolar chloroform or polar DMSO as solvent. Thorough thermodynamic investigations based on NMR van't Hoff analysis show that anion binding in chloroform is mainly enthalpically driven. In DMSO, entropy is the driving force for the binding of the ions with replacement of attached solvent.

  6. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  7. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis.

    Science.gov (United States)

    Farner Budarz, Jeffrey; Turolla, Andrea; Piasecki, Aleksander F; Bottero, Jean-Yves; Antonelli, Manuela; Wiesner, Mark R

    2017-03-21

    The influence of inorganic anions on the photoreactivity and aggregation of titanium dioxide nanoparticles (NPs) was assessed by dosing carbonate, chloride, nitrate, phosphate, and sulfate as potassium salts at multiple concentrations. NP stability was monitored in terms of aggregate morphology and electrophoretic mobility (EPM). Aggregate size and fractal dimension were measured over time by laser diffraction, and the isoelectric point (IEP) as a function of anion and concentration was obtained by measuring EPM versus pH. Phosphate, carbonate, and to a lesser extent, sulfate decreased the IEP of TiO2 and stabilized NP suspensions owing to specific surface interactions, whereas this was not observed for nitrate and chloride. TiO2 NPs were exposed to UV-A radiation, and the photoreactivity was assessed by monitoring the production of reactive species over time both at the NP surface (photogenerated holes) and in the bulk solution (hydroxyl radicals) by observing their reactions with the selective probe compounds iodide and terephthalic acid, respectively. The generation of photogenerated holes and hydroxyl radicals was influenced by each inorganic anion to varying degrees. Carbonate and phosphate inhibited the oxidation of iodide, and this interaction was successfully described by a Langmuir-Hinshelwood mechanism and related to the characteristics of TiO2 aggregates. Chloride and nitrate do not specifically interact with TiO2, and sulfate creates relatively weak interactions with the TiO2 surface such that no decrease in photogenerated hole reactivity was observed. A decrease in hydroxyl radical generation was observed for all inorganic anions. Quenching rate constants for the reaction of hydroxyl radicals with each inorganic anion do not provide a comprehensive explanation for the magnitude of this decrease, which arises from the interplay of several physicochemical phenomena. This work shows that the reactivity of NPs will be strongly influenced by the makeup of

  8. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  9. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal

  10. Wigner photoemission time delay from endohedral anions

    Science.gov (United States)

    Kumar, Ashish; Varma, Hari R.; Deshmukh, Pranawa C.; Manson, Steven T.; Dolmatov, Valeriy K.; Kheifets, Anatoli

    2016-10-01

    Characteristic features of Wigner photoemission time delay from endohedral anions A@C60q along with their dependence on the anion charge q are unraveled. Specifically, significant enhancement of the time delay in the innermost dipole photoionization channels near threshold is found, owing to the presence of the Coulomb confined resonances (CRs). Moreover, it is shown that interchannel coupling of the inner-shell Coulomb CRs with outer-shell photoionization channels results in resonantly enhanced time delay in the release of the outer-shell photoelectron well above, several hundreds eV, the outer-shell thresholds. It is also demonstrated that, and explained why, photoionization cross sections of the innermost subshells as well as outer subshells (near the inner-subshell threshold) depends only very weakly on the anion charge q , but the dependence of the corresponding time delays on q can be significant. Furthermore, Coulomb CRs are found to emerge in the innermost quadrupole photoionization channels as well, thereby causing considerable time delay in the quadrupole photoemission. These findings are illustrated in calculations of the photoionization of inner and outer subshells of the endohedral anions Ne@C60-1 and Ne@C60-5 that were chosen as case studies.

  11. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal st

  12. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  13. Synthesis of azaphenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Hansen, Henriette Møller; Lysén, M.; Begtrup, M.;

    2005-01-01

    A new and convergent synthesis of azaphenanthridines via an anionic ring closure is reported. Ortho-lithiation/in situ borylation of cyanopyridines produces the corresponding cyanopyridylboronic esters, which undergo a Suzuki-Miyaura cross-coupling to give the key intermediates. Addition of lithium...

  14. Donnan Membrane Technique (DMT) for Anion Measurement

    NARCIS (Netherlands)

    Alonso Vega, M.F.; Weng, L.P.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2010-01-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl-, 1-2 days for NO3-, 1-4 days for SO42-

  15. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Snellink-Ruel, Bianca H.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal st

  16. Synthesis and Characterization of Periodic Mesoporous Organosilicas as Anion-Exchance Resins for Perrhenate Adsorption.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Im, Hee-Jung [ORNL; Luo, Huimin [ORNL; Hagaman, Edward {Ed} W [ORNL; Dai, Sheng [ORNL

    2005-01-01

    A new methodology to immobilize ionic liquids through the use of a bridged silsesquioxane N-(3-triethoxysilylpropyl), N(3)-3-trimethoxysilylpropyl-4,5-dihydroimidazolium iodide that incorporates an ionic functionality for the assembly of novel periodic mesoporous organosilica (PMO) materials has been developed. The resulting PMO materials were investigated for use as novel anion exchange resins for the separation of perrhenate anions in aqueous solution. As compared with cetyltrimethylammonium chloride, 1-hexadecane-3-methylimidazolium bromide has been demonstrated to be a more efficient surfactant template for the generation of mesopores and surface areas for such PMO materials.

  17. Anion-π interactions involving [MX(n)](m-) anions: a comprehensive theoretical study.

    Science.gov (United States)

    Estarellas, Carolina; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-01-14

    In this manuscript we perform a systematic study on the geometric and energetic features of anion-π complexes, wherein the anion is a metal complex of variable shapes and charges. Such a study is lacking in the literature. For the calculations we used the ab initio RI-MP2/def2-TZVPP level of theory. A search in the Cambridge Structural Database (CSD) provides the experimental starting point that inspired the subsequent theoretical study. The influence of [MX(n)](m-) on the anion-π interaction was analyzed in terms of energetic, geometric, and charge transfer properties and Bader's theory of "atom-in-molecules" (AIM). The binding energy depends on the coordination index, geometric features and different orientations adopted by the metallic anion. The binding mode resembling a stacking interaction for linear, trigonal planar and square-planar anions is the most favorable. For tetrahedral and octahedral anions the most favorable orientation is the one with three halogen atoms pointing to the ring.

  18. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  19. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH.

  20. Three hydroxy aurone compounds as chemosensors for cyanide anions.

    Science.gov (United States)

    Chen, Huihui; Sun, Yunhui; Zhou, Chuanjian; Cao, Duxia; Liu, Zhiqiang; Ma, Lin

    2013-12-01

    Three new 4-hydroxy aurone compounds 1-3 with dimethylamino (1), bromine (2) and cyano (3) as terminal group have been synthesized. Their photophysical properties as well as recognition properties for cyanide anions in acetonitrile and aqueous solution have also been examined. These compounds exhibit remarkable response to cyanide anions with obvious color and fluorescence change owing to hydrogen bonding reaction between cyanide anions and the O-H moiety of the sensors, which allows naked eye detection of cyanide anions.

  1. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  2. Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions

    Science.gov (United States)

    Hirano, Atsushi; Gao, Weilu; He, Xiaowei; Kono, Junichiro

    2017-01-01

    The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.

  3. Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions.

    Science.gov (United States)

    Majewski, Marcin A; Hong, Yongseok; Lis, Tadeusz; Gregoliński, Janusz; Chmielewski, Piotr J; Cybińska, Joanna; Kim, Dongho; Stępień, Marcin

    2016-11-02

    Octulene, the higher homologue of kekulene and septulene, was synthesized using the fold-in method. This new hydrocarbon macrocycle contains a large 24-membered inner circuit, which is peripherally fused to 24 benzene rings. Such an arrangement produces considerable hyperbolic distortion of the π-conjugated surface. The consequences of distortion in octulene were explored using photophysical methods, which revealed a reduced electronic band gap and greater flexibility of the π system. Octulene contains a functional cavity with a diameter larger than 5.5 Å that is capable of efficiently binding the chloride anion in a nonpolar solvent (Ka = 2.2(4)×10(4)  m(-1) , 1 % dichloromethane (DCM) in benzene). The octulene-chloride interaction is stabilized by eight weak C(sp(2) )H⋅⋅⋅Cl bonds, providing the first example of a hydrocarbon-based anion receptor. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Color Responses of a Tripodal Colorimetric Sensor toward Anions

    Institute of Scientific and Technical Information of China (English)

    WEI Lan-Hua; HE Yong-Bing; WU Jin-Long; QIN Hai-Juan; XU Kuo-Xi; MENG Ling-Zhi

    2005-01-01

    A thiourea-based tripodal colorimetric anion sensor was synthesized. Its binding abilities with AcO- and halide anions in DMSO were studied by UV-Vis spectra. The sensor showed different color responses to these anions. The association constants and different stoichiometries were deduced by nonlinear least-square curve fitting or linear fitting.

  5. A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents.

    Science.gov (United States)

    Winter, Natalie; Kovermann, Peter; Fahlke, Christoph

    2012-11-01

    Episodic ataxia is a human genetic disease characterized by paroxysmal cerebellar incoordination. There are several genetically and clinically distinct forms of this disease, and one of them, episodic ataxia type 6, is caused by mutations in the gene encoding a glial glutamate transporter, the excitatory amino acid transporter-1. So far, reduced glutamate uptake by mutant excitatory amino acid transporter-1 has been thought to be the main pathophysiological process in episodic ataxia type 6. However, excitatory amino acid transporter-1 does not only mediate secondary-active glutamate transport, but also functions as an ion channel. Here, we examined the effects of a disease-associated point mutation, P290R, on glutamate transport, anion current as well as on the subcellular distribution of excitatory amino acid transporter-1 using heterologous expression in mammalian cells. P290R reduces the number of excitatory amino acid transporter-1 in the surface membrane and impairs excitatory amino acid transporter-1-mediated glutamate uptake. Cells expressing P290R excitatory amino acid transporter-1 exhibit larger anion currents than wild-type cells in the absence as well as in the presence of external l-glutamate, despite a lower number of mutant transporters in the surface membrane. Noise analysis revealed unaltered unitary current amplitudes, indicating that P290R modifies opening and closing, and not anion permeation through mutant excitatory amino acid transporter-1 anion channels. These findings identify gain-of-function of excitatory amino acid transporter anion conduction as a pathological process in episodic ataxia. Episodic ataxia type 6 represents the first human disease found to be associated with altered function of excitatory amino acid transporter anion channels and illustrates possible physiological and pathophysiological impacts of this functional mode of this class of glutamate transporters.

  6. Effect of anions on the cloud point temperature of aqueous poly(2-ethyl-2-oxazoline) solutions.

    Science.gov (United States)

    Tatar Güner, Pınar; Demirel, A Levent

    2012-12-13

    Poly(2-alkyl-2-oxazoline)s have recently gained attention in especially biological applications due to their lower critical solution temperature being close to the body temperature and their biocompatibility. The understanding of how cloud point temperature (T(c)) depends on the salt concentration and the molecular mechanisms responsible for such behavior are important to tune T(c) as desired by the applications. In this paper, we report the effect of a series of sodium salts on T(c) of aqueous poly(2-ethyl-2-oxazoline) (PEOX) solutions by dynamic light scattering. PEOX samples having four different molecular weights were investigated, and the results were compared with those of poly(N-isopropylacrylamide) (PNIPAM), the mostly investigated and used thermoresponsive polymer. Kosmotropic anions decreased T(c) linearly while chaotropic anions increased T(c) nonlinearly with salt concentration. The contributions of different mechanisms to T(c) change have been discussed. Our results indicate that the dominant mechanism is the dehydration of PEOX for divalent kosmotropic anions (CO(3)(2-), SO(4)(2-), S(2)O(3)(2-)) and direct binding for chaotropic anions (NO(3)(-), I(-), ClO(4)(-), SCN(-)). For the remaining monovalent kosmotropic anions (H(2)PO(4)(-), F(-), Cl(-), Br(-)), a combination of dehydration and surface tension mechanisms was in effect. The additional contribution of the surface tension mechanism for the monovalent kosmotropic anions was inferred for different molecular weight PEOX samples and also for PNIPAM. With PEOX molecular weight decreasing from 500,000 to 5000 g/mol, T(c) decreased less with salt concentration which was attributed to the contribution of the surface tension mechanism. For PEOX samples, the decrease of T(c) with kosmotropic anion concentration was faster compared to PNIPAM due to differences in their chemical structure. Our results show that the molecular mechanisms of interactions between PEOX chains and specific anions can simply be

  7. Electron anions and the glass transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ∙ (e)2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  8. Specific anion effects in Artemia salina.

    Science.gov (United States)

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina.

  9. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... intrinsic factors and solvent effects is the enhanced reactivity of α-nucleophiles – nucleophiles with a lone-pair adjacent to the attacking site – referred to as the α-effect. This thesis concerns the reactivity of microsolvated anions and in particular how the presence of a single solvent molecule affects...... the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared...

  10. Subtle anion effects on anion exchange and thermolysis: Square supra-channels via array of sinusoidal coordination polymers

    Science.gov (United States)

    Moon, So Yun; Park, Min Woo; Noh, Tae Hwan; Jung, Ok-Sang

    2013-12-01

    Self-assembly of AgX (X=ClO4-,BF4-) with a new diethylbis(4-pyridyl)silane (L) ligand basically gives rise to a one-dimensional (1D) sinusoidal structure. Weak C-H⋯π interactions between ethyl and pyridyl groups result in the formation of infinite square supra-channel structures via a molecular array of four sinusoidal chains. The supra-channel size is 10.1-10.7 Å with a void cross-section of 2.1-3.1 Å for [Ag(L)](ClO4) and 9.9-10.5 Å with a void cross-section of 2.0-3.0 Å for [Ag(L)](BF4). The supra-channels are occupied by each counteranion. Anion exchange of [Ag(L)](BF4) with NaClO4 occurs smoothly, whereas the reverse anion exchange of [Ag(L)](ClO4) with NaBF4 does not. Calcination of [Ag(L)](ClO4) crystals at 400 °C produces a circle morphology with evolving burned organics, and, at 600 °C, forms network circles consisting of a silver(0)/silver chloride (chlorargyrite)/silicon(IV) oxide composite with a micro-sized convexo-concave surface. In contrast, calcination of [Ag(L)](BF4) crystals at 600 °C produces silver(0) materials without silicon(IV) oxide.

  11. Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study.

    Science.gov (United States)

    Wang, Guimin; Chen, Zhaoqiang; Xu, Zhijian; Wang, Jinan; Yang, Yang; Cai, Tingting; Shi, Jiye; Zhu, Weiliang

    2016-02-04

    Halogen bonding is the noncovalent interaction between the positively charged σ-hole of organohalogens and nucleophiles. In reality, both the organohalogen and nucleophile could be deprotonated to form anions, which may lead to the vanishing of the σ-hole and possible repulsion between the two anions. However, our database survey in this study revealed that there are halogen bonding-like interactions between two anions. Quantum mechanics calculations with small model complexes composed of halobenzoates and propiolate indicated that the anion-anion halogen bonding is unstable in vacuum but attractive in solvents. Impressively, the QM optimized halogen bonding distance between the two anions is shorter than that in a neutral system, indicating a possibly stronger halogen bonding interaction, which is verified by the calculated binding energies. Furthermore, natural bond orbital and quantum theory of atoms in molecule analyses also suggested stronger anion-anion halogen bonding than that of the neutral one. Energy decomposition by symmetry adapted perturbation theory revealed that the strong binding might be attributed to large induction energy. The calculations on 4 protein-ligand complexes from PDB by the QM/MM method demonstrated that the anion-anion halogen bonding could contribute to the ligands' binding affinity up to ∼3 kcal/mol. Therefore, anion-anion halogen bonding is stable and applicable in reality.

  12. Politseiuuringud kooskõlastamisele / Liivia Anion

    Index Scriptorium Estoniae

    Anion, Liivia

    2003-01-01

    1. aprillil 2003. a. moodustatud uurimistööde kooskõlastamise komisjoni tegevuse eesmärk on saada ülevaade kõrgkoolides õppivate töötajate poolt politseis korraldatavatest uurimustest, kasutada saadud infot politsei kasuks ja vältida teenistujate tööd segavate uurimuste tegemist. Komisjoni liige Liivia Anion teeb ülevaate komisjoni otsustuspädevuse valdkondadest ja töökorraldusest

  13. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    OpenAIRE

    Srivastava, Ambrish Kumar; Misra, Neeraj

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, Ti...

  14. Sorption interactions of biochars and pyrogenic carbonaceous materials with anionic contaminants

    Science.gov (United States)

    Fristak, Vladimir; Moreno-Jimenez, Eduardo; Micháleková-Richveisová, Barbora; Schmidt, Hans-Peter; Bucheli, Thomas; Soja, Gerhard

    2016-04-01

    Biochar as a highly porous and carbon-rich material with a large surface area is a new player in the system of environmental remediation techniques. A wide range of valuable sorption properties of this carbonaceous pyrolysis product provides new options to solve contaminant problems in soil and water and thus may reduce the number of contaminated sites. The sorption capacity of agricultural wastes and wood processing-derived biochars has been found to be excellent due to high surface area, pore volume, and surface functional groups. However, sorption interactions and separation of xenobiotics from waste water, soil solutions or polluted surface water is very often affected by the concentration of contaminant, contact time, effects of competitive substances and mainly by the chemical form of the respective contaminant. The negative surface charge of biochar-based sorption materials supports significant sorption in particular for cationic forms of pollutants. On the other hand many environmentally critical substances occur in anionic forms (e.g. As, P, Mo, Tc). Therefore their retention and immobilization by biochar is frequently considered as problematic or limited. Besides, details about the mechanism of biochar interactions with anionic compounds and the options for surface modification are largely unexplored. This contribution presents a comparative study about production and characterization of unmodified, chemically pre-treated and post-treated biochars with respect to sorption processes of model anionic compounds (PO43-, AsO43-). The obtained results confirmed the crucial role of altering biochar properties (pH) and of surface modification for improving biochar sorption efficiency for anionic contaminants.

  15. Donnan membrane technique (DMT) for anion measurement.

    Science.gov (United States)

    Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2010-04-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.

  16. Anion order in perovskites: a group-theoretical analysis.

    Science.gov (United States)

    Talanov, M V; Shirokov, V B; Talanov, V M

    2016-03-01

    Anion ordering in the structure of cubic perovskite has been investigated by the group-theoretical method. The possibility of the existence of 261 ordered low-symmetry structures, each with a unique space-group symmetry, is established. These results include five binary and 14 ternary anion superstructures. The 261 idealized anion-ordered perovskite structures are considered as aristotypes, giving rise to different derivatives. The structures of these derivatives are formed by tilting of BO6 octahedra, distortions caused by the cooperative Jahn-Teller effect and other physical effects. Some derivatives of aristotypes exist as real substances, and some as virtual ones. A classification of aristotypes of anion superstructures in perovskite is proposed: the AX class (the simultaneous ordering of A cations and anions in cubic perovskite structure), the BX class (the simultaneous ordering of B cations and anions) and the X class (the ordering of anions only in cubic perovskite structure). In most perovskites anion ordering is accompanied by cation ordering. Therefore, the main classes of anion order in perovskites are the AX and BX classes. The calculated structures of some anion superstructures are reported. Comparison of predictions and experimentally investigated anion superstructures shows coherency of theoretical and experimental results.

  17. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    Science.gov (United States)

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  18. Attachment of Algal Cells to Zwitterionic Self-Assembled Monolayers Comprised of Different Anionic Compounds.

    Science.gov (United States)

    Bauer, S; Finlay, J A; Thomé, I; Nolte, K; Franco, S C; Ralston, E; Swain, G E; Clare, A S; Rosenhahn, A

    2016-06-07

    The influence of zwitterionic self-assembled monolayers on settlement and removal of algae was studied. The monolayers were constructed either from zwitterionic thiols or from solutions of positively and negatively charged thiols. The cationic component was composed of quaternary ammonium terminated thiols and the anionic component contained sulfate or carboxylate termination. During assembly, all surfaces showed a strong tendency for equilibration of the surface charge. Settlement and adhesion assays with zoospores of Ulva linza and the diatom Navicula incerta, and field tests of the initial surface colonization revealed the relevance of charge equilibration for the biological inertness of the prepared surfaces.

  19. Experimental evidence for the functional relevance of anion-π interactions

    Science.gov (United States)

    Dawson, Ryan E.; Hennig, Andreas; Weimann, Dominik P.; Emery, Daniel; Ravikumar, Velayutham; Montenegro, Javier; Takeuchi, Toshihide; Gabutti, Sandro; Mayor, Marcel; Mareda, Jiri; Schalley, Christoph A.; Matile, Stefan

    2010-07-01

    Attractive in theory and confirmed to exist, anion-π interactions have never really been seen at work. To catch them in action, we prepared a collection of monomeric, cyclic and rod-shaped naphthalenediimide transporters. Their ability to exert anion-π interactions was demonstrated by electrospray tandem mass spectrometry in combination with theoretical calculations. To relate this structural evidence to transport activity in bilayer membranes, affinity and selectivity sequences were recorded. π-acidification and active-site decrowding increased binding, transport and chloride > bromide > iodide selectivity, and supramolecular organization inverted acetate > nitrate to nitrate > acetate selectivity. We conclude that anion-π interactions on monomeric surfaces are ideal for chloride recognition, whereas their supramolecular enhancement by π,π-interactions appears perfect to target nitrate. Chloride transporters are relevant to treat channelopathies, and nitrate sensors to monitor cellular signaling and cardiovascular diseases. A big impact on organocatalysis can be expected from the stabilization of anionic transition states on chiral π-acidic surfaces.

  20. Anion conductance of the human red cell is carried by a maxi-anion channel

    DEFF Research Database (Denmark)

    Glogowska, Edyta; Dyrda, Agnieszka; Cueff, Anne

    2010-01-01

    played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance...... channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating...... that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator...

  1. Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions.

