WorldWideScience

Sample records for plasmodesmata

  1. Plasmodesmata: Structure and Function

    Directory of Open Access Journals (Sweden)

    Thomas David Geydan

    2006-07-01

    Full Text Available Plasmodesmata are channels that transverse the cell wall and membrane. These specialized and non passive channels act like gates that facilitate and regulate both communication and transportation of molecules such as water, nutrients, metabolites and macromolecules between plant cells. In the last decade a new point of view of plasmodesmata has emerged, and studies have  demonstrated that these channels are more complex. In this brief note, we pretend to expose the actual knowledge of plasmodesmata, focusing on their structure and function.

  2. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  3. Amborella trichopoda, plasmodesmata, and the evolution of phloem loading.

    Science.gov (United States)

    Turgeon, Robert; Medville, Richard

    2011-01-01

    Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with (14)CO(2) translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.

  4. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves.

    Science.gov (United States)

    Nicolas, William J; Grison, Magali S; Trépout, Sylvain; Gaston, Amélia; Fouché, Mathieu; Cordelières, Fabrice P; Oparka, Karl; Tilsner, Jens; Brocard, Lysiane; Bayer, Emmanuelle M

    2017-06-12

    Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.

  5. Isolation of plasmodesmata from Arabidopsis suspension culture cells.

    Science.gov (United States)

    Grison, Magali S; Fernandez-Calvino, Lourdes; Mongrand, Sébastien; Bayer, Emmanuelle M F

    2015-01-01

    Due to their position firmly anchored within the plant cell wall, plasmodesmata (PD) are notoriously difficult to isolate from plant tissue. Yet, getting access to isolated PD represents the most straightforward strategy for the identification of their molecular components. Proteomic and lipidomic analyses of such PD fractions have provided and will continue to provide critical information on the functional and structural elements that define these membranous nano-pores. Here, we describe a two-step simple purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells. The first step of this procedure consists in isolating cell wall fragments containing intact PD while free of contamination from other cellular compartments. The second step relies on an enzymatic degradation of the wall matrix and the subsequent release of "free" PD. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.

  6. Plasmodesmata-mediated intercellular signaling during plant growth and development

    Directory of Open Access Journals (Sweden)

    Shri Ram eYadav

    2014-02-01

    Full Text Available Plasmodesmata (PD are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit (SEL. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3 gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE-based estradiol inducible vector system, a tool known as the icals3m system was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites.

  7. Plasmodesmata: channels for intercellular signaling during plant growth and development.

    Science.gov (United States)

    Sevilem, Iris; Yadav, Shri Ram; Helariutta, Ykä

    2015-01-01

    Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.

  8. Plasmodesmata-mediated intercellular signaling during plant growth and development.

    Science.gov (United States)

    Yadav, Shri R; Yan, Dawei; Sevilem, Iris; Helariutta, Ykä

    2014-01-01

    Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible vector system, a tool known as the "icals3m system" was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites.

  9. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  10. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Science.gov (United States)

    Salmon, Magali S; Bayer, Emmanuelle M F

    2012-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.

  11. Ectodomain of plasmodesmata-localized protein 5 in Arabidopsis: expression, purification, crystallization and crystallographic analysis.

    Science.gov (United States)

    Wang, Xiaocui; Zhu, Peiyan; Qu, Shanshan; Zhao, Jie; Singh, Prashant K; Wang, Wei

    2017-09-01

    Plasmodesmata-localized protein 5 (PDLP5) is a cysteine-rich receptor-like protein which is localized on the plasmodesmata of Arabidopsis thaliana. Overexpression of PDLP5 can reduce the permeability of the plasmodesmata and further affect the cell-to-cell movement of viruses and macromolecules in plants. The ectodomain of PDLP5 contains two DUF26 domains; however, the function of these domains is still unknown. Here, the ectodomain of PDLP5 from Arabidopsis was cloned and overexpressed using an insect expression system and was then purified and crystallized. X-ray diffraction data were collected to 1.90 Å resolution and were indexed in space group P1, with unit-cell parameters a = 41.9, b = 48.1, c = 62.2 Å, α = 97.3, β = 103.1, γ = 99.7°. Analysis of the crystal content indicated that there are two molecules in the asymmetric unit, with a Matthews coefficient of 2.51 Å 3  Da -1 and a solvent content of 50.97%.

  12. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species.

    Science.gov (United States)

    Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven

    2008-11-01

    Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.

  13. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement.

    Science.gov (United States)

    Levy, Amit; Zheng, Judy Y; Lazarowitz, Sondra G

    2015-08-03

    Metazoan synaptotagmins are Ca(2+) sensors that regulate exocytosis and endocytosis in various cell types, notably in nerve and neuroendocrine cells [1, 2]. Recently, the structurally related extended synaptotagmins were shown to tether the cortical ER to the plasma membrane in human and yeast cells to maintain ER morphology and stabilize ER-plasma membrane (ER-PM) contact sites for intracellular lipid and Ca(2+) signaling [3, 4]. The Arabidopsis synaptotagmin SYTA regulates endocytosis and the ability of plant virus movement proteins (MPs) to alter plasmodesmata to promote virus cell-to-cell transport [5, 6]. Yet how MPs modify plasmodesmata, the cellular functions of SYTA and how these aid MP activity, and the proteins essential to form plant cell ER-PM contact sites remain unknown. We addressed these questions using an Arabidopsis SYTA knockdown line syta-1 and a Tobamovirus movement protein MP(TVCV) [5, 7]. We report here that SYTA localized to ER-PM contact sites. These sites were depleted and the ER network collapsed in syta-1, and both reformed upon rescue with SYTA. MP(TVCV) accumulation in plasmodesmata, but not secretory trafficking, was also inhibited in syta-1. During infection, MP(TVCV) recruited SYTA to plasmodesmata, and SYTA and the cortical ER were subsequently remodeled to form viral replication sites adjacent to plasmodesmata in which MP(TVCV) and SYTA directly interacted caged within ER membrane. SYTA also accumulated in plasmodesmata active in MP(TVCV) transport. Our findings show that SYTA is essential to form ER-PM contact sites and suggest that MPs interact with SYTA to recruit these sites to alter plasmodesmata for virus cell-to-cell movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  15. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis.

    Science.gov (United States)

    Levy, Amit; Erlanger, Michael; Rosenthal, Michal; Epel, Bernard L

    2007-02-01

    Plasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein. When fused to green fluorescent protein (GFP) and expressed in tobacco (Nicotiana tabacum) or Nicotiana benthamiana epidermal cells, this protein displays fluorescence patterns in the endoplasmic reticulum (ER) membrane system, along the cell periphery and in a punctate pattern that co-localizes with aniline blue-stained callose present around the Pd. Plasma membrane localization was verified by co-localization of AtBG_ppap:GFP together with a plasma membrane marker N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) in plasmolysed cells. In Arabidopsis T-DNA insertion mutants that do not transcribe AtBG_ppap, functional studies showed that GFP cell-to-cell movement between epidermal cells is reduced, and the conductivity coefficient of Pd is lower. Measurements of callose levels around Pd after wounding revealed that callose accumulation in the mutant plants was higher. Taken together, we suggest that AtBG_ppap is a Pd-associated membrane protein involved in plasmodesmal callose degradation, and functions in the gating of Pd.

  17. Plasmodesmata without callose and calreticulin in higher plants - open channels for fast symplastic transport?

    Directory of Open Access Journals (Sweden)

    Kirill N. Demchenko

    2014-03-01

    Full Text Available Plasmodesmata (PD represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard et al., 2013. Calreticulin (CRT, a highly conserved Ca2+-binding protein found in all multi-cellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert et al., 2013. In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells.

