WorldWideScience

Sample records for plasmids transposable elements

  1. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  2. Transposable elements: The enemies within.

    Science.gov (United States)

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Inghirami, Giorgio; Piva, Roberto

    2016-10-01

    Understanding transformation mechanisms other than genetic aberrations has recently captured the attention of cancer researchers. To date, the role of transposable elements (TEs) in tumor development remains largely undefined. However, an increasing number of studies have reported that loss of epigenetic control causes TE reactivation and consequent oncogenic transcription. Here, we discuss principal examples of TEs-driven oncogenesis. Available data suggest that long terminal repeats and long interspersed nuclear elements play a pivotal role as alternative promoters. These findings provide definitive experimental evidence that repetitive elements are a powerful underestimated force toward oncogenesis and open the possibility to new therapeutic treatments.

  3. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  4. Transcriptional activity of transposable elements in coelacanth.

    Science.gov (United States)

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.

  5. Transposable elements in the Anopheles funestus transcriptome.

    Science.gov (United States)

    Fernández-Medina, Rita D; Carareto, Claudia M A; Struchiner, Cláudio J; Ribeiro, José M C

    2017-06-01

    Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.

  6. The structure of the transposable genetic element ISBsu2 from the cryptic plasmid p1516 of a soil Bacillus subtilis strain and the presence of homologues of this element in the chromosomes of various Bacillus subtilis strains

    NARCIS (Netherlands)

    Holsappel, S; Gagarina, EY; Poluektova, EU; Nezametdinova, VZ; Gel'fand, MS; Prozorov, AA; Bron, S

    2003-01-01

    A cryptic plasmid from a soil strain of Bacillus subtilis was found to contain a sequence having features of an IS element. Homologous sequences were also found in the chromosome of this strain and in the chromosomes of some other B. subtilis strains.

  7. Characterization of Transposable Elements in Laccaria bicolor

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Tuskan, Gerald A [ORNL; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copies elements distributed within 172 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs are ancient except some terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TEs expansion in L. bicolor; the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 500,000 years ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis represents an initial characterization of TEs in the L. bicolor genome, contributes to genome assembly and to a greater understanding of the role TEs played in genome organization and evolution, and provides a valuable resource for the ongoing Laccaria Pan-Genome project supported by the U.S.-DOE Joint Genome Institute.

  8. Characteristics of transposable element exonization within human and mouse.

    Directory of Open Access Journals (Sweden)

    Noa Sela

    Full Text Available Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.

  9. Transposable elements and genetic instabilities in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  10. Transposable Elements and Genetic Instabilities in Crop Plants

    Science.gov (United States)

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  11. Evolutionary active transposable elements in the genome of the coelacanth.

    Science.gov (United States)

    Chalopin, Domitille; Fan, Shaohua; Simakov, Oleg; Meyer, Axel; Schartl, Manfred; Volff, Jean-Nicolas

    2014-09-01

    The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly.

  12. BLAT-Based Comparative Analysis for Transposable Elements: BLATCAT

    Directory of Open Access Journals (Sweden)

    Sangbum Lee

    2014-01-01

    Full Text Available The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT based comparative analysis for transposable elements (BLATCAT program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

  13. BLAT-based comparative analysis for transposable elements: BLATCAT.

    Science.gov (United States)

    Lee, Sangbum; Oh, Sumin; Kang, Keunsoo; Han, Kyudong

    2014-01-01

    The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs) is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT) based comparative analysis for transposable elements (BLATCAT) program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

  14. Isolation and characterization of a potential transposable element from Wolbachia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Wolbachia are a group of Rickettsia-like bacteria which parasitize the cells of a wide range of anthropoid. These microorganisms are associated with the reproductive and developmental abnormalities io their hosts. To study the molecular mechanism underlying such phenomena, we analyzed the genomic difference between Wolbachia with different cytoplasmic incompatibility (CI) phenotype using representational difference analysis method. A potential transposable element, which exists in the strong CI-inducing strain wRi, was isolated. This element was designated as Wolbachia insertion sequence element (WISE).

  15. Cooperation is fleeting in the world of transposable elements.

    Directory of Open Access Journals (Sweden)

    Andreas Wagner

    2006-12-01

    Full Text Available Composite transposons are key vehicles for the worldwide spreading of genes that allow bacteria to survive toxic compounds. Composite transposons consist of two smaller transposable elements called insertion sequences (ISs, which flank the genes that permit such survival. Each IS in a composite transposon can either transpose alone, selfishly, or it can transpose cooperatively, jointly with the other IS. Cooperative transposition can enhance an IS's chance of survival, but it also carries the risk of transposon destruction. I use game theory to show that the conditions under which cooperative transposition is an evolutionarily stable strategy (ESS are not biologically realistic. I then analyze the distribution of thousands of ISs in more than 200 bacterial genomes to test the following prediction of the game-theoretical model: if cooperative transposition was an ESS, then the closely spaced ISs that characterize composite transposons should be more abundant in genomes than expected by chance. The data show that this is not the case. Cooperativity can only be maintained in a transitional, far-from-equilibrium state shortly after a selection pressure first arises. This is the case in the spreading of antibiotic resistance, where we are witnessing a fleeting moment in evolution, a moment in which cooperation among selfish DNA molecules has provided a means of survival. Because such cooperation does not pay in the long run, the vehicles of such survival will eventually disappear again. My analysis demonstrates that game theory can help explain behavioral strategies even for mobile DNA.

  16. Evolutionary interaction between W/Y chromosome and transposable elements.

    Science.gov (United States)

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  17. Transposable elements and early evolution of sex chromosomes in fish.

    Science.gov (United States)

    Chalopin, Domitille; Volff, Jean-Nicolas; Galiana, Delphine; Anderson, Jennifer L; Schartl, Manfred

    2015-09-01

    In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.

  18. Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution

    Directory of Open Access Journals (Sweden)

    Oliver Piskurek

    2012-07-01

    Full Text Available One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs. Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.

  19. Identification and frequency of transposable elements in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Maurício Bacci Jr.

    2005-01-01

    Full Text Available Transposable elements (TE are major components of eukaryotic genomes and involved in cell regulation and organism evolution. We have analyzed 123,889 expressed sequence tags of the Eucalyptus Genome Project database and found 124 sequences representing 76 TE in 9 groups, of which copia, MuDR and FAR1 groups were the most abundant. The low amount of sequences of TE may reflect the high efficiency of repression of these elements, a process that is called TE silencing. Frequency of groups of TE in Eucalyptus libraries which were prepared with different tissues or physiologic conditions from seedlings or adult plants indicated that developing plants experience the expression of a much wider spectrum of TE groups than that seen in adult plants. These are preliminary results that identify the most relevant TE groups involved with Eucalyptus development, which is important for industrial wood production.

  20. Transposable elements: from DNA parasites to architects of metazoan evolution.

    Science.gov (United States)

    Piskurek, Oliver; Jackson, Daniel J

    2012-07-12

    One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.

  1. DPTEdb, an integrative database of transposable elements in dioecious plants.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. © The Author(s) 2016. Published by Oxford University Press.

  2. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Wanhe Li

    Full Text Available Elevated expression of specific transposable elements (TEs has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  3. In Silico Methods to Identify Exapted Transposable Element Families.

    Science.gov (United States)

    Ramsay, LeeAnn; Bourque, Guillaume

    2016-01-01

    Transposable elements (TEs) have recently been shown to have many regulatory roles within the genome. In this chapter, we will examine two in silico methods for analyzing TEs and identifying families that may have acquired such functions. The first method will look at how the overrepresentation of a repeat family in a set of genomic features can be discovered. The example situation of OCT4 binding sites originating from LTR7 TE sequences will be used to show how this method could be applied. The second method will describe how to determine if a TE family exhibits a cell type-specific expression pattern. As an example, we will look at the expression of HERV-H, an endogenous retrovirus known to act as an lncRNA in embryonic stem cells. We will use this example to demonstrate how RNA-seq data can be used to compare cell type expression of repeats.

  4. Transposable elements and small RNAs: Genomic fuel for species diversity.

    Science.gov (United States)

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  5. A blessing in disguise: Transposable elements are more than parasites.

    Science.gov (United States)

    Martin, Antoine; Bendahmane, Abdelhafid

    2010-07-01

    Transposable elements (TEs) are various DNA fragments inserted throughout genomes, which are able to move or duplicate themselves. Recent advances in genomics have placed them back at the center of genome dynamics. One of the emerging observations, especially in plants, is the importance of interactions between TEs and genes to generate or to participate in relevant functions essential for development, adaptation and/or life cycle. A recent publication illustrates the influence of TEs epigenetic control on the expression of a neighboring gene crucial for reproduction. Different reports lately showed that a fundamental mechanism such as imprinting is likely to be closely linked to the dynamics of TEs epigenetic control. Here we discuss and bring together these and others recent findings, to underline that the cis-vicinity or the trans-relation between TEs and genes could bring unexpected but positive outcomes.

  6. [Transposition of the maize transposable element dSpm in transgenic sugar beets].

    Science.gov (United States)

    Kishchenko, E M; Komarnitskiĭ, I K; Kuchuk, N V

    2010-01-01

    Transgenic sugar beet plants carrying maize Spmn/dSpm transposable elements system have been constructed. Heterologous system of maize transposable elements Spm/dSpm was active in transgenic sugar beets that permits transposon-based gene tagging and obtaining of marker-free transgenic sugar beet.

  7. Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Tuskan, Gerald A [ORNL; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TEspecific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  8. Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor.

    Directory of Open Access Journals (Sweden)

    Jessy Labbé

    Full Text Available BACKGROUND: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. METHODOLOGY/PRINCIPAL FINDINGS: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS, long terminal repeats (LTRs and a large retrotransposon derivative (LARD element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. CONCLUSIONS: This analysis 1 represents an initial characterization of TEs in the L. bicolor genome, 2 contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3 provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  9. Transposable element recruitments in the mammalian placenta: impacts and mechanisms.

    Science.gov (United States)

    Emera, Deena; Wagner, Günter P

    2012-07-01

    Transposable elements (TEs) are mobile DNA elements found at high frequency in mammalian genomes. Although these elements are generally perceived as genomic parasites, they have the potential to influence host genome function in many beneficial ways. This article discusses the role TEs have played in the evolution of the placenta and pregnancy in viviparous mammals. Using examples from our own research and the literature, we argue that frequent recruitment of TEs, in particular of retroelements, has facilitated the extreme diversification of tissues at the maternal-fetal interface. We also discuss the mechanisms by which TEs have been recruited for functions during pregnancy. We argue that retroelements are pre-adapted to becoming cis-regulatory elements for host genomes because they need to utilize host regulatory signals for their own life cycle. However, although TEs contain some of the signals necessary for host functions upon insertion, they often require modification before acquiring a biological role in a host tissue. We discuss the process by which one TE was transformed into a promoter for prolactin expression in the endometrium, describing a model for TE domestication called 'epistatic capture'.

  10. Transposable-element associated small RNAs in Bombyx mori genome.

    Directory of Open Access Journals (Sweden)

    Yimei Cai

    Full Text Available Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs.

  11. Useful parasites: the evolutionary biology and biotechnology applications of transposable elements

    Indian Academy of Sciences (India)

    GEORGI N. BONCHEV

    2016-12-01

    Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as ‘parasitic’ or ‘selfish’. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of theirhosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of ‘selfish’ DNA,play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobilefraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.

  12. Useful parasites: the evolutionary biology and biotechnology applications of transposable elements.

    Science.gov (United States)

    Bonchev, Georgi N

    2016-12-01

    Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.

  13. SoyTEdb: a comprehensive database of transposable elements in the soybean genome

    Directory of Open Access Journals (Sweden)

    Zhu Liucun

    2010-02-01

    Full Text Available Abstract Background Transposable elements are the most abundant components of all characterized genomes of higher eukaryotes. It has been documented that these elements not only contribute to the shaping and reshaping of their host genomes, but also play significant roles in regulating gene expression, altering gene function, and creating new genes. Thus, complete identification of transposable elements in sequenced genomes and construction of comprehensive transposable element databases are essential for accurate annotation of genes and other genomic components, for investigation of potential functional interaction between transposable elements and genes, and for study of genome evolution. The recent availability of the soybean genome sequence has provided an unprecedented opportunity for discovery, and structural and functional characterization of transposable elements in this economically important legume crop. Description Using a combination of structure-based and homology-based approaches, a total of 32,552 retrotransposons (Class I and 6,029 DNA transposons (Class II with clear boundaries and insertion sites were structurally annotated and clearly categorized, and a soybean transposable element database, SoyTEdb, was established. These transposable elements have been anchored in and integrated with the soybean physical map and genetic map, and are browsable and visualizable at any scale along the 20 soybean chromosomes, along with predicted genes and other sequence annotations. BLAST search and other infrastracture tools were implemented to facilitate annotation of transposable elements or fragments from soybean and other related legume species. The majority (> 95% of these elements (particularly a few hundred low-copy-number families are first described in this study. Conclusion SoyTEdb provides resources and information related to transposable elements in the soybean genome, representing the most comprehensive and the largest manually

  14. Transposable elements in disease-associated cryptic exons.

    Science.gov (United States)

    Vorechovsky, Igor

    2010-02-01

    Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon-intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.

  15. Transposable element insertions have strongly affected human evolution.

    Science.gov (United States)

    Britten, Roy J

    2010-11-16

    Comparison of a full collection of the transposable element (TE) sequences of vertebrates with genome sequences shows that the human genome makes 655 perfect full-length matches. The cause is that the human genome contains many active TEs that have caused TE inserts in relatively recent times. These TE inserts in the human genome are several types of young Alus (AluYa5, AluYb8, AluYc1, etc.). Work in many laboratories has shown that such inserts have many effects including changes in gene expression, increases in recombination, and unequal crossover. The time of these very effective changes in the human lineage genome extends back about 4 million years according to these data and very likely much earlier. Rapid human lineage-specific evolution, including brain size is known to have also occurred in the last few million years. Alu insertions likely underlie rapid human lineage evolution. They are known to have many effects. Examples are listed in which TE sequences have influenced human-specific genes. The proposed model is that the many TE insertions created many potentially effective changes and those selected were responsible for a part of the striking human lineage evolution. The combination of the results of these events that were selected during human lineage evolution was apparently effective in producing a successful and rapidly evolving species.

  16. Survey of transposable elements in sugarcane expressed sequence tags (ESTs

    Directory of Open Access Journals (Sweden)

    Rossi Magdalena

    2001-01-01

    Full Text Available The sugarcane expressed sequence tag (SUCEST project has produced a large number of cDNA sequences from several plant tissues submitted or not to different conditions of stress. In this paper we report the result of a search for transposable elements (TEs revealing a surprising amount of expressed TEs homologues. Of the 260,781 sequences grouped in 81,223 fragment assembly program (Phrap clusters, a total of 276 clones showed homology to previously reported TEs using a stringent cut-off value of e-50 or better. Homologous clones to Copia/Ty1 and Gypsy/Ty3 groups of long terminal repeat (LTR retrotransposons were found but no non-LTR retroelements were identified. All major transposon families were represented in sugarcane including Activator (Ac, Mutator (MuDR, Suppressor-mutator (En/Spm and Mariner. In order to compare the TE diversity in grasses genomes, we carried out a search for TEs described in sugarcane related species O.sativa, Z. mays and S. bicolor. We also present preliminary results showing the potential use of TEs insertion pattern polymorphism as molecular markers for cultivar identification.

  17. Transposable element influences on gene expression in plants.

    Science.gov (United States)

    Hirsch, Cory D; Springer, Nathan M

    2017-01-01

    Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A DNA fingerprint probe from Mycosphaerella graminicola identifies an active transposable element

    NARCIS (Netherlands)

    Goodwin, S.B.; Cavaletto, J.R.; Waalwijk, C.; Kema, G.H.J.

    2001-01-01

    DNA fingerprinting has been used extensively to characterize populations of Mycosphaerella graminicola, the Septoria tritici blotch pathogen of wheat. The highly polymorphic DNA fingerprints of Mycosphaerella graminicola were assumed to reflect the action of transposable elements. However, there was

  19. Detection of transposable elements by their compositional bias

    Directory of Open Access Journals (Sweden)

    Anxolabéhère Dominique

    2004-07-01

    Full Text Available Abstract Background Transposable elements (TE are mobile genetic entities present in nearly all genomes. Previous work has shown that TEs tend to have a different nucleotide composition than the host genes, either considering codon usage bias or dinucleotide frequencies. We show here how these compositional differences can be used as a tool for detection and analysis of TE sequences. Results We compared the composition of TE sequences and host gene sequences using probabilistic models of nucleotide sequences. We used hidden Markov models (HMM, which take into account the base composition of the sequences (occurrences of words n nucleotides long, with n ranging here from 1 to 4 and the heterogeneity between coding and non-coding parts of sequences. We analyzed three sets of sequences containing class I TEs, class II TEs and genes respectively in three species: Drosophila melanogaster, Cænorhabditis elegans and Arabidopsis thaliana. Each of these sets had a distinct, homogeneous composition, enabling us to distinguish between the two classes of TE and the genes. However the particular base composition of the TEs differed in the three species studied. Conclusions This approach can be used to detect and annotate TEs in genomic sequences and complements the current homology-based TE detection methods. Furthermore, the HMM method is able to identify the parts of a sequence in which the nucleotide composition resembles that of a coding region of a TE. This is useful for the detailed annotation of TE sequences, which may contain an ancient, highly diverged coding region that is no longer fully functional.

  20. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  1. Transposable Elements: Powerful Contributors to Angiosperm Evolution and Diversity

    Science.gov (United States)

    Oliver, Keith R.; McComb, Jen A.; Greene, Wayne K.

    2013-01-01

    Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin’s “abominable mystery”: the spectacular success of the angiosperms. PMID:24065734

  2. Prediction of transposable element derived enhancers using chromatin modification profiles.

    Directory of Open Access Journals (Sweden)

    Ahsan Huda

    Full Text Available Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used them to guide the search for novel enhancers derived from transposable element (TE sequences. To do this, a computational approach was taken to analyze the genome-wide histone modification landscape characterized by the ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448 TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line. Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory mechanisms.

  3. Combined evidence annotation of transposable elements in genome sequences.

    Directory of Open Access Journals (Sweden)

    Hadi Quesneville

    2005-07-01

    Full Text Available Transposable elements (TEs are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1, and we found a substantially higher number of TEs (n = 6,013 than previously identified (n = 1,572. Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1. We also estimated that 518 TE copies (8.6% are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other

  4. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raquel S Linheiro

    Full Text Available Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.