    Science.gov (United States)

    Zhang, Zhan; Kim, Dong Sub; Lin, Chung-Yon; Zhang, Huacheng; Lammer, Aaron D; Lynch, Vincent M; Popov, Ilya; Miljanić, Ognjen Š; Anslyn, Eric V; Sessler, Jonathan L

    2015-06-24

    Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions.

  2. Core/shell Cu@Ag nanoparticle: a versatile platform for colorimetric visualization of inorganic anions.

    Science.gov (United States)

    Zhang, Jia; Yuan, Yue; Xu, Xiaowen; Wang, Xiaolei; Yang, Xiurong

    2011-10-01

    Recognition and sensing of anions in aqueous media have been of considerable interest while remaining a challenging task up to date. In this document, we wish to present a simple yet sensitive method to detect inorganic anions by colorimetry based on the citrate-stabilized core/shell Cu@Ag nanoparticle (NP). It was found that the NP could discriminate some specific anions (Cl(-), Br(-), I(-), S(2-), and SCN(-)) from a wide range of environmentally dominant anions (F(-), SO(4)(2-), H(2)PO(4)(-), CO(3)(2-), NO(3)(-), etc), identified by the change in the color of the buffered NP solution or the surface plasmon resonance (SPR) absorbance band in the UV-vis spectrum. Among the recognized anions, four types of variation in the SPR absorption band were revealed. It was strongly enhanced for Cl(-) and Br(-) and was strongly damped for S(2-). For I(-), it first was slightly enhanced at lower concentrations and then gradually was damped at higher concentrations. For SCN(-), it first was slightly damped at lower concentrations and then was strongly enhanced at higher concentrations. In response to the optical change, the color of the NP solution turned from brown to bright yellow for Cl(-) (1 mM), Br(-) (10 μM), and SCN(-) (50 μM) to brownish orange for I(-) (10 μM) and to reddish orange for S(2-) (50 μM). The reason for these phenomena was postulated by the evidence of transmission electron microscope (TEM) images, X-ray photoelectron spectroscopy (XPS), and zeta potentials. In view of the importance of anions in the environment and for human health, the Cu@Ag NP colorimetric platform may have some applications, such as discriminating household table salt (NaCl) from industrial salt (NaNO(2)), testing the quality and extent of a variety of waters, and so forth.

  3. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  4. Interaction of anions with substituted buckybowls. The anion's nature and solvent effects.

    Science.gov (United States)

    Campo-Cacharrón, Alba; Cabaleiro-Lago, Enrique M; González-Veloso, Iván; Rodríguez-Otero, Jesús

    2014-08-07

    Complexes formed by CN-substituted corannulene and sumanene with monovalent anions have been computationally studied to evaluate the effect of anion's nature and solvent upon the interaction. The results indicate that the most stable complex arrangement corresponds in all cases to the anion located by the center of the concave face of the bowl. All complexes are remarkably stable in the gas phase, with interaction energies ranging from -47 to -24 kcal/mol depending on the anion and the bowl considered. The order of stability for the different anion complexes in the gas phase is CO2H(-) > Cl(-) > Br(-) > NO3(-) ≫ ClO4(-) > BF4(-). Regarding the bowl employed, the intensity of the interaction is largest with the sumanene derivative substituted in the C-H aromatic groups. The weakest interactions are obtained with the sumanene derivative substituted in the CH2 groups, whereas complexes with the corannulene derivative give intermediate values. NO3(-) is oriented parallel to the bowl in the most stable complexes, whereas CO2H(-) prefers being oriented perpendicular to the bowl; ClO4(-) and BF4(-) arrange themselves with three bonds pointing to the bowl. These orientations are preferred on the basis of larger electrostatic and dispersion interactions. The preference of anions for the concave face of the bowl not only is mainly related to larger electrostatic interactions but also is because dispersion and induction are larger than in other arrangements considered. The presence of solvent modeled with a continuum model has a deep impact on the interaction energies already in solvents with low dielectric constant. All complexes remain stable, though energies in water hardly reach -7 kcal/mol. Br(-) complexes are the most stable in solvent, whereas CO2H(-) ones suffer a large penalty in solvent, becoming among the least stable complexes despite being the most stable in the gas phase.

  5. On the electronic structure of fullerene anions

    Energy Technology Data Exchange (ETDEWEB)

    Bergomi, L.; Jolicoeur, T. (CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1994-02-03

    The authors study the electronic states of isolated fullerene anions C[sub 60][sup n-] (1 [<=] n [<=] 6) taking into account the effective interaction between electrons due to exchange of intramolecular phonons. If the vibronic coupling is strong enough such an effect may overwhelm Hund's rule and lead to an ordering of levels that can be interpreted as on-ball pairing, in a manner similar to the pairing in atomic nuclei. The authors suggest that such effects may be sought in solutions of fulleride ions and discuss recent experimental results.

  6. Electroculture for crop enhancement by air anions

    Science.gov (United States)

    Pohl, H. A.; Todd, G. W.

    1981-12-01

    Electroculture, the practice of applying strong electric fields or other sources of small air ions to growing plants, has potential to markedly increase crop production and to speed crop growth. The considerable evidence for its effectiveness, and the studies of the mechanisms for its actions are discussed. A mild current of air anions (4 pA/cm2) stimulates bean crop growth and also earlier blossoming and increased growth in the annual, Exacum affine (Persian violet), as well as in seedling geraniums. The present results would indicate that the growing period required until the plants reach a saleable stage of maturity can be shortened by about two weeks under greenhouse conditions.

  7. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO2 as catalyst. The anions were added as Na2 SO4, NaNO3, NaCl, NaHCO3, NaH2 PO4 and Na3 PO4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na+ , were studied. The results revealed that: Cl , SO24- , NO-3 and HCO3-retarded the rates of DBS degradation to different degrees; PO43 - increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H2PO-4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site catalyst.

  8. Monocarbaborane anion chemistry. [COOH], [CH2OH] and [CHO] units as functional groups on ten-vertex monocarbaborane anionic compounds.

    Science.gov (United States)

    Franken, Andreas; Carr, Michael J; Clegg, William; Kilner, Colin A; Kennedy, John D

    2004-11-01

    B(10)H(14) reacts with para-C(6)H(4)(CHO)(COOH) in aqueous KOH solution to give the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-COOH)](-) anion 1, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-COOH)](-) anion 2. Upon heating, anion 2 rearranges to form the [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-COOH)](-) anion 3. Similarly, B(10)H(14) with glyoxylic acid OHCCOOH in aqueous KOH gives the [arachno-6-CB(9)H(13)-6-(COOH)](-) anion 4, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(COOH)](-) anion 5. Upon heating, anion 5 rearranges to give the [closo-1-CB(9)H(9)-1-(COOH)](-) anion 6. Reduction of the [COOH] anions 3 and 6 with diisobutylaluminium hydride gives the [CH(2)OH] hydroxy anions [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) and [closo-1-CB(9)H(9)-1-(CH(2)OH)](-) 8 respectively. The [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) anion 7 can also be made via isomerisation of the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-CH(2)OH)](-) anion 9, in turn obtained from the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-CH(2)OH)](-) anion 10, which is obtained from the reaction of B(10)H(14) with terephthaldicarboxaldehyde, C(6)H(4)-para-(CHO)(2), in aqueous KOH solution. Oxidation of the hydroxy anions 7 and 8 with pyridinium dichromate gives the aldehydic [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CHO)](-) anion 11 and the aldehydic [closo-1-CB(9)H(9)-1-(CHO)](-) anion 12 respectively, characterised as their 2,4-dinitrophenylhydrazone derivatives, the [closo-1-CB(9)H(9)-1-C(6)H(4)-para-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion 13 and the [closo-1-CB(9)H(9)-1-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion respectively.

  9. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  10. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  11. Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study.

    Science.gov (United States)

    Bretschneider, Anne; Andrada, Diego M; Dechert, Sebastian; Meyer, Steffen; Mata, Ricardo A; Meyer, Franc

    2013-12-09

    1,3-Bis(pentafluorophenyl-imino)isoindoline (A(F)) and 3,6-di-tert-butyl-1,8-bis(pentafluorophenyl)-9H-carbazole (B(F)) have been designed as preorganized anion receptors that exploit anion-π interactions, and their ability to bind chloride and bromide in various solvents has been evaluated. Both receptors A(F) and B(F) are neutral but provide a central NH hydrogen bond that directs the halide anion into a preorganized clamp of the two electron-deficient appended arenes. Crystal structures of host-guest complexes of A(F) with DMSO, Cl(-), or Br(-) (A(F):DMSO, A(F):Cl(-), and A(2)(F):Br(-)) reveal that in all cases the guest is located in the cleft between the perfluorinated flaps, but NMR spectroscopy shows a more complex situation in solution because of E,Z/Z,Z isomerism of the host. In the case of the more rigid receptor B(F), Job plots evidence 1:1 complex formation with Cl(-) and Br(-), and association constants up to 960 M(-1) have been determined depending on the solvent. Crystal structures of B(F) and B(F):DMSO visualize the distinct preorganization of the host for anion-π interactions. The reference compounds 1,3-bis(2-pyrimidylimino)isoindoline (A(N)) and 3,6-di-tert-butyl-1,8-diphenyl-9H-carbazole (B(H)), which lack the perfluorinated flaps, do not show any indication of anion binding under the same conditions. A detailed computational analysis of the receptors A(F) and B(F) and their host-guest complexes with Cl(-) or Br(-) was carried out to quantify the interactions in play. Local correlation methods were applied, allowing for a decomposition of the ring-anion interactions. The latter were found to contribute significantly to the stabilization of these complexes (about half of the total energy). Compounds A(F) and B(F) represent rare examples of neutral receptors that are well preorganized for exploiting anion-π interactions, and rare examples of receptors for which the individual contributions to the binding energy have been quantified. Copyright

  12. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    Science.gov (United States)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-09-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.

  13. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  14. Isatin phenylhydrazones: anion enhanced photochromic behaviour.

    Science.gov (United States)

    Cigáň, M; Jakusová, K; Gáplovský, M; Filo, J; Donovalová, J; Gáplovský, A

    2015-11-01

    The photochemical properties of two basic easily synthesized isatin N(2)-phenylhydrazones were investigated. Contrary to the corresponding isatin N(2)-diphenylhydrazones, only Z-isomers were isolated from the reaction mixtures during the synthesis due to their stabilization by intramolecular hydrogen bonding. Although the presence of the C=N double bond creates conditions for the formation of a simple on-off photoswitch, the low photochemical quantum yield and particularly the low switching amplitude in absorbance hamper their photochromic applications. However, the addition of strongly basic anions to phenylhydrazone solutions leads to isatin NH group deprotonation and creates a new diazene T-type Vis-Vis photochromic system with sufficiently separated absorption maxima. Interestingly, although the thermally stable A-form is also photostable in ambient light, its irradiation with a stronger LED source leads to thermally unstable B-form formation which rapidly isomerizes back to the corresponding A-form. The process is reversible and switching cycles can be repeated in both directions. The important advantages of this two-component organic chromophore-inorganic anion photochromic system are its easy synthesis, easy handling due to its insensitivity to room light, easy further structural modification and reversibility. The corresponding photochemical quantum yield, however, remains relatively low (Φ ∼ 0.001). The theoretically calculated properties are in agreement with the obtained experimental results and support the proposed reaction mechanism.

  15. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  16. Isobar Separator for Anions: Current status

    Energy Technology Data Exchange (ETDEWEB)

    Alary, Jean-François, E-mail: alaryjf@isobarex.ca [Isobarex Corp., 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Javahery, Gholamreza [IONICS Mass Spectrometry, 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Kieser, William; Zhao, Xiao-Lei [Andre E. Lalonde Accelerator Mass Spectrometry Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton Street, Ottawa, ON K1N 6N5 (Canada); Litherland, Albert [IsoTrace Laboratory, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3B1 (Canada); Cousins, Lisa [IONICS Mass Spectrometry, 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Charles, Christopher [Andre E. Lalonde Accelerator Mass Spectrometry Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton Street, Ottawa, ON K1N 6N5 (Canada)

    2015-10-15

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of {sup 36}S from {sup 36}Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion–molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  17. Modeling Carbon Chain Anions in L1527

    CERN Document Server

    Harada, Nanase

    2008-01-01

    The low-mass protostellar region L1527 is unusual because it contains observable abundances of unsaturated carbon-chain molecules including CnH radicals, H2Cn carbenes, cyanopolyynes, and the negative ions C4H- and C6H-, all of which are more associated with cold cores than with protostellar regions. Sakai et al. suggested that these molecules are formed in L1527 from the chemical precursor methane, which evaporates from the grains during the heat-up of the region. With the gas-phase osu.03.2008 network extended to include negative ions of the families Cn-, and CnH-, as well as the newly detected C3N-, we modeled the chemistry that occurs following methane evaporation at T~ 25-30 K. We are able to reproduce most of the observed molecular abundances in L1527 at a time of ~5000 yr. At later times, the overall abundance of anions become greater than that of electrons, which has an impact on many organic species and ions. The anion-to-neutral ratio in our calculation is in good agreement with observation for C6H-...

  18. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: a speciation-based approach.

    Science.gov (United States)

    Su, Tingzhi; Guan, Xiaohong; Tang, Yulin; Gu, Guowei; Wang, Jianmin

    2010-04-15

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  19. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: A speciation-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Su Tingzhi [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65401 (United States); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Guan Xiaohong [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tang Yulin [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65401 (United States); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Gu Guowei [College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wang Jianmin, E-mail: wangjia@mst.edu [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65401 (United States)

    2010-04-15

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  20. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  1. Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides.

    Science.gov (United States)

    Lee, Byung Joon; Schlautman, Mark A; Toorman, Erik; Fettweis, Michael

    2012-11-01

    Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca(2+) and Mg(2+) can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.

  2. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Directory of Open Access Journals (Sweden)

    Zehra Kahveci

    2014-03-01

    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  3. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns

    Science.gov (United States)

    Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.

  4. Theoretical and Experimental Studies on Interactions of Cationic-Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    王大喜; 杜永顺; 岳长涛; 侯建国; 栗秀刚; 杨文杰

    2003-01-01

    Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394 kJ·mol-1 and 0.1204 kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively.When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1,-311.18 kJ·mo1-1 and -345.83 kJ·mo1-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.

  5. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    Science.gov (United States)

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A model for underpotential deposition in the presence of anions

    Science.gov (United States)

    Giménez, M. C.; Ramirez-Pastor, A. J.; Leiva, E. P. M.

    2010-05-01

    A simple model to study the effect of on top coadsorption of anions in underpotential deposition is formulated. It considers a lattice-gas model with pair potential interactions between nearest neighbors. As test system, the electrodeposition of silver on gold is studied by means of grand canonical Monte Carlo simulations. The influence of anions on the adsorption isotherms is analyzed. It is found that as the interaction between silver atoms and anions increases, the monolayer adsorbs at more negative chemical potentials. For large interactions between silver atoms and anions, a expanded structure occurs for the silver monolayer.

  7. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and AcO-) to a s......The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  8. Hydrazone derivatives appended to diphenylphosphine oxide as anion sensors

    Indian Academy of Sciences (India)

    MARUTHAI KUMARAVEL; JOEL T MAGUE; MARAVANJI S BALAKRISHNA

    2017-04-01

    Phosphine substituted hydrazones with or without nitro substituents were synthesized and characterized by multinuclear NMR, FT-IR, UV-Vis spectroscopy and single crystal X-ray diffraction. The anion recognition properties of phosphine oxides {Ph₂P(O)C₆H₄CHNNHPh} (2) and {Ph₂P(O)C₆H₄CHNNHC₆H₃ (2,4-NO₂) ₂} (4) with anions (F⁻, Cl⁻, Br⁻, I⁻, CH₃COO⁻ and H₂PO⁻ ₄ ) were investigated. The selectivity towards these anions is attributed to the hydrogen bonding capability of the NH bond. Competitive titrations have shown that the binding ability of fluoride with 4 is not influenced by the presence of other anions.

  9. Effect of anions on the oxidation of organic compounds with ultrasonically activated persulfate

    Science.gov (United States)

    Sizykh, M. R.; Batoeva, A. A.

    2016-06-01

    The effect of anions typically present in natural and waste waters on the oxidation of the azo dye methyl orange with persulfate activated with high-frequency ultrasound was studied. At a chloride concentration of 1 mmol/L, the rate constant of substrate oxidation increased 1.5-fold, but further increase in the chloride content retarded the process. The addition of nitrates, carbonates, and hydrogen carbonates to the solution inhibited the process (NO 3 - natural surface water from Lake Baikal.

  10. The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects

    Science.gov (United States)

    1994-03-14

    AD-A278 022 OFFICE OF NAVAL RESEARCH CONTRACT N00014-84-k-0656/PP0002 R & T Code 4133034 Technical Report #36 The Underpotential Deposition of Copper...Include Security Clauffication) The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects 𔃼 OERSONAL AUTHOR(S...Alacant, Spain ABSTRACT The underpotential deposition of copper on Pt(31 1)=Pt[2(111 )x(100)] stepped surfaces has been studied and the results are compared

  11. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  13. On Scaling Relations of Organic Antiferromagnets with Magnetic Anions

    Science.gov (United States)

    Shimahara, Hiroshi; Kono, Yuki

    2017-04-01

    We study a recently reported scaling relation of the specific heat of the organic compounds λ-(BETS)2FexGa1-xCl4. This relation suggests that the sublattice magnetization m of the π electrons and the antiferromagnetic transition temperature TN are proportional to x. Note that the scaling relation for TN can be explained by considering the effective interaction between the π electrons via the localized 3d spins on the FeCl4 anions. The effective interaction is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, but the roles of the conductive electrons and the localized spins are interchanged. Using available energy scales, it is shown that the TN scaling relation indicates that the system is in the vicinity of the quantum critical point. It is argued that the scaling relation for m at low temperatures, i.e., below TN but excluding temperatures in the vicinity of TN, indicates that the mismatch between the Fermi surface and that shifted by the nesting vector is large, at least for a large part of the Fermi surface. We also discuss the scaling relation near TN.

  14. Gold recovery by galvanic stripping of an anionic organic extractant

    Directory of Open Access Journals (Sweden)

    Lacerda D.F.C.

    2001-01-01

    Full Text Available The galvanic stripping technique for metal recovery uses commercial organic extractants containing a metal to be recovered. The organic phase is placed in contact with a solid metal reducer that allows electrochemical reactions to occur. One product of these reactions is a metal layer deposited on the surface of the reducer consisting of reduced species desorbed from the organic phase. Another product is metal ions from the reducer adsorbed onto the organic phase. This work presents results for gold recovery by galvanic stripping of strong-base anionic extractants of a quaternary amine salt, ALIQUAT336®, in xylene using solid zinc as the metal reducer. The parameters studied were contact time for the organic phase containing gold and the samples of the reducing zinc metal, temperature of the system, gold concentration in the organic phase and type of stirring used in the galvanic stripping system. Experiments showed results higher than 28% of gold recovery and an adherent film of gold on the zinc surface. The Arrhenius plot for gold recovery from the organic extractant suggests a change in the rate- controlling step from mixed control to diffusion control with increasing temperature in the range of 20 to 50ºC.

  15. Once upon Anion: A Tale of Photodetachment

    Science.gov (United States)

    Lineberger, W. Carl

    2013-04-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, “with a little help from my friends.” Actually, it was so much more than a little help!

  16. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  17. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  18. Advanced polymer chemistry of organometallic anions

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, R.M.; Abney, K.D. [Los Alamos National Lab., NM (United States); Balaich, G.J.; Fino, S.A. [Air Force Academy, CO (United States)

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  19. Anion channelrhodopsins for inhibitory cardiac optogenetics

    Science.gov (United States)

    Govorunova, Elena G.; Cunha, Shane R.; Sineshchekov, Oleg A.; Spudich, John L.

    2016-01-01

    Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome. PMID:27628215

  20. Effects of Electrolyte Anions and pH on Adsortpion of Sulfate by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; G.M.BRUEMMER; 等

    1996-01-01

    The effects of three electrolyte anions,ionic strength and pH on the adsorption of sulfate by two variable charge soils,with different surface charge properties were studied.Under the conditions of the same pH and ionic strength the effect of electrolyte anions on the adsorption of sulfate was in the order of Cl->NO3->ClO4-,indicating the difference of the nature among these three anions.For ferralsol in the same concentration of chloride and perchloride solutions,the two sulfate adsorption-pH curves could intersect at certain pH value.When pH was higher than the intersecting point.more sulfate was adsorbed in the perchloride solution,while when it was lower than the intersecting point,more sulfate was adsorbed in the chloride solution.In different concentratioins of electrolyte solution,the curves of the amount of oxy-acid anion adsorbed,which changed with pH,could intersect at a certain pH,which is termed point of zero salt effect(PZSE) on adsortpion.The nature of electrolyte anions influenced obviously the appearace of PZSE for sulfate adsorption.For ferralsol the curves of adsorption converged to about pH 7 in NaCl solution seemed to intersect in NaNO3 solution and to have a typical PZSE for sulfate adsorption in NaClO4 solution,For Acrisol the three curves of adsorption were nearly parallel in NaCl and NaNO3 solutions and converged to pH 6.5 in NaClO4 solution.

  1. Efficient Removal of Anionic Radioactive Pollutant from Water Using Ordered Urea-Functionalized Mesoporous Polymeric Nanoparticle.