  18. Shaping intercellular channels of plasmodesmata: the structure-to-function missing link.

    Science.gov (United States)

    Nicolas, William J; Grison, Magali S; Bayer, Emmanuelle M

    2017-12-18

    Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  20. Plasma membrane partitioning: from macro-domains to new views on plasmodesmata

    Directory of Open Access Journals (Sweden)

    Yohann eBoutté

    2014-04-01

    Full Text Available Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM. Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal and lateral of the PM conferring a polarity to the cell. Cell polarity is one of the driving forces in tissue and growth patterning. To maintain macro-domains within the PM, eukaryotic cells exert diverse mechanisms to counteract the free lateral diffusion of proteins. Protein activation/inactivation, endocytosis, PM recycling of transmembrane proteins and the role of diffusion barriers in macro-domains partitioning at PM will be discussed. Moreover, as plasmodesmata (PDs are domains inserted within the PM which also mediate tissue and growth patterning, it is essential to understand how segregation of specific set of proteins is maintained at PDs while PDs domains are smaller in size compared to macro-domains. Here, we will present mechanisms allowing restriction of proteins at PM macrodomains, but for which molecular components have been found in PDs proteome. We will explore the hypothesis that partitioning of macro-domains and PDs may be ruled by similar mechanisms.

  1. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata

    Science.gov (United States)

    Balachandran, Suchandra; Xiang, Yu; Schobert, Christian; Thompson, Gary A.; Lucas, William J.

    1997-01-01

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20–100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules. PMID:9391168

  2. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.

    Science.gov (United States)

    Balachandran, S; Xiang, Y; Schobert, C; Thompson, G A; Lucas, W J

    1997-12-09

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20-100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules.

  3. Plasmodesmos: transporte simplástico de herbicidas na planta Plasmodesmata: symplastic transport of herbicides within the plant

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2007-01-01

    Full Text Available Plasmodesmos são canais responsáveis pela conexão citoplasmática entre células vizinhas, possibilitando a troca de moléculas de informação, funcionais, estruturais ou ainda de xenobióticos entre as células pertencentes a um mesmo grupo. Células pertencentes ao mesmo conjunto (domínio constituem-se numa unidade funcional, e substâncias podem se mover entre estas células com velocidade muito superior à observada no transporte através de membranas. Os plasmodesmos podem atuar ainda no transporte a longa distância, tanto pela associação com o floema como pelo intercâmbio entre domínios simplásticos. Quando a planta se encontra sob estresse e as taxas de transporte via xilema e floema são mais reduzidas, os plasmodesmos podem ser mais efetivos no transporte a longa distância, das moléculas de herbicidas sistêmicos. Falta ainda esclarecer se existe afinidade entre moléculas de determinados herbicidas com as proteínas da superfície interna dos plasmodesmos, o que poderia facilitar o transporte desses herbicidas pela manipulação do Tamanho Limite de Exclusão do plasmodesmo, independentemente do tamanho da molécula, bem como determinar se a semelhança com algum composto natural da planta promove maior taxa de transporte simplástico. Pouca importância tem sido dada à participação dos plasmodesmos no transporte de herbicidas sistêmicos. No entanto, o avanço dos trabalhos com produtos marcados e a intensificação das pesquisas em fisiologia vegetal para melhor entendimento dos processos referentes à absorção, translocação, conjugação e/ou degradação de herbicidas podem esclarecer muitos aspectos ainda não definidos do transporte de herbicidas via xilema e floema e sua associação com o apoplasto e domínios simplásticos.Plasmodesmata are plasma channels connecting neighboring cells and allowing the exchange of informational, functional and structural molecules and xenobiotics among cells of the same

  4. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    International Nuclear Information System (INIS)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong; Krishnamurthy, Konduru; Payton, Mark E.; Verchot-Lubicz, Jeanmarie

    2004-01-01

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement

  5. Interaction between the Alfalfa mosaic virus movement protein and plasmodesmata

    NARCIS (Netherlands)

    Wel, van der N.

    2000-01-01

    For a full infection of a host, plant viruses should be able to multiply in the initially infected cell and to spread to neighbouring cells as to eventually invade the entire plant. The viral transport pathway can in principle be divided into two steps, i.e. cell-to-cell movement within

  6. A new putative plasmodesmata-associated protein, At1g19190, in ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... In this paper, GFP:At1g19190 fusion protein was constructed and compared to. AtRGP2:YFP. ..... Pds are symplasmic channels that can establish dynamic ... molecular weight of GFP: At1g19190 is about 63 kDa, whereas that ...

  7. Phloem Loading in Two Scrophulariaceae Species. What Can Drive Symplastic Flow via Plasmodesmata?1

    Science.gov (United States)

    Voitsekhovskaja, Olga V.; Koroleva, Olga A.; Batashev, Denis R.; Knop, Christian; Tomos, A. Deri; Gamalei, Yuri V.; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed. PMID:16377750

  8. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata?

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Koroleva, Olga A; Batashev, Denis R; Knop, Christian; Tomos, A Deri; Gamalei, Yuri V; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed.

  9. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species

    NARCIS (Netherlands)

    Rabaey, D.; Lens, F.; Huysmans, S.; Smets, E.; Jansen, S.

    2008-01-01

    Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare,

  10. Tobacco plants respond to the constitutive expression of the tospovirus movement protein Nsm with a heat-reversible sealing of plasmodesmata that impairs development

    NARCIS (Netherlands)

    Rinne, P.L.H.; Boogaard, van den R.; Mensink, G.J.; Kopperud, C.; Kormelink, R.J.M.; Goldbach, R.W.; Schoot, van der C.

    2005-01-01

    Viral infection often results in typical symptoms, the biological background of which has remained elusive. We show that constitutive expression of the NSM viral movement protein (MP) of tomato spotted wilt virus in Nicotiana tabacum is sufficient to induce severe, infection-like symptoms, including

  11. Quantification of plant cell coupling with three-dimensional photoactivation microscopy.

    Science.gov (United States)

    Liesche, J; Schulz, A

    2012-07-01

    Plant cells are directly connected by plasmodesmata that form channels through the cell wall and enable the intercellular movement of cytosolic solutes, membrane lipids and signalling molecules. Transport through plasmodesmata is regulated not only by a fixed size-exclusion limit, but also by physiological and pathological adaptation. To understand plant cell communication, carbon allocation and pathogen attack, the capacities for a specific molecule to pass a specific cell-wall interface is an essential parameter. So far, the degree of cell coupling was derived from frequency and diameter of plasmodesmata in relevant tissues as assessed by electron microscopy of fixed material. However, plasmodesmata functionality and capacity can only be determined in live material, not from electron microscopy, which is static and prone to fixation artefacts. Plasmodesmata functionality was a few times assessed using fluorescent tracers with diffusion properties similar to cytosolic solutes. Here, we used three-dimensional photoactivation microscopy to quantify plasmodesmata-mediated cell-wall permeability between living Cucurbita maxima leaf mesophyll cells with caged fluorescein as tracer. For the first time, all necessary functional and anatomical data were gathered for each individual cell from three-dimensional time series. This approach utilized a confocal microscope equipped with resonant scanner, which provides the high acquisition speed necessary to record optical sections of whole cells and offers time resolution high enough to follow the kinetics of photoactivation. The results were compared to two-dimensional measurements, which are shown to give a good estimate of cell coupling adequate for homogenous tissues. The two-dimensional approach is limited whenever tissues interfaces are studied that couple different cell types with diverse cell geometries. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  12. Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus

    NARCIS (Netherlands)

    Pouwels, J.; Velden, van der T.; Willemse, J.; Borst, J.W.; Lent, van J.W.M.; Bisseling, T.; Wellink, J.E.