  5. Transposable elements belonging to the Tc1-Mariner superfamily are heavily mutated in Colletotrichum graminicola.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Santana, Mateus Ferreira; Veras da Costa, Rodrigo; Brommonschenkel, Sergio Herminio; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2014-01-01

    Transposable elements are ubiquitous and constitute an important source of genetic variation in addition to generating deleterious mutations. Several filamentous fungi are able to defend against transposable elements using RIP(repeat-induced point mutation)-like mechanisms, which induce mutations in duplicated sequences. The sequenced Colletotrichum graminicola genome and the availability of transposable element databases provide an efficient approach for identifying and characterizing transposable elements in this fungus, which was the subject of this study. We identified 132 full-sized Tc1-Mariner transposable elements in the sequenced C. graminicola genome, which were divided into six families. Several putative transposases that have been found in these elements have conserved DDE motifs, but all are interrupted by stop codons. An in silico analysis showed evidence for RIP-generated mutations. The TCg1 element, which was cloned from the Brazilian 2908 m isolate, has a putative transposase sequence with three characteristic conserved motifs. However, this sequence is interrupted by five stop codons. Genomic DNA from various isolates was analyzed by hybridization with an internal region of TCg1. All of the isolates featured transposable elements that were similar to TCg1, and several hybridization profiles were identified. C. graminicola has many Tc1-Mariner transposable elements that have been degenerated by characteristic RIP mutations. It is unlikely that any of the characterized elements are autonomous in the sequenced isolate. The possible existence of active copies in field isolates from Brazil was shown. The TCg1 element is present in several C. graminicola isolates and is a potentially useful molecular marker for population studies of this phytopathogen. © 2014 by The Mycological Society of America.

  6. Novel non-autonomous transposable elements onWchromosome of the silkworm, Bombyx mori

    Indian Academy of Sciences (India)

    Hiroaki Abe; Tsuguru Fujii; Toru Shimada; Kazuei Mita

    2010-09-01

    The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in theWGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.

  7. Patterns of transposable element expression and insertion in cancer

    Directory of Open Access Journals (Sweden)

    Evan A Clayton

    2016-11-01

    Full Text Available Human transposable element (TE activity in somatic tissues causes mutations that can contribute to tumorigenesis. Indeed, TE insertion mutations have been implicated in the etiology of a number of different cancer types. Nevertheless, the full extent of somatic TE activity, along with its relationship to tumorigenesis, have yet to be fully explored. Recent developments in bioinformatics software make it possible to analyze TE expression levels and TE insertional activity directly from transcriptome (RNA-seq and whole genome (DNA-seq next-generation sequence data. We applied these new sequence analysis techniques to matched normal and primary tumor patient samples from the Cancer Genome Atlas (TCGA in order to analyze the patterns of TE expression and insertion for three cancer types: breast invasive carcinoma, head and neck squamous cell carcinoma, and lung adenocarcinoma. Our analysis focused on the three most abundant families of active human TEs: Alu, SVA and L1. We found evidence for high levels of somatic TE activity for these three families in normal and cancer samples across diverse tissue types. Abundant transcripts for all three TE families were detected in both normal and cancer tissues along with an average of ~80 unique TE insertions per individual patient/tissue. We observed an increase in L1 transcript expression and L1 insertional activity in primary tumor samples for all three cancer types. Tumor-specific TE insertions are enriched for private mutations, consistent with a potentially causal role in tumorigenesis. We used genome feature analysis to investigate two specific cases of putative cancer-causing TE mutations in further detail. An Alu insertion in an upstream enhancer of the CBL tumor suppressor gene is associated with down-regulation of the gene in a single breast cancer patient, and an L1 insertion in the first exon of the BAALC gene also disrupts its expression in head and neck squamous cell carcinoma. Our results are

  8. Evaluating the protein coding potential of exonized transposable element sequences

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2007-11-01

    Full Text Available Abstract Background Transposable element (TE sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently

  9. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    Science.gov (United States)

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  10. Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome.

    Science.gov (United States)

    Itoh, Y; Hasebe, M; Davies, E; Takeda, J; Ozeki, Y

    2003-04-01

    Three subfamilies of the En/Spm-type transposable element of carrot, Tdc A, B, and C, were characterized. It was supposed that the Tdc A subfamily may include autonomous elements which can produce transposases. Tdc B elements are defective, but still generate transcripts containing mutant open reading frame (ORF) sequences for transposases. The single member of the Tdc C group recovered seems to be a pseudogene. The sequences of the transposase ORFs of Tdc A and Tdc B elements are more highly conserved than those of the 5; and 3; untranslated regions and introns, as is found in other structural genes that are subject to selection. These observations indicate that the mutations in the nucleotide sequences of the Tdc elements occurred in the host genome. However, the mutations in the 5; and 3; untranslated regions and introns, which may not be sufficient to prevent transposition, accumulated in autonomous elements, which could transpose and produce copies. When the reproduction rate and the rate of disabling mutations reached an equilibrium, that is, when the birth rate of the transposable elements in the genome equalled the death rate, the population of elements achieved a stationary state in the genome, and could thus survive.

  11. Large-scale mapping of transposable element insertion sites using digital encoding of sample identity.

    Science.gov (United States)

    Gohl, Daryl M; Freifeld, Limor; Silies, Marion; Hwa, Jennifer J; Horowitz, Mark; Clandinin, Thomas R

    2014-03-01

    Determining the genomic locations of transposable elements is a common experimental goal. When mapping large collections of transposon insertions, individualized amplification and sequencing is both time consuming and costly. We describe an approach in which large numbers of insertion lines can be simultaneously mapped in a single DNA sequencing reaction by using digital error-correcting codes to encode line identity in a unique set of barcoded pools.

  12. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.

    Science.gov (United States)

    Staton, S Evan; Bakken, Bradley H; Blackman, Benjamin K; Chapman, Mark A; Kane, Nolan C; Tang, Shunxue; Ungerer, Mark C; Knapp, Steven J; Rieseberg, Loren H; Burke, John M

    2012-10-01

    Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (∼3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons ('chromoviruses'), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.

  13. Distribution and insertion numbers of transposable elements in species of the Drosophila saltans group

    Directory of Open Access Journals (Sweden)

    Juliana P. de Castro

    2006-01-01

    Full Text Available Information about the distribution and insertion numbers of many transposable elements is restricted to few species of Drosophila, although these elements are widely distributed throughout the genus. The aim of this work was to describe the distribution and insertion numbers of four retrotransposons (copia, gypsy, micropia, I and four transposons (hobo, mariner, Minos and Bari-1 in the saltans group of Drosophila. Our data shows that, except for mariner, all the other elements are widespread within the saltans group and show variable insertion numbers of up to 24 copies.

  14. Tourist C transposable elements are closely associated with genes expressed in flowers of rice (Oryza sativa).

    Science.gov (United States)

    Iwamoto, M; Higo, K

    2003-03-01

    Tourist elements comprise a group of transposable elements in plants. One of these elements, Tourist-OsaCatA(a Tourist C element), has been found in the 5; flanking region of a catalase gene, CatA, in rice (Oryza sativa). Using reverse transcriptase-PCR (RT-PCR) analyses of leaves, roots, flowers and developing seeds of rice, we assessed the transcription levels of ten known genes containing Tourist C elements, and of three additional putative genes for which expressed sequence tags (ESTs) including Tourist C elements have been isolated. We found that nine of the ten known genes and two of the three represented by ESTs were expressed in at least one of the organs we analyzed, and all of the genes detected were expressed in flowers, usually in stamens or pistils. We also assessed the expression of the 29 Tourist C-containing hypothetical coding sequences (CDSs) obtained so far by high-throughput genomic sequencing. We found that CDSs of all 11 genes whose transcripts were detectable by RT-PCR were expressed in flowers, especially in stamens or pistils. In contrast, RT-PCR analyses of genes or CDSs associated with other miniature inverted-repeat transposable elements (MITEs), such as Tourist D, Gaijin, Explorer, and Castaway, showed that some of them were expressed only minimally or not at all in flowers. Therefore, compared with other MITEs, Tourist C elements seem to show a strong association with genes that are expressed in the flowers of rice.

  15. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae.

    Science.gov (United States)

    Fléchard, Maud; Gilot, Philippe

    2014-07-01

    We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB-lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the 'success' of the infectious process.

  16. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    Directory of Open Access Journals (Sweden)

    Shomron Noam

    2007-11-01

    Full Text Available Abstract Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  17. Distribution and conservation of the transposable element gypsy in drosophilid species

    Directory of Open Access Journals (Sweden)

    Fabiana Herédia

    2007-01-01

    Full Text Available In an attempt to understand the dynamics of transposable elements (T'S in the genome of host species, we investigated the distribution, representativeness and conservation of DNA sequences homologous to the Drosophila melanogaster gypsy retrotransposon in 42 drosophilid species. Our results extended the knowledge about the wide distribution of gypsy in the genus Drosophila, including several Neotropical species not previously studied. The gypsy-like sequences showed high divergence compared to the D. melanogaster gypsy element. Furthermore, the conservation of the restriction sites between gypsy sequences from phylogenetically unrelated species pointed to a more complex evolutionary picture, which includes the possibility of the horizontal transfer events already described for this retrotransposon.

  18. Transposable element insertion location bias and the dynamics of gene drive in mosquito populations.

    Science.gov (United States)

    Rasgon, J L; Gould, F

    2005-10-01

    Some vector-borne disease control strategies using transgenic mosquitoes require transgene spread to high frequency in populations. Transposable elements (TEs) are DNA sequences that replicate and transpose within the genomes of other organisms and may therefore be represented in the next generation in higher frequencies than predicted by Mendelian segregation. This over-representation has allowed some TEs to spread through natural populations. Transgenes incorporated within a TE sequence are expected to be driven into populations as long as there is a positive balance between fitness costs and over-representation. Models have been used to examine parameters that affect this balance but did not take into account biased insertion of TEs to linked sites in the genome. A simulation model was created to examine the impact of insertion bias on TE spread in mosquito populations. TEs that induce no fitness costs are predicted to increase in frequency over a wide range of parameter values but spread is slower for lower levels of transposition and non-local movement. If TEs are costly, high proportions of local movement can slow or halt spread. To function as a robust transgene drive mechanism a TE should replicate and transpose > 10%/insert/generation, induce < 1% fitness cost/insert, and move preferentially to unlinked sites in the genome.

  19. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.

    Science.gov (United States)

    Naville, Magali; Chalopin, Domitille; Volff, Jean-Nicolas

    2014-01-01

    Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.

  20. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.

    Directory of Open Access Journals (Sweden)

    Magali Naville

    Full Text Available Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2% of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.

  1. Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element.

    Science.gov (United States)

    Rodrigues, Flávia Guimarães; Oliveira, Sabrina Barbosa; Rocha, Bruno Coelho; Moreira, Luciano Andrade

    2006-11-01

    The technique to generate transgenic mosquitoes requires adaptation for each target species because of aspects related to species biology, sensitivity to manipulation and rearing conditions. Here we tested different parameters on the microinjection procedure in order to obtain a transgenic Neotropical mosquito species. By using a transposon-based strategy we were able to successfully transform Aedes fluviatilis (Lutz), which can be used as an avian malaria model. These results demonstrate the usefulness of the piggyBac transposable element as a transformation vector for Neotropical mosquito species and opens up new research frontiers for South American mosquito vectors.

  2. Germline transformation of Aedes fluviatilis (Diptera:Culicidae with the piggyBac transposable element

    Directory of Open Access Journals (Sweden)

    Flávia Guimarães Rodrigues

    2006-11-01

    Full Text Available The technique to generate transgenic mosquitoes requires adaptation for each target species because of aspects related to species biology, sensitivity to manipulation and rearing conditions. Here we tested different parameters on the microinjection procedure in order to obtain a transgenic Neotropical mosquito species. By using a transposon-based strategy we were able to successfully transform Aedes fluviatilis (Lutz, which can be used as an avian malaria model. These results demonstrate the usefulness of the piggyBac transposable element as a transformation vector for Neotropical mosquito species and opens up new research frontiers for South American mosquito vectors.

  3. Transposable elements re-wire and fine-tune the transcriptome.

    Directory of Open Access Journals (Sweden)

    Michael Cowley

    Full Text Available What good are transposable elements (TEs? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.

  4. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Santana Mateus F

    2012-12-01

    Full Text Available Abstract Background Mycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs. TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation. In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated. Results A total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism. Conclusions The analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of

  5. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis.

    Science.gov (United States)

    Santana, Mateus F; Silva, José C F; Batista, Aline D; Ribeiro, Lílian E; da Silva, Gilvan F; de Araújo, Elza F; de Queiroz, Marisa V

    2012-12-22

    Mycosphaerella fijiensis is a ascomycete that causes Black Sigatoka in bananas. Recently, the M. fijiensis genome was sequenced. Repetitive sequences are ubiquitous components of fungal genomes. In most genomic analyses, repetitive sequences are associated with transposable elements (TEs). TEs are dispersed repetitive DNA sequences found in a host genome. These elements have the ability to move from one location to another within the genome, and their insertion can cause a wide spectrum of mutations in their hosts. Some of the deleterious effects of TEs may be due to ectopic recombination among TEs of the same family. In addition, some transposons are physically linked to genes and can control their expression. To prevent possible damage caused by the presence of TEs in the genome, some fungi possess TE-silencing mechanisms, such as RIP (Repeat Induced Point mutation). In this study, the abundance, distribution and potential impact of TEs in the genome of M. fijiensis were investigated. A total of 613 LTR-Gypsy and 27 LTR-Copia complete elements of the class I were detected. Among the class II elements, a total of 28 Mariner, five Mutator and one Harbinger complete elements were identified. The results of this study indicate that transposons were and are important ectopic recombination sites. A distribution analysis of a transposable element from each class of the M. fijiensis isolates revealed variable hybridization profiles, indicating the activity of these elements. Several genes encoding proteins involved in important metabolic pathways and with potential correlation to pathogenicity systems were identified upstream and downstream of transposable elements. A comparison of the sequences from different transposon groups suggested the action of the RIP silencing mechanism in the genome of this microorganism. The analysis of TEs in M. fijiensis suggests that TEs play an important role in the evolution of this organism because the activity of these elements, as well

  6. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles.

    Directory of Open Access Journals (Sweden)

    Raúl Castanera

    2016-06-01

    Full Text Available Transposable elements (TEs are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.

  7. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    Science.gov (United States)

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pisabarro, Antonio G.; Grigoriev, Igor V.; Ramírez, Lucía

    2016-01-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  8. A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes.

    Science.gov (United States)

    Gupta, Smriti; Gallavotti, Andrea; Stryker, Gabrielle A; Schmidt, Robert J; Lal, Shailesh K

    2005-01-01

    We recently described a maize mutant caused by an insertion of a Helitron type transposable element (Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, E. and Hannah, L.C., 2003, Plant Cell, 15: 381-391). Here we describe another Helitron insertion in the barren stalk1 gene of maize. The termini of a 6525 bp insertion in the proximal promoter region of the mutant reference allele of maize barren stalk1 gene (ba1-ref) shares striking similarity to the Helitron insertion we reported in the Shrunken-2 gene. This insertion is embedded with pseudogenes that differ from the pseudogenes discovered in the mutant Shrunken-2 insertion. Using the common terminal ends of the mutant insertions as a query, we discovered other Helitron insertions in maize BAC clones. Based on the comparison of the insertion site and PCR amplified genomic sequences, these elements inserted between AT dinucleotides. These putative non-autonomous Helitron insertions completely lacked sequences similar to RPA (replication protein A) and DNA Helicases reported in other species. A blastn analysis indicated that both the 5' and 3' termini of Helitrons are repeated in the maize genome. These data provide strong evidence that Helitron type transposable elements are active and may have played an essential role in the evolution and expansion of the maize genome.

  9. Genomic patterns associated with paternal/maternal distribution of transposable elements

    Science.gov (United States)

    Jurka, Jerzy

    2003-03-01

    Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of

  10. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    Science.gov (United States)

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  11. Transposable element distribution, abundance and role in genome size variation in the genus Oryza

    Directory of Open Access Journals (Sweden)

    Collura Kristi

    2007-08-01

    Full Text Available Abstract Background The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop – rice (Oryza sativa [AA]. Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements in shaping these genomes and in their contributing to genome size variation. Results We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Conclusion Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys account for a significant portion of the genome size variations present in the Oryza genus.

  12. Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification.

    Science.gov (United States)

    Becker, Kailey E; Thomas, Mary C; Martini, Samer; Shuipys, Tautvydas; Didorchuk, Volodymyr; Shanker, Rachyl M; Laten, Howard M

    2016-10-01

    Transposable elements (TEs) dominate the landscapes of most plant and animal genomes. Once considered junk DNA and genetic parasites, these interspersed, repetitive DNA elements are now known to play major roles in both genetic and epigenetic processes that sponsor genome variation and regulate gene expression. Knowledge of TE consensus sequences from elements in species whose genomes have not been sequenced is limited, and the individual TEs that are encountered in clones or short-reads rarely represent potentially canonical, let alone, functional representatives. In this study, we queried the Repbase database with eight BAC clones from white clover (Trifolium repens), identified a large number of candidate TEs, and used polymerase chain reaction and Sanger sequencing to create consensus sequences for three new TE families. The results show that TE family consensus sequences can be obtained experimentally in species for which just a single, full-length member of a TE family has been sequenced.

  13. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    Science.gov (United States)

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  14. Detection transposable elements in Botrytis cinerea in latent infection stage from symptomless apples

    Directory of Open Access Journals (Sweden)

    Jorge G Fernández

    2014-02-01

    Full Text Available Objective: T o detect Botrytis cinerea ( B. cinerea latent infections on apples before storage, which is essential for effective control strategies in the fruit postharvest industry. Methods: I n the present study, a polymerase chain reaction detection method, based on primers designed on B. cinerea transposable elements ( boty and flipper and intergenic spacer region as internal control, were utilized to reveal the presence of symptomless infections on apple fruits. T his molecular method proved to be highly specific and sensitive in detecting latent infections. I t revealed the presence of the pathogen in 83 % of the samples from infected apples with 10 4 conidia/ m L , whereas those infected with 10 6 conidia/m L detected 94 % as compared to the traditional method that revealed the pathogen in 40 % and 66 % of the samples inoculated with 10 4 and 10 6 conidia/m L respectively. F urthermore, the method characterized B. cinerea as subpopulation transposa-type by the presence of the transposable elements boty and flipper Results: T he results obtained from DNA quantification method were compared with enzyme- linked immunosorbent assay and these studies showed good correlation. T herefore our method has important advantages compared with others detection methods for B. cinerea, because the proposed methodology allowed distinguishes between its two subpopulations ( vacuma and transposa and this would allow establish possible appropriate control strategies. Conclusions: F inally, the method can be an interesting alternative for its possible application in the phytosanitary programs of the fruit industry worldwide.