    Science.gov (United States)

    Shen, Jian; Chai, Wei; Wang, Kaixuan; Zhang, Fang

    2017-07-12

    A urea-functionalized ordered mesoporous polymeric nanoparticle for removing the perrhenate anion ReO4(-) as the surrogate of the particularly intractable anion radioactive pollutant TcO4(-) was demonstrated in the present study. This nanomaterial (denoted as urea-MPN) was produced for the first time by a surfactant-directed urea-phenol-formaldehyde resol oligomers self-assembly protocol under hydrothermal condition. The obtained urea-MPN possessed the uniform nanosized spherical morphology with a 3D interconnected ordered cubic mesoporous structure. Also, the urea functional groups were succefully embedded in the polymer framework without the alteration of the molecular configuration. Meanwhile, it exhibited excellent β radiation resistance up to 200 kGy dose. We employed the perrhenate anion ReO4(-) to test its potential for the removal of anionic radioactive pollutant TcO4(-) from water. Interestingly, the optimized urea-MPN nanocomposite achieved the high removal efficiency at a low concentration of 0.25 mM within a short contact time of 30 min. The control experimental results revealed that the short nanoscale pore channels and the hydrophobic mesopore surface facilitated the hydrogen-bonding interaction between the charge-diffuse ReO4(-) tetrahedral oxoanion and the urea moieties in the framework of urea-MPN, accounting for the rapid and effective removal performance in pure water. Importantly, it can selectively capture ReO4(-) in the presence of different competitive anions including NO3(-), CO3(2-), SO4(2-), and PO4(3-). This attractive capability of this unique nanosized mesoporous polymeric sorbent will pave the way for the diverse applications in the decontamination of nuclear wastes in a more economical and sustainable manner.

  2. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions.

    Science.gov (United States)

    Sutton, Catherine C R; Franks, George V; da Silva, Gabriel

    2015-01-05

    The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.

  3. Anions make the difference: insights from the interaction of big cations and anions with poly(N-isopropylacrylamide) chains and microgels.

    Science.gov (United States)

    Pérez-Fuentes, Leonor; Drummond, Carlos; Faraudo, Jordi; Bastos-González, Delfi

    2015-07-07

    Minute concentrations of big hydrophobic ions have the ability to induce substantial effects in soft matter systems, including novel phases in lipid layers, giant charge inversion in colloids and nanostructuration in polymer surfaces in contact with water. The effects are so strong that the term "soft matter disruptors" was coined to describe their deep impact on interfaces, which goes far beyond that found by using the classical ions considered in lyotropic (Hofmeister) sequences. In these effects, solvation thermodynamics plays a fundamental role. Interestingly, it is possible to obtain big hydrophobic cations and anions with an almost identical size and structure (e.g. Ph4B(-), Ph4As(+)), which only differ in their central atom. Here we employ different techniques (Molecular Dynamics (MD) simulations, electrophoretic mobility and Atomic Force Microscopy (AFM)) to demonstrate the dramatic differences in the interaction of Ph4B(-) and Ph4As(+) with poly(N-isopropylacrylamide) (PNIPAM), a thermoresponsive polymer with expanded (well hydrated) and collapsed (poorly hydrated) states. Although both ions interact strongly with neutral PNIPAM chains and cationic or anionic PNIPAM microgels in the collapsed states, the effects of Ph4B(-) on PNIPAM are always substantially stronger than the effects of Ph4As(+). MD simulations predict that ion-PNIPAM free energy of interaction is four times larger for Ph4B(-) than for Ph4As(+). Electrokinetic and AFM experiments show that, acting as counter-ions, both ions are able to invert the charge of anionic or cationic PNIPAM microgels at minute concentrations, but the charge inversion due to Ph4B(-) is much larger than that obtained with Ph4As(+). Therefore, even for big ions of identical size, shape and valence, the affinity of anions and cations for interfaces is intrinsically different.

  4. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic...

  5. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined...

  6. Regulation of organic anion transport in the liver

    NARCIS (Netherlands)

    Roelofsen, H; Jansen, PLM

    1997-01-01

    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter (cmo

  7. Electron transfer from alpha-keggin anions to dioxygen

    Science.gov (United States)

    Yurii V. Geletii; Rajai H. Atalla; Craig L. Hill; Ira A. Weinstock

    2004-01-01

    Polyoxometalates (POMs), of which alpha-Keggin anions are representative, are a diverse and rapidly growing class of water-soluble cluster-anion structures with applications ranging from molecular catalysis to materials. [1] POMs are inexpensive, minimally or non-toxic, negatively charged clusters comprised of early transition-metals, usually in their do electronic...

  8. Extraction of monoclonal antibodies (IgG1) using anionic and anionic/nonionic reverse micelles.

    Science.gov (United States)

    George, Daliya A; Stuckey, David C

    2010-01-01

    Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid-liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2-ethyl-hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij-30, Tween-85, Span-85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij-30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween-85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40-45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs.

  9. ARE MODELS OF ANION HYDRATION OVERBOUND ? THE SOLVATION OF THE ELECTRON AND CHLORIDE ANION COMPARED

    OpenAIRE

    Sprik, M.

    1991-01-01

    By means of a fully polarizable model for the chloride ion-water interaction we show that the modelling of anion solvation suffers from a similar inconsistency as the current electron-solvent potentials. Either the bulk hydration enthalpies are correct with the first hydration shell overbound, or the potential is adapted to describe the local environment of the solute at the expense of a major loss of solvation enthalpy. It is argued that boundary effects in the simulation are at least partly...

  10. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers.

    Science.gov (United States)

    Liu, Chia-Hung; Wu, Jeng-Shiou; Chiu, Hsin-Chieh; Suen, Shing-Yi; Chu, Khim Hoong

    2007-04-01

    Two commercial anion exchange membranes, strong basic (SB6407) and weak basic (DE81), were evaluated for the removal of anionic reactive dyes, Cibacron blue 3GA (three sulfonic acid groups per dye molecule) and Cibacron red 3BA (four sulfonic acid groups per dye molecule), from water in this study. The adsorption isotherm results show that the Langmuir maximum adsorption capacities of Cibacron blue 3GA (31.5mg/cm(3) for SB6407 and 25.5mg/cm(3) for DE81) were greater than those of Cibacron red 3BA (24.5mg/cm(3) for SB6407 and 18.5mg/cm(3) for DE81). For each reactive dye, the capacity for SB6407 was higher than DE81 based on the same membrane volume. However, consideration of the number of ion exchange sites interacting with a dye molecule indicates that the DE81 results are close to the theoretical values while the SB6407 membrane had some unused binding sites. In addition, Cibacron red 3BA demonstrated faster and stronger binding with both anion exchange membranes than Cibacron blue 3GA. Both dyes could bind with strong basic SB6407 more quickly and stronger. In the batch desorption process, different desorption solutions were tested and the mixtures of salt, acid, or base in methanol solution (e.g. 1N KSCN in 60% methanol or 1N HCl in 60% methanol) achieved better performance. Finally, in the flow process with one piece of anion exchange membrane (initial dye concentration of 0.05g/L), SB6407 was found superior to DE81 in dye recovery and both membranes retained their original uptake capacities over three cycles of adsorption, washing, and desorption.

  11. Nucleophilic reactivities of the anions of nucleobases and their subunits.

    Science.gov (United States)

    Breugst, Martin; Corral Bautista, Francisco; Mayr, Herbert

    2012-01-02

    The kinetics of the reactions of different heterocyclic anions derived from imidazoles, purines, pyrimidines, and related compounds with benzhydrylium ions and structurally related quinone methides have been studied in DMSO and water. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of the electrophiles according to the correlation log k(2) = s(N)(N+E) (H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990-1010; Angew. Chem. Int. Ed. Engl. 1994, 33, 938-957) allowing us to determine the nucleophilicity parameters N and s(N) for these anions. In DMSO, the reactivities of these heterocyclic anions vary by more than six orders of magnitude and are comparable to carbanions, amide and imide anions, or amines. The azole anions are generally four to five orders of magnitude more reactive than their conjugate acids.

  12. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  13. Anionic clusters in dusty hydrocarbon and silane plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hollenstein, C.; Schwarzenbach, W.; Howling, A.A.; Courteille, C.; Dorier, J.L.; Sansonnens, L. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-10-01

    Measurements of anions and cations are reported for hydrocarbon and silane rf capacitive glow discharges. Series of anions were observed by quadrupole mass spectrometry using power-modulated plasmas and their structures are interpreted from the form of the mass spectra. Various experiments in silane plasmas show that anion confinement results in particles and conversely, anion de-trapping can inhibit particle formation. In contrast, the polymerized neutral flux magnitudes, mass spectra and dynamics are independent of the powder formation. Powder is known to form readily in deposition plasmas containing electronegative free radicals, and the general role of anions in particle formation is discussed in the light of these experiments. (author) 6 figs., 21 refs.

  14. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  15. Synthesis of silica particles with lamellar and wormhole-like bi-modal mesopores using anionic surfactant as the template

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Silica particles with lamellar and wormhole-like bi-modal mesopores have been synthesized using anionic surfactant (N-lauroylsarcosine sodium) as the template. The particles with diameters of 300―500 nm possess bi-modal mesopores with pore sizes of 3 nm and 12 nm, which were ascribed to the disordered wormhole-like mesophase and lamellar mesophase, respectively. The BET surface area of the particles was 536 m2/g and the pore volume was 0.83 cm3/g. The lamellar mesophase and cylindrical mesophase were formed due to the co-assembly of the anionic surfactant and its protonized polar oil.

  16. A hybrid density functional theory study of the anion distribution and applied electronic properties of the LaTiO2N semiconductor photocatalyst.

    Science.gov (United States)

    Wang, Xin; Li, Zhaosheng; Zou, Zhigang

    2015-07-15

    Although the crystallographic space group has been determined, detailed first principles calculations of the LaTiO2N semiconductor photocatalyst crystal have not been performed because of the nitrogen/oxygen sosoloid-like anion distribution. In this study, based on the Heyd-Scuseria-Ernzerhof method and experimental anion content, we present the possibility of determining detailed information about the LaTiO2N sosoloid-like anion distribution by dividing the anions into possible primitive cells. The detailed information about the anion distribution based on the characteristics of the energetically acceptable primitive cell structures suggests that the LaTiO2N structure is composed of aperiodic stacks of six building-block primitive cells, the non-vacancy primitive cells are located at the surface as effective photoreaction sites, and vacancy structures are located in the bulk. The surface oxide-rich structures increase the near-surface conduction band minimum rise and strengthen photoelectron transport to the bulk, while the content of the bulk vacancy structures should be balanced because of being out of photoreactions. This study is expected to provide a different perspective to understanding the LaTiO2N sosoloid-like anion distribution.

  17. Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model.

    Science.gov (United States)

    Vincent, S; DePace, D; Finkelstein, S

    1988-02-01

    The distribution of anionic domains on the capillary endothelium of experimental brain tumors was determined using cationic ferritin (CF) in order to ascertain whether the pattern of these domains is different from that on normal cerebral capillaries. Tumors were induced by stereotaxic injection of cultured neoplastic glial cells, A15A5, into the caudate nucleus of Sprague-Dawley rats. Following a 14-21 day growth period tumors appeared as vascularized, sharply circumscribed masses which caused compression of the surrounding brain tissue. Anionic domains were distributed in a patchy and irregular pattern on the luminal plasma membrane of the endothelia of blood vessels in the tumors. Some variability in this pattern was observed infrequently in limited regions of the tumor where there was either a continuous layer of CF or an absence of CF binding. Plasmalemmal vesicles, coated vesicles, coated pits, multivesicular bodies, and some junctional complexes showed varying degrees of labeling with the probe. Capillaries in the tumor periphery and normal cerebral vessels showed a uniform distribution of anionic groups. These results indicate that there is an altered surface charge on the endothelial luminal plasma membrane of blood vessels in brain tumors. A correlation may exist between the altered surface charge and the degree to which the blood-brain barrier is impaired in these vessels.

  18. Chemical Characteristics of Two Forested Ultisols and Two Forested Inceptisols Relevant to Anion Production and Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.

    2001-01-17

    As a prelude to a basic program on soil leaching, some chemical characteristics of two forested Ultisols in eastern Tennessee and two forested Inceptisols in western Washington are discussed in relation to the production and mobility of anions. These soils were chosen in an attempt to provide a range of free iron (Fe) and aluminum (Al) contents (which are hypothesized to be related to anion adsorption) and carbon:nitrogen (C:N) ratios (which are hypothesized to be related to nitrate and bicarbonate production) for field experiments involving C, N, and anion salt additions. The Washington Inceptisols had high free Fe and Al in surface horizons and decreasing free Fe and Al levels with depth, whereas the reverse was true of the Tennessee Ultisols. The alderwood-red alder and Tarklin (sinkhole) soils had higher N concentrations and lower C:N ratios in their surface horizons than the Alderwood-Douglas-fir and Fullerton soils, respectively, but the reverse was true of subsurface horizons. Patterns of and relationships among the above properties and pH, Bray phosphorus (No. 2); adsorbed and soluble SO{sub 4}{sup 2-}, Cl{sup -}, and NO{sub 3}{sup -}; cation exchange capacity; and exchangeable cations are discussed.

  19. Preparing Surface Anion-imprinted Material Based on Ion Exchange and Surface-initiated Graft-polymerization and Studies on Its Recognition Character%基于离子交换和表面引发接枝聚合制备阴离子表面印迹材料及其识别特性研究

    Institute of Scientific and Technical Information of China (English)

    杜俊玫; 高保娇; 黄小卫; 张永奇; 王明娟

    2012-01-01

    建立了一种新的离子表面印迹(IIP)方法.使用偶联剂γ-氨丙基三甲氧基硅烷(AMPS)对微米级硅胶微粒进行表面改性,制得表面含有氨基的改性硅胶AMPS-SiO2.凭借离子交换作用,阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)结合在模板离子磷酸根周围;改性硅胶AMPS-SiO2表面的氨基与溶液中的过硫酸盐构成氧化还原引发体系,使DMC及交联剂N,N'-亚甲基双丙烯酰胺(MBA)在硅胶微粒表面发生接枝交联聚合,从而实现了磷酸根离子的表面印迹,制得了阴离子表面印迹材料IIP-PDMC/SiO2.采用静态与动态两种方法,考察研究了IIP-PDMC/SiO2对PO43-离子的识别特性与结合性能.研究结果表明,离子表面印迹材料IIP-PDMC/SiO2对PO43-离子具有特异的识别选择性与优良的结合亲和性,相对于对比离子高锰酸根离子,IIP-PDMC/SiO2对PO43-离子的识别选择性系数为9.58.%The molecularly imprinted polymers(MIPs) synthesized by conventional bulky imprinting methods suffer from several limitations,such as time-consuming preparation process,poor site accessibility to the target molecules and the lower binding capacity for the target molecules.To overcome these problems in bulking imprinting,in this work,a novel surface-ion imprinting method that not only is simple but also highly effective,is put forward and found.The coupling agent γ-aminopropyltrimethoxysilane(AMPS) was bond onto the surface of silica gel particles,and amino groups were introduced onto the surfaces of silica gel particles,obtaining the modified particles AMPS-SiO2.In aqueous solution,the molecules of the cationic monomer methacryloxyethyltrimethyl ammonium chloride(DMC) were first combined around the template ion,phosphate ion,by right of ion exchange action.A redox initiating system was constructed by the amino groups on AMPS-SiO2 and ammonium persulphate in the solution,and free radicals were produced on the

  20. A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).

    Science.gov (United States)

    Santana, Juan A; Cabrera, Carlos R; Ishikawa, Yasuyuki

    2010-08-28

    A density-functional theory study of the electrochemical adsorption of sulfuric acid anions was conducted at the Pt(111)/electrolyte interface over a wide range of electrode potential, including the anomalous region of the hydrogen voltammogram of this electrode. We focus on the precise nature of the binding species and their bonding to the surface, identifying the adsorbed species as a function of electrode potential. In particular, the origin of anomalous or so-called "butterfly" feature in this voltammogram between +0.30 and +0.50 V vs. the reference hydrogen electrode and the nature of the adsorbed species on the Pt(111) surface in this potential range were explicated.

  1. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  2. Study on the Anion Recognition Properties of Synthesized Receptors (Ⅲ): Convenient Synthesis and Anion Recognition Property of Bisthiosemicarbazone Derivative

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-Ming; XU Wei-Xia; YAO Hong; WEI Tai-Bao

    2006-01-01

    A new series of bisthiosemicarbazone derivative receptors (1, 2 and 3) have been synthesized by simple steps in good yields. Their anion recognition properties were studied by UV-Vis and 1H NMR spectroscopy. The result showed that the receptors 1, 2 and 3 all had a better selectivity to F-, CH3COO- and H2PO4-, but no evident binding with Cl-, Br-, I-, NO3- and HSO4. Upon addition of the three anions to the receptors in DMSO, the solution acquired a color change from colorless to dark yellow that can be observed by the naked-eyes, thus the receptors can act as fluoride ion sensors even in the presence of other halide ions. The data showed that it was regular that the three receptors had different binding ability with the three anions. For the same anion, the association conformed through hydrogen bonding interactions between compound 1, 2 or 3 and anions.

  3. Influence of Anion Types on the Electrodeposition Healing Effect of Concrete Cracks

    Institute of Scientific and Technical Information of China (English)

    CHU Hongqiang; JIANG Linhua; XU Ning; XIONG Chuansheng

    2012-01-01

    With the zinc salt and magnesium salt solutions,the influence of anion types on the electrodeposition healing effect of concrete cracks was investigated,four parameters such as rate of weight gain,surface coating,crack closure,and crack filling depth were measured,and the mineral composition and appearance of electrodeposits in the cracks were analyzed.The experimental results demonstrate that the electrodeposition healing effect is the best by adopting ZnSO4 and MgSO4 solutions.The mineral composition of electrodeposits in the cracks does not change with the anion types.The most particles of ZnO crystal appear as fusiform by using zinc salt solutions.If we selected MgSO4 solution,the Mg(OH)2 crystal was porous honeycomb.The electrodeposits present as flake structure while the other magnesium salt solutions were adopted.

  4. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carja, Gabriela [Department of Physical Chemistry, Faculty of Industrial Chemistry, Technical University of Iasi, 71 Mangeron Boulevard, 700050 Iasi (Romania); Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)]. E-mail: hchiriac@phys-iasi.ro; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)

    2007-04-15

    The structural 'memory effect' of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  5. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    Science.gov (United States)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  6. From 2 + 2 to 8 + 8 Condensation Products of Diamine and Dialdehyde: Giant Container-Shaped Macrocycles for Multiple Anion Binding.

    Science.gov (United States)

    Gregoliński, Janusz; Ślepokura, Katarzyna; Paćkowski, Tomasz; Panek, Jarosław; Stefanowicz, Piotr; Lisowski, Jerzy

    2016-07-01

    The combination of 2,6-diformylpyridine and trans-1,2-diaminocyclopentane fragments results in 2 + 2, 3 + 3, 4 + 4, 6 + 6, and 8 + 8 macrocyclic imine condensation products. These imines can be reduced to the corresponding 2 + 2, 3 + 3, 4 + 4, 6 + 6, and 8 + 8 macrocyclic amines. The X-ray crystal structures of their protonated derivatives show a rich variety of macrocycle conformations ranging from a stepped 2 + 2 macrocycle to a multiply folded 8 + 8 macrocycle of globular shape. These compounds bind anions via hydrogen bonds: two chloride anions are bound above and below the macrocyclic ring of the 2 + 2 amine, one chloride anion is bound approximately in the center of the 3 + 3 macrocycle, and two chloride anions are deeply buried inside a folded container-shaped 4 + 4 macrocycle, while in the case of the previously reported 6 + 6 amine four chloride anions and two solvent molecules are buried inside a container-shaped macrocycle. Yet another situation was observed for a multiply folded protonated 8 + 8 macrocycle which binds six sulfate anions; two of them are deeply buried inside the container structure while four anions interact with the clefts at the surface of the container.

  7. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano

    2014-09-15

    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  8. Investigating the Effects of Guest-Host Interactions on the Properties of Anion-Exchanged Mg-Al Hydrotalcites

    Science.gov (United States)

    Malherbe, François; Besse, Jean-Pierre

    2000-12-01

    A starting [Mg-Al-Cl] LDH, prepared by coprecipitation, was further anion-exchanged to incorporate a variety of anions in the interlayer domain: (Fe(CN)6)3-, (P2O7)4-, (V2O7)4-, (CrO4)2-, and (Cr2O7)2-. The resulting materials were fully characterized using classical techniques like XRPD, FTIR, TGA/DTA, and BET, and their structural modifications studied as a function of calcination temperatures. Under mild calcination, only the oxo-anions were shown to interact strongly with the host matrix. This resulted in a systematic shrinkage of the interlamellar domain, with a negative impact on the surface properties. However, intercalation of oxo-anions proved to be beneficial to thermal stability, the lamellar structure being maintained up to 400°C in the case of the dichromate intercalated [Mg-Al]. A thorough analysis of the FTIR spectra, revealing an evolution in the symmetry of some oxo-anions, confirmed the occurrence of a grafting process. Furthermore, the permanent character of the pillars was evidenced through unsuccessful rehydration and back-exchange reactions.

  9. Simultaneous determination of peroxydisulfate and conventional inorganic anions by ion chromatography with the column-switching technique.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Wang, Fengli; Zhu, Zuoyi; Subhani, Qamar; Wang, Muhua; Zhu, Yan

    2014-02-01

    The application of ion chromatography with the column-switching technique for the simultaneous analysis of peroxydisulfate and conventional inorganic anions in a single run is described. With this method, conventional inorganic anions were separated by consecutive elution through both the guard column and separation column, but peroxydisulfate that only passed through the guard column had a good peak shape and short retention time. A series of standard solutions consisting of target anions of various concentrations from 0.01 to 75 mg/L were analyzed, with a correlation coefficient (r) ≥ 0.9990. The limits of detection were in the range of 0.49-9.84 μg/L based on the S/N of 3 and a 25 μL injection volume. RSDs for retention time, peak area, and peak height were all <1.77%. A spiking study was performed with satisfactory recoveries between 97.6 and 103.4% for all anions. The quantitative determination of peroxydisulfate and conventional inorganic anions in surface waters was accomplished within 18 min by this column-switching technique.

  10. Gallium based low-interaction anions

    Science.gov (United States)

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  11. Enhanced anion electroadsorption into carbon molecular sieve electrodes in acidic media.