    2004-01-01

    Cowpea mosaic virus (CPMV) moves from cell to cell by transporting virus particles via tubules formed through plasmodesmata by the movement protein (MP). On the surface of protoplasts, a fusion between the MP and the green fluorescent protein forms similar tubules and peripheral punctate spots. Here

  13. Pit membranes of Ephedra resemble gymnosperms more than angiosperms

    Science.gov (United States)

    Roland Dute; Lauren Bowen; Sarah Schier; Alexa Vevon; Troy Best; Maria Auad; Thomas Elder; Pauline Bouche; Steven Jansen

    2014-01-01

    Bordered pit pairs of Ephedra species were characterized using different types of microscopy. Pit membranes contained tori that did not stain for lignin. SEM and AFM views of the torus surface showed no plasmodesmatal openings, but branched, secondary plasmodesmata were occasionally noted using TEM in conjunction with ultrathin sections. The margo consisted of radial...

  14. Females and males of root-parasitic cyst nematodes induce different symplasmic connections between their syncytial feeding cells and the phloem in Arabidopsis thaliana.

    Science.gov (United States)

    Hofmann, Julia; Grundler, Florian M W

    2006-01-01

    Root syncytia induced by the beet cyst nematode Heterodera schachtii were thought to be symplasmically isolated. A recent study with mobile and immobile GFP constructs expressed in transgenic Arabidopsis plants under the control of pAtSUC2 showed that only mobile GFP could be detected in syncytia and suggested the existence of plasmodesmata between syncytia and the phloem. In the present study the existence of plasmodesmata between syncytia and the phloem is proven by grafting experiments. This technique rules out the possibility that GFP accumulation in syncytia is due to GFP expression in syncytia. Mobile GFP could be followed from transgenic scions carrying a pAtSUC2-gfp fusion construct via wild-type rootstocks into nematode-induced syncytia. While GFP could be detected in all syncytia associated to female nematodes, it was never observed in syncytia of male juveniles. As no GFP-mRNA could be detected in the rootstock we postulate that GFP as protein entered syncytia of females via plasmodesmata, while the protein was excluded from syncytia of male juveniles by plasmodesmata with a lower size exclusion limit.

  15. Structure, morphogenesis and function of tubular structures induced by cowpea mosaic virus

    NARCIS (Netherlands)

    Kasteel, D.T.J.

    1999-01-01

    During systemic plant infection, viruses move from the initially infected cells through plasmodesmata to neighbouring cells. Different mechanisms have been proposed for this cell-to-cell movement. Cowpea mosaic virus (CPMV) employs one of the major movement mechanisms, i.e. tubule-guided

  16. Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants.

    Science.gov (United States)

    Tucker, E. B.; Boss, W. F.

    1996-06-01

    The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations.

  17. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    International Nuclear Information System (INIS)

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-01-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  18. In Vivo Quantification of Cell Coupling in Plants with Different Phloem-Loading Strategies[W][OA

    Science.gov (United States)

    Liesche, Johannes; Schulz, Alexander

    2012-01-01

    Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed. PMID:22422939

  19. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    OpenAIRE

    Herranz, M. Carmen; Sánchez Navarro, Jesús A.; Saurí Peris, Ana; Mingarro Muñoz, Ismael; Pallás Benet, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive c...

  20. Diffusion and bulk flow in phloem loading: A theoretical analysis of the polymer trap mechanism for sugar transport in plants

    Science.gov (United States)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas

    2014-10-01

    Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the

  1. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  2. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  3. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole 1

    Science.gov (United States)

    Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.

    1989-01-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864

  4. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole.

    Science.gov (United States)

    Tucker, J E; Mauzerall, D; Tucker, E B

    1989-07-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.

  5. Cytopathological evidence for transport of phytoplasma in infected plants

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available Pleomorphic phytoplasmas were observed in sieve tubes, companion cells and in phloem parenchyma of Tagetes patula L., Helichrysum bracteatum Willd. and Gladiolus sp. L. plants with morphological changes typical for phytoplasma infection. In the pores of the sieve plate phytoplasma cells were seen which suggests that the vertical transport of this pathogen goes in the sieve tubes of infected plants throughout the sieve tube pores. The contact of the sieve tube with the neighbouring cells goes through the plasmodesmata, but no changes of the plasmodesmata were observed in the phloem of infected plants. The size and structure of unchanged plasmodesmata does not allow passing through such big structures like phytoplasma. Instead close contact between phytoplasma cells and vertical sieve tube walls takes place. Damages to the cell wall were observed forming cavities in which the phytoplasma cells were present. The damages of parenchyma and companion cells walls also were seen. In cells where the damages of the walls were observed phytoplasmas were present. The phytoplasma cells were sporadically seen also in the intercellular spaces of parenchyma. These data suggest that horizontal transport depends on damages to the infected plant cell walls caused by the phytoplasma itself.

  6. Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.

    Science.gov (United States)

    Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu

    2017-09-05

    The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling

  7. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes

    Directory of Open Access Journals (Sweden)

    Denis R. Batashev

    2013-08-01

    Full Text Available The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974 and Cucurbitaceae (Turgeon et al., 1975 opened the questions whether these plasmodesmata are functional in phloem loading and how widespread is symplasmic loading. Analysis of over 800 dicot species allowed the definition of ‘open’ and ‘closed’ types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989; 1990. These types corresponded to potential symplasmic and apoplasmic phloem loaders, respectively; however, this definition covered a spectrum of diverse structures of phloem endings. Here, a review of detailed cytological analyses of minor veins in 320 species from the subclass Asteridae is presented, including data on several cell types and their combinations which have not been reported previously. The percentage of Asteridae species with ‘open’ minor vein cytology which also contain sieve-element-companion cell complexes with ‘closed’ cytology, i.e. that show specialization for both symplasmic and apoplasmic phloem loading, was determined. Along with recent data confirming the dissimilar functional specialization of structurally different parts of minor vein phloem in the stachyose-translocating species Alonsoa meridionalis (Voitsekhovskaja et al., 2009, these findings suggest that apoplasmic loading is indispensable in a large group of species previously classified as putative symplasmic loaders. Altogether, this study provides formal classifications of companion cells and of minor veins, respectively, in 24 families of the Asteridae based on their structural features, opening the way to a close investigation of the relationship between structure and function in phloem loading.

  8. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    Science.gov (United States)

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

  9. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells

    Directory of Open Access Journals (Sweden)

    Wenjie Qiao

    2017-09-01

    Full Text Available Lettuce infectious yellows virus (LIYV is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses.

  10. Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Boutant, Emmanuel; Fitterer, Chantal; Ritzenthaler, Christophe; Heinlein, Manfred

    2009-10-01

    Cell-to-cell movement of Tobacco mosaic virus (TMV) involves the interaction of virus-encoded 30-kDa movement protein (MP) with microtubules. In cells behind the infection front that accumulate high levels of MP, this activity is reflected by the formation of stabilized MP/microtubule complexes. The ability of MP to bind along and stabilize microtubules is conserved upon expression in mammalian cells. In mammalian cells, the protein also leads to inhibition of mitosis and cell division through a microtubule-independent process correlated with the loss of centrosomal gamma-tubulin and of centrosomal microtubule-nucleation activity. Since MP has the capacity to interact with plant factors involved in microtubule nucleation and dynamics, we used inducible expression in BY-2 cells to test whether MP expression inhibits mitosis and cell division also in plants. We demonstrate that MP:GFP associates with all plant microtubule arrays and, unlike in mammalian cells, does not interfere with mitosis. Thus, MP function and the interaction of MP with factors of the cytoskeleton do not entail an inhibition of mitosis in plants. We also report that the protein targets primary plasmodesmata in BY-2 cells immediately upon or during cytokinesis and that the accumulation of MP in plasmodesmata occurs in the presence of inhibitors of the cytoskeleton and the secretory pathway.