  15. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

    Science.gov (United States)

    Greally, John M

    2002-01-08

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.

  16. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    Science.gov (United States)

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  17. Detection transposable elements in Botrytis cinerea in latent infection stage from symptomless apples

    Institute of Scientific and Technical Information of China (English)

    Jorge G Fernndez; Martn A Fernndez-Baldo; Claudio Muoz; Eloy Salinas; Julio Raba; Mara I Sanz

    2014-01-01

    Objective:To detect Botrytis cinerea (B. cinerea) latent infections on apples before storage, which is essential for effective control strategies in the fruit postharvest industry. Methods:In the present study, a polymerase chain reaction detection method, based on primers designed on B. cinerea transposable elements (boty and flipper) and intergenic spacer region as internal control, were utilized to reveal the presence of symptomless infections on apple fruits. This molecular method proved to be highly specific and sensitive in detecting latent infections. It revealed the presence of the pathogen in 83%of the samples from infected apples with 104 conidia/mL, whereas those infected with 106 conidia/mL detected 94%as compared to the traditional method that revealed the pathogen in 40%and 66%of the samples inoculated with 104 and 106 conidia/mL respectively. Furthermore, the method characterized B. cinerea as subpopulation transposa-type by the presence of the transposable elements boty and flipper Results:The results obtained from DNA quantification method were compared with enzyme-linked immunosorbent assay and these studies showed good correlation. Therefore our method has important advantages compared with others detection methods for B. cinerea, because the proposed methodology allowed distinguishes between its two subpopulations (vacuma and transposa) and this would allow establish possible appropriate control strategies. Conclusions:Finally, the method can be an interesting alternative for its possible application in the phytosanitary programs of the fruit industry worldwide.

  18. TEnest 2.0: computational annotation and visualization of nested transposable elements.

    Science.gov (United States)

    Kronmiller, Brent A; Wise, Roger P

    2013-01-01

    Grass genomes harbor a diverse and complex content of repeated sequences. Most of these repeats occur as abundant transposable elements (TEs), which present unique challenges to sequence, assemble, and annotate genomes. Multiple copies of Long Terminal Repeat (LTR) retrotransposons can hinder sequence assembly and also cause problems with gene annotation. TEs can also contain protein-encoding genes, the ancient remnants of which can mislead gene identification software if not correctly masked. Hence, accurate assembly is crucial for gene annotation. We present TEnest v2.0. TEnest computationally annotates and chronologically displays nested transposable elements. Utilizing organism-specific TE databases as a reference for reconstructing degraded TEs to their ancestral state, annotation of repeats is accomplished by iterative sequence alignment. Subsequently, an output consisting of a graphical display of the chronological nesting structure and coordinate positions of all TE insertions is the result. Both linux command line and Web versions of the TEnest software are available at www.wiselab.org and www.plantgdb.org/tool/, respectively.

  19. Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster.

    Science.gov (United States)

    Woodruff, R C; Thompson, J N; Barker, J S; Huai, H

    1999-01-01

    Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.

  20. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex.

    Science.gov (United States)

    Notwell, James H; Chung, Tisha; Heavner, Whitney; Bejerano, Gill

    2015-03-25

    The neocortex is a mammalian-specific structure that is responsible for higher functions such as cognition, emotion and perception. To gain insight into its evolution and the gene regulatory codes that pattern it, we studied the overlap of its active developmental enhancers with transposable element (TE) families and compared this overlap to uniformly shuffled enhancers. Here we show a striking enrichment of the MER130 repeat family among active enhancers in the mouse dorsal cerebral wall, which gives rise to the neocortex, at embryonic day 14.5. We show that MER130 instances preserve a common code of transcriptional regulatory logic, function as enhancers and are adjacent to critical neocortical genes. MER130, a nonautonomous interspersed TE, originates in the tetrapod or possibly Sarcopterygii ancestor, which far predates the appearance of the neocortex. Our results show that MER130 elements were recruited, likely through their common regulatory logic, as neocortical enhancers.

  1. Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.

    Science.gov (United States)

    Šatović, Eva; Plohl, Miroslav

    2017-06-26

    Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.

  2. Characterization of new hAT transposable elements in 12 Drosophila genomes.

    Science.gov (United States)

    de Freitas Ortiz, Mauro; Loreto, Elgion Lucio Silva

    2009-01-01

    In silico searches for sequences homologous to hAT elements in 12 Drosophila genomes have allowed us to identify 37 new hAT elements (8 in D. ananassae, 11 in D. mojavensis, 2 in D. sechellia, 1 in D. simulans, 2 in D. virilis, 3 in D. yakuba, 3 in D. persimilis, 1 in D. grimshawi, 5 in D. willistoni and 1 in D. pseudobscura). The size of these elements varies from 2,359 to 4,962 bp and the terminal inverted repeats (TIRs) show lengths ranging from 10 to 24 bp. Several elements show intact transposase ORFs, suggesting that they are active. Conserved amino acid motifs were identified that correspond to those important for transposase activity. These elements are highly variable and phylogenetic analysis showed that they can be clustered into four different families. Incongruencies were observed between the phylogenies of the transposable elements and those of their hosts, suggesting that horizontal transfer may have occurred between some of the species.

  3. Genetic Innovation in Vertebrates: Gypsy Integrase Genes and Other Genes Derived from Transposable Elements

    Directory of Open Access Journals (Sweden)

    Domitille Chalopin

    2012-01-01

    Full Text Available Due to their ability to drive DNA rearrangements and to serve as a source of new coding and regulatory sequences, transposable elements (TEs are considered as powerful evolutionary agents within genomes. In this paper, we review the mechanism of molecular domestication, which corresponds to the formation of new genes derived from TE sequences. Many genes derived from retroelements and DNA transposons have been identified in mammals and other vertebrates, some of them fulfilling essential functions for the development and survival of their host organisms. We will particularly focus on the evolution and expression of Gypsy integrase (GIN genes, which have been formed from ancient event(s of molecular domestication and have evolved differentially in some vertebrate sublineages. What we describe here is probably only the tip of the evolutionary iceberg, and future genome analyses will certainly uncover new TE-derived genes and biological functions driving genetic innovation in vertebrates and other organisms.

  4. Population and clinical genetics of human transposable elements in the (post) genomic era

    Science.gov (United States)

    Rishishwar, Lavanya; Wang, Lu; Clayton, Evan A.; Mariño-Ramírez, Leonardo; McDonald, John F.; Jordan, I. King

    2017-01-01

    ABSTRACT Recent technological developments—in genomics, bioinformatics and high-throughput experimental techniques—are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health.

  5. Transposable element proliferation as a possible side effect of endosymbiont manipulations.

    Science.gov (United States)

    Kraaijeveld, Ken; Bast, Jens

    2012-09-01

    The mode of reproduction has been predicted to affect the proliferation of transposable elements (TEs). A population that switches from sexual to asexual reproduction could either accumulate TEs because purifying selection becomes less efficient, or a decrease in TE load because the opportunity for horizontal transmission is reduced. A third possibility is that the mechanism that induces asexual reproduction affects TE dynamics as a side effect. We propose two such mechanisms that might explain recently described patterns of TE abundance in sexual and asexual lineages of the parasitoid wasp Leptopilina clavipes. Asexual reproduction in this species is induced by endosymbiotic Wolbachia bacteria. In order to achieve parthenogenesis in its host, Wolbachia might remove methylation or interfere with Argonaute proteins. Both methylation and Argonaute proteins are known to control TE activity in other species. By interfering with either, Wolbachia might therefore secondarily hamper the control of specific TEs.

  6. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoé Joly-Lopez

    2012-09-01

    Full Text Available The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG, identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  7. A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation

    Directory of Open Access Journals (Sweden)

    Dong Hai-Tao

    2012-04-01

    Full Text Available Abstract Background Miniature inverted repeat transposable element (MITE is one type of transposable element (TE, which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. Results We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing. This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE were identified only in regenerated plantlets. Conclusions It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.

  8. The majority of primate-specific regulatory sequences are derived from transposable elements.

    Directory of Open Access Journals (Sweden)

    Pierre-Étienne Jacques

    2013-05-01

    Full Text Available Although emerging evidence suggests that transposable elements (TEs have contributed novel regulatory elements to the human genome, their global impact on transcriptional networks remains largely uncharacterized. Here we show that TEs have contributed to the human genome nearly half of its active elements. Using DNase I hypersensitivity data sets from ENCODE in normal, embryonic, and cancer cells, we found that 44% of open chromatin regions were in TEs and that this proportion reached 63% for primate-specific regions. We also showed that distinct subfamilies of endogenous retroviruses (ERVs contributed significantly more accessible regions than expected by chance, with up to 80% of their instances in open chromatin. Based on these results, we further characterized 2,150 TE subfamily-transcription factor pairs that were bound in vivo or enriched for specific binding motifs, and observed that TEs contributing to open chromatin had higher levels of sequence conservation. We also showed that thousands of ERV-derived sequences were activated in a cell type-specific manner, especially in embryonic and cancer cells, and we demonstrated that this activity was associated with cell type-specific expression of neighboring genes. Taken together, these results demonstrate that TEs, and in particular ERVs, have contributed hundreds of thousands of novel regulatory elements to the primate lineage and reshaped the human transcriptional landscape.

  9. Somatic variegation and germinal mutability reflect the position of transposable element dissociation within the maize R gene

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, M.; Kermicle, J.L. (Univ. of Wisconsin, Madison, WI (United States))

    1993-09-01

    The R gene regulates the timing and tissue-specificity of anthocyanin deposition during maize development. The Ac/Ds system of transposable elements was used to induce insertional mutants of the R-sc:124 allele during two cycles of mutagenesis. Of 43 unstable, spotted-aleurone mutants generated, 42 contain inserts of the Ds6 transposable element differing only in the position and orientation of the element. The remaining mutant, r-sc;ml, contained an insert of a Ds element of the approximate size of the Ds1 transposable element. The patterns of somatic variegation of these mutants, resulting from excision of Ds, define a spectrum of phenotypes ranging from sparse to dense variegation. The sparsely variegated mutants produce many germinal revertants and few stable null derivatives. Molecular analysis shows that the sparsely variegated alleles are caused by Ds6 insertions in protein coding regions of R-sc:124 whereas the densely variegated mutants result from insertions in introns or in flanking regions of the gene. The excision rate of Ds6 from R, estimated as the proportion of R genomic DNA restriction fragments lacking the element, was uniform regardless of position, orientation or whether the element was inserted in R-sc:124 or another R allele. The excision rate was greater, however, for the mutable alleles involving the Ds element from r-sc:m1. These data indicate that, although the excision rates are uniform for a given Ds element, the somatic and germinal mutability patterns of alleles associated with that element vary widely and depend primarily on the position of the transposable element within coding or noncoding regions of the gene.

  10. Distribution patterns and impact of transposable elements in genes of green algae.

    Science.gov (United States)

    Philippsen, Gisele S; Avaca-Crusca, Juliana S; Araujo, Ana P U; DeMarco, Ricardo

    2016-12-05

    Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.

  11. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions.

    Science.gov (United States)

    Muramoto, Hiroki; Yagi, Shintaro; Hirabayashi, Keiji; Sato, Shinya; Ohgane, Jun; Tanaka, Satoshi; Shiota, Kunio

    2010-08-01

    Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.

  12. Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy

    Directory of Open Access Journals (Sweden)

    Vincent J. Lynch

    2015-02-01

    Full Text Available A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs. Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs co-opted into hormone-responsive regulatory elements distributed throughout the genome.

  13. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana.

    Science.gov (United States)

    Cardon, G H; Frey, M; Saedler, H; Gierl, A

    1993-06-01

    The autonomous element En-1 of the maize En/Spm transposable element system is capable of frequent somatic and germinal excision in the heterologous host Arabidopsis thaliana. The pattern of En-homologous transcripts generated in transgenic Arabidopsis resembles En transcription in maize. An excision reporter construct based on NPT-II gene (pKEn2) can be used reliably for the isolation of En-1 germinal revertants by seed germination on kanamycin-containing medium. Re-insertion after germinal excision is apparently frequent. A dSpm receptor element can be efficiently trans-activated in Arabidopsis either by En-1 or by expressing cDNAs of tnpA and tnpD. Excision and re-insertion of En/Spm take place with similar characteristics as in maize. This is the first description of En/Spm transposition in Arabidopsis and the parameters analysed here suggest that transposon tagging with En should be feasible in this species.

  14. The Origin and Evolution of Six Miniature Inverted-Repeat Transposable Elements in Bombyx mori and Rhodnius prolixus

    OpenAIRE

    Zhang, Hua-Hao; Xu, Hong-En; Shen, Yi-Hong; Han, Min-Jin; Zhang, Ze

    2013-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a specific group of nonautonomous DNA transposons, and they are distributed in a wide range of hosts. However, the origin and evolutionary history of MITEs in eukaryotic genomes remain unclear. In this study, six MITEs were identified in the silkworm (Bombyx mori). Five elements are grouped into four known superfamilies of DNA transposons, and one represents a novel class of MITEs. Unexpectedly, six similar MITEs are also present in ...

  15. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.

    Science.gov (United States)

    Li, Shu-Fen; Gao, Wu-Jun; Zhao, Xin-Peng; Dong, Tian-Yu; Deng, Chuan-Liang; Lu, Long-Dou

    2014-01-01

    Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.

  16. Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis.

    Science.gov (United States)

    Dufourt, Jérémy; Dennis, Cynthia; Boivin, Antoine; Gueguen, Nathalie; Théron, Emmanuelle; Goriaux, Coline; Pouchin, Pierre; Ronsseray, Stéphane; Brasset, Emilie; Vaury, Chantal

    2014-02-01

    During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the 'Piwiless pocket' or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.

  17. Integrated cytogenetics and genomics analysis of transposable elements in the Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Valente, Guilherme; Kocher, Thomas; Eickbush, Thomas; Simões, Rafael P; Martins, Cesar

    2016-06-01

    Integration of cytogenetics and genomics has become essential to a better view of architecture and function of genomes. Although the advances on genomic sequencing have contributed to study genes and genomes, the repetitive DNA fraction of the genome is still enigmatic and poorly understood. Among repeated DNAs, transposable elements (TEs) are major components of eukaryotic chromatin and their investigation has been hindered even after the availability of whole sequenced genomes. The cytogenetic mapping of TEs in chromosomes has proved to be of high value to integrate information from the micro level of nucleotide sequence to a cytological view of chromosomes. Different TEs have been cytogenetically mapped in cichlids; however, neither details about their genomic arrangement nor appropriated copy number are well defined by these approaches. The current study integrates TEs distribution in Nile tilapia Oreochromis niloticus genome based on cytogenetic and genomics/bioinformatics approach. The results showed that some elements are not randomly distributed and that some are genomic dependent on each other. Moreover, we found extensive overlap between genomics and cytogenetics data and that tandem duplication may be the major mechanism responsible for the genomic dynamics of TEs here analyzed. This paper provides insights in the genomic organization of TEs under an integrated view based on cytogenetics and genomics.

  18. The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world.

    Science.gov (United States)

    Wijayawardena, Bhagya K; DeWoody, J Andrew; Minchella, Dennis J

    2015-06-01

    Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.

  19. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi

    Directory of Open Access Journals (Sweden)

    Kazimierz T. Tycowski

    2016-05-01

    Full Text Available The ENE (element for nuclear expression is a cis-acting RNA structure that protects viral or cellular noncoding RNAs (ncRNAs from nuclear decay through triple-helix formation with the poly(A tail or 3′-terminal A-rich tract. We expanded the roster of nine known ENEs by bioinformatic identification of ∼200 distinct ENEs that reside in transposable elements (TEs of numerous non-metazoan and one fish species and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A tail argues that ENEs are active in TE transcripts. Their presence in intronless, but not intron-containing, hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits.

  20. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi.

    Science.gov (United States)

    Tycowski, Kazimierz T; Shu, Mei-Di; Steitz, Joan A

    2016-05-10

    The ENE (element for nuclear expression) is a cis-acting RNA structure that protects viral or cellular noncoding RNAs (ncRNAs) from nuclear decay through triple-helix formation with the poly(A) tail or 3'-terminal A-rich tract. We expanded the roster of nine known ENEs by bioinformatic identification of ∼200 distinct ENEs that reside in transposable elements (TEs) of numerous non-metazoan and one fish species and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A) tail argues that ENEs are active in TE transcripts. Their presence in intronless, but not intron-containing, hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits.

  1. International Congress on Transposable Elements (ICTE) 2012 in Saint Malo and the sea of TE stories.

    Science.gov (United States)

    Ainouche, Abdelkader; Bétermier, Mireille; Chandler, Mick; Cordaux, Richard; Cristofari, Gaël; Deragon, Jean-Marc; Lesage, Pascale; Panaud, Olivier; Quesneville, Hadi; Vaury, Chantal; Vieira, Cristina; Vitte, Clémentine

    2012-10-30

    An international conference on Transposable Elements (TEs) was held 21-24 April 2012 in Saint Malo, France. Organized by the French Transposition Community (GDR Elements Génétiques Mobiles et Génomes, CNRS) and the French Society of Genetics (SFG), the conference's goal was to bring together researchers from around the world who study transposition in diverse organisms using multiple experimental approaches. The meeting drew more than 217 attendees and most contributed through poster presentations (117), invited talks and short talks selected from poster abstracts (48 in total). The talks were organized into four scientific sessions, focused on: impact of TEs on genomes, control of transposition, evolution of TEs and mechanisms of transposition. Here, we present highlights from the talks given during the platform sessions. The conference was sponsored by Alliance pour les sciences de la vie et de la santé (Aviesan), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Institut de recherche pour le développement (IRD), Institut national de la recherche agronomique (INRA), Université de Perpignan, Université de Rennes 1, Région Bretagne and Mobile DNA. CHAIR OF THE ORGANIZATION COMMITTEE: Jean-Marc Deragon ORGANIZERS: Abdelkader Ainouche, Mireille Bétermier, Mick Chandler, Richard Cordaux, Gaël Cristofari, Jean-Marc Deragon, Pascale Lesage, Didier Mazel, Olivier Panaud, Hadi Quesneville, Chantal Vaury, Cristina Vieira and Clémentine Vitte.

  2. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene.