    Science.gov (United States)

    Eliad, Linoam; Salitra, Gregory; Pollak, Elad; Soffer, Abraham; Aurbach, Doron

    2005-11-08

    We previously showed that, for neutral electrolytes of small cations and relatively larger anions, it is possible to design certain pore sizes in active carbons that are large enough to electroadsorb cations but too small to allow anion electroadsorption. This situation leads to an electrical double-layer (EDL) capacitance that is significant only at potentials that are negative to the potential of zero charge (PZC); hence, much smaller capacitance is measured at potentials positive to the PZC. It was found that when the electrolyte is a strong acid (e.g., H(2)SO(4), HCl), a considerable capacitance is observed at positive potentials, even when the average pore size is too small to allow the insertion of large anions in neutral electrolyte solutions. This effect disappears when the pore size becomes considerably larger than the size of the ions. In this case, the EDL capacitance at positive potentials for both neutral and acidic solutions is comparable. The following four-step mechanism was found to comply best with the experimental data: (1) By acid catalysis, the protons form carbonium species within the conjugated carbon network. (2) The anions react with the carbonium ions, providing uncharged species in an activated state, which are chemibound as surface groups to the walls of the pores. (3) Because these surface groups are effectively much smaller in size than are the charged ions, they can migrate by chemical bond exchange within the carbon skeleton via constrictions (known to exist in microporous and molecular sieving carbons), which are too narrow to accommodate hydrated charged species. (4) Upon reaching wider spaces, the uncharged species are reionized and solvated by water molecules, which can fill small pores. The justification for the above mechanism is thoroughly discussed and demonstrated by the experimental results.

  12. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, TiH5- and VH6- as well as hyperhalogen anions, BH4-y(BH4)y-(y = 1 to 4). Our density functional calculations show that Li-salts of these complex anions possess similar characteristics as those of electrolytic salts in LIBs. Note that they all are halogen free and hence, non-toxic and safer than LiBF4, LiPF6 etc. In particular, LiB4H13 and LiB5H16 are two potential candidates for electrolytic salt due to their smaller Li-dissociation energy ({\\Delta}E) than those of LiBF4, LiPF6 etc. We have also noticed that {\\Delta}E of Li...

  13. Ab initio ro-vibronic spectroscopy of the 2Π PCS radical and +1ΣPCS- anion

    Science.gov (United States)

    Finney, Brian; Mitrushchenkov, Alexander O.; Francisco, Joseph S.; Peterson, Kirk A.

    2016-12-01

    Near-equilibrium potential energy surfaces have been calculated for both the PCS radical and its anion using a composite coupled cluster approach based on explicitly correlated F12 methods in order to provide accurate structures and spectroscopic properties. These transient species are still unknown and the present study provides theoretical predictions of the radical and its anion for the first time. Since these species are strongly suggested to play an important role as intermediates in the interstellar medium, the rotational and vibrational spectroscopic parameters are presented to help aid in the identification and assignment of these spectra. The rotational constants produced will aid in ground-based observation. Both the PCS radical and the PCS- anion are linear. In the PCS- anion, which has a predicted adiabatic electron binding energy (adiabatic electron affinity of PCS) of 65.6 kcal/mol, the P-C bond is stronger than the corresponding neutral radical showing almost triple bond character, while the C-S bond is weaker, showing almost single bond character in the anion. The PCS anion shows a smaller rotational constant than that of the neutral. The ω3 stretching vibrational frequencies of PCS- are red-shifted from the radical, while the ω1 and ω2 vibrations are blue-shifted with ω1 demonstrating the largest blue shift. The ro-vibronic spectrum of the PCS radical has been accurately calculated in variational nuclear motion calculations including both Renner-Teller (RT) and spin-orbit (SO) coupling effects using the composite potential energy near-equilibrium potential energy and coupled cluster dipole moment surfaces. The spectrum is predicted to be very complicated even at low energies due to the presence of a strong Fermi resonance between the bending mode and symmetric stretch, but also due to similar values of the bending frequency, RT, and SO splittings.

  14. Adsorption of Anionic Dyes on the Biopolymer Chitin

    Directory of Open Access Journals (Sweden)

    Longhinotti Elisane

    1998-01-01

    Full Text Available The adsorption of the anionic dyes orange IV, orange G and xylenol orange on chitin was studied, employing the Langmuir isotherm. The adsorption parameters were determined utilizing various linear regressions of the isotherm. The results showed that the adsorption capacity is dependent on pH. In acid pH, the polymer amino groups are protonated and the polymer chain is positively charged, with a predominance of adsorption through ion exchange. Van der Waals adsorption, as well as adsorption through hydrogen bonding, is also likely to occur to some extent. For xylenol orange, a linear regression was found, with an angular coefficient of 0.726 L mg-1. The temperature increase reduces adsorption capacity by chitin, due to the enhancement of the desorption step in the mechanism. deltaH values of -10.9 kJ mol-1 for orange G and -28.9 kJ mol-1 for orange IV prove the physical nature of the adsorption by these dyes on the chitin surface.

  15. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  16. Pyruvate anions neutralize peritoneal dialysate cytotoxicity.

    Science.gov (United States)

    Mahiout, A; Brunkhorst, R

    1995-01-01

    A new peritoneal dialysate containing pyruvate anions was developed in order to avoid cytotoxic effect of conventional lactate-based dialysate. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36-3.86% glucose-monohydrate; 132 mmol/l sodium; 1.75 mmol/l calcium; 0.75 mmol/l magnesium; 102 mmol/l chloride and 35 mmol/l pyruvate. For cytotoxicity testing peritoneal macrophages, and mesothelial cells (MC) were exposed to conventional lactate dialysate, and pyruvate dialysate. We investigated the O2- generation and cytokine synthesis after endotoxin stimulation in peritoneal macrophages and the proliferation of mesothelial cells of cultured human MC. After exposure to lactate dialysate O2- generation and cytokine synthesis in peritoneal macrophages and proliferation of mesothelial cells were inhibited when compared to solution containing pyruvate and the control solution. After preincubation with 3.86% glucose containing solutions, all negative effects became even more pronounced in the lactate group whereas after pre-exposure to pyruvate containing solution the toxic effects were absent. These results suggest that the acute toxic effects of commercially available peritoneal dialysates can be avoided by the use of sodium pyruvate instead of sodium lactate.

  17. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  18. Anionic peroxidase production by Arnebia euchroma callus.

    Science.gov (United States)

    Farhadi, Sahar; Haghbeen, Kamahldin; Marefatjo, Mohammad-Javad; Hoor, Marjan Ghiyami; Zahiri, Hossein Shahbani; Rahimi, Karim

    2011-01-01

    Arnebia euchroma callus, obtained from the root cell culture of an Iranian native specimen, has gained a doubling time of 63 H after regular subculturing on Linsmaier-Skoog (LS) medium containing sugar (50 g/L), 2,4-dichlorophenoxyacetic acid (10(-6) M), and kinetin (10(-5) M) under darkness at 25°C. Despite the observed somaclonal variations, peroxidase production by the A. euchroma calli has been stable over 4 years under the aforementioned conditions. Isoelectric focusing experiments revealed that the partially purified A. euchroma peroxidases (AePoxs) are mainly anionic with pI values of about 5.5 and 6.6. AePox reaches its optimal activity at 55°C and pH 7.5. Results of the various kinetic studies suggest that AePox belongs to the type III plant peroxidases with no activity for the oxidation of 3-indoleacetic acid, but seems to play a role in the lignin biosynthesis and H(2) O(2) regulation during the proliferation of the A. euchroma cells on LS medium. Comparing the biochemical properties of AePox with horseradish peroxidase and in view of the ease of solid cell culture, the A. euchroma callus could be considered as a source of plant peroxidase for some biotechnological applications. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  19. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  20. A Quick Reference on High Anion Gap Metabolic Acidosis.

    Science.gov (United States)

    Funes, Silvia; de Morais, Helio Autran

    2017-03-01

    High anion gap (AG) metabolic acidoses can be identified by a decrease in pH, decrease in HCO3(-) or base excess, and an increased AG. The AG represents the difference between unmeasured cations and unmeasured anions; it increases secondary to the accumulation of anions other than bicarbonate and chloride. The most common causes of high AG acidosis are renal failure, diabetic ketoacidosis, and lactic acidosis. Severe increases in concentration of phosphorus can cause hyperphosphatemic acidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ion exchange and intercalation properties of layered double hydroxides towards halide anions.

    Science.gov (United States)

    Costantino, Umberto; Vivani, Riccardo; Bastianini, Maria; Costantino, Ferdinando; Nocchetti, Morena

    2014-08-14

    A layered double hydroxide (LDH) obtained by the urea method, having an empirical formula [Zn(0.61)Al(0.39)(OH)2](CO3)(0.195)·0.50H2O, has been converted into the corresponding chloride form [Zn(0.61)Al(0.39)(OH)2]Cl(0.39)·0.47H2O by making the solid come into contact with a suitable HCl solution. The intercalation of the other halide anions (X(-) = F(-), Br(-), I(-)) via the Cl(-)/X(-) anion exchange has been attained and the respective anion exchange isotherms have been obtained with the batch method. The analysis of the isotherms indicates that the selectivity of LDH towards the halides decreases with the increase of the X(-) ionic radius, the selectivity order being F(-) > Cl(-)≥ Br(-) > I(-). The CO3(2-)/Cl(-) isotherm has also been reported to highlight the extraordinary selectivity of LDH towards carbonate anions. Samples taken from the isotherms at different exchange degrees were analyzed by X-ray diffraction, thermogravimetry and thermodiffractometry to obtain information about the ion exchange mechanism. The Cl(-)/Br(-) and the reverse Br(-)/Cl(-) exchanges occur with the formation of solid solutions, very likely because of the similar ionic radius of the exchanging anions. In contrast, in the Cl(-)/F(-) and Cl(-)/I(-) exchange, the co-existence of the Cl(-) and F(-) (or I(-)) phases in the same sample was detected, indicating the occurrence of a first order phase transition, in which the starting phase is transformed into the final phase, as the process goes on. The variation of the interlayer distances of ZnAl-X intercalation compounds with the hydration degree has been interpreted with a structural model based on the nesting of the guest species into the trigonal pockets of the brucite-like layer surface. Rietveld refinements of the phases with the maximum F(-), Br(-) and I(-) content were also performed and compared with the above model, giving indications of the arrangement and order/disorder of the halide anions in the interlayer region.

  2. The role of lipophilicity in transmembrane anion transport

    NARCIS (Netherlands)

    Saggiomo, Vittorio; Otto, Sijbren; Marques, Igor; Felix, Vitor; Torroba, Tomas; Quesada, Roberto

    2012-01-01

    The transmembrane anion transport activity of a series of synthetic molecules inspired by the structure of tambjamine alkaloids can be tuned by varying the lipophilicity of the receptor, with carriers within a certain log P range performing best.

  3. Effect of anionic macromolecules on intestinal permeability of furosemide.

    Science.gov (United States)

    Valizadeh, Hadi; Fahimfar, Hadi; Ghanbarzadeh, Saeed; Islambulchilar, Ziba; Zakeri-Milani, Parvin

    2015-02-01

    Furosemide is an anionic molecule and has very low absorption in gastro intestinal tract. The aim of this study was to investigate the effect of anionic macromolecules on the intestinal permeability of Furosemide. The intestinal permeability of Furosemide was determined using single-pass intestinal perfusion technique in rats. Briefly a jejunal segment of ∼10 cm was isolated and cannulated in both ends for inlet and outlet solution. The perfusate was collected every 10 min and samples were analyzed using the RP-HPLC method. Test samples containing furosemide and two anionic macromolecules, sodium carboxy methyl cellulose and sodium alginate, at different concentrations were used. The obtained data showed that existence of Sodium carboxy methyl cellulose significantly increased the Peff values in all three investigated concentrations (p macromolecules at specific concentrations could alter the permeability of anionic drugs across the biological membranes. Donnan phenomenon and chelating property of macromolecules could be attributed to the observed effect.

  4. Two benzoyl coumarin amide fluorescence chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Zian; Wu, Qianqian; Li, Jiale; Qiu, Shuang; Cao, Duxia; Xu, Yongxiao; Liu, Zhiqiang; Yu, Xueying; Sun, Yatong

    2017-08-01

    Two new benzoyl coumarin amide derivatives with ortho hydroxyl benzoyl as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions in acetonitrile have also been examined. The influence of electron donating diethylamino group in coumarin ring and hydroxyl in benzoyl group on recognition properties was explored. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectral change and high sensitivity. The import of diethylamine group increases smartly the absorption ability and fluorescence intensity of the compound, which allows the recognition for cyanide anions can be observed by naked eyes. The in situ hydrogen nuclear magnetic resonance spectra combining photophysical properties change and job's plot data confirm that Michael addition between the chemosensors and cyanide anions occurs. Molecular conjugation is interrupted, which leads to fluorescence quenching. At the same time, there is a certain extent hydrogen bond reaction between cyanide and hydroxyl group in the compounds, which is beneficial to the recognition.

  5. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  6. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the foll......Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  7. Involvement of anion channels in mediating elicitor-induced ATP efflux in Salvia miltiorrhiza hairy roots.

    Science.gov (United States)

    Wu, Shu-Jing; Siu, Ka-Chai; Wu, Jian-Yong

    2011-01-15

    This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn(2+), but not by a specific Cl(-) channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.

  8. Response of observables for cold anionic water clusters to cluster thermal history.

    Science.gov (United States)

    Madarász, Adám; Rossky, Peter J; Turi, László

    2010-02-18

    We have used mixed quantum classical molecular dynamics simulations to explore the role of structural relaxation when binding an excess electron to neutral water clusters. The structural and spectral properties of the water cluster anions were investigated as a function of the size (n = 45 and 104), nominal temperature (T(nom) = 50, 100, and 150 K), and preparation method of the parent neutral clusters. In particular, we consider two different protocols for preparing the initial neutral clusters, which differ markedly in their thermal history. In the first, warm equilibrium neutral clusters are gradually quenched to increasingly lower temperature. In the second, neutral clusters are formed spontaneously at approximately 0 K and then warmed to the same target temperatures, yielding inherently metastable, nonequilibrium structures. Electron attachment to these alternative sets of clusters shows that below a critical temperature (approximately 200 K), the metastable water clusters bind a surface state excess electron significantly more strongly than the quenched, equilibrium clusters. The structural analysis indicates that these cluster anions with larger vertical detachment energies (VDEs) more frequently stabilize the electron by double-acceptor-type water molecules and exhibit a weak temperature dependence of the VDE compared with the quenched clusters. These results suggest that the alternative classes of cluster anions seen experimentally may reflect differences in the thermal history of such clusters.

  9. PREPARATION AND CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONTAINING DIRECT DYE WITH A HIGH AFFINITY FOR CELLULOSE

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-05-01

    Full Text Available Direct dye with a high affinity for cellulose substrate was utilized as a cellulose anchor to promote retention of paper strengthening additives under various conditions associated with the wet end of a paper machine. Direct Red 28 (DR was covalently linked to anionic polyacrylamide (A-PAM via a condensation reaction using water-soluble carbodiimide. The DR-conjugated A-PAM (DR-A-PAM demonstrated good retention efficiency, resulting in strength enhancement of handsheets. Anionic trash showed no interference with the performance of DR-A-PAM in the wet end, while the additive performance was sensitive to calcium ions. Surface plasmon resonance analysis gave useful information on the cellulose-anchoring ability of DR-A-PAM. Dye molecules were irreversibly adsorbed onto the cellulose substrate under aqueous conditions, while A-PAM possessed no significant affinity for cellulose. These results suggest that anionic DR moieties in DR-A-PAM molecules served as a cellulose-anchor, possibly due to multiple CH-π interaction between hydrophobic face of cellulose substrate and π-conjugated system of dye molecules. Such a unique interaction of direct dye and cellulose provides a new insight into the wet end system, and does not depend on conventional electrostatic attraction.

  10. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Rajneesh Misra; Venkataramanarao G Anand; Harapriya Rath; Tavarekere K Chandrashekar

    2005-03-01

    In this paper, a brief review of the syntheses, characterization and anion-binding properties of core-modified octaphyrins is presented. It has been shown that the core-modified octaphyrins exhibit aromaticity both in solution and in solid state, confirming the validity of the (4 + 2) Huckel rule for larger -electron systems. Solid-state binding characteristics of TFA anions of two core-modified octaphyrins are also described.

  11. Intestinal transporters for endogenic and pharmaceutical organic anions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas

    2012-01-01

    This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations.......This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations....

  12. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    , but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular...... anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling....

  13. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  14. Synthesis of Pyridoacridines through Anionic Cascade Ring Closure

    DEFF Research Database (Denmark)

    Petersen, I.N.; Kristensen, Jesper Langgaard

    2014-01-01

    A new synthesis of 13-deazaascididemin (AK-37) based on a recently developed anionic cascade ring closure is presented. Although the isolated yields are modest, the approach provides ready access to new substituted derivatives of 13-deazaascididemin. © Georg Thieme Verlag.......A new synthesis of 13-deazaascididemin (AK-37) based on a recently developed anionic cascade ring closure is presented. Although the isolated yields are modest, the approach provides ready access to new substituted derivatives of 13-deazaascididemin. © Georg Thieme Verlag....

  15. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  16. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  17. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    Science.gov (United States)

    2014-01-01

    provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued to...in aqueous solution. Interestingly though, while the proton transfer events in the anion exchange membrane are more frequent as would be ECS...release; distribution is unlimited. (Invited) Thin Robust Anion Exchange Membranes for Fuel Cell Applications The views, opinions and/or findings

  18. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  19. Grain boundary mobility in anion doped MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  20. Counterion-mediated pattern formation in membranes containing anionic lipids.

    Science.gov (United States)

    Slochower, David R; Wang, Yu-Hsiu; Tourdot, Richard W; Radhakrishnan, Ravi; Janmey, Paul A

    2014-06-01

    Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from -1 for the most abundant anionic lipids such as phosphatidylserine, to near -7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control. Copyright © 2014. Published by Elsevier B.V.

  1. Astronomical identification of CN-, the smallest observed molecular anion

    CERN Document Server

    Agundez, M; Guelin, M; Kahane, C; Roueff, E; Klos, J; Aoiz, F J; Lique, F; Marcelino, N; Goicoechea, J R; Garcia, M Gonzalez; Gottlieb, C A; McCarthy, M C; Thaddeus, P

    2010-01-01

    We present the first astronomical detection of a diatomic negative ion, the cyanide anion CN-, as well as quantum mechanical calculations of the excitation of this anion through collisions with para-H2. CN- is identified through the observation of the J = 2-1 and J = 3-2 rotational transitions in the C-star envelope IRC +10216 with the IRAM 30-m telescope. The U-shaped line profiles indicate that CN-, like the large anion C6H-, is formed in the outer regions of the envelope. Chemical and excitation model calculations suggest that this species forms from the reaction of large carbon anions with N atoms, rather than from the radiative attachment of an electron to CN, as is the case for large molecular anions. The unexpectedly large abundance derived for CN-, 0.25 % relative to CN, makes likely its detection in other astronomical sources. A parallel search for the small anion C2H- remains so far unconclusive, despite the previous tentative identification of the J = 1-0 rotational transition. The abundance of C2H...

  2. Production and characterization of carbonized sorbent products optimized for anionic contaminants

    Science.gov (United States)

    Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard

    2017-04-01

    Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates

  3. Determination of trace inorganic anions in anionic surfactants by single-pump column-switching ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Jia Jie Zhang; Hai Bao Zhu; Yan Zhu

    2012-01-01

    An ion chromatography method has been proposed for the determination of three common inorganic anions (chloride,nitrate and sulfate) in anionic surfactants using a single pump system.The new system consists of an ion exclusion column,a concentrator column,and an anion exchange column connected in series via two 6-ports valves in a Dionex ICS-2000 ion chromatograph.The valves were switched several times for removing surfactants,concentrating and separating the three anions.The chromatographic conditions were optimized.Detection limits (S/N =3) were in the range of 0.10-0.68 μg/L.The relative standard deviations (RSDs)of peak area were less than 4.6%.The recoveries were in the range of 84.1-112.6%.

  4. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  5. Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gunaratne, K. Don D.; Prabhakaran, Venkateshkumar; Andersen, Amity; Johnson, Grant E.; Laskin, Julia

    2016-01-01

    Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O403- (WPOM3-) and PW12O402- (WPOM2-), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM3- was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM3- and WPOM2- were deposited onto a hydrophilic alkylthiol SAM terminated with cationic NH3+ functional groups (NH3+SAM). We found that during the course of the soft landing of WPOM3-, the relative abundance of WPOM3- on FSAM decreased while that of WPOM2- increased. We propose that the higher stability of immobilized WPOM2- in comparison with WPOM3- makes it the preferred charge state of WPOM on both the FSAM and NH3+SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C 2014, 118, 27611–27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster.