  11. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    Science.gov (United States)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  12. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp.

    Science.gov (United States)

    Birschwilks, Mandy; Haupt, Sophie; Hofius, Daniel; Neumann, Stefanie

    2006-01-01

    During the development of the haustorium, searching hyphae of the parasite and the host parenchyma cells are connected by plasmodesmata. Using transgenic tobacco plants expressing a GFP-labelled movement protein of the tobacco mosaic virus, it was demonstrated that the interspecific plasmodesmata are open. The transfer of substances in the phloem from host to the parasite is not selective. After simultaneous application of (3)H-sucrose and (14)C-labelled phloem-mobile amino acids, phytohormones, and xenobiotica to the host, corresponding percentages of the translocated compounds are found in the parasite. An open continuity between the host phloem and the Cuscuta phloem via the haustorium was demonstrated in CLSM pictures after application of the phloem-mobile fluorescent probes, carboxyfluorescein (CF) and hydroxypyrene trisulphonic acid (HPTS), to the host. Using a Cuscuta bridge (14)C-sucrose and the virus PVY(N) were transferred from one host plant to the another. The results of translocation experiments with labelled compounds, phloem-mobile dyes and the virus should be considered as unequivocal evidence for a symplastic transfer of phloem solutes between Cuscuta species and their compatible hosts.

  13. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding.

    Science.gov (United States)

    Gottschalk, Maren; Dolgener, Elmar; Xoconostle-Cázares, Beatriz; Lucas, William J; Komor, Ewald; Schobert, Christian

    2008-09-01

    The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cis-trans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cis-trans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)(6)-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)(6)-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.

  14. Inhibition of loading of 14C assimilate by p-chloromercuribenzenesulfonic acid

    International Nuclear Information System (INIS)

    Bourquin, S.; Bonnemain, J.L.; Delrot, S.

    1990-01-01

    The apoplast of mature leaves excised from broadbean (Vicia faba L.) plants was infiltrated with 2 millimolar p-chloromercuribenzenesulfonic acid (PCMBS) via the transpiration stream, and the ability of the tissues to take up sugars was tested. An infiltration time of 75 minutes was sufficient of obtain a maximal (75%) inhibition of exogenous [ 14 C]sucrose (1 millimolar) uptake. This infiltration affected neither CO 2 assimilation nor the transmembrane potential difference of leaf cells but strongly inhibited phloem loading of endogenous [ 14 C] assimilates. The study of the symplastic relations between the different cell types of the mature leaf showed that the density of the plasmodesmata is generally very low in comparison with other species investigated so far, particularly when considering the mesophyll/bundle sheath and the bundle sheath/phloem cells connections, as well as the connections of the transfer cell-sieve tube complex with the surrounding cells. These three successive barriers therefore strongly limit the possibilities of symplastic transit of the assimilates to the conducting cells. The comparison of the densities of plasmodesmata in an importing and an exporting leaf suggests that the maturation of the leaf is characterized by a marked symplastic isolation of the phloem, and, within the phloem itself, by the isolation of the conducting complex. As a consequence, these physiological and cytological data demonstrate the apoplastic nature of loading in the mature leaf of Vicia faba, this species undoubtedly presenting a typical model for apoplastic loading

  15. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection

    Directory of Open Access Journals (Sweden)

    Romain eGrangeon

    2013-12-01

    Full Text Available To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs. However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked towards the plasma membrane and were associated with plasmodesmata (PD. We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP to visualize how 6K2 move intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2.

  16. The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition.

    Directory of Open Access Journals (Sweden)

    Marie-Cécile Caillaud

    2014-10-01

    Full Text Available The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1 is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.

  17. Proteomics - a novel approach to the identification and characterisation of plasmodesmatal proteins

    International Nuclear Information System (INIS)

    Faulkner, C.R.; Blackman, L.M.; Lyon, B.R.; Overall, R.L.

    2001-01-01

    The development of proteomic methods, such as 2-dimensional gel electrophoresis (2-DE), has established a high resolution means of identifying and characterising proteins from a given protein mixture. The biochemical composition of plasmodesmata, the intercellular channels between plant cells, is poorly described despite extensive attempts to identify protemaceous plasmodesmatal components. These attempts have been confounded by the large number of proteins in the cell wall. We have exploited the anatomy of the alga Chara corallina to separate tissues with (nodal cells) and tissues without (internodal cells) plasmodesmata. Proteins specific to the cytoplasmic and wall protein extracts of nodal and internodal tissue were identified by comparison of 2-DE gels of these extracts. In particular, a 95 kDa protein was identified as specific to the nodal cells in both 1-dimensional and 2-dimensional comparisons of cytoplasmic nodal and internodal protein extracts. This protein was analysed by electron spray ionization time of flight tandem mass spectroscopy (ESI-TOF MS/MS) and the sequence obtained showed similarity to plant lipoxygenases. Further proteins of interest were identified in 2-DE resolution of extracts from the nodal cytoplasm, including two 49 kDa proteins and two 46 kDa proteins, and from the nodal cell walls, including a cluster of proteins around 30 kDa. Thus, a proteomic strategy for the identification and characterisation of proteins specific to different cell types in Chara corallina has been developed, with potential application to the identification and characterisation of plasmodesmatal proteins

  18. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  19. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  20. Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein.

    Science.gov (United States)

    Aparicio, Frederic; Pallás, Vicente; Sánchez-Navarro, Jesús

    2010-07-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for viral transport. Previous analysis with MPs of other members of the family Bromoviridae has shown that the C-terminal part of these MPs plays a critical role in the interaction with the cognate coat protein (CP) and in cell-to-cell transport. Bimolecular fluorescence complementation and overlay analysis confirm an interaction between the C-terminal 38 aa of PNRSV MP and its cognate CP. Mutational analysis of the C-terminal region of the PNRSV MP revealed that its C-terminal 38 aa are dispensable for virus transport, however, the 4 aa preceding the dispensable C terminus are necessary to target the MP to the plasmodesmata and for the functionality of the protein. The capacity of the PNRSV MP to use either a CP-dependent or a CP-independent cell-to-cell transport is discussed.

  1. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  2. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  3. The endomembrane sheath: a key structure for understanding the plant cell?

    Science.gov (United States)

    Reuzeau, C.; McNally, J. G.; Pickard, B. G.

    1997-01-01

    Recent evidence suggests that integrin is abundant in endomembranes of plant cells, and the endomembranes are clad by a sheath of cytoskeleton including F-actin. A role for endomembrane integrin and the endomembrane sheath is proposed: this system might orchestrate metabolic regulation by providing and modulating loci for channelling, and might accelerate channeling as needed by dragging the endoplasmic reticulum (ER) and organelles through the cytoplasm. To accomplish this "streaming", F-actin might lever against the rest of the endomembrane sheath and the ER might also lever against adhesion sites (i.e., plasmodesmata and plasmalemmal control centers). As an important agent in the control of cellular activities, according to this model, the endomembrane sheath would play a major part in responses to diverse signals and stresses, and under extreme stress cell survival would depend on the ability of the system to maintain enough integrity to direct critical syntheses and degradations.