    Science.gov (United States)

    Momose, Masaki; Nakayama, Masayoshi; Itoh, Yoshio; Umemoto, Naoyuki; Toguri, Toshihiro; Ozeki, Yoshihiro

    2013-04-01

    The molecular mechanisms underlying spontaneous bud mutations, which provide an important breeding tool in carnation, are poorly understood. Here we describe a new active hAT type transposable element, designated Tdic101, the movement of which caused a bud mutation in carnation that led to a change of flower color from purple to deep pink. The color change was attributed to Tdic101 insertion into the second intron of F3'H, the gene for flavonoid 3'-hydroxylase responsible for purple pigment production. Regions on the deep pink flowers of the mutant can revert to purple, a visible phenotype of, as we show, excision of the transposable element. Sequence analysis revealed that Tdic101 has the characteristics of an autonomous element encoding a transposase. A related, but non-autonomous element dTdic102 was found to move in the genome of the bud mutant as well. Its mobilization might be the result of transposase activities provided by other elements such as Tdic101. In carnation, therefore, the movement of transposable elements plays an important role in the emergence of a bud mutation.

  3. The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Testori Alessandro

    2012-08-01

    Full Text Available Abstract Background In the last few years several studies have shown that Transposable Elements (TEs in the human genome are significantly associated with Transcription Factor Binding Sites (TFBSs and that in several cases their expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network, also played a central role in the evolution of particular patterns of combinatorial gene regulation. Results To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα binding peaks in two publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent role was played by MIR (Mammalian Interspersed Repeats transposons. These TEs underwent a dramatic expansion at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise combinations of TFBS. In several cases the corresponding Transcription Factors (TFs were known cofactors of ERα, thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined "transposon code" within the regulatory network. Conclusions In this work we tried to shed light into the role of Transposable Elements (TEs in shaping the regulatory network of higher eukaryotes. To

  4. Holliday Junctions Are Associated with Transposable Element Sequences in the Human Genome.

    Science.gov (United States)

    Ladias, Paris; Markopoulos, Georgios; Lazaros, Leandros; Markoula, Sofia; Tzavaras, Theodore; Georgiou, Ioannis

    2016-02-13

    Holliday junctions (HJs) constitute important intermediate structures for many cell functions such as DNA recombination and DNA repair. They derive from a 10-nt degenerate sequence, with a 3-nt core motif. In this study, we explored the human genome whether the HJ degenerate sequence associates with transposable elements (TEs) and mainly with those of the active and inactive ALU, LINE, SVA and HERV families. We identified six different forms of the HJ sequence motif, and we located the genomic coordinates of sequences containing both HJs and TEs. From 2982 total HJs, a significant number of 1319 TE-associated HJs were found, with a median distribution of 1 per 2.4 Mb. The HJs with higher GC content were observed more frequently at the genome. A high percentage of HJs were associated with all main TE families, with specificity for particular active or inactive elements: DNA elements and the retroelements ALUs, LINEs and HERVs up to 41.94%, 72.72%, 42.94% and 84.5%, respectively. Phylogenetic analysis revealed that HJs occur in both active and inactive TEs. Furthermore, the TE-associated HJs were almost exclusively found within a distance less than 1 Mb from human genes, while only 23 were not associated with any genes. This is the first report associating human HJs, with mobile elements. Our data pinpoint that particular HJ forms show preference for specific active retrotransposon families of ALUs and LINEs, suggesting that retrotransposon-incorporated HJs may relocate or replicate in the genome through retrotransposition, contributing to recombination, genome plasticity and DNA repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive.

    Science.gov (United States)

    Gbadegesin, M A; Beeching, J R

    2010-04-13

    Transposable elements contribute to the size, structure, variation, and diversity of the genome and have major effects on gene function. Sequencing projects have revealed the diversity of transposable elements in many organisms and have shown that they constitute a high percentage of the genome. PCR-based techniques using degenerate primers designed from conserved enzyme domains of transposable elements can provide quick and extensive surveys, making study of diversity and abundance and their applications possible in species where full genome sequence data are not yet available. We studied cassava (Manihot esculenta) En/Spm-like transposons (Meens) with regard to genomic distribution, sequence diversity and methylation status. Cassava transposase fragments characteristic of En/Spm-like transposons were isolated, cloned and characterized. Sequence analysis showed that cassava En/Spm-like elements are highly conserved, with overall identity in the range of 68-98%. Southern hybridization supports the presence of multiple copies of En/Spm-like transposons integrated in the genome of all cassava cultivars that we tested. Hybridization patterns of HpaII- and MspI-digested cassava genomic DNA revealed highly methylated sequences. There were no clear differences in hybridization pattern between the cultivars. We did not detect RNA transcripts of Meens by Northern procedures. We examined the possibility of recent transposition activities of the cassava En/Spm-like elements.

  6. Natural variation of piRNA expression affects immunity to transposable elements

    Science.gov (United States)

    Radion, Elizaveta; Mironova, Anastasia; Akulenko, Natalia; Abramov, Yuri; Morgunova, Valeriya; Kordyukova, Maria Y.; Olovnikov, Ivan

    2017-01-01

    In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon He

  7. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    Science.gov (United States)

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  8. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    Science.gov (United States)

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  9. Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum

    Directory of Open Access Journals (Sweden)

    Jamie A. Hackett

    2017-06-01

    Full Text Available Embryonic stem cells (ESCs are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs, which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF conditions, and marks a dynamic primordial germ cell (PGC-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE.

  10. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements.

    Science.gov (United States)

    Wang, Lu; Rishishwar, Lavanya; Mariño-Ramírez, Leonardo; Jordan, I King

    2016-12-19

    Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5 The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification.

  11. Report of a chimeric origin of transposable elements in a bovine-coding gene.

    Science.gov (United States)

    Almeida, L M; Amaral, M E J; Silva, I T; Silva, W A; Riggs, P K; Carareto, C M

    2008-02-01

    Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is approximately 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.

  12. Identification and characterization of CACTA transposable elements capturing gene fragments in maize

    Institute of Scientific and Technical Information of China (English)

    LI Qing; LI Lin; DAI JingRui; LI JianSheng; YAN JianBing

    2009-01-01

    Transposable elements (TEs)-mediated gene sequence movement is thought to play an important role in genome expansion and origin of genes with novel functions. In this study, a gene, HGGT, involved in vitamin E synthesis was used in a case study to discover and characterize transposons carrying gene fragments in maize. A total of 69 transposons that are distributed across the 10 chromosomes and have an average length of 3689 bp were identified from the maize sequence database by using the BLAST search algorithm. Three of these carry gene fragments from the progenitor HGGT gene, while the rest (66) contain gene fragments from other cellular genes. Nine of the 69 transposons contain fragments derived from two locations in the genome. By querying the maize Expressed Sequence Tag (EST) da-tabase, we found that at least thirteen out of the 69 TEs had corresponding transcripts. More interest-ingly, two transposons that carry gene fragments from two different chromosomal loci could be ex-pressed as chimeric transcripts.

  13. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements

    Science.gov (United States)

    Wang, Lu; Mariño-Ramírez, Leonardo

    2017-01-01

    Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931

  14. Transposable element insertions in long intergenic non-coding RNA genes

    Directory of Open Access Journals (Sweden)

    Sivakumar eKannan

    2015-06-01

    Full Text Available Transposable elements (TE are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences, followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TE-derived sequences in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the RIDL (Repeat Insertion Domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and in particular functional diversification, of lincRNA genes.

  15. Post-integration silencing of piggyBac transposable elements in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Azhahianambi Palavesam

    Full Text Available The piggyBac transposon, originating in the genome of the Lepidoptera Trichoplusia ni, has a broad host range, making it useful for the development of a number of transposon-based functional genomic technologies including gene vectors, enhancer-, gene- and protein-traps. While capable of being used as a vector for the creation of transgenic insects and insect cell lines, piggyBac has very limited mobility once integrated into the genome of the yellow fever mosquito, Aedes aegypti. A transgenic Aedes aegypti cell line (AagPB8 was created containing three integrated piggyBac elements and the remobilization potential of the elements was tested. The integrated piggyBac elements in AagPB8 were transpositionally silent in the presence of functional transposase, which was shown to be capable of catalyzing the movement of plasmid-borne piggyBac elements in the same cells. The structural integrity of one of the integrated elements along with the quality of element-flanking DNA, which is known to influence transposition rates, were tested in D. melanogaster. The element was found to be structurally intact, capable of transposition and excision in the soma and germ-line of Drosophila melanogaster, and in a DNA sequence context highly conducive to element movement in Drosophila melanogaster. These data show that transpositional silencing of integrated piggyBac elements in the genome of Aedes aegypti appears to be a function of higher scale genome organization or perhaps epigenetic factors, and not due to structural defects or suboptimal integration sites.

  16. Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans

    Directory of Open Access Journals (Sweden)

    Pupko Tal

    2008-10-01

    Full Text Available Abstract Transposable elements may acquire unrelated gene fragments into their sequences in a process called transduplication. Transduplication of protein-coding genes is common in plants, but is unknown of in animals. Here, we report that the Turmoil-1 transposable element in C. elegans has incorporated two protein-coding sequences into its inverted terminal repeat (ITR sequences. The ITRs of Turmoil-1 contain a conserved RNA recognition motif (RRM that originated from the rsp-2 gene and a fragment from the protein-coding region of the cpg-3 gene. We further report that an open reading frame specific to C. elegans may have been created as a result of a Turmoil-1 insertion. Mutations at the 5' splice site of this open reading frame may have reactivated the transduplicated RRM motif. Reviewers This article was reviewed by Dan Graur and William Martin. For the full reviews, please go to the Reviewers' Reports section.

  17. Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Scott eJackson

    2014-07-01

    Full Text Available Common bean (Phaseolus vulgaris is an important legume crop grown and consumed worldwide. With the availability of the common bean genome sequence, the next challenge is to annotate the genome and characterize functional DNA elements. Transposable elements (TEs are the most abundant component of plant genomes and can dramatically affect genome evolution and genetic variation. Thus, it is pivotal to identify TEs in the common bean genome. In this study, we performed a genome-wide transposon annotation in common bean using a combination of homology and sequence structure-based methods. We developed a 2.12-Mb transposon database which includes 791 representative transposon sequences and is available upon request or from www.phytozome.org. Of note, nearly all transposons in the database are previously unrecognized TEs. More than 5,000 transposon-related expressed sequence tags (ESTs were detected which indicates that some transposons may be transcriptionally active. Two Ty1-copia retrotransposon families were found to encode the envelope-like protein which has rarely been identified in plant genomes. Also, we identified an extra open reading frame (ORF termed ORF2 from 15 Ty3-gypsy families that was located between the ORF encoding the retrotransposase and the 3’LTR. The ORF2 was in opposite transcriptional orientation to retrotransposase. Sequence homology searches and phylogenetic analysis suggested that the ORF2 may have an ancient origin, but its function is not clear. This transposon data provides a useful resource for understanding the genome organization and evolution and may be used to identify active TEs for developing transposon-tagging system in common bean and other related genomes.

  18. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates.

    Science.gov (United States)

    Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas

    2015-01-09

    Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.

  19. Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates

    Science.gov (United States)

    Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas

    2015-01-01

    Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. PMID:25577199

  20. TEnest: automated chronological annotation and visualization of nested plant transposable elements.

    Science.gov (United States)

    Kronmiller, Brent A; Wise, Roger P

    2008-01-01

    Organisms with a high density of transposable elements (TEs) exhibit nesting, with subsequent repeats found inside previously inserted elements. Nesting splits the sequence structure of TEs and makes annotation of repetitive areas challenging. We present TEnest, a repeat identification and display tool made specifically for highly repetitive genomes. TEnest identifies repetitive sequences and reconstructs separated sections to provide full-length repeats and, for long-terminal repeat (LTR) retrotransposons, calculates age since insertion based on LTR divergence. TEnest provides a chronological insertion display to give an accurate visual representation of TE integration history showing timeline, location, and families of each TE identified, thus creating a framework from which evolutionary comparisons can be made among various regions of the genome. A database of repeats has been developed for maize (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare) to illustrate the potential of TEnest software. All currently finished maize bacterial artificial chromosomes totaling 29.3 Mb were analyzed with TEnest to provide a characterization of the repeat insertions. Sixty-seven percent of the maize genome was found to be made up of TEs; of these, 95% are LTR retrotransposons. The rate of solo LTR formation is shown to be dissimilar across retrotransposon families. Phylogenetic analysis of TE families reveals specific events of extreme TE proliferation, which may explain the high quantities of certain TE families found throughout the maize genome. The TEnest software package is available for use on PlantGDB under the tools section (http://www.plantgdb.org/prj/TE_nest/TE_nest.html); the source code is available from (http://wiselab.org).

  1. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements.

    Directory of Open Access Journals (Sweden)

    Amaury Herpin

    2010-02-01

    Full Text Available Control and coordination of eukaryotic gene expression rely on transcriptional and posttranscriptional regulatory networks. Evolutionary innovations and adaptations often require rapid changes of such networks. It has long been hypothesized that transposable elements (TE might contribute to the rewiring of regulatory interactions. More recently it emerged that TEs might bring in ready-to-use transcription factor binding sites to create alterations to the promoters by which they were captured. A process where the gene regulatory architecture is of remarkable plasticity is sex determination. While the more downstream components of the sex determination cascades are evolutionary conserved, the master regulators can switch between groups of organisms even on the interspecies level or between populations. In the medaka fish (Oryzias latipes a duplicated copy of dmrt1, designated dmrt1bY or DMY, on the Y chromosome was shown to be the master regulator of male development, similar to Sry in mammals. We found that the dmrt1bY gene has acquired a new feedback downregulation of its expression. Additionally, the autosomal dmrt1a gene is also able to regulate transcription of its duplicated paralog by binding to a unique target Dmrt1 site nested within the dmrt1bY proximal promoter region. We could trace back this novel regulatory element to a highly conserved sequence within a new type of TE that inserted into the upstream region of dmrt1bY shortly after the duplication event. Our data provide functional evidence for a role of TEs in transcriptional network rewiring for sub- and/or neo-functionalization of duplicated genes. In the particular case of dmrt1bY, this contributed to create new hierarchies of sex-determining genes.

  2. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Science.gov (United States)

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. PMID:28057732

  3. Mating system shifts and transposable element evolution in the plant genus Capsella.

    Science.gov (United States)

    Agren, J Ågren; Wang, Wei; Koenig, Daniel; Neuffer, Barbara; Weigel, Detlef; Wright, Stephen I

    2014-07-16

    Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.

  4. Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes.

    Directory of Open Access Journals (Sweden)

    Fabrício R Lopes

    Full Text Available Plant genomes are massively invaded by transposable elements (TEs, many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.

  5. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.

    Directory of Open Access Journals (Sweden)

    Aurélie Kapusta

    2013-04-01

    Full Text Available Advances in vertebrate genomics have uncovered thousands of loci encoding long noncoding RNAs (lncRNAs. While progress has been made in elucidating the regulatory functions of lncRNAs, little is known about their origins and evolution. Here we explore the contribution of transposable elements (TEs to the makeup and regulation of lncRNAs in human, mouse, and zebrafish. Surprisingly, TEs occur in more than two thirds of mature lncRNA transcripts and account for a substantial portion of total lncRNA sequence (~30% in human, whereas they seldom occur in protein-coding transcripts. While TEs contribute less to lncRNA exons than expected, several TE families are strongly enriched in lncRNAs. There is also substantial interspecific variation in the coverage and types of TEs embedded in lncRNAs, partially reflecting differences in the TE landscapes of the genomes surveyed. In human, TE sequences in lncRNAs evolve under greater evolutionary constraint than their non-TE sequences, than their intronic TEs, or than random DNA. Consistent with functional constraint, we found that TEs contribute signals essential for the biogenesis of many lncRNAs, including ~30,000 unique sites for transcription initiation, splicing, or polyadenylation in human. In addition, we identified ~35,000 TEs marked as open chromatin located within 10 kb upstream of lncRNA genes. The density of these marks in one cell type correlate with elevated expression of the downstream lncRNA in the same cell type, suggesting that these TEs contribute to cis-regulation. These global trends are recapitulated in several lncRNAs with established functions. Finally a subset of TEs embedded in lncRNAs are subject to RNA editing and predicted to form secondary structures likely important for function. In conclusion, TEs are nearly ubiquitous in lncRNAs and have played an important role in the lineage-specific diversification of vertebrate lncRNA repertoires.

  6. Transposable element derived DNaseI-hypersensitive sites in the human genome

    Directory of Open Access Journals (Sweden)

    Jordan I King

    2006-07-01

    Full Text Available Abstract Background Transposable elements (TEs are abundant genomic sequences that have been found to contribute to genome evolution in unexpected ways. Here, we characterize the evolutionary and functional characteristics of TE-derived human genome regulatory sequences uncovered by the high throughput mapping of DNaseI-hypersensitive (HS sites. Results Human genome TEs were found to contribute substantially to HS regulatory sequences characterized in CD4+ T cells: 23% of HS sites contain TE-derived sequences. While HS sites are far more evolutionarily conserved than non HS sites in the human genome, consistent with their functional importance, TE-derived HS sites are highly divergent. Nevertheless, TE-derived HS sites were shown to be functionally relevant in terms of driving gene expression in CD4+ T cells. Genes involved in immune response are statistically over-represented among genes with TE-derived HS sites. A number of genes with both TE-derived HS sites and immune tissue related expression patterns were found to encode proteins involved in immune response such as T cell specific receptor antigens and secreted cytokines as well as proteins with clinical relevance to HIV and cancer. Genes with TE-derived HS sites have higher average levels of sequence and expression divergence between human and mouse orthologs compared to genes with non TE-derived HS sites. Conclusion The results reported here support the notion that TEs provide a specific genome-wide mechanism for generating functionally relevant gene regulatory divergence between evolutionary lineages. Reviewers This article was reviewed by Wolfgang J. Miller (nominated by Jerzy Jurka, Itai Yanai and Mikhail S.Gelfand.

  7. Detection and Characterization of Miniature Inverted-Repeat Transposable Elements in “Candidatus Liberibacter asiaticus”

    Science.gov (United States)

    Wang, Xuefeng; Tan, Jin; Bai, Ziqin; Su, Huanan; Deng, Xiaoling; Li, Zhongan

    2013-01-01

    Miniature inverted-repeat transposable elements (MITEs) are nonautonomous transposons (devoid of the transposase gene tps) that affect gene functions through insertion/deletion events. No transposon has yet been reported to occur in “Candidatus Liberibacter asiaticus,” an alphaproteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease). In this study, two MITEs, MCLas-A and MCLas-B, in “Ca. Liberibacter asiaticus” were detected, and the genome was characterized using 326 isolates collected in China and Florida. MCLas-A had three variants, ranging from 237 to 325 bp, and was inserted into a TTTAGG site of a prophage region. MCLas-A had a pair of 54-bp terminal inverted repeats (TIRs), which contained three tandem repeats of TGGTAACCAC. Both “filled” (with MITE) and “empty” (without MITE) states were detected, suggesting the MITE mobility. The empty sites of all bacterial isolates had TIR tandem repeat remnants (TRR). Frequencies of TRR types varied according to geographical origins. MCLas-B had four variants, ranging from 238 to 250 bp, and was inserted into a TA site of another “Ca. Liberibacter” prophage. The MITE, MCLas-B, had a pair of 23-bp TIRs containing no tandem repeats. No evidence of MCLas-B mobility was found. An identical open reading frame was found upstream of MCLas-A (229 bp) and MCLas-B (232 bp) and was predicted to be a putative tps, suggesting an in cis tps-MITE configuration. MCLas-A and MCLas-B were predominantly copresent in Florida isolates, whereas MCLas-A alone or MCLas-B alone was found in Chinese isolates. PMID:23813735

  8. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements.