  6. Tetravalent metal complexation by Keggin and lacunary phosphomolybdate anions.

    Science.gov (United States)

    Copping, Roy; Jonasson, Leif; Gaunt, Andrew J; Drennan, Dennis; Collison, David; Helliwell, Madeleine; Pirttijarvi, Ross J; Jones, Chris J; Huguet, Anne; Apperley, David C; Kaltsoyannis, Nikolas; May, Iain

    2008-07-07

    We report the synthesis, spectroscopic and structural characterization, and computational analysis of a series of phosphomolybdate complexes with tetravalent metal cations. The reaction between Ce (IV) and Th (IV) with phosphomolybdate at the optimum pH for the stabilization of the lacunary heteropolyoxometalate anion, [PMo 11O 39] (7-), results in the formation of compounds containing the anions [Ce(PMo 11O 39) 2] (10-) and [Th(PMo 11O 39) 2] (10-), respectively. Single crystal X-ray diffraction analysis was performed on salts of both species, Cs 10[Ce(PMo 11O 39) 2].20H 2O and (NH 4) 10[Th(PMo 11O 39) 2].22H 2O. In both anionic complexes the f-block metal cation is coordinated to the four unsaturated terminal lacunary site oxygens of each [PMo 11O 39] (7-) anion, yielding 8 coordinate sandwich complexes, analogous to previously prepared related complexes. Spectroscopic characterization points to the stability of these complexes in solution over a reasonably wide pH range. Density functional analysis suggests that the Ce-O bond strength in [Ce(PMo 11O 39) 2] (10-) is greater than the Th-O bond strength in [Th(PMo 11O 39) 2] (10-), with the dominant bonding interaction being ionic in both cases. In contrast, under similar reaction conditions, the dominant solid state Zr (IV) and Hf (IV) complexes formed contain the anions [Zr(PMo 12O 40)(PMo 11O 39)] (6-) and [Hf(PMo 12O 40)(PMo 11O 39)] (6-), respectively. In these complexes the central Group 4 d-block metal cations are coordinated to the four unsaturated terminal lacunary site oxygens of the [PMo 11O 39] (7-) ligand and to four bridging oxygens of a plenary Keggin anion, [PMo 12O 40] (3-). In addition, (NH 4) 5{Hf[PMo 12O 40][(NH 4)PMo 11O 39]}.23.5H 2O can be crystallized as a minor product. The structure of the anion, {Hf[PMo 12O 40][(NH 4)PMo 11O 39]} (5-), reveals coordination of the central Hf (IV) cation via four bridging oxygens on both the coordinated [PMo 11O 39] (7-) and [PMo 12O 40] (3-) anions

  7. Matrix diffusion in crystalline rocks: coupling of anion exclusion, surface diffusion and surface complexation

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Valkiainen, M.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    1997-12-01

    This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments. 21 refs.

  8. Dispersing multi-component and unstable powders in aqueous media using comb-type anionic polymers

    DEFF Research Database (Denmark)

    Laarz, E.; Kauppi, A.; Andersson, K.M.

    2006-01-01

    of the grafted ethylene oxide side chains showed that the dispersants adsorb onto a MgO surface and infer a repulsion where the range scales with the length of the poly ethylene oxide side chains. The compressibility and the consolidation behavior of MgO particle networks in response to a centrifugal force field......We have investigated the effect of polymeric dispersants on the rheological properties and consolidation behavior of concentrated cemented carbide (WC-Co) and magnesia (MgO) suspensions. The relatively novel types of comb-type anionic polymers with grafted non-ionic side chains are effective...

  9. Sorption of Ponceau 4R anionic dye from aqueous solutions on aluminum oxide and polyurethane foam

    Science.gov (United States)

    Tikhomirova, T. I.; Ramazanova, G. R.; Apyari, V. V.

    2014-12-01

    The sorption of Ponceau 4R (E-124) anionic dye on polyurethane foam based on ethers and γ-Al2O3 from aqueous solutions is studied. It is established that sorption is highest in the range of 0.5 M HCl, pH 2 on polyurethane foam and 0.2 M HCl, pH 6.5 on γ-Al2O3. Under optimum conditions, the degrees of recovery on polyurethane foam and γ-Al2O3 are 20-30 and 70-85%, respectively. A possible scheme of interactions between the dye and the surfaces of sorbents is proposed.

  10. Functionalized TiO2 nanoparticles for use for in-situ anion immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Fryxell, Glen E.; Alford, Kentin L.; Gilmore, Tyler J.; Parker, Kent E.; Serne, R JEFFREY.; Engelhard, Mark H.

    2005-09-15

    40-60 nm anatase nanoparticles were coated with an organosilane monolayer terminated with an ethylenediamine (EDA) ligand. This functionalized nanoparticle (FNP) was then treated with an aqueous solution of Cu(II) to create a cationic Cu-EDA complex bound to the nanoparticle surface. The Cu-EDA FNP was then studied for its binding affinity for pertechnetate anion from a Hanford groundwater matrix. The Cu-EDA FNP was also evaluated for its injectability into a porous medium for possible application as a subsurface semi-permeable reactive barrier. Injection was readily accomplished, and resulted in a highly uniform distribution of the FNP sorbent in the test column.

  11. Determination of aggregation thresholds of UV absorbing anionic surfactants by frontal analysis continuous capillary electrophoresis.

    Science.gov (United States)

    Le Saux, Thomas; Varenne, Anne; Gareil, Pierre

    2004-06-01

    Aggregation of anionic surfactants was investigated by frontal analysis continuous capillary electrophoresis (FACCE), a method involving the continuous electrokinetic introduction of the surfactant sample into the separation capillary. This process results in a partial separation of the monomeric and aggregated forms without perturbing the monomer-aggregate equilibrium. The critical micelle concentration (CMC) can then be easily derived from the height of the firstly detected migration front, corresponding to the monomeric form. This approach is exemplified with octyl and dodecylbenzenesulfonates and compared with conductimetry and surface tension measurements. FACCE turns out to be an effective method for the determination of CMC and intermediate aggregation phenomena with very small sample and short time requirements.

  12. Anion separation by selective crystallization of metal-organic frameworks.

    Science.gov (United States)

    Custelcean, Radu; Haverlock, Tamara J; Moyer, Bruce A

    2006-08-07

    A novel approach for the separation of anions from aqueous mixtures was demonstrated, which involves their selective crystallization with metal-organic frameworks (MOFs) containing urea functional groups. Self-assembly of Zn2+ with the N,N'-bis(m-pyridyl)urea (BPU) linker results in the formation of one-dimensional MOFs including various anions for charge balance, which interact to different extents with the zinc nodes and the urea hydrogen-bonding groups, depending on their coordinating abilities. Thus, Cl-, Br-, I-, and SO4(2-), in the presence of BPU and Zn2+, form MOFs from water, in which the anions coordinate the zinc and are hydrogen-bonded to the urea groups, whereas NO3- and ClO4- anions either do not form MOFs or form water-soluble discrete coordination complexes under the same conditions. X-ray diffraction, FTIR, and elemental analysis of the coordination polymers precipitated from aqueous mixtures containing equivalent amounts of these anions indicated total exclusion of the oxoanions and selective crystallization of the halides in the form of solid solutions with the general composition ZnCl(x)Br(y)I(z).BPU (x + y + z = 2), with an anti-Hofmeister selectivity. The concomitant inclusion of the halides in the same structural frameworks facilitates the rationalization of the observed selectivity on the basis of the diminishing interactions with the zinc and urea acidic centers in the MOFs when going from Cl- to I-, which correlates with decreasing anionic charge density in the same order. The overall crystal packing efficiency of the coordination frameworks, which ultimately determines their solubility, also plays an important role in the anion crystallization selectivity under thermodynamic equilibration.

  13. Discovery of Interstellar Anions in Cepheus and Auriga

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  14. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating

    CERN Document Server

    Barhoum, Ahmed; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2016-01-01

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. Unmodified and CTAB and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized by XRD, FT-IR spectroscopy, zeta potential measurements, TGA and TEM. Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with GCC calcium carbonate-coated papers. The obtai...

  15. Poly-anion production in Penning and RFQ ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bandelow, Steffi; Martinez, Franklin; Marx, Gerrit; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt University, 17487 Greifswald (Germany)

    2014-07-01

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Au{sup n-1}, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  16. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    Science.gov (United States)

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact.

  17. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    Science.gov (United States)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  18. Treatment of acute non-anion gap metabolic acidosis.

    Science.gov (United States)

    Kraut, Jeffrey A; Kurtz, Ira

    2015-02-01

    Acute non-anion gap metabolic acidosis, also termed hyperchloremic acidosis, is frequently detected in seriously ill patients. The most common mechanisms leading to this acid-base disorder include loss of large quantities of base secondary to diarrhea and administration of large quantities of chloride-containing solutions in the treatment of hypovolemia and various shock states. The resultant acidic milieu can cause cellular dysfunction and contribute to poor clinical outcomes. The associated change in the chloride concentration in the distal tubule lumen might also play a role in reducing the glomerular filtration rate. Administration of base is often recommended for the treatment of acute non-anion gap acidosis. Importantly, the blood pH and/or serum bicarbonate concentration to guide the initiation of treatment has not been established for this type of metabolic acidosis; and most clinicians use guidelines derived from studies of high anion gap metabolic acidosis. Therapeutic complications resulting from base administration such as volume overload, exacerbation of hypertension and reduction in ionized calcium are likely to be as common as with high anion gap metabolic acidosis. On the other hand, exacerbation of intracellular acidosis due to the excessive generation of carbon dioxide might be less frequent than in high anion gap metabolic acidosis because of better tissue perfusion and the ability to eliminate carbon dioxide. Further basic and clinical research is needed to facilitate development of evidence-based guidelines for therapy of this important and increasingly common acid-base disorder.

  19. Vertical detachment energies of anionic thymidine: Microhydration effects

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2010-10-01

    Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N1H hydrogen of thymine has been replaced by a 2'-deoxyribose ring, are greater by ˜0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].

  20. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  1. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  2. Determination of inorganic anions in papermaking waters by ion chromatography

    Directory of Open Access Journals (Sweden)

    DARJA ŽARKOVIĆ

    2009-03-01

    Full Text Available A suppressed ion chromatography (IC method for the determination of inorganic anions in process water from paperboard production was developed and validated. Common inorganic anions (Cl-, NO3-, PO43- and SO42- were detected in fresh and process water samples collected from a paperboard production system at 16 characteristic points. It was shown that the use of an IonPac®-AS14 column under isocratic conditions with Na2CO3/NaHCO3 as the eluent and a suppression device proved to be a reliable analytical solution for the separation of the inorganic anions present in papermaking waters. This IC method is quite satisfactory concerning selectivity and sensitivity, and enables the determination of several inorganic anions over a wide concentration range. According to the obtained results, the total amount of analyzed inorganic anions was below 0.1 g/L, i.e., below the critical value which may trigger operational problems in paper production.

  3. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles.

    Science.gov (United States)

    Morini, M A; Sierra, M B; Pedroni, V I; Alarcon, L M; Appignanesi, G A; Disalvo, E A

    2015-07-01

    The purpose of the work is to compare the influence of the multilamellarity, phase state, lipid head groups and ionic media on the origin of the surface potential of lipid membranes. With this aim, we present a new analysis of the zeta potential of multilamellar and unilamellar vesicles composed by phosphatidylcholines (PC) and phosphatidylethanolamines (PE) dispersed in water and ionic solutions of polarizable anions, at temperatures below and above the phase transition. In general, the adsorption of anions seems to explain the origin of the zeta potential in vesicles only above the transition temperature (Tc). In this case, the sign of the surface potential is ascribed to a partial orientation of head group moiety toward the aqueous phase. This is noticeable in PC head groups but not in PEs, due to the strong lateral interaction between PO and NH group in PE.

  4. Adsorption properties of the nanozirconia/anionic polyacrylamide system-Effects of surfactant presence, solution pH and polymer carboxyl groups content

    Science.gov (United States)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2016-05-01

    The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.

  5. Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Yang Shao

    2015-02-01

    Full Text Available The objective of this study is to develop chitosan–anionic polymers based extended-release tablets and test the feasibility of using this system for the sustained release of highly water-soluble drugs with high drug loading. Here, the combination of sodium valproate (VPS and valproic acid (VPA were chosen as the model drugs. Anionic polymers studied include xanthan gum (XG, carrageenan (CG, sodium carboxymethyl cellulose (CMC-Na and sodium alginate (SA. The tablets were prepared by wet granulation method. In vitro drug release was carried out under simulated gastrointestinal condition. Drug release mechanism was studied. Compared with single polymers, chitosan–anionic polymers based system caused a further slowdown of drug release rate. Among them, CS–xanthan gum matrix system exhibited the best extended-release behavior and could extend drug release for up to 24 h. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR studies demonstrated that polyelectrolyte complexes (PECs were formed on the tablet surface, which played an important role on retarding erosion and swelling of the matrix in the later stage. In conclusion, this study demonstrated that it is possible to develop highly water-soluble drugs loaded extended-release tablets using chitosan–anionic polymers based system.

  6. Anion Adsorption on an Au Colloid Monolayer Based Cysteamine-Modified Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anion adsorption behavior on Au colloid surface was investigated in virture of depositing monolayers of Au colloid on the self-assembled monolayers of cysteamine on a gold electrode. Po tential-dependent anion adsorption-desorption waves via the nonfaradaic current were obtained by means of cyclic voltammetry at Au colloid-modified gold electrodes in the potential range of -200-600 mV. The adsorption sequence in the order of adsorption peak potentials(Epa) is OH->citrate3->H2PO4->Cl->SO42->ClO4->NO3-. Among them, citrate3-exhibited an en tirely irreversible adsorption. A rise in temperature can increase the rates of adsorption-desorp tion and improve the reversibility of the adsorption-desorption of CI-, SO24-, CIO4-, NO3- and H2PO4-. The adsorption peak potentials shifted more negatively for ca. 63 mV as the anion con centrations were increased by a decade factor. The change of pH from 7 to 1 slightly affected the adsorption peak potentials of Cl- and NO3-. Au colloids with a smaller size (16 nm) gave rise to a better reversibility of the adsorption-desorption process and lower adsorption currents. The ex perimental results of citrate ions adsorption on Au colloid surface show that Au colloids with a smaller size prepared by sodium citrate method exhibited a higher stability in the solution in com parison to those with larger sizes because of its higher ratio of charge/mass. In other words, the smaller gold nanoparticles are covered with citrate ions monolayer that can also be formed at larg er gold nanoparticles by means of electrochemical scan.

  7. New monolith technology for automated anion-exchange purification of nucleic acids.

    Science.gov (United States)

    Thayer, J R; Flook, K J; Woodruff, A; Rao, S; Pohl, C A

    2010-04-15

    Synthetic nucleic acid analysis often employs pellicular anion-exchange (AE) chromatography because it supports very high efficiency separations while offering means to control secondary structure, retention and resolution by readily modifiable chromatographic conditions. However, these pellicular anion-exchange (pAE) phases do not offer capacity sufficient for lab-scale oligonucleotide (ON) purification. In contrast, monolithic phases produce fast separations at capacities exceeding their pellicular counterparts, but do not exhibit capacities typical of fully porous, bead-based, anion-exchangers. In order to further increase monolith capacity and obtain the selectivity and mass transfer characteristics of pellicular phases, a surface-functionalized monolith was coated with pAE nanobeads (latexes) usually employed on the pellicular DNAPac phase. The nanobead-coated monolith exhibited chromatographic behaviors typical of polymer AE phases. Based on this observation the monolithic substrate surface porosity and latex diameters were co-optimized to produce a hybrid monolith harboring capacity similar to that of fully porous bead-based phases and peak shape approaching that of the pAE phases. We tested the hybrid monolith on a variety of previously developed pAE capabilities including control of ON selectivity, resolution of derivatized ONs, the ability to resolve RNA ONs harboring aberrant linkages at different positions in a single sequence and separation of phosphorothioate diastereoisomers. We compared the yield and purity of an 8 mg ON sample purified on both the new hybrid monolith and a benchmark AE column based on fully porous monodisperse beads. This comparison included an assessment of the relative selectivities of both columns. Finally, we demonstrated the ability to couple AE ON separations with ESI-MS using an automated desalting protocol. This protocol is also useful for preparing ONs for other assays, such as enzyme treatments, that may be sensitive to

  8. Hydrolysis of Aluminum Ions in Kaolinite and Oxisol Suspensions as Influenced by Organic Anions

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; XIAO Shuang-Cheng; LI Jiu-Yu; D. TIWARI; JI Guo-Liang

    2007-01-01

    To evaluate the role of kaolinite and variable charge soils on the hydrolytic reaction of Al, the hydrolysis of Al ions in suspensions of a kaolinite and an Oxisol influenced by organic anions was investigated using changes of pH, Al adsorption, and desorption of pre-adsorbed Al. Kaolinite and the Oxisol promoted the hydrolytic reaction of Al above a certain initial Al concentration (0.1 mmol L-1 for kaolinite and 0.3 mmol L-1 for the Oxisol). The Al hydrolysis accelerated by kaolinite and the Oxisol increased with an increase in initial concentration of Al and was observed in the range of pH from 3.7 to 4.7 for kaolinite and 3.9 to 4.9 for the Oxisol. The acceleration of Al hydrolysis also increased with the increase of solution pH, reached a maximum value at pH 4.5, and then decreased sharply. Al hydrolysis was promoted mainly through selective adsorption for hydroxy-Al. Soil free iron oxides compensated a portion of the soil negative charge or masked some soil surface negative sites leading to a decrease in Al adsorption, which retarded acceleration to some extent. For the Oxisol organic anions increased the proportion of adsorbed Al3+ in total adsorbed Al with the increase in soil negative surface charge and eliminated or reduced the acceleration of Al hydrolysis. Different organic anions inhibited the hydrolysis of Al in the order:citrate > oxalate > acetate (under initial pH of 4.5). The formation of Al-organic complexes in solution also inhibited the hydrolysis of Al.

  9. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  10. Analysis of anions in geological brines using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  11. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  12. Effect of anions on the electrochemistry of zinc tetraphenylporphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Seely, G.R.; Gust, D.; Moore, T.A.; Moore, A.L. (Arizona State Univ., Tempe, AZ (United States))

    1994-10-13

    Accurate measurements of porphyrin redox potentials are essential for the prediction and rationalization of the rates of electron transfer reactions involving these biologically important electron-donating and accepting chromophores. The present work describes a survey of redox potentials of zinc tetraphenylporphyrin obtained by cyclic voltammetry in dichloromethane, with tetrabutylammonium salts containing a variety of anions as electrolytes. Of the anions tested, hexafluorophosphate appears to have the least ability to ligate the metal, so that potentials measured in its presence as electrolyte should most closely approach those of the unligated porphyrin. With perchlorate electrolyte, the potential for one-electron oxidation is approximately 80 mV lower, enough to affect the interpretation of photochemical electron transfer rates. In general, anions bind much more strongly to the cation radical than to zinc tetraphenylporphyrin itself. The use of reference redox systems based on thymoquinone and ferrocene carboxylate enabled comparison of potentials measured with different electrolytes. 30 refs., 2 tabs.

  13. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  14. J774 macrophages secrete antibiotics via organic anion transporters.

    Science.gov (United States)

    Cao, C X; Silverstein, S C; Neu, H C; Steinberg, T H

    1992-02-01

    Mouse macrophages and J774 macrophage-like cells express probenecid-inhibitable organic anion transporters that remove anionic dyes from the cells' cytoplasmic matrix and secrete these dyes into the extracellular medium. The present studies show that these transporters also secrete antibiotics from J774 macrophages. Penicillin G permeates J774 cells poorly, but after it was introduced into the cell cytoplasm, it was secreted in a probenecid-inhibitable fashion. The quinolone norfloxacin enters macrophages readily. Probenecid retarded the secretion of intracellular norfloxacin by J774 cells and enhanced norfloxacin accumulation three- to fourfold. Thus the intracellular accumulation of norfloxacin is regulated in part by organic anion transporters that secrete norfloxacin (and penicillin G) from J774 cells. This transport process may have clinical significance, as fluoroquinolones inhibit growth of intracellular pathogens such as mycobacteria and Brucella organisms in vitro but fail to arrest infections with these organisms in vivo.

  15. Organization and function of anionic phospholipids in bacteria.

    Science.gov (United States)

    Lin, Ti-Yu; Weibel, Douglas B

    2016-05-01

    In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.

  16. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    Science.gov (United States)

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  17. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  18. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    Science.gov (United States)

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Corticosteroids increase superoxide anion production by rat liver microsomes.

    Science.gov (United States)

    Nelson, D H; Ruhmann-Wennhold, A

    1975-01-01

    Superoxide anion production by liver microsomes from intact, adrenalectomized, and cortisoltreated adrenalectomized rats has been determined. The amount formed was roughly proportionate to the amount of cortisol given, and a similar response was seen in the activity of NADPH-cytochrome c reductase. The amount of measurable superoxide anion was markedly reduced by the addition of superoxide dismutase. The increased production of this potent free radical with cortisol therapy suggests that its formation may contribute to some of the harmful effects of corticosteroids given in more than physiologic amounts. PMID:239969

  20. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    Science.gov (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  1. Preparation of alumina nanoshell coated porous silica spheres for inorganic anions separation.

    Science.gov (United States)

    Song, Zhihua; Wu, Dapeng; Ding, Kun; Guan, Yafeng

    2016-02-12

    It had been reported that alumina nanoshell coating could be obtained on the external surface of various substrates in one-nanometer precision in aqueous solution. In this work, alumina nanoshell coated mesoporous silica microbeads (nanoAl2O3/mesoSiO2) were prepared with the similar method, and were successfully applied to inorganic anions separation. As the mass transfer speed is largely constrained in the mesopore compared with that on the open surface, it was found that a complete alumina nanoshell coating could be obtained within the mesopore until the five-time coating was carried out. After characterization by BET, SEM and FTIR, it was found that the obtained nanoAl2O3/mesoSiO2 particles are smooth and well dispersed, and the mesopores are well reserved. In addition, the full coverage of nanoAl2O3 shell in mesopores was also confirmed by the binding capacity experiments with berberine. Finally, the nanoAl2O3/mesoSiO2 particles were packed in silica capillary for the separation of inorganic anions I(-), SCN(-), Br(-), NO2(-) and NO3(-) with ion chromatography (IC), and a column efficiency of 3.8 × 10(4) plates per meter was obtained for I(-).

  2. Ultrasound and shacking-assisted water-leaching of anions and cations from fly ash

    Directory of Open Access Journals (Sweden)

    Savić-Biserčić Marjetka

    2016-01-01

    Full Text Available Two mechanical extraction techniques were used for the extraction of environmentaly interesting elements from coal fly ash: shaking, in which the extraction process lasted from 6 to 24 hours, and ultrasonic sonication during 15 to 60 minutes, with water as extractant. The concentration of anions in fly ash extracts were determined by ion chromatography, while atomic absorption spectrometry was used for determination of: As, Pb, Cd, Ni, Cr, Zn, Cu, Fe, Mn and Al. The ultrasonic sonication yielded slightly higher amounts of extracted anions and Pb, Al, Mn and Fe, while shaking-assisted extraction was more efficient for the Cr, As, Zn and Ni ions. The changes in pH value, particle size distribution in colloid, zeta potential and conductivity during ultrasound-assisted extraction were measured in order to explain changes on the surface of fly ash particles in contact with water and different processes (adsorption, ion exchange, flocculation that occur in environmental conditions. Principal Component Analysis were used for assessing the effect of observed process parameters. Essential from a practical point of view is a quantitative evaluation of these elements leachable from coal fly ash to surface waters in environmental conditions and contamination of the environment. [Projekat Ministarstva nauke Republike Srbije, br. 172030, br. III45012 i br. III43009

  3. Electron Photodetachment from Aqueous Anions. I. Quantum Yields for Generation of Hydrated Electron by 193 and 248 nm Laser Photoexcitation of Miscellaneous Inorganic Anions

    CERN Document Server

    Sauer, M C; Shkrob, I A; Sauer, Myran C.; Shkrob, Ilya A.