  4. Coupling of solute transport and cell expansion in pea stems

    Science.gov (United States)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  5. Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties ▿

    Science.gov (United States)

    Sánchez-Navarro, Jesús; Fajardo, Thor; Zicca, Stefania; Pallás, Vicente; Stavolone, Livia

    2010-01-01

    Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway. PMID:20130061

  6. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.

    Science.gov (United States)

    Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-04-28

    In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.

  7. Micromorphology and ultrastructure of the floral nectaries of Viola odorata L. (Violaceae

    Directory of Open Access Journals (Sweden)

    Natalia Wiśniewska

    2015-05-01

    Full Text Available In Viola odorata two inferior anthers have connective appendages (nectaries projecting into the corolla spur. Nectaries are approx. 4 mm long, elongate, with the top of the nectary bending to the lateral wall of the spur. In the top part and in the abaxial surface of middle part of the nectary all cells have papillae. Nectar is secreted through the modified stomata distributed mainly in the top of nectary The nectary consists of single-layered epidermis, nectary parenchyma and subnectary parenchyma. Features of the nectary parenchyma cells, like dense cytoplasm containing numerous mitochondria and large nuclei, are connected with high metabolic cell activity. The vascularization includes both phloem and xylem. A slight amount of starch in the nectary cells, the profusion of plasmodesmata connecting secretory cells and the presence of vascular bundles suggest that sugars secreted in the nectar were delivered by the phloem sap.

  8. Effect of virus infection on symplastic transport of fluorescent tracers in Nicotiana clevelandii leaf epidermis.

    Science.gov (United States)

    Derrick, P M; Barker, H; Oparka, K J

    1990-07-01

    The molecular weight exclusion limit of plasmodesmata in subveinal epidermal cells of Nicotiana clevelandii (Gray) leaves was estimated by microinjection and fluorescence microscopy using fluorescein isothiocyanate-peptide conjugates, carboxyfluorescein and Lucifer Yellow CH. The largest fluorochrome which moved symplastically between cells had a molecular weight of 749, although movement did not appear to depend purely on molecular weight parameters. Systemic infection of plants by tobacco rattle tobravirus, tomato black ring nepovirus or potato Y potyvirus did not alter the limits of plasmodesmatal conductance of the fluorochromes. However, carrot mottle umbravirus and groundnut rosette umbravirus diminished the symplastic mobility of some fluorescent tracers. These results imply that intercellular movement of these viruses does not involve a long-lasting increase in the plasmodesmatal molecular size exclusion limit.

  9. Localization of lead within leaf cells of Rhytidiadelphus squarrosus (Hedw. ) Warnst. by means of transmission electron microscopy and X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ophus, E M; Gullvag, B M

    1974-01-01

    Results of ultrastructural studies and transmission electron microscope microanalysis of leaves of the bryophyte Rhytidiadelphus squarrosus collected from a park in Trondheim are presented. The lead content of these leaves primarily derives from motor traffic exhaust gases. A fine structural examination of the leaf cells revealed that detectable amounts of lead had entered the cytoplasm and could be recognized as electron-dense precipitates localized inside the plasma membrane, within vesicles or vacuoles, chloroplasts, mitochondria, microbodies and plasmodesmata. Control material, fixed only in glutaraledhyde and not post-stained, showed that these precipitates must be due to metallic elements having great electron-scattering properties. TEM-X-ray microanalysis indicated the definite presence of lead and phosphorus within both the nuclear and chloroplast inclusions. The possible presence of some other metals is also discussed.

  10. Lettuce infectious yellows virus-encoded P26 induces plasmalemma deposit cytopathology

    International Nuclear Information System (INIS)

    Stewart, Lucy R.; Medina, Vicente; Sudarshana, Mysore R.; Falk, Bryce W.

    2009-01-01

    Lettuce infectious yellows virus (LIYV) encodes a 26 kDa protein (P26) previously shown to associate with plasmalemma deposits (PLDs), unique LIYV-induced cytopathologies located at the plasmalemma over plasmodesmata pit fields in companion cells and phloem parenchyma. To further characterize the relationship of P26 and PLDs, we assessed localization and cytopathology induction of P26 expressed from either LIYV or a heterologous Tobacco mosaic virus (TMV) vector using green fluorescent protein (GFP) fusions, immunofluorescence microscopy, biochemical fractionation, and transmission electron microscopy (TEM). TEM analyses demonstrated that P26 not only associated with, but induced formation of PLDs in the absence of other LIYV proteins. Interestingly, PLDs induced by P26-expressing TMV were no longer confined to phloem cells. Putative P26 orthologs from two other members of the genus Crinivirus which do not induce conspicuous PLDs exhibited fractionation properties similar to LIYV P26 but were not associated with any PLD-like cytopathology.

  11. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    Science.gov (United States)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  12. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    Science.gov (United States)

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

  13. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement.

    Science.gov (United States)

    Pitzalis, Nicolas; Heinlein, Manfred

    2017-12-18

    The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Ultrastructural observations reveal the presence of channels between cork cells.

    Science.gov (United States)

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  15. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  16. Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose

    Science.gov (United States)

    Asensi-Fabado, María Amparo; Ammon, Alexandra; Sonnewald, Uwe; Munné-Bosch, Sergi; Voll, Lars M.

    2015-01-01

    Tocopherol cyclase, encoded by the gene SUCROSE EXPORT DEFECTIVE1, catalyses the second step in the synthesis of the antioxidant tocopherol. Depletion of SXD1 activity in maize and potato leaves leads to tocopherol deficiency and a ‘sugar export block’ phenotype that comprises massive starch accumulation and obstruction of plasmodesmata in paraveinal tissue by callose. We grew two transgenic StSXD1:RNAi potato lines with severe tocopherol deficiency under moderate light conditions and subjected them to salt stress. After three weeks of salt exposure, we observed a strongly reduced sugar exudation rate and a lack of starch mobilization in leaves of salt-stressed transgenic plants, but not in wild-type plants. However, callose accumulation in the vasculature declined upon salt stress in all genotypes, indicating that callose plugging of plasmodesmata was not the sole cause of the sugar export block phenotype in tocopherol-deficient leaves. Based on comprehensive gene expression analyses, we propose that enhanced responsiveness of SnRK1 target genes in mesophyll cells and altered redox regulation of phloem loading by SUT1 contribute to the attenuation of sucrose export from salt-stressed SXD:RNAi source leaves. Furthermore, we could not find any indication that elevated oxidative stress may have served as a trigger for the salt-induced carbohydrate phenotype of SXD1:RNAi transgenic plants. In leaves of the SXD1:RNAi plants, sodium accumulation was diminished, while proline accumulation and pools of soluble antioxidants were increased. As supported by phytohormone contents, these differences seem to increase longevity and prevent senescence of SXD:RNAi leaves under salt stress. PMID:25428995

  17. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Chapuis, Sophie [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Revers, Frédéric [INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon (France); Ziegler-Graff, Véronique [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Brault, Véronique, E-mail: veronique.brault@colmar.inra.fr [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France)

    2015-12-15

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  18. Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits.

    Science.gov (United States)

    Radford, J E; White, R G

    2001-01-01

    Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.

  19. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    International Nuclear Information System (INIS)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-01-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT_C_t_e_r) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT_C_t_e_r. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT_C_t_e_r in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  20. Antiviral Roles of Abscisic Acid in Plants

    Directory of Open Access Journals (Sweden)

    Mazen Alazem

    2017-10-01

    Full Text Available Abscisic acid (ABA is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.

  1. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Science.gov (United States)

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  3. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis.

    Science.gov (United States)

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2017-12-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.