    Science.gov (United States)

    Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H; Bird, David M; Blaxter, Mark L; Lunt, David H

    2016-10-05

    Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes.

  9. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle.

    Science.gov (United States)

    Menzi, F; Besuchet-Schmutz, N; Fragnière, M; Hofstetter, S; Jagannathan, V; Mock, T; Raemy, A; Studer, E; Mehinagic, K; Regenscheit, N; Meylan, M; Schmitz-Hsu, F; Drögemüller, C

    2016-04-01

    Cholesterol deficiency, a new autosomal recessive inherited genetic defect in Holstein cattle, has been recently reported to have an influence on the rearing success of calves. The affected animals show unresponsive diarrhea accompanied by hypocholesterolemia and usually die within the first weeks or months of life. Here, we show that whole genome sequencing combined with the knowledge about the pedigree and inbreeding status of a livestock population facilitates the identification of the causative mutation. We resequenced the entire genomes of an affected calf and a healthy partially inbred male carrying one copy of the critical 2.24-Mb chromosome 11 segment in its ancestral state and one copy of the same segment with the cholesterol deficiency mutation. We detected a single structural variant, homozygous in the affected case and heterozygous in the non-affected carrier male. The genetic makeup of this key animal provides extremely strong support for the causality of this mutation. The mutation represents a 1.3kb insertion of a transposable LTR element (ERV2-1) in the coding sequence of the APOB gene, which leads to truncated transcripts and aberrant splicing. This finding was further supported by RNA sequencing of the liver transcriptome of an affected calf. The encoded apolipoprotein B is an essential apolipoprotein on chylomicrons and low-density lipoproteins, and therefore, the mutation represents a loss of function mutation similar to autosomal recessive inherited familial hypobetalipoproteinemia-1 (FHBL1) in humans. Our findings provide a direct gene test to improve selection against this deleterious mutation in Holstein cattle.

  10. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes.

    Science.gov (United States)

    Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo

    2016-05-10

    Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.

  11. Scanning of transposable elements and analyzing expression of transposase genes of sweet potato [Ipomoea batatas].

    Directory of Open Access Journals (Sweden)

    Lang Yan

    Full Text Available BACKGROUND: Transposable elements (TEs are the most abundant genomic components in eukaryotes and affect the genome by their replications and movements to generate genetic plasticity. Sweet potato performs asexual reproduction generally and the TEs may be an important genetic factor for genome reorganization. Complete identification of TEs is essential for the study of genome evolution. However, the TEs of sweet potato are still poorly understood because of its complex hexaploid genome and difficulty in genome sequencing. The recent availability of the sweet potato transcriptome databases provides an opportunity for discovering and characterizing the expressed TEs. METHODOLOGY/PRINCIPAL FINDINGS: We first established the integrated-transcriptome database by de novo assembling four published sweet potato transcriptome databases from three cultivars in China. Using sequence-similarity search and analysis, a total of 1,405 TEs including 883 retrotransposons and 522 DNA transposons were predicted and categorized. Depending on mapping sets of RNA-Seq raw short reads to the predicted TEs, we compared the quantities, classifications and expression activities of TEs inter- and intra-cultivars. Moreover, the differential expressions of TEs in seven tissues of Xushu 18 cultivar were analyzed by using Illumina digital gene expression (DGE tag profiling. It was found that 417 TEs were expressed in one or more tissues and 107 in all seven tissues. Furthermore, the copy number of 11 transposase genes was determined to be 1-3 copies in the genome of sweet potato by Real-time PCR-based absolute quantification. CONCLUSIONS/SIGNIFICANCE: Our result provides a new method for TE searching on species with transcriptome sequences while lacking genome information. The searching, identification and expression analysis of TEs will provide useful TE information in sweet potato, which are valuable for the further studies of TE-mediated gene mutation and optimization in

  12. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements.

    Science.gov (United States)

    Emera, Deena; Casola, Claudio; Lynch, Vincent J; Wildman, Derek E; Agnew, Dalen; Wagner, Günter P

    2012-01-01

    Prolactin (PRL) is a multifunctional signaling molecule best known for its role in regulating lactation in mammals. Systemic PRL is produced by the anterior pituitary, but extrapituitary PRL has also been detected in many tissues including the human endometrium. Prolactin is essential for pregnancy in rodents and one of the most dramatically induced genes in the endometrium during human pregnancy. The promoter for human endometrial Prl is located about 5.8 kb upstream of the pituitary promoter and is derived from a transposable element called MER39. Although it has been shown that prolactin is expressed in the pregnant endometrium of a few mammals other than humans, MER39 has been described as primate specific. Thus, in an effort to understand mechanisms of prolactin regulatory evolution, we sought to determine how uterine prolactin is transcribed in species that lack MER39. Using a variety of complementary strategies, including reverse transcriptase-polymerase chain reaction, 5' rapid amplification of cDNA ends, and whole-transcriptome sequencing, we show that endometrial Prl expression is not a shared character of all placental mammals, as it is not expressed in rabbits, pigs, dogs, or armadillos. We show that in primates, mice, and elephants, prolactin mRNA is transcribed in the pregnant endometrium from alternative promoters, different from the pituitary promoter and different from each other. Moreover, we demonstrate that the spider monkey promoter derives from the long terminal repeat (LTR) element MER39 as in humans, the mouse promoter derives from the LTR element MER77, and the elephant promoter derives from the lineage-specific LINE retrotransposon L1-2_LA. We also find surprising variation of transcriptional start sites within these transposable elements and of Prl splice variants, suggesting a high degree of flexibility in the promoter architecture even among closely related species. Finally, the three groups shown here to express endometrial prolactin

  13. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    Science.gov (United States)

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.

  14. Losing identity: structural diversity of transposable elements belonging to different classes in the genome of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Fernández-Medina Rita D

    2012-06-01

    Full Text Available Abstract Background Transposable elements (TEs, both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions. Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as “TE graveyards.” It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these “neutral sequences” might serve as raw material for domestication by host genomes. Results We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs] and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5′-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. Conclusions We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host

  15. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Li Xianchun

    2007-03-01

    Full Text Available Abstract Background Transposons, i.e. transposable elements (TEs, are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements, SINEs (short interspersed nuclear elements, MITEs (miniature inverted-repeat transposable elements, one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1 implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1 involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.

  16. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    Science.gov (United States)

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  17. Heavy-ion radiation induces both activation of multiple endogenous transposable elements and alterations in DNA methylation in rice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Xiaolin, Cui; Li, Xiang

    2012-07-01

    Space radiation represents a complex environmental condition in which several interacting factors such as electron, neutron, proton, heavy-ion are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic aswell as external perturbations, it is conceivable that epigenetic markers like DNA methylation and transposition may undergo alterations in response to space radiation. Cytosine DNA methylation plays important roles in maintaining genome stability and controlling gene expression. A predominant means for Transposable elements (TEs) to cause genetic instability is via their transpositional activation. To find the detailed molecular characterization of the nature of genomic changes induced by space radiation, the seeds of rice were exposed to 0.02, 0.2, 1, 2 and 20 Gy dose of ^{12}C heavy-ion radiation, respectively. We found that extensive alteration in both DNA methylation and gene expression occurred in rice plants after different dose of heavy-ion radiation. Here we shown that heavy-ion radiation has induced transposition of mPing and Tos17 in rice, which belong to distinct classes including the miniature inverted terminal repeat TEs (MITEs) and long-terminal repeat (LTR) retrotransposons, respectively. mPing and Tos17 mobility were found to correlate with cytosine methylation alteration detected by MSAP and genetic variation detected by AFLP. The result showed that at least in some cases transposition of TEs was associated with cytosine demethylation within the elements. Our results implicate that the heavy-ion radiation represents a potent mutagenic agent that can cause genomic instabilities by eliciting transposition of endogenous TEs in rice. Keywords: Heavy-ion radiation, DNA methylation, Transposable elements, mPing, Tos17

  18. Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L. during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Debbie Laudencia-Chingcuanco

    2012-01-01

    Full Text Available The expression of 1,613 transposable elements (TEs represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons and Class II (DNA transposons types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype.

  19. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements.

    Science.gov (United States)

    McCoy, Rajiv C; Taylor, Ryan W; Blauwkamp, Timothy A; Kelley, Joanna L; Kertesz, Michael; Pushkarev, Dmitry; Petrov, Dmitri A; Fiston-Lavier, Anna-Sophie

    2014-01-01

    High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, in part due to the presence of dispersed repeats which introduce ambiguity during genome reconstruction. Transposable elements (TEs) can be particularly problematic, especially for TE families exhibiting high sequence identity, high copy number, or complex genomic arrangements. While TEs strongly affect genome function and evolution, most current de novo assembly approaches cannot resolve long, identical, and abundant families of TEs. Here, we applied a novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly-parallel library preparation and local assembly of short read data and which achieve lengths of 1.5-18.5 Kbp with an extremely low error rate ([Formula: see text]0.03% per base). To test the utility of this technology, we sequenced and assembled the genome of the model organism Drosophila melanogaster (reference genome strain y; cn, bw, sp) achieving an N50 contig size of 69.7 Kbp and covering 96.9% of the euchromatic chromosome arms of the current reference genome. TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic locations as well as accurate reconstruction of TE sequences. We entirely recovered and accurately placed 4,229 (77.8%) of the 5,434 annotated transposable elements with perfect identity to the current reference genome. As TEs are ubiquitous features of genomes of many species, TruSeq synthetic long-reads, and likely other methods that generate long-reads, offer a powerful approach to improve de novo assemblies of whole genomes.

  20. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  1. Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements?

    Science.gov (United States)

    Dib, Julián R.; Wagenknecht, Martin; Farías, María E.; Meinhardt, Friedhelm

    2015-01-01

    The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions. PMID:26074886

  2. Heterochromatin and molecular characterization of DsmarMITE transposable element in the beetle Dichotomius schiffleri (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia

    2014-12-01

    Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.

  3. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  4. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Science.gov (United States)

    Krupovic, Mart; Gonnet, Mathieu; Hania, Wajdi Ben; Forterre, Patrick; Erauso, Gaël

    2013-01-01

    Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1), with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA) systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  5. Trans-activation of an artificial dTam3 transposable element in transgenic tobacco plants

    NARCIS (Netherlands)

    Haring, Michel A.; Teeuwen-de Vroomen, Marianne J.; Nijkamp, H. John J.; Hille, Jacques

    1991-01-01

    In Antirrhinum majus only autonomous Tam3 transposons have been characterized. We investigated whether an artificial dTam3 element, with a deletion in the presumptive transposase coding region, can be trans-activated in tobacco by an activator Tam3 element, which was immobilized by the deletion of o

  6. Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species.

    Science.gov (United States)

    Gao, Caihua; Xiao, Meili; Jiang, Lingyan; Li, Jiana; Yin, Jiaming; Ren, Xiaodong; Qian, Wei; Oscar, Ortegón; Fu, Donghui; Tang, Zhanglin

    2012-07-01

    Transposable elements (TEs) have attracted increasing attention because of their tremendous contributions to genome reorganization and gene variation through dramatic proliferation and excision via transposition. However, less known are the transcriptional activation of various TEs and the characteristics of TE insertion into genomes at the genome-wide level. In the present study, we focused on TE genes for transposition and gene disruption by insertion of TEs in expression sequences of Brassica, to investigate the transcriptional activation of TEs, the biased insertion of TEs into genes, and their salient characteristics. Long terminal repeat (LTR-retrotransposon) accounted for the majority of these active TE genes (70.8%), suggesting that transposition activation varied with TE type. 6.1% genes were interrupted by LTR-retrotransposons, which indicated their preference for insertion into genes. TEs were preferentially inserted into cellular component-specific genes acted as "binding" elements and involved in metabolic processes. TEs have a biased insertion into some host genes that were involved with important molecular functions and TE genes exhibited spatiotemporal expression. These results suggested that various types of transposons differentially contributed to gene variation and affected gene function.

  7. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata

    Directory of Open Access Journals (Sweden)

    Gaut Brandon S

    2010-01-01

    Full Text Available Abstract Background Transposable Elements (TEs make up the majority of plant genomes, and thus understanding TE evolutionary dynamics is key to understanding plant genome evolution. Plant reproductive systems are diverse and mating type variation is one factor among many hypothesized to influence TE evolutionary dynamics. Here, we collected a large TE-display data set in self-fertilizing Arabidopsis thaliana, and compared it to data gathered in outcrossing Arabidopsis lyrata. We analyzed seven TE families in four natural populations of each species to tease apart the effects of mating system, demography, transposition, and selection in determining patterns of TE diversity. Results Measures of TE band differentiation were largely consistent across TE families. However, patterns of diversity in A. thaliana Ac elements differed significantly from that other TEs, perhaps signaling a lack of recent transposition. Across TE families, we estimated higher allele frequencies and lower selection coefficients on A. thaliana TE insertions relative to A. lyrata TE insertions. Conclusions The differences in TE distributions between the two Arabidopsis species represents a synthesis of evolutionary forces that include the transposition dynamics of individual TE families and the demographic histories of populations. There are also species-specific differences that could be attributed to the effects of mating system, including higher overall allele frequencies in the selfing lineage and a greater proportion of among population TE diversity in the outcrossing lineage.

  8. Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element

    Institute of Scientific and Technical Information of China (English)

    LIANG Quanfeng; Takeo Masahiro; LIN Min; CHEN Ming; XU Yuquan; ZHANG Wei; PING Shuzhen; LU Wei; SONG Xianlong; WANG Weiwei; GENG Lizhao

    2005-01-01

    A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C23O) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode meta- cleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.

  9. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians.

    Science.gov (United States)

    Tenaillon, Maud I; Hufford, Matthew B; Gaut, Brandon S; Ross-Ibarra, Jeffrey

    2011-01-01

    The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects.

  10. Transposable elements P and gypsy in natural populations of Drosophila willistoni

    Directory of Open Access Journals (Sweden)

    Adriana Koslovski Sassi

    2005-12-01

    Full Text Available The presence and integrity of the P transposon and the gypsy retrotransposon in the genome of 18 samples of natural Drosophila willistoni populations collected from a large area of South America were Southern blot screened using Drosophila melanogaster probes. The aim of this screening was provide further knowledge-base on the geographical distribution of D. willistoni and to carry out an inter-population analysis of the P and gypsy elements present in the genomes of the populations analyzed. The fragment patterns obtained indicate that both the P and gypsy elements are ancient in the D. willistoni genome, but whereas the gypsy retroelement appears to be invariable and stable the P element varies between populations and appears to still have some capacity for mobilization.

  11. An adaptive transposable element insertion in the regulatory region of the EO gene in the domesticated silkworm, Bombyx mori.

    Science.gov (United States)

    Sun, Wei; Shen, Yi-Hong; Han, Min-Jin; Cao, Yun-Feng; Zhang, Ze

    2014-12-01

    Although there are many studies to show a key role of transposable elements (TEs) in adaptive evolution of higher organisms, little is known about the molecular mechanisms. In this study, we found that a partial TE (Taguchi) inserted in the cis-regulatory region of the silkworm ecdysone oxidase (EO) gene, which encodes a crucial enzyme to reduce the titer of molting hormone (20-hydroxyecdysone, 20E). The TE insertion occurred during domestication of silkworm and the frequency of the TE insertion in the domesticated silkworm (Bombyx mori) is high, 54.24%. The linkage disequilibrium in the TE inserted strains of the domesticated silkworm was elevated. Molecular population genetics analyses suggest that this TE insertion is adaptive for the domesticated silkworm. Luminescent reporter assay shows that the TE inserted in the cis-regulatory region of the EO gene functions as a 20E-induced enhancer of the gene expression. Further, phenotypic bioassay indicates that the silkworm with the TE insertion exhibited more stable developmental phenotype than the silkworm without the TE insertion when suffering from food shortage. Thus, the inserted TE in the cis-regulatory region of the EO gene increased developmental uniformity of silkworm individuals through regulating 20E metabolism, partially explaining transformation of a domestication developmental trait in the domesticated silkworm. Our results emphasize the exceptional role of gene expression regulation in developmental transition of domesticated animals.

  12. A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, Bos taurus.

    Science.gov (United States)

    Saylor, Brent; Elliott, Tyler A; Linquist, Stefan; Kremer, Stefan C; Gregory, T Ryan; Cottenie, Karl

    2013-09-01

    Transposable elements (TEs) are among the most abundant components of many eukaryotic genomes. Efforts to explain TE abundance, as well as TE diversity among genomes, have led some researchers to draw an analogy between genomic and ecological processes. Adopting this perspective, we conducted an analysis of the cow (Bos taurus) genome using techniques developed by community ecologists to determine whether environmental factors influence community composition. Specifically, each chromosome within the Bos taurus genome was treated as a "linear transect", and a multivariate redundancy analysis (RDA) was used to identify large-scale spatial patterns in TE communities associated with 10 TE families. The position of each TE community on the chromosome accounted for ∼50% of the variation along the chromosome "transect". Multivariate analysis further revealed an effect of gene density on TE communities that is influenced by several other factors in the (genomic) environment, including chromosome length and TE density. The results of this analysis demonstrate that ecological methods can be applied successfully to help answer genomic questions.

  13. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification

    Directory of Open Access Journals (Sweden)

    Amyotte Stefan G

    2012-07-01

    Full Text Available Abstract Background Verticillium dahliae (Vd and Verticillium albo-atrum (Va are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs have contributed to the generation of four lineage-specific (LS regions in VdLs.17. Results We present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102. Conclusions Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these

  14. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses.