    2004-01-01

    Time resolved transient absorption spectroscopy has been used to determine quantum yields for electron photodetachment in 193 nm and (where possible) 248 nm laser excitation of miscellaneous aqueous anions, including hexacyanoferrate(II), sulfate, sulfite, halide anions (Cl-, Br-, and I-), pseudohalide anions (OH-, HS-, CNS-), and several common inorganic anions for which no quantum yields have been reported heretofore: SO3=, NO2-, NO3-, ClO3- and ClO4-. Molar extinction coefficients for these anions and photoproducts of electron detachment from these anions at the excitation wavelengths were also determined. These results are discussed in the context of recent ultrafast kinetic studies and compared with the previous data obtained by product analyses. We suggest using electron photodetachment from the aqueous halide and pseudohalide anions as actinometric standard for time-resolved studies of aqueous photosystems in the UV.

  4. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Benjamin J. [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast (~100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I2- photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I2- photodissociation in several size-selected I2-(Ar)n (n = 6-20) and I2-(CO2)n (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I2- on the ground $\\tilde{X}$(2Σu+) state in sufficiently large clusters. Recombination and trapping of I2- on the excited $\\tilde{A}$(2π3/2,g) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a ~500 fs to ~10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods (~1 ps to >200 ps), energy is transferred from vibrationally

  5. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads

  6. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP-) interacting with membranes...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment......, it forms relatively weak contacts with the zwitterionic head groups (in particular choline) of the phosphatidylcholine lipids. Consequently, AuNP- does not immerse deeply in the leaflet, enabling, e.g., lateral diffusion of the nanoparticle along the surface. On the cytosolic side, AuNP- remains...

  7. Effect of anions on preparation of ultrafine α-Al2O3 powder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃C for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology,and uniform granularity distribution in the particle size range of 2-3 μm.

  8. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  9. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  10. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    Science.gov (United States)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  11. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  12. Anion effects on the cyclobis(paraquat-p-phenylene) host

    DEFF Research Database (Denmark)

    Andersen, Sissel Stenbæk; Jensen, Morten; Sørensen, Anne;

    2012-01-01

    Binding studies between the electron accepting host cyclobis(paraquat-p-phenylene) and a series of electron donors in the presence of differently sized counteranions reveal that both the nature and the concentration of the anion have a large impact on the association strength of the resulting host...

  13. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    Science.gov (United States)

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective.

  14. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling

    NARCIS (Netherlands)

    Gulersonmez, M.C.; Lock, S.; Hankemeier, T.; Ramautar, R.

    2016-01-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration

  15. Synthesis and Anion Recognition of a Novel Heterocyclic Organotin Complex

    Institute of Scientific and Technical Information of China (English)

    Li Xin ZHANG; Gui Zhi LI; Zhi Qiang LI

    2004-01-01

    A novel heterocyclic hexacoordinate organotin(IV) complex, bis(O-vanillin)-semi ethylenediamino dibenzyltin (VEDBT) was synthesized by the reaction of dibenzyltin dichloride with bis(O-vanillin)-semiethyenediamine, its structure has been characterized by spectral methods.The electrodes using VEDBT as a neutral carrier show high selectivity for salicylate anions.

  16. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...

  17. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai

    2014-09-05

    Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles.

  18. Modelling the Effects of Competing Anions on Fluoride Removal by ...

    African Journals Online (AJOL)

    NICOLAAS

    Effects of each two anions exist simultaneously in aqueous solution on ... precipitation,6,7 membrane processes,8 electrochemical treat- ... is significantly dependent on the physico-chemical properties ... X-ray diffraction (XRD) measurements of the catalyst .... fluoride concentration (mg L–1) and X2 is the time of reaction.

  19. Spectral modulation through controlling anions in nanocaged phosphors

    NARCIS (Netherlands)

    H. Bian; Y. Liu; D. Yan; H. Zhu; C. Liu; C.S. Xu; Y. Liu; H. Zhang; X. Wang

    2013-01-01

    A new approach has been proposed and validated to modulate the emission spectra of europium-doped 12CaO center dot 7Al(2)O(3) phosphors by tuning the nonradiative and radiative transition rates, realized by controlling the sort and amount of the encaged anions. A single wavelength at 255 nm can exci

  20. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Antanassov, Plamen B.; Dekel, Dario R.; Herring, Andrew M.; Hickner, Michael A.; Kohl, Paul A.; Kucernak, Anthony R.; Mustain, William E.; Nijmeijer, Kitty; Scott, Keith; Varcoe, John R.; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current stat

  1. Microhydration Effects on the Intermediates of the SN2 Reacation of Iodide Anion with Methyl Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keisuke; Togano, Eijiro; Xantheas, Sotiris S.; Nakanishi, Ryuzo; Nagata, Takashi; Ebata, Takayuki; Inokuchi, Yoshiya

    2013-04-15

    Reactions of halide anions with methyl halides (X- + CH3Y → XCH3 + Y-) are bimolecular nucleophilic substitution (SN2) reactions that have been well investigated in the last few decades.[1] Figure 1 shows typical potential energy surfaces (PESs) proposed for symmetric (X- + CH3X → XCH3 + X-) SN2 reactions along the reaction coordinate. In the gas phase, the PES has two minima corresponding to the stable X-(CH3X) complexes.[2] The PES is substantially distorted by the solvation. Since the negative charge is delocalized over the [X•••CH3•••X]- moiety at the transition state the stabilization energy gained by the solvation is smaller for the transition state than that for the (X- + CH3X) reactants or the X- (CH3X) complexes. In solution, a large potential barrier exists between the reactants and products. The rate constants of these reactions in protic solvents were reported to be a few orders of magnitude smaller than those in aprotic solvents; this trend was explained by the formation of solvation shells of protic molecules around the halide anions.[1,3] Morokuma has previously reported a theoretical study on the PES of the (Cl- + CH3Cl → ClCH3 + Cl-) SN2 reaction with a few H2O molecules. The attachment of H2O molecules to the Cl-(CH3Cl) reactive system produces metastable isomers, which affect the reaction mechanism.[4] Johnson and coworkers extensively investigated the structure and reactions of halide anion complexes in the gas phase using photodissociation spectroscopy.

  2. Surface tension of compositions of polyhexametyleneguanidine hydrochloride - surfactants

    Directory of Open Access Journals (Sweden)

    S. Kumargaliyeva

    2012-12-01

    Full Text Available We made up songs bactericidal polyhexamethyleneguanidine hydrochloride (metacyde with the surface-active substances - anionic sodium dodecylsulfate, cationic cetylpyridinium bromide, and nonionic Tween-80 and measured the surface tension of water solutions. The study showed that the composition metacyde with surface-active agents have a greater surface activity than the individual components.

  3. Ab initio search for global minimum structures of neutral and anionic B 4H 5 clusters. Optical isomerism in B 4H 5 and B4H5-

    Science.gov (United States)

    Olson, Jared K.; Boldyrev, Alexander I.

    2011-11-01

    Potential energy surfaces of neutral and anionic B 4H 5 clusters were sampled using the Coalescence Kick method. We found that the neutral B 4H 5 cluster has two optical isomers as either a global minimum structure, or as almost degenerate isomers with the global minimum structure. For the B4H5- anion only the third lowest isomer forms a pair of optical isomers. The chemical bonding patterns revealed by the Adaptive Natural Density Partitioning (AdNDP) analysis can easily explain the geometric structure of even very exotic isomers and global minima. Theoretical vertical electron detachment energies (VDEs) were calculated for comparison with future experimental work.

  4. Structures and energetics of hydrated oxygen anion clusters.

    Science.gov (United States)

    Chipman, Daniel M; Bentley, John

    2005-08-25

    Hydration of the atomic oxygen radical anion is studied with computational electronic structure methods, considering (O(-))(H(2)O)(n) clusters and related proton-transferred (OH(-))(OH)(H(2)O)(n)(-)(1) clusters having n = 1-5. A total of 67 distinct local-minimum structures having various interesting hydrogen bonding motifs are obtained and analyzed. On the basis of the most stable form of each type, (O(-))(H(2)O)(n)) clusters are energetically favored, although for n > or = 3, there is considerable overlap in energy between other members of the (O(-))(H(2)O)(n) family and various members of the (OH(-))(OH)(H(2)O)(n)(-)(1) family. In the lower-energy (O(-))(H(2)O)(n) clusters, the hydrogen bonding arrangement about the oxygen anion center tends to be planar, leaving the oxygen anion p-like orbital containing the unpaired electron uninvolved in hydrogen bonding with any water molecule. In (OH(-))(OH)(H(2)O)(n)(-)(1) clusters, on the other hand, nonplanar arrangements are the rule about the anionic oxygen center that accepts hydrogen bonds. No instances are found of OH(-) acting as a hydrogen bond donor. Those OH bonds that form hydrogen bonds to an anionic O(-) or OH(-) center are significantly stretched from their equilibrium value in isolated water or hydroxyl. A quantitative inverse correlation is established for all hydrogen bonds between the amount of the OH bond stretch and the distance to the other oxygen involved in the hydrogen bond.

  5. Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography.

    Science.gov (United States)

    Huang, Zhongping; Wu, Hongwei; Wang, Fengli; Yan, Wenwu; Guo, Weiqiang; Zhu, Yan

    2013-06-14

    This work explores the potential of multi-walled carbon nanotubes as an agglomerated material for ion chromatography stationary phases for the separation of inorganic anions. Polyelectrolytes with quaternary ammonium groups were introduced onto the carbon nanotube surface, based on condensation polymerization of 1,4-butanediol diglycidyl ether (BDDE) and methylamine (MA). Quaternized multi-walled carbon nanotubes (Q-MWCNTs) were electrostatically adsorbed onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to generate the anion exchanger, which were confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A 100mm×4.0mm i.d. column was packed with Q-MWCNTs agglomerated PS-DVB particles, with a capacity of 56μequiv./column. Separation of inorganic anions, such as F(-), Cl(-), NO2(-), Br(-), NO3(-), SO4(2-) and PO4(3-) were performed. The stationary phase was rigid, chemically stable and showed good ion-exchange characteristics.

  6. Synthesis of Novel Anionic Receptors with (Thio)urea and Amide Binding Sites and the Recognition Properties for Anions

    Institute of Scientific and Technical Information of China (English)

    吴进龙; 隗兰华; 曾振亚; 刘顺英; 龚睿; 孟令芝; 何永炳

    2003-01-01

    Two new neutral receptors (1 and 2) containing (thio)urea and amide groups were synthesized by simple steps in good yields.The binding properties for anions of 1 and 2 were characterized by UV-vis and fluorescence spectra. Receptor 1 had an excellent selectivity for AcO- in comparison with other anions. The association constants of 1·AcO- and 2·p-NO2PhOPO32- were higher than those of other anions (Cl-, Br-,I-, H2PO4- and p-NO2PhO-). In particular, an obvious color change was observed from light yellow to golden yellow upon addition of AcO- to the solution of 1 in DMSO. The results of non-linear curve fitting by UV-vis and fluorescence spectral data indicate that a 1:1 stoichiometry complex is formed between compound 1 or 2 and anions through a hydrogen bonding interaction.

  7. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    Science.gov (United States)

    2014-06-24

    comparison of benzyltrimethylammonium and 1-benzyl-3-methylimidazolium cationic groups with the same poly( ethylene -co-tetrafluoroethylene) (ETFE...12) Simone, P. M.; Lodge, T. P. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly( Ethylene Oxide) Diblock Copolymers...1514515144 Herring, A. M. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly (Propylene) Aminated with

  8. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  9. Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity

    NARCIS (Netherlands)

    Kuebler, Joachim F.; Kos, Marcin; Jesch, NataLie K.; Metzelder, Martin L.; van der Zee, David C.; Bax, Klaas M.; Vieten, Gertrud; Ure, Benno M.

    2007-01-01

    Background: Superoxide anions released by activated inacrophages during surgery are considered to be responsible for local cellular damage. Application of CO2 prieumoperitoneum during laparoscopy affects superoxide anion release, but the underlying mechanism remains unclear and the data reported are

  10. A dual-emissive ionic liquid based on an anionic platinum(II) complex

    OpenAIRE

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashia, Atsushi; Kato, Masako

    2015-01-01

    An ionic liquid fabricated froman anionic cyclometalated platinum(II) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  11. A dual-emissive ionic liquid based on an anionic platinum(ii) complex.

    Science.gov (United States)

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashi, Atsushi; Kato, Masako

    2015-09-07

    An ionic liquid fabricated from an anionic cyclometalated platinum(ii) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  12. Removal of hazardous anions from aqueous solutions by La(III)- and Y(III)-impregnated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Wasay, Syed Abdul; Tokunaga, Shuzo [National Inst. of Materials and Chemical Research, Ibaraka (Japan); Park, S.W. [Keimyung Univ., Daegu City (Korea, Democratic People`s Republic of)

    1996-06-01

    New adsorbents, La(III)- and Y(III)-impregnated alumina, were prepared for the removal of hazardous anions from aqueous solutions. A commercially available alumina was impregnated with La(III) or Y(III) ions by the adsorption process. The change in the surface charge due to the impregnation was measured by acid/base titration. The adsorption rate and the capacity of the alumina for La(III) and Y(III) ions were determined. The adsorption characteristics of the La(III)- and Y(III)-impregnated alumina and the original alumina for fluoride, phosphate, arsenate and selenite ions were analyzed under various conditions. The pH effect, dose effect, and kinetics were studied. The removal selectivity by the impregnated alumina was in the order fluoride > phosphate > arsenate > selenite. The impregnated alumina has been successfully applied for the removal of hazardous anions from synthetic and high-tech industrial wastewaters.

  13. Use of Viscosity to Probe the Interaction of Anionic Surfactants with a Coagulant Protein from Moringa oleifera Seeds

    Directory of Open Access Journals (Sweden)

    Raymond Maikokera

    2009-01-01

    Full Text Available The intrinsic viscosity of the coagulant protein was evaluated from the flow times of the protein solutions through a capillary viscometer, and the results suggested the coagulant protein to be globular. The interactions of the coagulant protein with anionic surfactant sodium dodecyl sulphate (SDS and sodium dodecyl benzene sulfonate (SDBS were also investigated by capillary viscometry. We conclude that there is strong protein-surfactant interaction at very low surfactant concentrations, and the behavior of the anionic surfactants in solutions containing coagulant protein is very similar. The viscometry results of protein-SDS system are compared with surface tension, fluorescence, and circular dichroism reported earlier. Combining the results of the four studies, the four approaches seem to confirm the same picture of the coagulant protein-SDS interaction. All the physical quantities when studied as function of surfactant concentration for 0.05% (w/v protein solution either exhibited a maximum or minimum at a critical SDS concentration.

  14. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    Science.gov (United States)

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  15. A Novel Benzimidazolyl based Receptor for the recognition of Fluoride and Cyanide Anion

    Indian Academy of Sciences (India)

    ERAMONI SAIKIA; PANKAJ DUTTA; BOLIN CHETIA

    2017-01-01

    A novel benzimidazole based ligand (1) has been synthesized and studied its anion recognition properties. The binding of anion with 1 was studied using UV-Visible spectroscopy, fluorescence spectroscopy and ¹H-NMR techniques at very low concentrations. The results obtained from the spectroscopic studies indicatethat ligand 1 is an efficient anion receptor providing changes in chemical shift and optical signals for the detection of two most environmentally important anions, fluoride and cyanide.

  16. Synthesis of an Anionic Receptor Based on Phenylhydrazone Group and Its Recognition Property for Acetate

    Institute of Scientific and Technical Information of China (English)

    WANG, Yue-Hong; LIN, Hai; LIN, Hua-Kuan

    2007-01-01

    A colorimetric anion receptor was synthesized by a simple method where the phenylhydrazone moiety was need as binding sites. The anion recognition via hydrogen-bonding interactions can be easily monitored by anion complexation induced changes in UV-vis absorption spectra. Moreover, the hydrogen bond formation between the phenylhydrazone N-H and acetate or fluoride anion was described on the basis of 1H NMR experiments.

  17. Formation and cleavage of aromatic disulfide radical anions.

    Science.gov (United States)

    Antonello, Sabrina; Daasbjerg, Kim; Jensen, Henrik; Taddei, Ferdinando; Maran, Flavio

    2003-12-03

    The electron transfer (ET) to a series of para-substituted diaryl disulfides, having the general formula (X-C(6)H(4)S-)(2), has been studied. The X groups were selected as to have a comprehensive variation of the substituent effect, being X = NH(2), MeO, H, F, Cl, CO(2)Et, CN, and NO(2). The reduction was carried out experimentally, using N,N-dimethylformamide as the solvent, and by molecular orbital (MO) ab initio calculations. The ET was studied heterogeneously, by voltammetric reduction and convolution analysis, and homogeneously, by using electrogenerated radical anions as the solution electron donors. The reduction is dissociative, leading to the cleavage of the S-S bond in a stepwise manner. Both experimental approaches led us to estimate the E degrees and the intrinsic barrier values for the formation of the radical anions. Comparison of the independently obtained results allowed obtaining, for the first time, a quantitative description of the correlation between heterogeneous and homogeneous rate constants of ETs associated with significant inner reorganization energy. The experimental outcome was fully supported by the theoretical calculations, which provided information about the disulfide lowest unoccupied MOs (LUMOs) and singly occupied MO (SOMO), the bond dissociation energies, and the most significant structural modifications associated with radical anion formation. With disulfides bearing electron-donating or mildly electron-withdrawing groups, the inner reorganization is particularly large, which reflects the significant stretching of the S-S bond experienced by the molecule upon ET. The process entails formation of loose radical anion species in which the SOMO is heavily localized, as the LUMO, onto the frangible bond. As a consequence of the formation of these sigma-radical anions, the S-S bond energy of the latter is rather small and the cleavage rate constant is very large. With electron-withdrawing groups, the extent of delocalization of the

  18. A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system.

    Science.gov (United States)

    Brown, Matthew R; Johnson, Sarah A; Brorson, Kurt A; Lute, Scott C; Roush, David J

    2017-07-01

    Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.e., PR772, PP7, and ϕX174) to multi-modal and single mode resins under various buffer conditions. The buffer conditions were restricted to buffer environments suggested by the manufacturer for the multi-modal resin. Each phage was examined for estimated net charge expression and relative hydrophobicity using chromatographic based methods. Overall, PP7 and PR772 bound to the multimodal resin via both anionic and hydrophobic moieties, while ϕX174 bound predominantly by the anionic moiety. Biotechnol. Bioeng. 2017;114: 1487-1494. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  20. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    Science.gov (United States)

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  1. Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells

    Science.gov (United States)

    Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu

    2013-08-01

    Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu2+ from the system and form very stable CuS with Cu2+, resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S2- levels in running water and living cells.

  2. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: effect of Hofmeister's anions.

    Science.gov (United States)

    Merk, Vivian; Rehbock, Christoph; Becker, Felix; Hagemann, Ulrich; Nienhaus, Hermann; Barcikowski, Stephan

    2014-04-22

    Specific ion effects ranking in the Hofmeister sequence are ubiquitous in biochemical, industrial, and atmospheric processes. In this experimental study specific ion effects inexplicable by the classical DLVO theory have been investigated at curved water-metal interfaces of gold nanoparticles synthesized by a laser ablation process in liquid in the absence of any organic stabilizers. Notably, ion-specific differences in colloidal stability occurred in the Hückel regime at extraordinarily low salinities below 50 μM, and indications of a direct influence of ion-specific effects on the nanoparticle formation process are found. UV-vis, zeta potential, and XPS measurements help to elucidate coagulation properties, electrokinetic potential, and the oxidation state of pristine gold nanoparticles. The results clearly demonstrate that stabilization of ligand-free gold nanoparticles scales proportionally with polarizability and antiproportionally with hydration of anions located at defined positions in a direct Hofmeister sequence of anions. These specific ion effects might be due to the adsorption of chaotropic anions (Br(-), SCN(-), or I(-)) at the gold/water interface, leading to repulsive interactions between the partially oxidized gold particles during the nanoparticle formation process. On the other hand, kosmotropic anions (F(-) or SO4(2-)) seem to destabilize the gold colloid, whereas Cl(-) and NO3(-) give rise to an intermediate stability. Quantification of surface charge density indicated that particle stabilization is dominated by ion adsorption and not by surface oxidation. Fundamental insights into specific ion effects on ligand-free aqueous gold nanoparticles beyond purely electrostatic interactions are of paramount importance in biomedical or catalytic applications, since colloidal stability appears to depend greatly on the type of salt rather than on the amount.

  3. Pseudospectral calculation of near-dissociative local mode states for the bifluoride anion HF - 2

    Science.gov (United States)

    Bramley, M. J.; Corey, G. C.; Hamilton, I. P.

    1995-12-01

    Using a recently reported global potential energy surface, we calculate all vibrational levels of the HF-2 anion up to the dissociation threshold. The equilibrium geometry of the bifluoride anion is linear with the H atom between the F atoms. The vibrational wave functions are symmetric or antisymmetric with respect to reflection in a plane bisecting the F-F axis. We focus on nearly degenerate pairs of symmetric and antisymmetric levels lying close to the dissociation energy. Sums and differences of these levels are local mode states for which the H atom is localized on one of the F atoms. These near-dissociative local mode states, which can exist above the threshold for dissociation into F- and HF or FH and F- fragments, have been proposed as candidates for spectroscopic experiments which probe the dynamics and structure of the transition state in the unimolecular dissociation of polyatomic molecules. Energies of the low-lying vibrational levels, as well as those around the dissociation energy, are presented. Wave functions of highly vibrationally excited states, lying slightly below and slightly above the dissociation threshold, are analyzed graphically.