  4. Cuscuta europaea plastid apparatus in various developmental stages

    Science.gov (United States)

    Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, Ľudmila; Blehová, Alžbeta

    2013-01-01

    It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in “get together” tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host. PMID:23438585

  5. Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein.

    Science.gov (United States)

    Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, L'udmila; Blehová, Alžbeta

    2013-05-01

    It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in "get together" tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host.

  6. Analyses of pea necrotic yellow dwarf virus-encoded proteins.

    Science.gov (United States)

    Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna

    2017-06-01

    Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.

  7. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities P j , the low-frequency (LF) relaxation curve became broader, especially at P j of 0.2-0.5, and its intensity was proportional to P j up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues

  8. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    Directory of Open Access Journals (Sweden)

    Anastasiia I. Evkaikina

    2014-02-01

    Full Text Available Plasmodesmata (PD serve for the exchange of information in form of miRNA, proteins and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (inability to form secondary PD is manifested in the symplastic organization of the shoot apical meristem (SAM which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplastic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

  9. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    Science.gov (United States)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  10. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  11. The reorganization of root anatomy and ultrastructure of syncytial cells in tomato (Lycopersicon esculentum Mill. infected with potato cyst nematode (Globodera rostochiensis Woll.

    Directory of Open Access Journals (Sweden)

    Sylwia Fudali

    2011-01-01

    Full Text Available The sequence of anatomical and ultrastructural events leading to the syncytium development in tomato roots infected with Globodera rostochiensis was examined. The syncytia were preferentially induced in cortical or pericyclic cells in the elongation zone of root. They developed towards the vascular cylinder by incorporation of new cells via local cell wall breakdown. After surrounding primary phloem bundle and reaching xylem tracheary elements syncytia spread along vascular cylinder. Roots in primary state of growth seemed to be the best place for syncytium induction as syncytia formed in the zone of secondary growth were less hypertrophied. At the ultrastructural level syncytial elements were characterized by strong hypertrophy, breakdown of central vacuole, increased volume of cytoplasm, proliferation of organelles, and enlargement of nuclei. On the syncytial wall adjoining vessels the cell wall ingrowths were formed, while the syncytial walls at interface of phloem were considerably thickened. They lacked of functional plasmodesmata and did not form any ingrowths. Using immunofluorescent-labelling and immunogold-labelling methods tomato expansin 5 protein was localized in nematode infected roots. The distribution of LeEXP A5 was restricted only to the walls of syncytia. The protein distribution pattern indicated that LeEXP A5 could mediates cell wall expansion during hypertrophy of syncytial elements.

  12. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  13. TYLCV-Is movement in planta does not require V2 protein

    Energy Technology Data Exchange (ETDEWEB)

    Hak, Hagit [Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan (Israel); Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem (Israel); Levy, Yael; Chandran, Sam A.; Belausov, Eduard [Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan (Israel); Loyter, Abraham [Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem (Israel); Lapidot, Moshe [Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan (Israel); Gafni, Yedidya, E-mail: ygafni@volcani.agri.gov.il [Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan (Israel)

    2015-03-15

    Tomato yellow leaf curl virus (TYLCV), a major tomato pathogen causing extensive crop losses, is a whitefly-transmitted geminivirus. V2 mutants of TYLCV-Is and related viruses tend to induce symptomless infection with attenuated viral DNA levels, while accumulating close to wild-type DNA levels in protoplasts, suggesting V2 as a movement protein. The discovery of plant-silencing mechanisms and viral silencing suppressors, V2 included, led us to reconsider V2's involvement in viral movement. We studied two mutant versions of the virus, one impaired in V2 silencing-suppression activity, and another carrying a non-translatable V2. While both mutant viruses spread in the infected plant to newly emerged leaves at the same rate as the wild-type virus, their DNA-accumulation levels were tenfold lower than in the wild-type virus. Thus, we suggest that the setback in virus proliferation, previously ascribed to a movement impediment, is due to lack of silencing-suppression activity. - Highlights: • TYLCV-Is V2 protein is localized in distinct microbodies throughout the cell cytoplasm, around the nucleus and in association with cytoplasmic strands but is not associated with the plasmodesmata. • Disruption of RNA-silencing suppression activity of TYLCV-Is V2 protein causes low titer of the virus in the infected plants. • The movement of TYLCV-Is in planta does not require a functional V2 protein.

  14. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning.

    Science.gov (United States)

    Lezzhov, Alexander A; Gushchin, Vladimir A; Lazareva, Ekaterina A; Vishnichenko, Valery K; Morozov, Sergey Y; Solovyev, Andrey G

    2015-10-01

    Triple gene block (TGB), a conserved gene module found in the genomes of many filamentous and rod-shaped plant viruses, encodes three proteins, TGB1, TGB2 and TGB3, required for viral cell-to-cell movement through plasmodesmata and systemic transport via the phloem. The genome of Shallot virus X, the type species of the genus Allexivirus, includes TGB1 and TGB2 genes, but contains no canonical ORF for TGB3 protein. However, a TGB3-like protein-encoding sequence lacking an AUG initiator codon has been found in the shallot virus X (ShVX) genome in a position typical for TGB3 genes. This putative TGB3 gene is conserved in all allexiviruses. Here, we carried out sequence analysis to predict possible non-AUG initiator codons in the ShVX TGB3-encoding sequence. We further used an agroinfiltration assay in Nicotiana benthamiana to confirm this prediction. Site-directed mutagenesis was used to demonstrate that the ShVX TGB3 could be translated on a bicistronic mRNA template via a leaky scanning mechanism.

  15. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.

    Science.gov (United States)

    Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira

    2013-12-15

    In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin

    Directory of Open Access Journals (Sweden)

    Birgit eAbsmanner

    2013-07-01

    Full Text Available Sedentary plant parasitic nematodes such as root-knot nematodes and cyst nematodes induce giant cells or syncytia, respectively, in their host plant’s roots. These highly specialized structures serve as feeding sites from which exclusively the nematodes withdraw nutrients. While giant cells are symplastically isolated and obtain assimilates by transporter-mediated processes syncytia are massively connected to the phloem by plasmodesmata. To support the feeding sites and the nematode during their development, phloem is induced around syncytia and giant cells. In the case of syncytia the unloading phloem consists of sieve elements and companion cells and in the case of root knots it consists exclusively of sieve elements. We applied immunohistochemistry to identify the cells within the developing phloem that responded to auxin and cytokinin. Both feeding sites themselves did not respond to either hormone. We were able to show that in root knots an auxin response precedes the differentiation of these auxin responsive cells into phloem elements. This process appears to be independent of B-type Arabidopsis response regulators. Using additional markers for tissue identity we provide evidence that around giant cells protophloem is formed and proliferates dramatically. In contrast, the phloem around syncytia responded to both hormones. The presence of companion cells as well as hormone-responsive sieve elements suggests that metaphloem development occurs. The implication of auxin and cytokinin in the further development of the metaphloem is discussed.

  17. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    Science.gov (United States)

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  19. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea.

    Science.gov (United States)

    Tucker, E B

    1990-08-01

    The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca(2+) had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5-10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30-120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.

  20. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  1. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline

    Directory of Open Access Journals (Sweden)

    Elise eDelage

    2013-12-01

    Full Text Available It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs. The recent discovery of tunneling nanotubes (TNTs, thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.

  2. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    Science.gov (United States)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  3. Multiphoton-generated localized electron plasma for membrane permeability modification in single cells

    Science.gov (United States)

    Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.

    2014-03-01

    Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.