    Science.gov (United States)

    Minaya, Miguel; Pimentel, Manuel; Mason-Gamer, Roberta; Catalan, Pilar

    2013-07-01

    The occurrence of Stowaway MITEs and their potential footprints in the grasses was assessed within an explicit phylogenetic framework. An organismal tree was used to analyze the distribution and evolutionary dynamics of these elements and their potential excision footprints in the fourth intron of the β-amylase gene and in other introns of several nuclear genes across the Poaceae. Megablast and discontiguous megablast searches in the Entrez nucleotide database were performed for the β-amylase, blz-1, dmc1, nuc, and xly genes MITEs. These elements and their potential footprints were distributed in introns and intergenic spacers of many other nuclear genes throughout the BEP lineages; however, they were absent in the studied PACCMAD lineages. A plausible underlying dynamic of successive acquisitions and deletions of β-amylase Stowaway MITEs in the temperate grasses could be explained by three alternative hypotheses: (i) a single early acquisition of a palindrome element, similar to Tc1-Mariner, in the fourth intron of the β-amylase gene in the ancestor of the Pooideae, followed by multiple independent losses, (ii) multiple independent acquisitions of MITEs in non-related pooid lineages or (iii) different waves of acquisition of MITEs, followed by multiple losses and horizontal transfers in the temperate grasses. This last hypothesis seems to fit best with the evidence found to date.

  15. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti

    OpenAIRE

    Tu, Zhijian

    1997-01-01

    Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richnes...

  16. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation

    Institute of Scientific and Technical Information of China (English)

    Azusa Inoue; Shogo Matoba; Yi Zhang

    2012-01-01

    The methylation state of the paternal genome is rapidly reprogrammed shortly after fertilization.Recent studies have revealed that loss of 5-methylcytosine(5mC)in zygotes correlates with appearance of 5-hydroxymethylcytosine (5hmC),5-formylcytosine(5fC),and 5-carboxylcytosine(5caC).This process is mediated by Tet3 and the 5mC oxidation products generated in zygotes are gradually lost during preimplantation development through a replicationdependent dilution process.Despite these findings,the biological significance of Tet3-mediated oxidation of 5mC to 5hmC/5fC/5caC in zygotes is unknown.DNA methylation plays an important role in silencing gene expression including the repression of transposable elements(TEs).Given that the activation of TEs during preimplantation development correlates with loss of DNA methylation,it is believed that paternal DNA demethylation may have an important role in TE activation.Here we examined this hypothesis and found that Tet3-mediated 5mC oxidation does not have a significant contribution to TE activation.We show that the expression of LINE-1(long interspersed nucleotide element 1)and ERVL(endogenous retroviruses class Ⅲ)are activated from both paternal and maternal genomes in zygotes.Inhibition of 5mC oxidation by siRNA-mediated depletion of Tet3 affected neither TE activation,nor global transcription in zygotes.Thus,our study provides the first evidence demonstrating that activation of both TEs and global transcription in zygotes are independent of Tet3-mediated 5mC oxidation.

  17. Global heterochromatic colocalization of transposable elements with minisatellites in the compact genome of the pufferfish Tetraodon nigroviridis.

    Science.gov (United States)

    Fischer, Cécile; Bouneau, Laurence; Coutanceau, Jean-Pierre; Weissenbach, Jean; Volff, Jean-Nicolas; Ozouf-Costaz, Catherine

    2004-07-21

    Because of its unusual high degree of compaction and paucity of repetitive sequences, the genome of the smooth pufferfish Tetraodon nigroviridis is the subject of a well-advanced sequencing project. An astonishing diversity of transposable elements not found in the human and the mouse has been observed in the genome of T. nigroviridis. Due to the difficulty of assembling repeat-rich regions, the whole genome shotgun sequencing approach will probably fail to reveal the general organisation of this compact vertebrate genome. Therefore, in order to gain new insights into the global distribution pattern of repeated DNA in the genome of T. nigroviridis, we have reconstructed partial/complete repetitive sequences from data generated by the genome project and performed double-colour fluorescent in situ hybridization (FISH) analysis for representatives of three major categories of repeated sequences including two minisatellites (ms100 and ms104), two DNA transposons (Tol2 and Buffy1) and two non-long terminal repeat (LTR) retrotransposons (Rex3 and Babar). We show that DNA transposons and retroelements very frequently colocalize with minisatellites and mostly accumulate within heterochromatic regions. These results, which have not been reported so far for the fugu Takifugu rubripes, show that repeated elements are generally excluded from gene-rich regions in T. nigroviridis and underline the extreme degree of compartmentalization of this compact genome. The genome organization of the pufferfish is clearly different from that observed in humans, where repeated sequences make up an important fraction of euchromatic DNA, and is more similar to that observed in the fruit fly Drosophila melanogaster.

  18. Detection of a novel active transposable element in Caldicellulosiruptor hydrothermalis and a new search for elements in this genus.

    Science.gov (United States)

    Chung, Daehwan; Farkas, Joel; Westpheling, Janet

    2013-05-01

    We show that a previously annotated hypothetical protein is the transposase of a new and active IS element, ISCahy1, widespread in Caldicellulosiruptor species. Transposition generated an 11-bp direct repeat at the insertion site in Caldicellulosiruptor hydrothermalis, suggesting a cut-and-paste mechanism. The discovery of an active insertion sequence in Caldicellulosiruptor species led to a survey of potential IS elements in the genome sequences of eight Caldicellulosiruptor species that identified several new elements, including one novel to this genus.

  19. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.

    Science.gov (United States)

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J; Fox, Catherine A

    2016-04-07

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  20. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

    OpenAIRE

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-01-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-V...

  1. The Diversity of Sequence and Chromosomal Distribution of New Transposable Element-Related Segments in the Rye Genome Revealed by FISH and Lineage Annotation

    Directory of Open Access Journals (Sweden)

    Yingxin Zhang

    2017-10-01

    Full Text Available Transposable elements (TEs in plant genomes exhibit a great variety of structure, sequence content and copy number, making them important drivers for species diversity and genome evolution. Even though a genome-wide statistic summary of TEs in rye has been obtained using high-throughput DNA sequencing technology, the accurate diversity of TEs in rye, as well as their chromosomal distribution and evolution, remains elusive due to the repetitive sequence assembling problems and the high dynamic and nested nature of TEs. In this study, using genomic plasmid library construction combined with dot-blot hybridization and fluorescence in situ hybridization (FISH analysis, we successfully isolated 70 unique FISH-positive TE-related sequences including 47 rye genome specific ones: 30 showed homology or partial homology with previously FISH characterized sequences and 40 have not been characterized. Among the 70 sequences, 48 sequences carried Ty3/gypsy-derived segments, 7 sequences carried Ty1/copia-derived segments and 15 sequences carried segments homologous with multiple TE families. 26 TE lineages were found in the 70 sequences, and among these lineages, Wilma was found in sequences dispersed in all chromosome regions except telomeric positions; Abiba was found in sequences predominantly located at pericentromeric and centromeric positions; Wis, Carmilla, and Inga were found in sequences displaying signals dispersed from distal regions toward pericentromeric positions; except DNA transposon lineages, all the other lineages were found in sequences displaying signals dispersed from proximal regions toward distal regions. A high percentage (21.4% of chimeric sequences were identified in this study and their high abundance in rye genome suggested that new TEs might form through recombination and nested transposition. Our results also gave proofs that diverse TE lineages were arranged at centromeric and pericentromeric positions in rye, and lineages like

  2. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements.

    Science.gov (United States)

    Åsman, Anna K M; Fogelqvist, Johan; Vetukuri, Ramesh R; Dixelius, Christina

    2016-08-01

    Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep sequenced. Twenty- to twenty-two-nucleotide (nt) sRNAs were identified as the main interaction partners of PiAgo1 and high enrichment of 24-26-nt sRNAs was seen in the PiAgo4-bound sample. The frequencies and sizes of transposable element (TE)-derived sRNAs in the different PiAgo libraries suggested diversified roles of the PiAgo proteins in the control of different TE classes. We further provide evidence for the involvement of PiAgo1 in the P. infestans microRNA (miRNA) pathway. Protein-coding genes are probably regulated by the shared action of PiAgo1 and PiAgo5, as demonstrated by analysis of differential expression. An abundance of sRNAs from genes encoding host cell death-inducing Crinkler (CRN) effectors was bound to PiAgo1, implicating this protein in the regulation of the expanded CRN gene family. The data suggest that PiAgo1 plays an essential role in gene regulation and that at least two RNA silencing pathways regulate TEs in the plant-pathogenic oomycete P. infestans.

  3. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Tu, Z

    2000-09-01

    A novel family of miniature inverted repeat transposable elements (MITEs) named Pony was discovered in the yellow fever mosquito, Aedes aegypti. It has all the characteristics of MITEs, including terminal inverted repeats, no coding potential, A+T richness, small size, and the potential to form stable secondary structures. Past mobility of PONY: was indicated by the identification of two Pony insertions which resulted in the duplication of the TA dinucleotide targets. Two highly divergent subfamilies, A and B, were identified in A. aegypti based on sequence comparison and phylogenetic analysis of 38 elements. These subfamilies showed less than 62% sequence similarity. However, within each subfamily, most elements were highly conserved, and multiple subgroups could be identified, indicating recent amplifications from different source genes. Different scenarios are presented to explain the evolutionary history of these subfamilies. Both subfamilies share conserved terminal inverted repeats similar to those of the Tc2 DNA transposons in Caenorhabditis elegans, indicating that Pony may have been borrowing the transposition machinery from a Tc2-like transposon in mosquitoes. In addition to the terminal inverted repeats, full-length and partial subterminal repeats of a sequence motif TTGATTCAWATTCCGRACA represent the majority of the conservation between the two subfamilies, indicating that they may be important structural and/or functional components of the Pony elements. In contrast to known autonomous DNA transposons, both subfamilies of PONY: are highly reiterated in the A. aegypti genome (8,400 and 9, 900 copies, respectively). Together, they constitute approximately 1. 1% of the entire genome. Pony elements were frequently found near other transposable elements or in the noncoding regions of genes. The relative abundance of MITEs varies in eukaryotic genomes, which may have in part contributed to the different organizations of the genomes and reflect different types

  4. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome.

    Directory of Open Access Journals (Sweden)

    Tue Sparholt Jørgensen

    Full Text Available Metagenomic approaches are widespread in microbiological research, but so far, the knowledge on extrachromosomal DNA diversity and composition has largely remained dependant on cultivating host organisms. Even with the emergence of metagenomics, complete circular sequences are rarely identified, and have required manual curation. We propose a robust in silico procedure for identifying complete small plasmids in metagenomic datasets from whole genome shotgun sequencing. From one very pure and exhaustively sequenced metamobilome from rat cecum, we identified a total of 616 circular sequences, 160 of which were carrying a gene with plasmid replication domain. Further homology analyses indicated that the majority of these plasmid sequences are novel. We confirmed the circularity of the complete plasmid candidates using an inverse-type PCR approach on a subset of sequences with 95% success, confirming the existence and length of discrete sequences. The implication of these findings is a broadened understanding of the traits of circular elements in nature and the possibility of massive data mining in existing metagenomic datasets to discover novel pools of complete plasmids thus vastly expanding the current plasmid database.

  5. [The distributional clines in P susceptibility causing by the P family transposable element in Drosophila melanogaster population of China].

    Science.gov (United States)

    Hu, K; Wang, Q M

    1998-01-01

    An extensive survey of the P family transposable element of Drosophila melanogaster in China, from the far west as Xinjiang and Xizang (Tibet) to the east coast, covered all China was provided. Strains, sampling more than 70 localities, which were collected during 1980-1995. In the term of the PM system, the phenotypic property of it was mainly M type, including Taiwan. The molecular test determined, it was M type. There were three localities, the P activity of them were higher as Q type. They are: Dalian Peninsular. Chongming island, near Shanghai and Taizhong of Taiwan. For analyzed geographically, according to the east longitudes, grouped the country to four parts. After comparison, two dividing lines were found: 1. The East longitude of 115 degrees, it was between Area II and Area III, see Fig. 4, separating the coastal from inland. Except the P susceptibility of the northeastern three provinces was little higher, about 30.37%, the most part of the east coastal, the first line, its P susceptibility was very week. Seven strains were 0, fifteen strains were under 10%; its P activity was also low, never beyond 10%. Therefore, it was appeared neutral, its average was 7.23%. That was the major neutral property of the coastal areas. The second line of little increased P susceptibility averaged about 26.67%. Then, there was the third line was, when the line was the more westward, its P susceptibility was higher, up to 87%, closing to the highest score of middlewest part of the country. From the east coast to the west, there were three gradually increased P susceptibility lines pushing forward could be found. The E 115 degrees, it was between the lines of the second and the third. 2. Besides the East Longitude of 115 degrees, there is another natural geographic line shows its potentiality, that is the Tropic of Cancer. It divided the coastal to two parts, the localities at the south of this line, they did not show the coastal characteristic, instead of neutral or very

  6. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat

    Directory of Open Access Journals (Sweden)

    Belyayev Alexander

    2010-02-01

    Full Text Available Abstract Background How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. Results Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii the fluctuations in copy number are TE-family specific; (iii there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv a small percentage of TEs that increase in copy number can actually insert at novel locations and

  7. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus).

    Science.gov (United States)

    Itoh, Yoshio; Higeta, Daisuke; Suzuki, Akane; Yoshida, Hiroyuki; Ozeki, Yoshihiro

    2002-05-01

    In the "Rhapsody" cultivar of the carnation, which bears white flowers variegated with red flecks and sectors, a transposable element, dTdic1, belonging to the Ac/Ds superfamily, was found within the dihydroflavonol 4-reductase (DFR) gene. The red flecks and sectors of "Rhapsody" may be attributable to a reversion to DFR activity after the excision of dTdic1. The yellow color of the carnation petals is attributed to the synthesis and accumulation of chalcone 2'-glucoside. In several of the carnation cultivars that bear yellow flowers variegated with white flecks and sectors, both the chalcone isomerase (CHI) and DFR genes are disrupted by dTdic1.

  8. FB-NOF is a non-autonomous transposable element, expressed in Drosophila melanogaster and present only in the melanogaster group.

    Science.gov (United States)

    Badal, Martí; Xamena, Noel; Cabré, Oriol

    2013-09-10

    Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group.

  9. Networking in microbes: conjugative elements and plasmids in the genus Alteromonas.

    Science.gov (United States)

    López-Pérez, Mario; Ramon-Marco, Nieves; Rodriguez-Valera, Francisco

    2017-01-05

    To develop evolutionary models for the free living bacterium Alteromonas the genome sequences of isolates of the genus have been extensively analyzed. However, the main genetic exchange drivers in these microbes, conjugative elements (CEs), have not been considered in detail thus far. In this work, CEs have been searched in several complete Alteromonas genomes and their sequence studied to understand their role in the evolution of this genus. Six genomes are reported here for the first time. We have found nine different plasmids of sizes ranging from 85 to 600 Kb, most of them were found in a single strain. Networks of gene similarity could be established among six of the plasmids that were also connected with another cluster of plasmids found in Shewanella strains. The cargo genes found in these plasmids included cassettes found before in chromosome flexible genomic islands of Alteromonas strains. We describe also the plasmids pAMCP48-600 and pAMCP49-600, the largest found in Alteromonas thus far (ca. 600 Kb) and containing all the hallmarks to be classified as chromids. We found in them some housekeeping genes and a cluster that code for an exocellular polysaccharide. They could represent the transport vectors for the previously described replacement flexible genomic islands. Integrative and conjugative elements (ICEs) were more common than plasmids and showed similar patterns of variation with cargo genes coding for components of additive flexible genomic islands. A nearly identical ICE was found in A. mediterranea MED64 and Vibrio cholera AHV1003 isolated from a human pathogen, indicating the potential exchange of these genes across phylogenetic distances exceeding the family threshold. We have seen evidence of how CEs can be vectors to transfer gene cassettes acquired in the chromosomal flexible genomic islands, both of the additive and replacement kind. These CEs showed evidence of how genetic material is exchanged among members of the same species but also

  10. Increased Variation in Adh Enzyme Activity in Drosophila Mutation-Accumulation Experiment Is Not Due to Transposable Elements at the Adh Structural Gene

    Science.gov (United States)

    Aquadro, C. F.; Tachida, H.; Langley, C. H.; Harada, K.; Mukai, T.

    1990-01-01

    We present here a molecular analysis of the region surrounding the structural gene encoding alcohol dehydrogenase (Adh) in 47 lines of Drosophila melanogaster that have each accumulated mutations for 300 generations. While these lines show a significant increase in variation of alcohol dehydrogenase enzyme activity compared to control lines, we found no restriction map variation in a 13-kb region including the complete Adh structural gene and roughly 5 kb of both 5' and 3' sequences. Thus, the rapid accumulation of ADH activity variation after 28,200 allele generations does not appear to have been due to the mobilization of transposable elements into or out of the Adh structural gene region. PMID:1963870

  11. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine?

    Science.gov (United States)

    Arensburger, Peter; Piégu, Benoît; Bigot, Yves

    2016-01-01

    Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.

  12. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids.

    Science.gov (United States)

    Dai, Qiyuan; Restrepo, Blanca I; Porcella, Stephen F; Raffel, Sandra J; Schwan, Tom G; Barbour, Alan G

    2006-06-01

    The relapsing fever agent Borrelia hermsii undergoes multiphasic antigenic variation through gene conversion of a unique expression site on a linear plasmid by an archived variable antigen gene. To further characterize this mechanism we assessed the repertoire and organization of archived variable antigen genes by sequencing approximately 85% of plasmids bearing these genes. Most archived genes shared with the expressed gene a UHS), that surrounded the start codon. The 59 archived variable antigen genes were arrayed in clusters with 13 repetitive, 214 nt long downstream homology sequence (DHS) elements distributed among them. A fourteenth DHS element was downstream of the expression locus. Informative nucleotide polymorphisms in UHS regions and DHS elements were applied to the analysis of the expression site of relapse serotypes from 60 infected mice in a prospective study. For most recombinations, the upstream crossover occurred in the UHS's second half, and the downstream crossover was in the DHS's second half. Usually the closest archival DHS element was used, but occasionally a more distant DHS was employed. The downstream extragenic crossover site in B. hermsii contrasts with the upstream [corrected] extragenic crossover site for antigenic variation in African trypanosomes.

  13. Cytogenetic mapping of the retroelements Rex1, Rex3 and Rex6 among cichlid fish: new insights on the chromosomal distribution of transposable elements.

    Science.gov (United States)

    Valente, G T; Mazzuchelli, J; Ferreira, I A; Poletto, A B; Fantinatti, B E A; Martins, C

    2011-01-01

    To enhance our understanding of the organization of the genome and chromosome evolution of cichlid fish species, we have isolated and physically mapped onto the chromosomes the transposable elements (TEs) Rex1, Rex3 and Rex6, which are conserved in teleost fish, in the chromosomes of African and South American cichlid species. The physical mapping of different Rex elements showed that they are primarily compartmentalized in the pericentromeric heterochromatic regions, although dispersed or clustered signals in euchromatic regions were also observed. The presence of TEs in heterochromatin can be correlated with their role in the structure and organization of heterochromatic areas (such as centromeres) or with the lower selective pressure that act on these gene-poor regions. The Rex elements were also concentrated in the largest chromosome pair of the Nile tilapia, Oreochromis niloticus. This chromosome pair is supposed to have originated by fusions, demonstrating the possible involvement of TEs with chromosome rearrangements. Besides general patterns of chromosomal distribution, comparative analysis suggests that Rex elements could differ in their chromosomal distribution among different fish groups or species and that intrinsic aspects of the genomes could influence the spread, accumulation or elimination of TEs.