  4. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2011-10-01

    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  5. Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Khoiruddin

    2016-02-01

    Full Text Available Mixed matrix anion exchange membranes (AEMs were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc solutions of polysulfone (PSf. Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 mS.cm-1. This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt, these properties decreased (to 1.9 and 1.4 mS.cm-1 respectively, which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction and membrane functional group addition (provides hydroxyl groups.

  6. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.

    Science.gov (United States)

    Lira, Rafael A; Minim, Luis A; Bonomo, Renata C F; Minim, Valéria P R; da Silva, Luis H M; da Silva, Maria C H

    2009-05-15

    The adsorption of glycomacropeptide (GMP) from cheese whey on an anion-exchange adsorbent was investigated using isothermal titration microcalorimetry to measure thermodynamic information regarding such processes. Isotherms data were measured at temperatures of 25 and 45 degrees C, pH 8.2 and various ionic strengths (0-0.08 molL(-1) NaCl). The equilibrium data were fit using the Langmuir model and the process was observed to be reversible. Temperature was observed to positively affect the interaction of the protein and adsorbent. Microcalorimetric studies indicated endothermic adsorption enthalpy in all cases, except at 45 degrees C and 0.0 molL(-1) NaCl. The adsorption process was observed to be entropically driven at all conditions studied. It was concluded that the increase in entropy, attributed to the release of hydration waters as well as bounded ions from the adsorbent and protein surface due to interactions of the protein and adsorbent, was a major driving force for the adsorption of GMP on the anion-exchange adsorbent. These results could allow for design of more effective ion-exchange separation processes for proteins.

  7. Contribution of various metabolites to the "unmeasured" anions in critically ill patients with metabolic acidosis.

    NARCIS (Netherlands)

    Moviat, M.; Terpstra, A.M.; Ruitenbeek, W.; Kluijtmans, L.A.J.; Pickkers, P.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: The physicochemical approach, described by Stewart to investigate the acid-base balance, includes the strong ion gap (SIG), a quantitative measure of "unmeasured" anions, which strongly correlates to the corrected anion gap. The chemical nature of these anions is for the most part

  8. Contact transfer of anions from hands as a function of the use of hand lotions

    Science.gov (United States)

    Welker, R. W.; Schulman, M.

    2001-01-01

    Contact transfer of anions from human hands can result in contamination of materials, increasing their rate of corrosion. Two types of hand lotion were applied to the hands: one was specially formulated for cleanroom use and the other was a popular commercial lotion. The effect on contact transfer of anions was measured versus anion transfer from washed hands without lotions.

  9. Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Hua; CAMPBELL, Sophia; SOLOMON, Jonathan; SONG, Zhi-Yan; OLUBAJO, Olarongbe

    2006-01-01

    The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO- seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.

  10. Enhanced conductivity detection of common inorganic anions in electrostatic ion chromatography using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Chao-Hong SHI; Kazuhiko TANAKA; Nobutake NAKATANI

    2012-01-01

    To enhance the conductivity detection sensitivity of common anions (Na-anions) in electrostatic ion chromatography (EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane (ODS)-silica separation column modified with zwitterionic surfactant ( CHAPS:3- { ( 3-cholamidopropyl ) -dimethylammonio } propanesulfonate ) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO42-,Cl-,NO3-,I- and ClO4- and weak acid anions such as F-,NO2-,HCOO-,CH3COO- and HCO3-.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions (Na-anions) was enhanced acording to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear (r2 =0.99 - 1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.

  11. Coumarin Based Neutral Sensor for Biologically Important Anions

    Institute of Scientific and Technical Information of China (English)

    SHAO Jie

    2011-01-01

    A coumarin Shiff-base derivative,salicylaldehyde-N-(6-phenylazo-coumarin-3-formyl)-hydrazone(1),was obtained by simple organic synthesis from cheap and commercially available starting materials.Sensor 1 exhibits a very weak fluorescence emission,however,in the presence of acetate ions “turn-on” fluorescence is observed,which results from binding-induced conformational restriction of the fluorophore.Importantly,sensor 1 can also be used as colorimetric chemosensor for the anions with strong basicity,which is easily observed from yellow to red by naked eyes.Consequently,compound l can behave as a colorimetric and fluorescence sensor for biologically important F,CH3COO and H2PO4- in the presence of the other anions tested such as Cl-,Br- and I- in dimethyl sulfoxide(DMSO).

  12. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    S Radha; P Vishnu Kamath

    2013-10-01

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal charge transfer transitions of the ferricyanide anion show a red shift on intercalation. The ferrocyanide ion shows a significant blue shift of – bands due to the increased separation between 2g and g levels on intercalation. MnO$^{-}_{4}$ ion shows a blue shift in its ligand to metal charge transfer transition since the non-bonding 1 level of oxygen from which the transition arises is stabilized.

  13. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  14. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  15. Anionic reagents with silicon-containing double bonds.

    Science.gov (United States)

    Scheschkewitz, David

    2009-03-02

    E=Si transfer: Anionic compounds capable of transferring a silicon-containing double bond are reviewed (see figure), particularly reagents with Si=Si moieties (Tip=2,4,6-iPr(3)C(6)H(2), M=Li, Na, K) and their applications towards main-group and transition-metal electrophiles, as well as their reactivity towards organic compounds. A few recently reported derivatives with Si=C (Ad=1-adamantyl) and Si=P moieties are included for completeness.Anionic compounds capable of transferring a silicon double bond are summarized following an introduction to the differences between alkenes and their heavier homologues. The main focus is on reagents with Si=Si moieties and their applications towards main-group and transition-metal electrophiles, as well as their reactivity towards organic compounds, but a few recently reported derivatives with Si=C and Si=P bonds are also included.

  16. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    Science.gov (United States)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  17. Continuous beds for microchromatography: chromatofocusing and anion exchange chromatography.

    Science.gov (United States)

    Li, Y M; Liao, J L; Zhang, R; Henriksson, H; Hjertén, S

    1999-02-01

    A method was developed for the preparation of continuous beds derivatized with polyethyleneimine (PEI) for chromatofocusing and anion exchange chromatography in the capillary mode. First, a continuous bed activated by epoxy groups was synthesized inside a fused silica capillary and became at the same time covalently attached to the inner wall of the capillary. A PEI solution was then pumped through the continuous bed to allow the imine groups in PEI to react with the epoxy groups in the bed. Efficient immobilization of PEI was indicated by the high-resolution separation of standard proteins (hemoglobins C, S, F, and A) in both chromatofocusing and anion exchange chromatography on a capillary column prepared by this method. Copyright 1999 Academic Press.

  18. Dihydrogen Phosphate Selective Anion Receptor Based on Acylhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Pandian, T.; Kang, Jongmin [Sejong Univ., Seoul (Korea, Republic of)

    2014-07-15

    Anion receptor based on acylhydrazone has been designed and synthesized. UV-vis and {sup 1}H NMR titration showed that receptor is selective receptor for dihydrogen phosphate (H{sub 2}PO{sub 4}{sup -}). Dihydrogen phosphate was complexed by the receptor via at least 4 hydrogen bonding interactions, contributing from two amide N-Hs and two imine C-Hs. In addition, nitrogen in the aromatic ring could make 2 additional hydrogen bondings with OH groups in the dihydrogen phosphate. However, the receptor could make only 4 hydrogen bonds with halides. Therefore, receptor could bind anions through hydrogen bonds with a selectivity in the order of H{sub 2}PO{sub 4}{sup -} > Br{sup -} > Cl{sup -} in highly polar solvent such as DMSO.

  19. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity.

    Science.gov (United States)

    Peña-González, Cornelia E; García-Broncano, Pilar; Ottaviani, M Francesca; Cangiotti, Michela; Fattori, Alberto; Hierro-Oliva, Margarita; González-Martín, M Luisa; Pérez-Serrano, Jorge; Gómez, Rafael; Muñoz-Fernández, M Ángeles; Sánchez-Nieves, Javier; de la Mata, F Javier

    2016-02-24

    Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water-soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place-exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta-potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher in the case of dendronized AuNPs than in dendrons.

  20. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution

    Energy Technology Data Exchange (ETDEWEB)

    Verdal, Nina [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Udovic, Terrence J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Skripov, Alexander V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2015-10-05

    Highlights: • NaBH{sub 4}–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH{sub 4}{sup −} reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH{sub 4} to X = I, consistent with expanding lattices. • Near 400 K, BH{sub 4}{sup −} favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol{sup −1} for both compounds. - Abstract: Equimolar NaBH{sub 4}–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH{sub 4}{sup −}) anions in NaBH{sub 4}. The BH{sub 4}{sup −} reorientational mobility increased in the order of NaBH{sub 4}–NaCl, NaBH{sub 4}, and NaBH{sub 4}–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl{sup −}, BH{sub 4}{sup −}, and I{sup −} anions. The BH{sub 4}{sup −} anions in NaBH{sub 4}–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH{sub 4}. In contrast, the BH{sub 4}{sup −} anions in NaBH{sub 4}–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH{sub 4}{sup −} torsional energies with increasing lattice constant amongst NaBH{sub 4} and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol{sup −1}.

  1. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  2. Assessment Of Suitability Of Anionic Synthetic Detergents In Sri Lanka

    OpenAIRE

    Sunethra Gunatilake; Sarath Malavipathirana

    2015-01-01

    This research was focused on the understanding of the biodegradability of synthetic anionic detergent powder available in Sri Lankan market. Eight different types of synthetic detergent powders were selected. LAS contents of the selected products were measured according to ASTM D 3049-89 standard. The biodegradability was measured as the reduction percentage of LAS initially present within a specific period. The phosphate content in the detergents were measured by SLS 760 1986 method and the...

  3. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Kilb, Werner

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl(-)]i, and thereby the polarity of γ-aminobutyric acid type A (GABAA) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to.

  4. Separation of multiply charged anions by capillary electrophoresis using alkyl phosphonium pairing agents.

    Science.gov (United States)

    Feng, Qing; Wanigasekara, Eranda; Breitbach, Zachary S; Armstrong, Daniel W

    2012-04-01

    Two newly developed UV transparent phosphonium-based cationic reagents were evaluated as background electrolyte additives for capillary electrophoresis for the separation of multiply charged anions, including several complex anions. These cationic reagents showed moderate suppression of the electroosmotic flow, interacted with the analytes to improve their separation and often improved the peak shape. The effects of the additives and their concentration on the separation were studied, as well as the buffer type, pH, and voltage. The dicationic reagent effectively separated eight divalent anions within 17 min and the tetracationic reagent best separated nine trivalent anions, as well as a mixture of all the anions.

  5. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection.

  6. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  7. 2-Pyrrole Carboxylic Acid Nitro-Phenylamide: New Colorimetric Sensor for Anion

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; YANG Wen-Zhi; HE Jia-Qi; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Due to the role played by anions in the field of biology and environmental chemistry, the development of selec tive and sensitive chemosensor for anion sensing is a topic of current attention. Colorimetric anion sensor, which does not require the use of a potentiostate or spectrometer to detect redox or optical perturbation, can give immediate qualitative anion sensing information by visual detection and therefore has advantages over other molecular sensors.According the anion binding ability of some pyrrolic amides reported by Schmuck and Gale, we linked the color reporter group of nitroanile to pyrrole moiety and synthesized two 2-pyrrole carboxylic acid nitro-phenylamides (1 and 2).

  8. Ammoniated electron as a solvent stabilized multimer radical anion

    CERN Document Server

    Shkrob, I A

    2005-01-01

    The excess electron in liquid ammonia ("ammoniated electron") is commonly viewed as a cavity electron in which the s-type wave function fills the interstitial void between 6-9 ammonia molecules. Herewith an alternative model is examined in which the ammoniated electron is regarded as a solvent stabilized multimer radical anion, as was originally suggested by Symons [Chem. Soc. Rev. 1976, 5, 337]. In this model, most of the excess electron density resides in the frontier orbitals of N atoms in the ammonia molecules forming the solvation cavity; a fraction of this spin density is transferred to the molecules in the second solvation shell. The cavity is formed due to the repulsion between negatively charged solvent molecules. Using density functional theory calculations for small ammonia cluster anions in the gas phase, it is demonstrated that such core anions would quantitatively account for the observed pattern of Knight shifts for 1H and 14N nuclei as observed by NMR spectroscopy and the downshifted stretchin...

  9. Coumarin benzothiazole derivatives as chemosensors for cyanide anions.

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-05

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  10. Cassini observations of carbon-based anions in Titan's ionosphere

    Science.gov (United States)

    Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew

    2016-07-01

    Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.

  11. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences.

    Science.gov (United States)

    Tejero, Jesús; Kapralov, Alexandr A; Baumgartner, Matthew P; Sparacino-Watkins, Courtney E; Anthonymutu, Tamil S; Vlasova, Irina I; Camacho, Carlos J; Gladwin, Mark T; Bayir, Hülya; Kagan, Valerian E

    2016-05-01

    Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein.

  12. Anion composition of açaı́ extracts.

    Science.gov (United States)

    Liao, Hongzhu; Shelor, C Phillip; Chen, Yongjing; Sabaa-Srur, Armando U O; Smith, Robert E; Dasgupta, Purnendu K

    2013-06-26

    Many products labeled açaı́ are presently marketed as natural supplements with various claimed health benefits. Authentic açaı́ is expensive; as a result, numerous products labeled as containing açaı́ are being sold that actually contain little or no açaı́. Authentic açaı́ samples from Brazil and Florida as well as several reputed açaı́ products were analyzed by suppressed conductometric anion chromatography. Columns with different selectivities were used to obtain a complete separation of all anions. Tandem mass spectrometry was used for confirmation of the less common ions. Quinate, lactate, acetate, formate, galacturonate, chloride, sulfate, malate, oxalate, phosphate, citrate, isocitrate, and myo-inositol hexakisphosphate (phytate) were found. Only the Florida açaı́ had detectable levels of hexanoate. No açaı́ sample had any detectable levels of tartrate, which is present in abundance in grape juice, the most common adulterant. The highly characteristic anion profile and in particular the absence of tartrate can readily be used to identify authentic açaı́ products. Açaı́ from Florida had a 6 times greater level of phytate. The present analytical approach for phytate may be superior to extant methods.

  13. [Chromatographic separation of plasmid DNA by anion-exchange cryogel].

    Science.gov (United States)

    Guo, Yantao; Shen, Shaochuan; Yun, Junxian; Yao, Kejian

    2012-08-01

    Plasmid DNA (pDNA) is used as an important vector for gene therapy, and its wide application is restricted by the purity and yield. To obtain high-purity pDNA, a chromatographic method based on anion-exchange supermacroporous cryogel was explored. The anion-exchange cryogel was prepared by grafting diethylaminoethyl-dextran to the epoxide groups of polyacrylamide-based matrix and pUC19 plasmid was used as a target to test the method. The plasmid was transferred into Escherichia coli DH5alpha, cultivated, harvested and lysed. The obtained culture was centrifuged and the supernatant was used as the plasmid feedstock, which was loaded into the anion-exchange cryogel bed for chromatographic separation. By optimizing the pH of running buffer and the elution conditions, high-purity pDNA was obtained by elution with 0.5 mol/L sodium chloride solution at pH 6.6. Compared to the traditional methods for purification of pDNA, animal source enzymes and toxic reagents were not involved in the present separation process, ensuring the safety of both the purification operations and the obtained pDNA.

  14. Coumarin benzothiazole derivatives as chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-01

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  15. Stability of atoms in the anionic domain (Z

    CERN Document Server

    Gil, G

    2013-01-01

    We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zanionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

  16. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  17. Naked-eye detection of biologically important anions by a new chromogenic azo-azomethine sensor.

    Science.gov (United States)

    Rezaeian, Khatereh; Khanmohammadi, Hamid

    2014-12-10

    A new chromogenic azo-azomethine sensor, containing active phenolic sites, has been designed and synthesized via condensation reaction of N,N,N',N'-tetrakis(2-aminoethyl)-2,2-dimethyl propane-1,3-diamine with 1-(3-formyl-4-hydroxyphenylazo)-4-nitrobenzene. The anion recognition ability of the synthesized receptor was evaluated using UV-Vis spectroscopy and (1)H NMR technique. The anion recognition studies exhibited that the receptor acts as a sensor for biologically important anions such as F(-), AcO(-) and H2PO4(-) over other anions. The binding stoichiometry between sensor and anions was found to be 1:2. (1)H NMR experiment revealed that sensor recognizes anions via H-bonds and subsequent deprotonation to elicit a vivid color change. Interestingly, the sensory system not only let for the naked eye detection without any spectroscopic instrumentation but also helped to discriminate between anions.

  18. Repair effect of thymine radical anion by echinocoside using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    李雯艳; 郑荣梁; 赵松岭; 姜岳; 林念芸

    1996-01-01

    Repair activities of thymine radical anion by echinocoside, isolated from Pedicularis plicata. were studied using pulse radiolysis technique. The thymine radical anion was produced by the reaction of hydrated electron with thymine. Echinocoside. one of the polyphenols of phenylpropanoid glycoside, was added to the thymine aqueous solution saturated with N2. Kinetic analysis by transient absorption spectrum showed that thymine radical anion was formed at first, and then after several decades of microseconds of pulse radiolysis. the spectrum of thymine radical anion was changed to that of echinocoside radical anion. The evidence indicated that thymine radical anion was repaired through one-electron-transfer between the DNA base radical anion and echinocoside. The rate constant of electron transfer by echinocoside was 1.45× 109 dm3 · mol1 · s 1.

  19. Anionic markers for the forensic identification of Chemical Ignition Molotov Cocktail composition.

    Science.gov (United States)

    Martín-Alberca, C; Ferrando, J L; García-Ruiz, C

    2013-03-01

    An improved version of the famous Molotov cocktail is the Chemical Ignition Molotov Cocktail (CIMC). This incendiary device contains chemical reagents that enable its self-ignition. The analysis of anions from CIMC residues by capillary electrophoresis (CE) allows the identification of the reagents used to produce the device, and provides forensic analysts with valuable information. Although, sulfate, chlorate, chloride, and perchlorate anions have been recently proposed in the literature as target anions to determine the CIMC composition, the identification of some of them could be controversial due to their presence in the environment. Therefore, the purpose of this study was to identify highly reliable anions capable of indicating the components used to prepare these self-initiated devices. The relationship among the detected anions in CIMC residues and the reagents employed in their elaboration is discussed. Some anions have been proposed as anionic markers of CIMC as incendiary devices. Additionally, the viability of different CIMC compositions was studied.

  20. Relative partial cross sections for anions formed upon electron attachment to nitrotoluene

    Science.gov (United States)

    Aleem, A.; Mauracher, A.; Sulzer, P.; Denifl, S.; Zappa, F.; Bacher, A.; Wendt, N.; Märk, T. D.; Scheier, P.

    2008-04-01

    Free electron attachment to the three different isomers of mono-nitrotoluene molecules in the gas phase is studied using a crossed electron-molecule beams technique. For the molecule 2-nitrotoluene 77 products anions are measured. The ion yield of the different anions spans a range of more than six orders of magnitude. The total anion yield of the three different isomers of mono-nitrotoluene is compared and shows remarkable differences mainly resulting from the different contributions of the NO2- fragment anions. The anion efficiency curves show six resonances that we assign to different transient negative ions. Competition of decay reactions is forming a series of fragment anions from each isomeric transient negative anion.

  1. BiOBr microspheres for photocatalytic degradation of an anionic dye

    Science.gov (United States)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  2. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation.

    Science.gov (United States)

    Hayaishi, O

    1996-01-01

    The following is our current working hypothesis concerning the biological significance of IDO induction. When tissues are invaded by virus, bacteria, or parasites, leukocytes and lymphocytes will accumulate at the site and interferon will be produced by these cells in the inflammatory loci. The interferon thus produced is released and interacts with the cell surface to trigger IDO induction in the same or other types of cells. As a consequence of inflammation, superoxide anion is liberated and serves as a substrate for IDO. Although it is possible that some trytophan metabolites may activate the immune system or act as bacteriostatic agents, available evidence does not support this hypothesis. We therefore tentatively conclude that tryptophan is degraded by IDO and depleted, whereby the growth of viruses, bacteria and certain parasites is inhibited, because tryptophan is the least available and therefore most important essential amino acid for their growth.

  3. Effect of the counter anion of cesium on foliar uptake and translocation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hidenao [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)], E-mail: hhidenao@ies.or.jp; Tsukada, Hirofumi; Kawabata, Hitoshi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan); Chikuchi, Yuki [JGC Plantech Aomori Co. Ltd., Rokkasho, Aomori 039-3212 (Japan); Takaku, Yuichi; Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)

    2009-01-15

    Direct deposition of radioactive material onto crops is one important pathway for safety assessment of radionuclides released from nuclear facilities. Foliar uptake of Cs by radish (Raphanus sativus L. cv. Redchim) was studied by applying droplets of Cs solution (CsCl or CsNO{sub 3}) on an upper leaf surface. The uptake of Cs was strongly affected by counter anions of Cs in the applied solution. Approximately 80% of Cs was absorbed for CsCl solution, while only 20% was absorbed for CsNO{sub 3}. The partition of absorbed Cs between leaf and root tuber was quite similar for both Cs compounds, which indicated that behavior of the absorbed Cs in radish was the same for both.

  4. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Rashid, Muhammad Abid [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Mansha, Asim [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-12-10

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔG{sub ads} and thermodynamic parameters like standard free energy of micellization, ΔG{sub m}, standard enthalpy of micellization, ΔH{sub m} and standard entropy of micellization, ΔS{sub m}. The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (K{sub x}), free energy of partition, ΔG{sub p}, binding constant, K{sub b}, free energy of binding, ΔG{sub b}, number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction.