  4. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  5. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    Science.gov (United States)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Chilling of Dormant Buds Hyperinduces FLOWERING LOCUS T and Recruits GA-Inducible 1,3-β-Glucanases to Reopen Signal Conduits and Release Dormancy in Populus[W][OA

    Science.gov (United States)

    Rinne, Päivi L.H.; Welling, Annikki; Vahala, Jorma; Ripel, Linda; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2011-01-01

    In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA3 and GA4. GA3 feeding upregulated all LB-associated GH17s, whereas GA4 upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA4 induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA3 and GA4. Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA3-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis. PMID:21282527

  7. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus.

    Science.gov (United States)

    Rinne, Päivi L H; Welling, Annikki; Vahala, Jorma; Ripel, Linda; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2011-01-01

    In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA(3) and GA(4). GA(3) feeding upregulated all LB-associated GH17s, whereas GA(4) upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA(4) induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA(3) and GA(4). Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA(3)-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis.

  8. [Micromorphology of pejibaye leaflets Bactris gasipaes (Arecaceae) var. diamonds-10].

    Science.gov (United States)

    Sánchez-Chacón, Ethel; Alvarado-Rodríguez, Olman; Rodríguez-Arrieta, Alexander; Gómez-Alpízar, Luis

    2016-09-01

    Bactris gasipaes is widely cultivated for the consumption of palm hearts and fruits. The present work describes the micro morphological characteristics of leaflets from adult plants of B. gasipaes, thornless variety Diamantes-10, collected in the Diamantes Experimental Station in Guápiles, Costa Rica. We collected 25 leaflets and analyses were performed with a combination of microscopy techniques: light microscopy, scanning electron microscopy and transmission electron microscopy to study their structure. Our results showed that leaflets have abundant epicuticular wax on adaxial and abaxial surfaces. Analyses from the epidermis indicated that it is composed of isodiametric cells, and it is also evident that hypodermis cells have rectangular shape and are larger than the other epidermal cells. We observed stomata on both surfaces, but they were more abundant in the abaxial surface. On the other hand, the epidermis showed the presence of trichomes with three different morphologies. In the parenchyma, cells are large and not well defined, and we observed the presence of astroesclereids, and compact groups of fiber bundles between parenchyma cells. The central vein has several vascular bundles, arranged in a continuous manner, and they are surrounded by sclerotic tissue; some of these fibers presented live protoplasts. All minor veins showed the same anatomy as the central vein. In these veins, the vessel elements of protoxylem and metaxylem showed scalariform ornaments on their walls. Phloem is located towards the adaxial surface of the vein and we observed sieve and companion cells surrounded by fibers and parenchyma cells. The companion cells presented branched plasmodesmata attached to a sieve element, and in these elements we found protein bodies called P-protein. The main anatomical difference in the leaflets of the var. Diamantes-10, compared to the other varieties of B. gasipaes K, is the lack of thorns; the other morphological features seem to be conserved.

  9. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  10. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2018-04-01

    Full Text Available ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2, restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  11. Distribution and Translocation of 141Ce (III) in Horseradish

    Science.gov (United States)

    Guo, Xiaoshan; Zhou, Qing; Lu, Tianhong; Fang, Min; Huang, Xiaohua

    2007-01-01

    Background and Aims Rare earth elements (REEs) are used in agriculture and a large amount of them contaminate the environment and enter foods. The distribution and translocation of 141Ce (III) in horseradish was investigated in order to help understand the biochemical behaviour and toxic mechanism of REEs in plants. Method The distribution and translocation of 141Ce (III) in horseradish were investigated using autoradiography, liquid scintillation counting (LSC) and electron microscopic autoradiography (EMARG) techniques. The contents of 141Ce (III) and nutrient elements were analysed using an inductively coupled plasma-atomic emission spectrometer (ICP-AES). Results The results from autoradiography and LSC indicated that 141Ce (III) could be absorbed by horseradish and transferred from the leaf to the leaf-stalk and then to the root. The content of 141Ce (III) in different parts of horseradish was as follows: root > leaf-stalk > leaf. The uptake rates of 141Ce (III) in horseradish changed with the different organs and time. The content of 141Ce (III) in developing leaves was greater than that in mature leaves. The results from EMARG indicated that 141Ce (III) could penetrate through the cell membrane and enter the mesophyll cells, being present in both extra- and intra-cellular deposits. The contents of macronutrients in horseradish were decreased by 141Ce (III) treatment. Conclusions 141Ce (III) can be absorbed and transferred between organs of horseradish with time, and the distribution was found to be different at different growth stages. 141Ce (III) can enter the mesophyll cells via apoplast and symplast channels or via plasmodesmata. 141Ce (III) can disturb the metabolism of macronutrients in horseradish. PMID:17921527

  12. BIOSECURITY FOR REDUCING OCHRATOXIN A PRODUCTIVITY AND THEIR IMPACT ON GERMINATION AND ULTRASTRUCTURES OF GERMINATED WHEAT GRAINS

    Directory of Open Access Journals (Sweden)

    M.M.

    2012-08-01

    Full Text Available Ochratoxin A (OTA is a secondary metabolite of some fungi that causes very serious problems for plants, animals and humans. Various microorganisms such as bacteria and microscopic fungi have been tested for their abilities to prevent ochratoxin A contamination or detoxify foods. In this study, Saccharomyces cerevisiae and Lactobacillus bulgaricus reduced OTA production by Aspergillus ochraceus to 40.88 µg/ml ( productivity 60.69% and 13.80 µg/ml (productivity 20.48% respectively compared with the control (67.35 µg/ml (productivity 100%. The results clearly indicated that the seed germinibility in the presence of OTA was decreased with increasing concentration, whereas the germinibility was uncompletely ceased at high concentration (67.35 µg/ml of OTA. The maximum amount of germination was observed in control (without OTA treatment and at low concentration (13.80 µg/ml within 4 days. Antioxidant enzymes catalase and peroxidase decreased in germinated grains treated with OTA. Catalase was 18.12 U/ml in grains treated with low concentration (13.80 µg/ml of OTA while at high concentration (67.35 µg/ml, it was 12.23 U/ml compared with the control (20.33 U/ml. On the other hand, peroxidase decreased only in germinated grains treated with high concentration of OTA. The ultrastructural studies indicate that there were dramatic differences between the cells of root system of wheat seedlings of grains treated and untreated with the OTA. Cell ultrastructures of treated grains with OTA showed that the cytoplasmic membrane collapses away from the cell wall. Plasmodesmata threads were appeared in untreated cells but not formed in treated cells.

  13. New insight into silica deposition in horsetail (Equisetum arvense

    Directory of Open Access Journals (Sweden)

    Exley Christopher

    2011-07-01

    Full Text Available Abstract Background The horsetails (Equisetum sp are known biosilicifiers though the mechanism underlying silica deposition in these plants remains largely unknown. Tissue extracts from horsetails grown hydroponically and also collected from the wild were acid-digested in a microwave oven and their silica 'skeletons' visualised using the fluor, PDMPO, and fluorescence microscopy. Results Silica deposits were observed in all plant regions from the rhizome through to the stem, leaf and spores. Numerous structures were silicified including cell walls, cell plates, plasmodesmata, and guard cells and stomata at varying stages of differentiation. All of the major sites of silica deposition in horsetail mimicked sites and structures where the hemicellulose, callose is known to be found and these serendipitous observations of the coincidence of silica and callose raised the possibility that callose might be templating silica deposition in horsetail. Hydroponic culture of horsetail in the absence of silicic acid resulted in normal healthy plants which, following acid digestion, showed no deposition of silica anywhere in their tissues. To test the hypothesis that callose might be templating silica deposition in horsetail commercially available callose was mixed with undersaturated and saturated solutions of silicic acid and the formation of silica was demonstrated by fluorimetry and fluorescence microscopy. Conclusions The initiation of silica formation by callose is the first example whereby any biomolecule has been shown to induce, as compared to catalyse, the formation of silica in an undersaturated solution of silicic acid. This novel discovery allowed us to speculate that callose and its associated biochemical machinery could be a missing link in our understanding of biosilicification.