  14. Mobile insertion cassette elements found in small non-transmissible plasmids in Proteeae may explain qnrD mobilization.

    Directory of Open Access Journals (Sweden)

    Thomas Guillard

    Full Text Available qnrD is a plasmid mediated quinolone resistance gene from unknown origin, recently described in Enterobacteriaceae. It encodes a pentapeptide repeat protein 36-60% different from the other Qnr (A, B, C, S and VC. Since most qnrD-positive strains were described as strains belonging to Proteus or Providencia genera, we hypothesized that qnrD originated in Proteeae before disseminating to other enterobacterial species. We screened 317 strains of Proteeae for qnrD and its genetic support by PCR. For all the seven qnrD-positive strains (4 Proteus mirabilis, 1 Proteus vulgaris and 2 Providencia rettgeri the gene was carried onto a small non-transmissible plasmid, contrarily to other qnr genes that are usually carried onto large multi-resistant plasmids. Nucleotide sequences of the qnrD-bearing plasmids were 96% identical. Plasmids contained 3 ORFs apart from qnrD and belonged to an undescribed incompatibility group. Only one plasmid, in P. vulgaris, was slightly different with a 1,568-bp insertion between qnrD and its promoter, leading to absence of quinolone resistance. We sought for similar plasmids in 15 reference strains of Proteeae, but which were tested negative for qnrD, and found a 48% identical plasmid (pVERM in Providencia vermicola. In order to explain how qnrD could have been inserted into such native plasmid, we sought for gene mobilization structures. qnrD was found to be located within a mobile insertion cassette (mic element which sequences are similar to one mic also found in pVERM. Our conclusions are that (i the small non-transmissible qnrD-plasmids described here may result from the recombination between an as-yet-unknown progenitor of qnrD and pVERM, (ii these plasmids are maintained in Proteeae being a qnrD reservoir (iii the mic element may explain qnrD mobilization from non-transmissible plasmids to mobilizable or conjugative plasmids from other Enterobacteriaceae, (iv they can recombined with larger multiresistant plasmids

  15. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element.

    Science.gov (United States)

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-12-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.

  16. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    Science.gov (United States)

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  17. Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements.

    Science.gov (United States)

    Harding, Joanne L; Horswell, Stuart; Heliot, Claire; Armisen, Javier; Zimmerman, Lyle B; Luscombe, Nicholas M; Miska, Eric A; Hill, Caroline S

    2014-01-01

    Small RNA control of gene expression is critical for developmental processes in vertebrate embryos. To determine the dynamics of small RNA expression and to uncover novel small RNAs in the early vertebrate embryo, we performed high-throughput sequencing of all small RNAs in Xenopus tropicalis embryos at three developmental time points and in dissected halves of gastrula embryos. This analysis allowed us to identify novel microRNAs and we show that microRNA expression is highly dynamic and spatially localized in early embryos. In addition, we have developed a microRNA prediction pipeline and demonstrate that it has the power to predict new miRNAs that are experimentally detectable in frogs, mice, and humans. By combining the small RNA sequencing with mRNA profiling at the different developmental stages, we identify a new class of small noncoding RNAs that we name siteRNAs, which align in clusters to introns of protein-coding genes. We show that siteRNAs are derived from remnants of transposable elements present in the introns. We find that genes containing clusters of siteRNAs are transcriptionally repressed as compared with all genes. Furthermore, we show that this is true for individual genes containing siteRNA clusters, and that these genes are enriched in specific repressive histone modifications. Our data thus suggest a new mechanism of siteRNA-mediated gene silencing in vertebrates, and provide an example of how mobile elements can affect gene regulation.

  18. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements.

    Science.gov (United States)

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; Kochko, Alexandre de; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-07

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes.

  19. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata

    Directory of Open Access Journals (Sweden)

    de la Chaux Nicole

    2012-02-01

    Full Text Available Abstract Background Transposable elements (TEs are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs.

  20. Quantum states with strong positive partial transpose

    Science.gov (United States)

    Chruściński, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej

    2008-02-01

    We construct a large class of bipartite M⊗N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.

  1. Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements

    Science.gov (United States)

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; de Kochko, Alexandre; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-01

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes. PMID:25573958

  2. A transposable element within the Non-canonical telomerase RNA of Arabidopsis thaliana modulates telomerase in response to DNA damage [corrected].

    Directory of Open Access Journals (Sweden)

    Hengyi Xu

    2015-06-01

    Full Text Available Long noncoding RNAs (lncRNAs have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs. TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3' terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE. DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2 and without DRE (TER2Δ we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault.

  3. High genetic variation and recombination events in the vicinity of non-autonomous transposable elements from ‘Candidatus Liberibacter asiaticus’

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; CHEN Jiao-yue; TAN Jin; DUAN Suo; DENG Xiao-ling; CHEN Jian-chi; ZHOU Chang-yong

    2015-01-01

    Two miniature inverted-repeat transposable elements (MITEs), MCLas-A and MCLas-B, were recently identiifed from ‘Candidatus Liberibacter asiaticus’ known to be associated with citrus Huanglongbing (HLB, yelow shoot disease). MCLas-A was suggested as an active MITE because of its mobility. The immediate upstream gene of the two MITEs was predicted to be a putative transposase. The goal of this study is to analyze the sequence variation in the upstream putative transposase of MITEs and explore the possible correlation between sequence variation of transposase gene and MITE activity. PCR and sequence analysis showed that 12 sequence types were found in six major amplicon types from 43 representative ‘Ca. L. asiaticus’ isolates from China, the United States and Brazil. Out of the 12 sequence types, three (T4, T5-2, T6) were reported for the ifrst time. Recombination events were found in the two unique sequence types (T5-2 and T6) which were detected in al Brazilian isolates. Notably, no sequence variation or recombination events were detected in the upstream putative transposase gene of MCLas-A, suggesting the conservation of the transposase gene might be closely related with the MITE activity. Phylogenetic analysis demonstrated two wel supported clades including ifve subclades were identiifed, clearly relfecting the geographical origins of isolates, especialy that of Ruili isolates, São Paulo isolates and a few Florida isolates.

  4. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements

    Science.gov (United States)

    Gowda, Malali

    2016-01-01

    Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors. PMID:27658241

  5. Klebsiella pneumoniae multiresistance plasmid pMET1: similarity with the Yersinia pestis plasmid pCRY and integrative conjugative elements.

    Directory of Open Access Journals (Sweden)

    Alfonso J C Soler Bistué

    Full Text Available BACKGROUND: Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria. PRINCIPAL FINDINGS: The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1 gene and a perfect duplication of a 3-kbp region including the aac(6'-Ib, aadA1, and bla(OXA-9 genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf and the DNA transfer (Dtr system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31, which has been proposed to be an integrative conjugative element (ICE progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1, an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31. CONCLUSIONS: The comparative analyses of pMET1 with pCRY, HPI(ECOR31, and ICE(Kp1 show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance

  6. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria.

    Directory of Open Access Journals (Sweden)

    Lukasz Dziewit

    Full Text Available Several trap plasmids (enabling positive selection of transposition events were used to identify a pool of functional transposable elements (TEs residing in bacteria of the genus Paracoccus (Alphaproteobacteria. Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i 37 insertion sequences (ISs representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634, (ii a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv a transposable genomic island TnPpa1 (45 kb. Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1 and (ii structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family. We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value by horizontal gene transfer, which is considered the driving force of

  7. Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    Science.gov (United States)

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  8. Mapping of a Leishmania major gene/locus that confers pentamidine resistance by deletion and insertion of transposable element

    Directory of Open Access Journals (Sweden)

    Coelho Adriano C.

    2004-01-01

    Full Text Available Pentamidine (PEN is an alternative compound to treat antimony-resistant leishmaniasis patients, which cellular target remains unclear. One approach to the identification of prospective targets is to identify genes able to mediate PEN resistance following overexpression. Starting from a genomic library of transfected parasites bearing a multicopy episomal cosmid vector containing wild-type Leishmania major DNA, we isolated one locus capable to render PEN resistance to wild type cells after DNA transfection. In order to map this Leishmania locus, cosmid insert was deleted by two successive sets of partial digestion with restriction enzymes, followed by transfection into wild type cells, overexpression, induction and functional tests in the presence of PEN. To determine the Leishmania gene related to PEN resistance, nucleotide sequencing experiments were done through insertion of the transposon Mariner element of Drosophila melanogaster (mosK into the deleted insert to work as primer island. Using general molecular techniques, we described here this method that permits a quickly identification of a functional gene facilitating nucleotide sequence experiments from large DNA fragments. Followed experiments revealed the presence of a P-Glycoprotein gene in this locus which role in Leishmania metabolism has now been analyzed.

  9. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Science.gov (United States)

    Ali, Shawkat; Laurie, John D; Linning, Rob; Cervantes-Chávez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-07-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  10. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Science.gov (United States)

    2011-01-01

    Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster. PMID:22171608

  11. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Directory of Open Access Journals (Sweden)

    Arensburger Peter

    2011-12-01

    Full Text Available Abstract Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D

  12. Differentiation of a Miniature Inverted Transposable Element (MITE) System in Asian Rice Cultivars and Its Inference for a Diphyletic Origin of Two Subspecies of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized into two families, mping-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. O. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas O. sativa indica has a higher proportion of mPing-2. We also examined the mPing system in a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes.Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the mPing system in O. rufipogon. The distribution pattern of the mping system in O. rufipogon indicated a diphyletic origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. rufipogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. rufipogon.

  13. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Science.gov (United States)

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  14. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm].

    Science.gov (United States)

    Kokoza, V; Ahmed, A; Wimmer, E A; Raikhel, A S

    2001-11-01

    We report efficient germ-line transformation in the yellow fever mosquito Aedes aegypti accomplished using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Two transgenic lines were established and characterized; each contained the Vg-Defensin A transgene with strong eye-specific expression of the enhanced green fluorescent protein (EGFP) marker gene regulated by the artificial 3xP3 promoter. Southern blot hybridization and inverse PCR analyses of genomic DNA demonstrated a precise piggyBac-mediated, single copy insertion of the pBac[3xP3-EGFP afm,Vg-DefA] transposon in each transgenic line. For each line, genetic analysis confirmed stability and integrity of the entire transposon construct in the mosquito genome through the G2-G6 generations. Successful establishment of homozygous transgenic lines indicated that in both cases a non-lethal integration of the transposon into the mosquito genome had occurred. The 3xP3-EGFP marker was tested in mosquitoes with different genetic backgrounds. In white-eyed transgenic mosquitoes, the strong eye-specific expression of GFP was observed throughout all stages of development, starting from newly hatched first instar larvae to adults. A similar level and pattern of fluorescence was observed in red-eyed mosquitoes that were generated by crossing the 3xP3-EGFP transformants with the kh(w) white-eye mosquitoes transformed with the Drosophila cinnabar gene. Importantly, the utility of the 3xP3-EGFP, as marker gene for transformation of wild type mosquitoes, was demonstrated by strong eye-specific GFP expression in larval and pupal stages of black-eyed hybrids of the 3xP3-EGFP white-eye transformants and the wild type Rockefeller/UGAL strain. Finally, analysis of the Vg-DefA transgene expression in transformants from two established lines demonstrated strong blood-meal activation and fat-body-specific expression regulated by the Vg 1.8-kb 5' upstream region.

  15. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    2014-07-01

    Full Text Available The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE, interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity

  16. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing by the Topoisomerase II inhibitor, Etoposide, in rice

    Directory of Open Access Journals (Sweden)

    Yang Xuejiao

    2012-04-01

    Full Text Available Abstract Background Etoposide (epipodophyllotoxin is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs. However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L. genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36 and two protein-encoding genes (Homeobox and CDPK-related genes were detected in the etoposide-treated plants (S0 generation in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae and the indica cultivar (93-11. DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36. Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2 of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar

  17. Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences

    Directory of Open Access Journals (Sweden)

    Chang Che-Ming

    2009-07-01

    Full Text Available Abstract Background Retrotransposition is an important evolutionary force for the creation of new and potentially functional intronless genes which are collectively called retrogenes. Many retrogenes are expressed in the testis and the gene products have been shown to actively participate in spermatogenesis and other unique functions of the male germline. We have previously reported a cluster of retrogenes in the rat genome that encode putative TRAF- and POZ-domain proteins. Two of the genes, Rtdpoz-T1 and -T2 (abbreviated as T1 and T2, have further been shown to be expressed specifically in the rat testis. Results We show here that the T1 and T2 genes are also expressed in the rat embryo up to days 16–17 of development when the genes are silenced until being re-activated in the adult testis. On database interrogation, we find that some T1/T2 exons are chromosomally duplicated as cassettes of 2 or 3 exons consistent with retro-duplication. The embryonic T1/T2 transcripts, characterised by RT-PCR-cloning and rapid amplification of cDNA ends, are further found to have acquired one or more noncoding exons in the 5'-untranslated region (5'-UTR. Most importantly, the T1/T2 locus is embedded within a dense field of relics of transposable element (TE derived mainly from LINE1 and ERV sequences, and the TE sequences are frequently exonised through alternative splicing to form the 5'-UTR sequences of the T1/T2 transcripts. In a case of T1 transcript, the 3'-end is extended into and terminated within an L1 sequence. Since the two genes share a common exon 1 and are, therefore, regulated by a single promoter, a T2-to-T1 co-transcription model is proposed. We further demonstrate that the exonised 5'-UTR TE sequences could lead to the creation of upstream open reading frames resulting in translational repression. Conclusion Exonisation of TE sequences is a frequent event in the transcription of retrogenes during embryonic development and in the testis and

  18. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat

    2014-07-03

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  19. Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids.

    Science.gov (United States)

    Wailan, Alexander M; Sidjabat, Hanna E; Yam, Wan Keat; Alikhan, Nabil-Fareed; Petty, Nicola K; Sartor, Anna L; Williamson, Deborah A; Forde, Brian M; Schembri, Mark A; Beatson, Scott A; Paterson, David L; Walsh, Timothy R; Partridge, Sally R

    2016-07-01

    blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements

    Energy Technology Data Exchange (ETDEWEB)

    Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Takeda, Michiaki; Murata, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Akiba, Uichi; Hamada, Fumio [Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita 010-8502 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan)

    2009-04-27

    Electrochemical assay using HeLa cell lines transfected with various plasmid vectors encoding SEAP (secreted alkaline phosphatase) as the reporter has been performed by using SECM (scanning electrochemical microscopy). The plasmid vector contains different responsive elements that include GRE (glucocorticoid response elements), CRE (cAMP responsive elements), or {kappa}B (binding site for NF{kappa}B (nuclear factor kappa B)) upstream of the SEAP sequence. The transfected HeLa cells were patterned on a culture dish in a 4 x 4 array of circles of diameter 300 {mu}m by using the PDMS (poly(dimethylsiloxane)) stencil technique. The cellular array was first exposed to 100 ng mL{sup -1} dexamethasone, 10 ng mL{sup -1} forskolin, or 100 ng mL{sup -1} TNF-{alpha} (tumor necrosis factor {alpha}) after which it was further cultured in an RPMI culture medium for 6 h. After incubation, the cellular array was soaked in a measuring solution containing 4.7 mM PAPP (p-aminophenylphosphate) at pH 9.5, following which electrochemical measurements were performed immediately within 40 min. The SECM method allows parallel evaluation of different cell lines transfected with pGRE-SEAP, pCRE-SEAP, and pNF{kappa}B-SEAP patterned on the same solid support for detection of the oxidation current of PAP (p-aminophenol) flux produced from only 300 HeLa cells in each stencil pattern. The results of the SECM method were highly sensitive as compared to those obtained from the conventional CL (chemiluminescence) protocol with at least 5 x 10{sup 4} cells per well.

  1. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Teddie O Rahube

    2014-10-01

    Full Text Available A wastewater treatment plant (WWTP is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from wastewater treatment plant. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban wastewater treatment plant servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide, quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than fifty years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.

  2. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant.

    Science.gov (United States)

    Rahube, Teddie O; Viana, Laia S; Koraimann, Günther; Yost, Christopher K

    2014-01-01

    A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.

  3. Permutation and Its Partial Transpose

    CERN Document Server

    Zhang, Y; Werner, R F; Zhang, Yong; Kauffman, Louis H.; Werner, Reinhard F.

    2006-01-01

    Permutation and its partial transpose play important roles in quantum information theory. The Werner state is recognized as a rational solution of the Yang--Baxter equation, and the isotropic state with an adjustable parameter is found to form a braid representation. The set of permutation's partial transposes is an algebra called the "PPT" algebra which guides the construction of multipartite symmetric states. The virtual knot theory having permutation as a virtual crossing provides a topological language describing quantum computation having permutation as a swap gate. In this paper, permutation's partial transpose is identified with an idempotent of the Temperley--Lieb algebra. The algebra generated by permutation and its partial transpose is found to be the Brauer algebra. The linear combinations of identity, permutation and its partial transpose can form various projectors describing tangles; braid representations; virtual braid representations underlying common solutions of the braid relation and Yang--...

  4. Complete Sequence of pABTJ2, A Plasmid from Acinetobacter baumannii MDR-TJ, Carrying Many Phage-like Elements

    Institute of Scientific and Technical Information of China (English)

    He Huang; Yan Dong; Zhi-Liang Yang; Hao Luo; Xi Zhang; Feng Gao

    2014-01-01

    Acinetobacter baumannii is an important opportunistic pathogen in hospital, and the multidrug-resistant isolates of A. baumannii have been increasingly reported in recent years. A num-ber of different mechanisms of resistance have been reported, some of which are associated with plasmid-mediated acquisition of genes. Therefore, studies on plasmids in A. baumannii have been a hot issue lately. We have performed complete genome sequencing of A. baumannii MDR-TJ, which is a multidrug-resistant isolate. Finalizing the remaining large scaffold of the previous assem-bly, we found a new plasmid pABTJ2, which carries many phage-like elements. The plasmid pAB-TJ2 is a circular double-stranded DNA molecule, which is 110,967 bp in length. We annotated 125 CDSs from pABTJ2 using IMG ER and ZCURVE_V, accounting for 88.28%of the whole plasmid sequence. Many phage-like elements and a tRNA-coding gene were detected in pABTJ2, which is rarely reported among A. baumannii. The tRNA gene is specific for asparagine codon GTT, which may be a small chromosomal sequence picked up through incorrect excision during plasmid forma-tion. The phage-like elements may have been acquired during the integration process, as the GC content of the region carrying phage-like elements was higher than that of the adjacent regions. The finding of phage-like elements and tRNA-coding gene in pABTJ2 may provide a novel insight into the study of A. baumannii pan-plasmidome.