  5. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  6. A study of the relationship between water and anions of the Hofmeister series using pressure perturbation calorimetry.

    Science.gov (United States)

    Bye, Jordan W; Falconer, Robert J

    2015-06-07

    Pressure perturbation calorimetry (PPC) was used to study the relationship between water and sodium salts with a range of different anions. At temperatures around 25 °C the heat on pressurisation (ΔQ) from 1 to 5 bar was negative for all solutions relative to pure water. The raw data showed that as the temperature rose, the gradient was positive relative to pure water and the transition temperature where ΔQ was zero was related to anion surface charge density and was more pronounced for the low-charge density anions. A three component model was developed comprising bulk water, the hydration layer and the solute to calculate the molar expansivity of the hydration layer around the ions in solution. The calculated molar expansivities of water in the hydration layer around the ions were consistently less than pure water. ΔQ at different disodium hydrogen phosphate concentrations showed that the change in molar enthalpy relative to pure water was not linear even as it approached infinite dilution suggesting that while hydration layers can be allocated to the water around ions this does not rule out interactions between water and ions extending beyond the immediate hydration layer.

  7. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions

    Science.gov (United States)

    Yanar, Ufuk; Babür, Banu; Pekyılmaz, Damla; Yahaya, Issah; Aydıner, Burcu; Dede, Yavuz; Seferoğlu, Zeynel

    2016-03-01

    A colorimetric and fluorimetric fluorescent chemosensor (CT-2), having a coumarin ring as a signaling unit and an acetamido thiophene ring as an H-donor receptor, has been synthesized from amino derivative (CT-1) of CT-2 for the purpose of recognition of anions in DMSO. The absorption and emission maxima were both determined for the fluorescent dye in different solvents. Both hypsochromic shift at the absorption maximum, and quenching of fluorescence after interactions between the anions and the receptoric part, were observed. This phenomenon was explained using orbital interactions based on quantum chemical calculations. The selectivity and sensitivity of CT-2 for F-, Cl-, Br-, I-, AcO-, CN-, H2PO4-, HSO4- and ClO4- anions were determined with spectrophotometric, fluorimetric and 1H NMR titration techniques and it was found that CT-2 be utilized for the detection of CN-, F- and AcO- in the presence of other ions as competitors. Color and fluorescence changes visible to the naked eye and under UV (365 nm) were observed upon addition of CN-, F- and AcO- to the solution of chemosensor (CT-2) in DMSO. The sensor showed no colorimetric and fluorimetric response for the anions such as Cl-, Br-, I-, H2PO4-, HSO4-, and ClO4-. However, 1H NMR titration shows that the chemosensor was more sensitive to CN-, than F- and AcO- at the stochiometric ratio of 1:2.5 respectively. Additionally, the compounds CT-1 and CT-2 showed good thermal stability for practical applications.

  8. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    Science.gov (United States)

    Alizadeh, Elahe; Massey, Sylvain; Sanche, Léon; Rowntree, Paul A.

    2016-04-01

    Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2-) and 15 amu (CH3-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  9. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); School of Chemistry and Chemical Engineering, Engineering Research Center for Fine Chemicals of Ministry of Education, Shanxi University, Shanxi Province, VIC 030006 (China); Kang, Wenpei [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Shandong Province, VIC 250100 (China); Sun, Dezhi [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Liu, Jie, E-mail: liujie@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Wei, Xilian, E-mail: weixilian@126.com [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China)

    2013-08-15

    The interaction between long-chain imidazolium ionic liquid (C{sub 14}mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PS{sub S}) and the formation of polymer/surfactant aggregate in bulk solution (PS{sub M}) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  10. Determination of arsenate in water by anion selective membrane electrode using polyurethane-silica gel fibrous anion exchanger composite.

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2014-01-15

    Polyurethane (PU)-silica (Si gel) based fibrous anion exchanger composites were prepared by solid-gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU-Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1×10(-8)M to 1×10(-1)M), response time (45s) and working pH range (5-8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO4(3-)) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  11. Novel Anionic Clay Adsorbents for Boiler-Blow Down Waters Reclaim and Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad Sahimi; Theodore T. Tsotsis

    2005-12-01

    Our goal in this study is to utilize novel anionic clay sorbents for treating and reclaiming/reusing power-plant effluents, in particular, boiler blow-down waters containing heavy metals, such as As and Se. Developing and using novel materials for such application is dictated by the challenge posed by reclaiming and recycling these too-clean-to-clean effluent streams, generated during electricity production, whose contaminant levels are in the ppm/ppb (or even less) trace levels. During the study model blow-down streams have been treated in batch experiments. Adsorption isotherms as a function of pH/temperature have been established for both As and Se. Adsorption rates have also measured as a function of concentration, temperature, pH, and space time. For both the equilibrium and rate measurements, we have studied the As/Se interaction, and competition from background anions. A homogeneous surface diffusion model is used to describe the experimental kinetic data. The estimated diffusivity values are shown to depend on the particle size. On the other hand, a model taking into account the polycrystalline nature of these adsorbent particles, and the presence of an intercrystallite porous region predicts correctly that the surface diffusivity is particle size independent. A mathematical model to describe flow experiments in packed-beds has also been developed during phase I of this project. The goal is to validate this model with flow experiments in packed-beds during the phase II of this project, to determine the adsorption capacity under flow conditions, and to compare it with the capacity estimated from the adsorption isotherms determined from the batch studies.

  12. The development of a weak anion micro-capillary film for protein chromatography.

    Science.gov (United States)

    Kouyoumdjian, A J M; Lazar, R A; Slater, N K H

    2016-10-14

    In this study, the surface of a microporous walled micro-capillary film (MMCF) was modified into a weak anion exchanger by coupling cyanuric chloride and 2-diethylaminoethylamine (DEAE) to the ethylene-vinyl alcohol (EVOH) matrix. Fourier transform infrared spectroscopy (FTIR) measurements of modified and unmodified MMCFs confirmed the addition of a triazine ring and DEAE onto the membrane. Binding of bovine serum albumin (BSA) at pH 7.2 was found to follow a Langmuir isotherm with a maximum equilibrium binding of 12.4mg BSA/mL adsorbent and 8.2mg BSA/mL adsorbent under static and flow conditions, respectively. The ion exchange capacity, determined by Mohr's titration of chlorine atoms displaced from the functionalised surface, was found to be 195±21μmol Cl(-)/mL of adsorber, comparable to commercial ion exchangers. BSA adsorption onto the ion exchanger was strongly pH-dependant, with an observed reduction in binding above pH 8.2. Frontal experiments of a BSA (5mg/mL) and lysozyme (5mg/mL) mixture demonstrated successful separation of BSA from lysozyme at more than 97% purity as verified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separation between similarly charged anionic molecules was also achieved using BSA (5mg/mL) and herring sperm DNA (0.25mg/mL). BSA was extracted at 100% purity, demonstrating the ability of MMCF-DEAE to remove significant DNA contamination from a protein solution. These experiments highlight the potential for MMCFs to be used for fast protein purification in preparative chromatography application.

  13. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.

    Directory of Open Access Journals (Sweden)

    Paraskevi Gkeka

    2014-12-01

    Full Text Available Intracellular uptake of nanoparticles (NPs may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm. Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.

  14. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.

    Science.gov (United States)

    Gkeka, Paraskevi; Angelikopoulos, Panagiotis; Sarkisov, Lev; Cournia, Zoe

    2014-12-01

    Intracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD) simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC) phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm). Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.

  15. Predicting the Strength of Anion-π Interactions of Substituted Benzenes: the Development of Anion-π Binding Substituent Constants.

    Science.gov (United States)

    Bagwill, Christina; Anderson, Christa; Sullivan, Elizabeth; Manohara, Varun; Murthy, Prithvi; Kirkpatrick, Charles C; Stalcup, Apryll; Lewis, Michael

    2016-11-23

    A computational study aimed at accurately predicting the strength of the anion-π binding of substituted benzenes is presented. The anion-π binding energies (Ebind) of 37 substituted benzenes and the parent benzene, with chloride or bromide were investigated at the MP2(full)/6-311++G** level of theory. In addition, energy decomposition analysis was performed on 27 selected chloride-arene complexes via symmetry adapted perturbation theory (SAPT), using the SAPT2+ approach. Initial efforts aimed to correlate the anion-π Ebind values with the sum of the Hammett constants σp (Σσp) or σm (Σσm), as done by others. This proved a decent approach for predicting the binding strength of aromatics with electron-withdrawing substituents. For the Cl(-)-substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r(2) values of 0.89 and 0.87 respectively. For the Br(-)-substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r(2) values of 0.90 and 0.87. However, adding aromatics with electron-donating substituents to the investigation caused the correlation to deteriorate. For the Cl(-)-substituted benzene complexes the correlation between Ebind values and the Hammett constants had r(2) = 0.81 for Σσp and r(2) = 0.84 for Σσm. For the Br(-)-substituted benzene complexes, the respective r(2) values were 0.71 for Σσp and 0.79 for Σσm. The deterioration in correlation upon consideration of substituted benzenes with electron-donating substituents is due to the anion-π binding energies becoming more attractive regardless of what type of substituent is added to the aromatic. A similar trend has been reported for parallel face-to-face substituted benzene-benzene binding. This is certainly counter to what electrostatic arguments would predict for trends in anion-π binding energies, and this discrepancy is further highlighted

  16. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  17. Simultaneous determination of NH4+, NO2(-) and NO3(-) by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH(-)-form with basic eluent has been developed. The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase. This system is useful for simultaneous separation and determination of ammonium ion (NH4+), nitrite ion (NO2(-)), and nitrate ion (NO3(-)) in water samples. The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column. In this study, several separation columns, which consisted of different particle sizes, different functional groups and different anion-exchange capacities, were compared. As the results, the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions. In the optimization of the basic eluent, lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L, considering the resolution of analyte ions and the whole retention times. In the optimal conditions, the relative standard deviations of the peak areas and the retention times of NH4+, NO2(-), and NO3(-) ranged 1.28% - 3.57% and 0.54% - 1.55%, respectively. The limits of detection at signal-to-noise of 3 were 4.10 micromol/L for NH4+, 1.87 micromol/L for NO2(-) and 2.83 micromol/L for NO3(-).

  18. Redox potential (Eh) and anion effects of pyrite (FeS 2 ) leaching at pH 1

    Science.gov (United States)

    Chandra, Anand P.; Gerson, Andrea R.

    2011-11-01

    Pyrite plays the central role in the environmental issue of acid rock drainage. Natural weathering of pyrite results in the release of sulphuric acid which can lead to further leaching of heavy and toxic metals from other associated minerals. Understanding how pyrite reacts in aqueous solution is critical to understanding the natural weathering processes undergone by this mineral. To this end an investigation of the effect of solution redox potential (Eh) and various anions on the rate of pyrite leaching under carefully controlled conditions has been undertaken. Leaching of pyrite has been shown to proceed significantly faster at solution Eh of 900 mV (SHE) than at 700 mV, at pH 1, for the leach media of HCl, H 2SO 4 and HClO 4. The predominant effect of Eh suggests electrochemical control of pyrite leaching with similar mechanism(s) at Eh of 700 and 900 mV albeit with different kinetics. Leach rates at 700 mV were found to decrease according to HClO 4 > HCl > H 2SO 4 while at 900 mV the leach rate order was HCl > HClO 4 > H 2SO 4. Solution Fe 3+ activity is found to continually increase during all leaches; however, this is not accompanied by an increase in leach rate. Synchrotron based photoemission electron microscopy (PEEM) measurements showed a localised distribution of adsorbed and oxidised surface species highlighting that pyrite oxidation and leaching is a highly site specific process mediated by adsorption of oxidants onto specific surface sites. It appears that rates may be controlled, in part, by the propensity of acidic anions to bind to the surface, which varies according to SO42->Cl->ClO4-, thus reducing the reactive or effective surface area. However, anions may also be involved in specific reactions with surface leach products. Stoichiometric dissolution data (Fe/S ratio), XPS and XRD data indicate that the highest leach rates (in HCl media at 900 mV Eh) correlate with relatively lower surface S abundance. Furthermore, there are indications that

  19. Chemistry of nitrile anions in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Carles, S.; Le Garrec, J.-L.; Biennier, L. [Institut de Physique de Rennes, Département de Physique Moléculaire, Astrophysique de Laboratoire, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837,35708 Rennes Cedex 7 (France)

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  20. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  1. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  2. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima

    2016-03-01

    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry.

  3. Minority anion substitution by Ni in ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Amorim, Lígia Marina; Silva, Daniel José; David-Bosne, Eric; Decoster, Stefan; da Silva, Manuel Ribeiro; Temst, Kristiaan; Vantomme, André

    2013-01-01

    We report on the lattice location of implanted Ni in ZnO using the $\\beta$− emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  4. Methylglyoxal as a scavenger for superoxide anion-radical.

    Science.gov (United States)

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes.

  5. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs.

    Science.gov (United States)

    Hernando, Elsa; Soto-Cerrato, Vanessa; Cortés-Arroyo, Susana; Pérez-Tomás, Ricardo; Quesada, Roberto

    2014-03-21

    Ten synthetic analogs of the marine alkaloids tambjamines, bearing aromatic enamine moieties, have been synthesized. These compounds proved to be highly efficient transmembrane anion transporters in model liposomes. Changes in the electronic nature of the substituents of the aromatic enamine or the alkoxy group of the central pyrrole group did not affect this anionophore activity. The in vitro activity of these compounds has also been studied. They trigger apoptosis in several cancer cell lines with IC50 values in the low micromolar range as well as modify the intracellular pH, inducing the basification of acidic organelles.

  6. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay

    2010-01-01

    dynamic model for transport of multiple ions through an anion exchange membrane is derived based on an irreversible thermodynamics approach. This model accounts for the convective transport of the dissociated and undissociated species in the channels with diffusion and migration across the boundary...... layers and membranes. Donnan equilibrium, flux continuity of the transported ions, the electroneutrality condition and Faraday's law are employed to describe the electrical potential and concentration discontinuities at the interfaces. The Nernst-Planck equation is used to model the ion transport though...

  7. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  8. On the real structure of profiled anion-deficient corundum

    Science.gov (United States)

    Maksimov, V. I.; Sokolov, V. I.; Surdo, A. I.; Abashev, R. M.; Yushkova, E. N.

    2017-02-01

    Profiled Al2O3 single crystals grown by Stepanov’s method to obtain anion-deficient composition were characterized by neutron diffraction at T=300 K for the first time. Whereas the main structure motif of investigated crystals is checked to be of corundum-type, the scattering pictures of as-grown crystal demonstrate pronounced anomalies being probably indications on substructure forming. However, neutron scanning of synthesised crystal taken after annealing under restoring conditions reveals additional effects associated with displacement type superstructure.

  9. Anion and Cation Ionic Conductivity of Dragon Fruit

    Science.gov (United States)

    Hajar, Nadya; Asiah, M. N.; Abdullah, S.; Rusop, M.

    2010-07-01

    The separation of all ions in a synthetic solution was achieved with an anion eluent containing 0.3392 g Na2CO3 and 0.084 g NaHCO2 and the run around 20 min. Cation eluent containing 0.60 g Tartaric acid and 0.125 g Dipicolinic acid and the run around 16 min. This method was applied to dragon fruit juice with success and has shown sensitivity. Moreover, sample preparation was a simple 1:1, 1:10, 1:100 and 1:1000 ppm with 0.20 mm filtration and direct injection without prior sample clean-up. Due to the use of eluent generator, very low conductance background conductivity can be obtained and sensitivity of dragon fruit has been greatly improved. Under the experimental condition, several inorganic anions, such as F-, NO3-, NO2-, Br- and PO43- obtained from dragon fruit. For cation, inorganic ions that occurred during the experiment were NH3+, Ca+, and Mg+. Conductivity for anion of F-, NO3-, NO2-, Br- and PO43- were approximately 20, 17, 16, 16 and 20 μS/cm, respectively. Concentration for F- is 1.57 mg/l, NO3- is 1.92 mg/l, NO2- is 0.30 mg/l, Br- is 0.45 mg/l and PO43- is 4.45 mg/l. Conductivity for cation of NH3+, Ca+, and Mg+ were approximately 537, 538 and 531 μS/cm, respectively. Concentration for cation of NH3+ is 0.93 mg/l, Ca+ is 1.15 mg/l, and Mg+ 7.285 is mg/l. The method has successfully applied to the determination of inorganic ions in dragon fruit. An ion chromatography method is described for the simultaneous determination of ionic conductivity for dragon fruit juice using a selected anion and cation eluent. The detection of ionic conductivity in dragon fruit juice has been studied.

  10. Enhanced Anion Transport Using Some Expanded Porphyrins as Carriers.

    Science.gov (United States)

    1991-01-01

    step, an acid catalyzed 1: 1 Schiff - base condensation between I ,8-diaminoanthracene 4 and 2,5-bis((3-ethylS_-formyl-4- methy’lpyrrol-2-yl) methyl... Schiff base "expanded porphyrin," 1, which when diprotonated effectively binds chloride anion in the solid state.8- 10 In addition, we present the results...parent, 1, is shown in Scheme 1. It involves, as the critical step, the acid catalyzed 1:1 Schiff - base condensation between 1.8-diaminoanthracene 49

  11. CONTROLLED ANIONIC SYNTHESIS OF FUNCTIONALIZED AND STAR-BRANCHED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    RODERIC P. QUIRK; YIN Jian; GUO Shaohua; HU Xiaowei; GABRIEL SUMMERS; KIM Jungahn; ZHU Linfang; LAUREL E. SCHOCK

    1990-01-01

    The use of living, alkyllithium-initiated anionic polymerization to prepare chain-end functionalized polymers and heteroarm, star- branched polymers is discussed. The scope and limitations of specific termination reactions with a variety of electrophilic species are illustrated for carbonation, hydroxyethylation,amination, and sulfonation. The methodology of using substituted 1,1- diphenylethylenes to provide a general, quantitative functionalization procedure is outlined and illustrated with examples of amine and phenol end-functionalization. A methodology is described for the synthesis of functionalized,star-branched copolymers with compositionally heterogeneous arms of controlled molecular weight and narrow molecular weight distribution using 1, 3-bis (1-phenylethenyl) benzene.

  12. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    Science.gov (United States)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  13. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  14. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  15. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    Science.gov (United States)

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems.

  16. Acylthiourea derivatives as colorimetric sensors for anions: Synthesis, characterization and spectral behaviors.

    Science.gov (United States)

    Liu, Shuangshuang; Kang, Jing; Cao, Xiufang; Yue, Xiali

    2016-01-15

    Several acylthioureas have been synthesized to develop colorimetric sensors for detection of biologically important anions. UV-vis titration experiments indicated that the absorbance values have a good linear relationship with concentration of anions when the anions were added in AR-1, AR-4 and AR-6 sensor molecules. The detection limit to AcO(-) and F(-) is 5×10(-6) mol/L when the concentration of receptors are 2×10(-5) mol/L. Especially, compounds AR-1 and AR-4, decorated with strong electron-withdrawing NO2 substituent, showed augmented anion sensing properties, being capable of naked-eye detecting of F(-) and AcO(-) when the water content is lower than 15%. The recognition details of anion sensing were also assessed using (1)H NMR technique and confirmed that the basic anions induced deprotonation of N-H.

  17. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  18. Molecular Dynamics Investigation of Efficient SO₂ Absorption by Anion-Functionalized Ionic Liquids

    Indian Academy of Sciences (India)

    ANIRBAN MONDAL; SUNDARAM BALASUBRAMANIAN

    2017-07-01

    Ionic liquids are appropriate candidates for the absorption of acid gases such as SO₂. Six anion functionalized ionic liquids with different basicities have been studied for SO₂ absorption capacity by employing quantum chemical calculations and molecular dynamics (MD) simulations. Gas phase quantum calculations unveil that the high uptake of SO₂ in these ionic liquids originates from the basicity of the anions and the consequent enhanced anion-SO₂ interactions. MD simulations of SO₂–IL mixtures reveal the crucial role of both cations and anions in SO₂ dissolution. Multiple-site interactions of SO₂ with the anions have been identified. The calculated solvation free energy substantiates these observations. The order of computed Henry’s law constant values with change in the anion is in fair agreement with experimentally determined SO₂ solubility order.

  19. A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions.

    Science.gov (United States)

    Aydoğan, Cemil

    2015-05-01

    In this study, an anion-exchange/hydrophobic polymethacrylate-based stationary phase was prepared for nano-liquid chromatography of small organic molecules and inorganic anions. The stationary phase was synthesized by in situ polymerization of 3-chloro-2-hydroxypropylmethacrylate and ethylene dimethacrylate inside silanized 100 μm i.d. fused silica capillary. The porogen mixture consisted of toluene and dodecanol. The pore size distrubution profiles of the resulting monolith were determined by mercury intrusion porosimetry and the morphology of the prepared monolith was investigated by scanning electron microscope. Good permeability, stability and column efficiency were observed on the monolithic column with nano flow. The produced monolithic column, which contains reactive chloro groups, was then modified by reaction with N,N-dimethyl-N-dodecylamine to obtain an anion-exchange/hydrophobic monolithic stationary phase. The functionalized monolith contained ionizable amine groups and hydrophobic groups that are useful of anion-exchange/hydrophobic mixed-mode chromatography. The final monolithic column performance with respect to anion-exchange and hydrophobic interactions was assesed by the separation of alkylbenzene derivatives, phenolic compounds and inorganic anions, respectively. Theoretical plate numbers up to 23,000 plates/m were successfully achieved in the separation of inorganic anions.

  20. Liquid anion-exchange separation of vanadium from malonate media

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.R.; Khopkar, S.M. (Indian Inst. of Technology, Dept. of Chemistry, Bombay (India))

    1992-06-01

    Vanadium (IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within {+-}5% and the detection limit of the method for vanadium is 0.5 mg/kg. (orig.).