  14. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism

    Science.gov (United States)

    Beilby, Mary J.

    2016-01-01

    The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology. PMID:27504112

  15. Storage sites in seeds of Caesalpinia echinata and C. ferrea (Leguminosae with considerations on nutrients flow

    Directory of Open Access Journals (Sweden)

    Simone de Pádua Teixeira

    2008-02-01

    Full Text Available The seeds of Caesalpinia echinata and C. ferrea behaved as typical endospermic seeds, despite their different morphological classification (exendospermic seeds were described for C. echinata and endospermic seeds for C. ferrea. Then, the aim of this work was to compare, under ultrastructural and histochemical terms, the nature of the storage substances and their accumulation sites, as well as the nutrient flow in seeds of these species. Cotyledons in C. echinata accumulate carbohydrates, lipids and proteins, which are mobilized from the outer to the inner parts as revealed by the position of plasmodesmata. Endosperm in C. ferrea accumulates carbohydrates and in C. echinata accumulates substances during the initial embryogenic phases. Such tissue develops a chalazal haustorium that is responsible for the transport of substances into the endosperm itself and from it into the embryo, confirmed by the presence of transference cells.As sementes de Caesalpinia echinata e C. ferrea comportam-se como endospérmicas, apesar de descritas na literatura como exendospérmicas e endospérmicas, respectivamente. Desta forma, o objetivo deste trabalho foi comparar, em termos ultra-estrutural e histoquímico, a natureza das substâncias de reserva e seus tecidos acumuladores, bem como o fluxo de nutrientes nas sementes destas espécies. Os cotilédones em C. echinata acumulam carboidratos, lipídios e proteínas, mobilizados da periferia para o centro, como visto pelo posicionamento dos plasmodesmas. O endosperma em C. ferrea acumula carboidratos e lipídios, e em C. echinata, acumula substâncias nos estádios iniciais da embriogênese. Este tecido desenvolve um haustório calazal agressivo, que transporta substâncias para o endosperma propriamente dito e deste para o embrião, fato confirmado pela presença de células de transferência no endosperma.

  16. METABOLIC ENGINEERING OF RAFFINOSE-FAMILY OLIGOSACCHARIDES IN THE PHLOEM REVEALS ALTERATIONS IN CARBON PARTITIONING AND ENHANCES RESISTANCE TO GREEN PEACH APHID

    Directory of Open Access Journals (Sweden)

    Te eCao

    2013-07-01

    Full Text Available Many plants employ energized loading strategies to accumulate osmotically-active solutes into the phloem of source organs to accentuate the hydrostatic pressure gradients that drive the flow of water, nutrients and signals from source to sinks. Proton-coupled symport of sugars from the apoplasm into the phloem symplasm is the best studied phloem-loading mechanism. As an alternative, numerous species use a polymer trapping mechanism to load through symplasm: sucrose enters the phloem through specialized plasmodesmata and is converted to raffinose-family oligosaccharides (RFOs which accumulate because of their larger size. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which loads from the apoplasm and transports predominantly sucrose, and the fate of the sugars throughout the plant determined. Three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47 were selected for further analysis. Three-week-old plants of both lines had RFO levels approaching 50% of total soluble sugar. RFOs were also identified in exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type (WT leaves. Differences in starch accumulation between WT and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between WT and engineered plants, but the latter flowered slightly earlier. Finally, since the sugar composition of the translocation stream appeared altered, we tested for an impact on green peach aphid (Myzus persicae Sulzer feeding. When given a choice between WT and transgenic plants, green peach aphids preferred settling on the WT plants. Furthermore, green peach aphid fecundity was lower on the transgenic plants compared to the WT

  17. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement.

    Directory of Open Access Journals (Sweden)

    Ekaterina Smirnova

    2015-05-01

    Full Text Available Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3, a movement protein (ORF4, and a carboxy-terminal extension to the coat protein (ORF5. These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV, a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.

  18. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement.

    Science.gov (United States)

    Smirnova, Ekaterina; Firth, Andrew E; Miller, W Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M; Chung, Betty Y-W; Ziegler-Graff, Véronique

    2015-05-01

    Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.

  19. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection.

    Science.gov (United States)

    Zhang, Xiao-Yan; Zhao, Tian-Yu; Li, Yuan-Yuan; Xiang, Hai-Ying; Dong, Shu-Wei; Zhang, Zong-Ying; Wang, Ying; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2018-01-01

    ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus , is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3a P18L , abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3a P18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3a P18L were able to self-interact in vivo , however, the mutant P3a P18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  20. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  1. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  2. FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    William J. Lucas

    2012-11-12

    Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes. Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this

  3. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.

    Science.gov (United States)

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2016-12-01

    Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection.

    Science.gov (United States)

    Pandolfini, Tiziana; Molesini, Barbara; Avesani, Linda; Spena, Angelo; Polverari, Annalisa

    2003-06-25

    Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in

  5. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  6. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.

    Science.gov (United States)

    Komor, E; Orlich, G; Weig, A; Köckenberger, W

    1996-08-01

    level in most organs of the seedling and throughout the germination period. Leaves of adult Ricinus have significantly lower levels of this transcript. Recirculation of excess, phloem-delivered solutes from the sink back to the source is shown not only to be a common feature of long-distance transport, but the only way that an imbalance between supply to and consumption of nutrients in the sink can be adjusted in the source. It is a pathway by which sink activity regulates phloem loading. Non-invasive NMR imaging revealed the flow rates and flow speeds in phloem and xylem in the intact seedling and proved directly the existence of an internal circulating solution flow. A unified model of phloem loading is proposed, based on a pump-and-leak model, where active sucrose carriers (and other carriers) accumulate solutes in the sieve tubes with a concomitant build-up of pressure resulting in mass flow. Plasmodesmata are leaks (as are the transport carriers, too), slowing down the transport rate, but they also serve as diffusion channels for substances which are produced in the neighbouring cell. Therefore, compounds, which are not made in the sieve tubes themselves are translocated together with the bulk solution of sieve tube sap.

  7. Anatomia e desenvolvimento ontogenético de Coffea arabica L. var. typica Cramer Anatomy and ontogenetical development of Coffea arabica L. var. typica Cramer

    Directory of Open Access Journals (Sweden)

    D. M. Dedecca

    1957-01-01

    storage. With the aid of a special technique plasmodesmata can be detected in the primary-pit-fields of the endosperm cell walls. The endosperm tissue seems to present differences in the structure and chemical composition of its various layers; thus, at the level of the embryo cavity the cells are flattened and elongated constituting a region which probably désintégrâtes during embryo development. The outer layers represented by hard endosperm slough away as a cap that involves the cotyledons of seedlings obtained from completely naked seeds. This cap resembles the seed parchment in gross morphology. The inner layers are considered soft endosperm. As to the chemical composition, the endosperm cells besides Water, contains protein, the alkaloids caféine and coffearine, oil, sugar, dextrins, pentosans, cellulose, caffetannic acids, minerals, various acids and minor constituents. The small embryo, localized at the bottom of the seed, on its convex surface is represented by an hypocotyl and two adherent cordiform cotyledons. Very seldom there is the occurrence of embryo with 3 or 4 cotyledons.