  5. pDGO100, a type 1 IncC plasmid from 1981 carrying ARI-A and a Tn1696-like transposon in a novel integrating element.

    Science.gov (United States)

    Harmer, Christopher J; Partridge, Sally R; Hall, Ruth M

    2016-07-01

    Most A/C plasmids sequenced to date were recovered in the last two decades. To gain insight into the evolution of this group, the IncC plasmid pDGO100, found in a multiply antibiotic-resistant Escherichia coli strain isolated in 1981, was sequenced. pDGO100 belongs to the type 1 lineage and carries an ARI-A antibiotic resistance island but not an ARI-B island. The A/C2 backbone of pDGO100 has a deletion in the rhs1 gene previously found in pRMH760 and differs by only six single base pair substitutions from pRMH760, recovered at the same hospital 16years later. This confirms that the separation of type 1 and type 2 IncC plasmids is long standing. The ARI-A islands are also closely related, but pRMH760 contains Tn4352B in tniA of Tn402, while in pDGO100, Tn4352 has inserted into merA of pDUmer. pDGO100 also carries an additional 46kb insertion that includes a Tn1696-like transposon with the dfrB3 gene cassette. This insertion was identified as a novel integrating element, with an int gene at one end, and also includes the fec iron uptake operon that has been acquired from the E. coli chromosome. Related integrating elements carrying the same int gene were found in A/C2, IncHI1, and IncHI2 plasmids, and in the chromosomes of Enterobacter cloacae, Klebsiella oxytoca, and Cronobacter sakazakii isolates. In the Enterobacteriaceae chromosomes, these integrating elements appear to target a gene encoding a radical SAM superfamily protein. In the A/C2, IncHI1, and IncHI2 plasmids, genes encoding a phosphoadenosine phosphosulfate reductase were interrupted. The extremities of the integrating element are highly conserved, whilst the internal gene content varies. The detection of integrative elements in plasmids demonstrates an increased range of locations into which this type of mobile element can integrate and insertion in plasmids is likely to assist their spread.

  6. A Study of Fractality and Long-Range Order in the Distribution of Transposable Elements in Eukaryotic Genomes Using the Scaling Properties of Block Entropy and Box-Counting

    Directory of Open Access Journals (Sweden)

    Labrini Athanasopoulou

    2014-03-01

    Full Text Available Repeats or Transposable Elements (TEs are highly repeated sequence stretches, present in virtually all eukaryotic genomes. We explore the distribution of representative TEs from all major classes in entire chromosomes across various organisms. We employ two complementary approaches, the scaling of block entropy and box-counting. Both converge to the conclusion that well-developed fractality is typical of small genomes while in large genomes it appears sporadically and in some cases is rudimentary. The human genome is particularly prone to develop this pattern, as TE chromosomal distributions therein are often highly clustered and inhomogeneous. Comparing with previous works, where occurrence of power-law-like size distributions in inter-repeat distances is studied, we conclude that fractality in entire chromosomes is a more stringent (thus less often encountered condition. We have formulated a simple evolutionary scenario for the genomic dynamics of TEs, which may account for their fractal distribution in real genomes. The observed fractality and long-range properties of TE genomic distributions have probably contributed to the formation of the “fractal globule”, a model for the confined chromatin organization of the eukaryotic nucleus proposed on the basis of experimental evidence.

  7. TamiR1123 originated from a family of miniature inverted-repeat transposable elements (MITE) including one inserted in the Vrn-A1a promoter in wheat.

    Science.gov (United States)

    Yu, Ming; Carver, Brett F; Yan, Liuling

    2014-02-01

    More than half of spring wheat cultivars have a dominant Vrn-A1a allele that has an insertion of a miniature inverted-repeat transposable element (MITE) in its promoter. In this study, we found that the MITE present in the Vrn-A1a gene (MITE_VRN) is a nearly perfect palindrome and it can form highly stable hairpin loops when expressed as RNA. MITE_VRN also possessed sequences of a microRNA in Triticum aestivum (TamiR1123). The P(32) labeled TamiR1123 probe detected two RNA molecules on a small RNA gel blot, one expected for MITE_VRN, and the other expected for TamiR1123. These results demonstrated that MITE_VRN was expressed as RNAs and TamiR1123 was originated from the MITE_VRN family. The isogenic line TDD carrying the dominant Vrn-A1a allele with MITE_VRN showed higher TamiR1123 and Vrn-A1a transcript levels than the isogenic line TDE carrying the recessive vrn-A1a allele without MITE_VRN. TamiR1123 were greatly up-regulated by plant age but slightly down-regulated by low temperature and short days. These findings have pointed to alternative regulatory mechanisms for plant development governed by Vrn-A1a in spring wheat.

  8. Unraveling the regulatory network of IncA/C plasmid mobilization: When genomic islands hijack conjugative elements.

    Science.gov (United States)

    Carraro, Nicolas; Matteau, Dominick; Burrus, Vincent; Rodrigue, Sébastien

    2015-01-01

    Conjugative plasmids of the A/C incompatibility group (IncA/C) have become substantial players in the dissemination of multidrug resistance. These large conjugative plasmids are characterized by their broad host-range, extended spectrum of antimicrobials resistance, and prevalence in enteric bacteria recovered from both environmental and clinical settings. Until recently, relatively little was known about the basic biology of IncA/C plasmids, mostly because of the hindrance of multidrug resistance for molecular biology experiments. To circumvent this issue, we previously developed pVCR94ΔX, a convenient prototype that codes for a reduced set of antibiotic resistances. Using pVCR94ΔX, we then characterized the regulatory pathway governing IncA/C plasmid dissemination. We found that the expression of roughly 2 thirds of the genes encoded by this plasmid, including large operons involved in the conjugation process, depends on an FlhCD-like master activator called AcaCD. Beyond the mobility of IncA/C plasmids, AcaCD was also shown to play a key role in the mobilization of different classes of genomic islands (GIs) identified in various pathogenic bacteria. By doing so, IncA/C plasmids can have a considerable impact on bacterial genomes plasticity and evolution.

  9. Polymorphisms of the nucleolus organizing regions in Loricaria cataphracta (Siluriformes, Loricariidae) of the upper Paraguay River basin indicate an association with transposable elements.

    Science.gov (United States)

    Porto, F E; Gindri, B S; Vieira, M M R; Borin, L A; Portela-Castro, A L B; Martins-Santos, I C

    2014-03-12

    A cytogenetic analysis of Loricaria cataphracta revealed a diploid number of 2n = 64 chromosomes, distributed as 12 metacentric + 8 submetacentric + 2 subtelocentric + 42 acrocentric, with a fundamental number of 86. Analysis of the nucleolus organizing region (NOR) using silver nitrate impregnation and fluorescence in situ hybridization (18S rDNA probe) techniques showed intra-population chromosomal polymorphism that could be classified into five different patterns (I to V), involving four pairs of chromosomes (8, 9, 12, and 13). In pattern I, the NOR was located in pair 12, whereas in pattern II, the NOR was detected in pair 8; these two patterns were characterized as a simple-NOR system. A multiple NOR system was evident in the other patterns (III, IV, and V). In pattern III, the NOR was located in only one of the homologs of pairs 12 and 8, and in patterns IV and V, the NOR was observed in pair 12 and in only one of the homologs of pairs 9 and 13, respectively. In addition, C-band analysis also showed this pattern of variation, and characterized a polymorphism in relation to the constitutive heterochromatin; the composition of this region was GC-rich (positive CMA3) and 4',6-diamidino-2-phenylindole negative. Transposition of NOR sites for mobile elements is suggested to explain this polymorphism.

  10. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties.

    Science.gov (United States)

    Nishizaki, Yuzo; Matsuba, Yuki; Okamoto, Emi; Okamura, Masachika; Ozeki, Yoshihiro; Sasaki, Nobuhiro

    2011-12-01

    The pink, red and crimson petal colors of carnations (Dianthus caryophyllus) are produced by anthocyanins. The anthocyanins, pelargonidin and cyanidin can be modified by two glucoses at the 3 and 5 positions, and by a single malic acid. Petal color variation can result from failure of such modification, for example, the lack of a glucose at the 5 position is responsible for the color variants of some commercial varieties. With respect to this variation, modification by 5-O-glucosyltransferase plays the most important role in glucosylation at the 5 position. Recently, we identified a novel acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase (AA5GT), that uses acyl-glucoses, but not UDP-glucose, as the glucose donor. Although we showed that loss of AA5GT expression was responsible for loss of glucosylation at the 5 position of anthocyanin in some varieties, the cause of this repression of AA5GT expression could not be determined. Here, we have succeeded in isolating the AA5GT gene and found that it consists of 12 exons and 11 introns. In carnation varieties lacking a glucose at the 5 position, we identified the insertion of two different retrotransposons, Ty1dic1 and Retdic1, into AA5GT. Ty1dic1, which belongs to the class I long terminal repeat (LTR)-retrotransposons of Ty1/copia families, was inserted into exon 10. Retdic1, which includes a long interspersed nuclear element (LINE)-like sequence, was inserted into intron 5. Thus, insertion of either Ty1dic1 or Retdic1 can disrupt AA5GT and result in the lack of glucosylation at the 5 position in anthocyanins.

  11. Complete Sequence of a F33:A-:B- Conjugative Plasmid Carrying the oqxAB, fosA3 and blaCTX-M-55 Elements from a Foodborne Escherichia coli Strain

    Directory of Open Access Journals (Sweden)

    Marcus Ho-yin Wong

    2016-10-01

    Full Text Available This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an E. coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55 and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies.

  12. Genetic mapping of Ty elements in Saccharomyces cerevisiae.

    OpenAIRE

    Klein, H L; Petes, T. D.

    1984-01-01

    We used transformation to insert a selectable marker at various sites in the Saccharomyces cerevisiae genome occupied by the transposable element Ty. The vector CV9 contains the LEU2+ gene and a portion of the repeated element Ty1-17. Transformation with this plasmid resulted in integration of the vector via a reciprocal exchange using homology at the LEU2 locus or at the various Ty elements that are dispersed throughout the S. cerevisiae genome. These transformants were used to map genetical...

  13. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2015-03-01

    transcriptionally activated during pregnancy and lactation , and the mice are predisposed to develop mammary cancer after a minimum of 3 pregnancies and...pregnancy and lactation . After 3 pregnancies and lactations , but not after 1 pregnancy and lactation , females develop mammary cancers at an average...mated females per experimental condition (1 or 3 pregnancies/ lactations . 5 breeding strategy to develop triple transgenic cancer -prone and control

  14. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2015-03-01

    derived adipo- cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We...Mesendoderm 2353 765 051 59 5 92% H9-IMR90 5875 7 669 782 605 58 91% oocyte - ES cell (mouse) 4727 1 204 883 334 25 93% sperm - ES cell (mouse) 4580 4 364 748...engineered mouse model in which a specific mammary cell population is fluorescently marked upon initial transcriptional activation of the SV40 large T

  15. Mammary Cancer and Activation of Transposable Elements

    Science.gov (United States)

    2012-09-01

    SV40Tag is transcriptionally activated during pregnancy and lactation , and the mice are predisposed to develop mammary cancer after 3 pregnancies...and lactations . Using this model, populations of marked cells can be collected for integrated analysis of gene expression, promoter usage, and DNA...completed over the first 6 months on the job . Training included mouse husbandry and colony management, mammary cell isolations in preparation for

  16. Small, Enigmatic Plasmids of the Nosocomial Pathogen, Acinetobacter baumannii: Good, Bad, Who Knows?

    Directory of Open Access Journals (Sweden)

    Soo Sum Lean

    2017-08-01

    Full Text Available Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has become a serious healthcare concern within a span of two decades due to its ability to rapidly acquire resistance to all classes of antimicrobial compounds. One of the key features of the A. baumannii genome is an open pan genome with a plethora of plasmids, transposons, integrons, and genomic islands, all of which play important roles in the evolution and success of this clinical pathogen, particularly in the acquisition of multidrug resistance determinants. An interesting genetic feature seen in majority of A. baumannii genomes analyzed is the presence of small plasmids that usually ranged from 2 to 10 kb in size, some of which harbor antibiotic resistance genes and homologs of plasmid mobilization genes. These plasmids are often overlooked when compared to their larger, conjugative counterparts that harbor multiple antibiotic resistance genes and transposable elements. In this mini-review, we will examine our current knowledge of these small A. baumannii plasmids and look into their genetic diversity and phylogenetic relationships. Some of these plasmids, such as the Rep-3 superfamily group and the pRAY-type, which has no recognizable replicase genes, are quite widespread among diverse A. baumannii clinical isolates worldwide, hinting at their usefulness to the lifestyle of this pathogen. Other small plasmids especially those from the Rep-1 superfamily are truly enigmatic, encoding only hypothetical proteins of unknown function, leading to the question of whether these small plasmids are “good” or “bad” to their host A. baumannii.

  17. Mobile Insertion Cassette Elements Found in Small Non-Transmissible Plasmids in Proteeae May Explain qnrD Mobilization

    OpenAIRE

    Guillard, Thomas; Grillon, Antoine; De Champs, Christophe; Cartier, Céline; Madoux, Janick; Berçot, Béatrice; Lebreil, Anne-Laure; Lozniewski, Alain; Riahi, Jacques; Vernet-Garnier, Véronique; Cambau, Emmanuelle

    2014-01-01

    International audience; qnrD is a plasmid mediated quinolone resistance gene from unknown origin, recently described in Enterobacteriaceae. It encodes a pentapeptide repeat protein 36-60% different from the other Qnr (A, B, C, S and VC). Since most qnrD-positive strains were described as strains belonging to Proteus or Providencia genera, we hypothesized that qnrD originated in Proteeae before disseminating to other enterobacterial species. We screened 317 strains of Proteeae for qnrD and its...

  18. Plasmid Biopharmaceuticals.

    Science.gov (United States)

    Prazeres, Duarte Miguel F; Monteiro, Gabriel A

    2014-12-01

    Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.

  19. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting...... the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...... maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid...

  20. Transposed intrathoracic stomach: Functional evaluation

    Directory of Open Access Journals (Sweden)

    Vishesh Jain

    2012-01-01

    Full Text Available Background: To study the functional aspects of the transposed stomach in the thoracic cavity and its effects on other organ systems. Patients and Methods: Children who had undergone gastric transposition more than 5 years ago were evaluated for symptoms, anthropometry, anaemia, duodenogastric reflux, pulmonary function, gastric emptying, gastric pH, gastroesophageal reflux and stricture, gastric motility, and gastritis and atrophy on histological examination of gastric mucosa. Results: Ten children were evaluated at a median follow-up of 90.5 months. On evaluation of symptoms, nine children were satisfied with the overall outcome. All patients had their weight and 7 patients had height less than 3 rd percentile for their respective age. Anaemia was present in 7/10 children. On evaluation with hepatobiliary scintigraphy, duodenogastric reflux was present in only 1 patient. Mass contractions of the transposed stomach were present in two thirds of the children. The mean gastric emptying t1/2 was 39.1 minutes. Pulmonary function tests were suggestive of restrictive lung disease in all the patients. Forced vital capacity (FVC and forced expiratory volume in 1 sec (FEV1 were worse in children who underwent transposition or diversion following oesophageal anastomotic leak. Acid secretion was preserved in most patients with episodes of high gastric pH during sleep in nearly half. Mild gastritis was present in all patients where as mild atrophy of the gastric mucosa was observed in only 1child. Helicobacter pylori were positive in 3/ 8 children. Barium swallow demonstrated reflux in 2 children. Conclusions: Most children with transposed stomach remain asymptomatic on follow up. However, subclinical abnormalities are detected on investigations, which need close observation as they can manifest later in life.

  1. Plasmid Rolling-Circle Replication.

    Science.gov (United States)

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  2. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system.

    Science.gov (United States)

    Szczepanowski, Rafael; Krahn, Irene; Linke, Burkhard; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2004-11-01

    Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP

  3. Toxin Plasmids of Clostridium perfringens

    Science.gov (United States)

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  4. Role of integrons, plasmids and SXT elements in multidrug resistance of Vibrio cholerae and Providencia vermicola obtained from a clinical isolate of diarrhea

    Directory of Open Access Journals (Sweden)

    Neha eRajpara

    2015-02-01

    Full Text Available The isolates of Vibrio cholerae and Providencia vermicola obtained from a diarrhoeal patient were investigated for genetic elements governing their drug resistance phenotypes. Out of fourteen antibiotics tested, V. cholerae Vc IDH02365 isolate showed resistance to nine antibiotics, while P. vermicola Pv NBA2365 was found to be resistant to all the antibiotics except polymyxin B. Though SXT integrase was depicted in both the bacteria, class 1 integron was found to be associated only with Pv NBA2365. Integrons in Pv NBA2365 conferred resistance to β-lactams, aminoglycosides and trimethoprim. Pv NBA2365 carried two transformable plasmids imparting distinct antibiotic resistance traits to their Escherichia coli transformants. In rabbit ileal loop assays, Pv NBA2365 did not show any fluid accumulation in contrast with Vc IDH02365 that showed high fluid accumulation. To the best of our knowledge, this is the first report of a highly drug resistant P.vermicola and additionally co-existence of multidrug resistant V. cholerae and P. vermicola. Both the microbes appeared to possess a wide array of mobile genetic elements for a large spectrum of antimicrobial agents, some of which are being used in the treatment of acute diarrhoea.

  5. Diversity of plasmids harboring blaCMY-2 in multidrug-resistant Escherichia coli isolated from poultry in Brazil.

    Science.gov (United States)

    Ferreira, Joseane Cristina; Penha Filho, Rafael Antonio Casarin; Andrade, Leonardo Neves; Berchieri Junior, Angelo; Darini, Ana Lúcia Costa

    2017-08-01

    Multidrug-resistance (MDR) has been increasingly reported in Gram-negative bacteria from the intestinal microbiota, environment and food-producing animals. Resistance plasmids able to harbor different transposable elements are capable to mobilize antimicrobial resistance genes and transfer to other bacterial hosts. Plasmids carrying blaCMY are frequently associated with MDR. The present study assessed the presence of plasmid-encoded ampC genes (blacmy, blamox, blafox, blalat, blaact, blamir, bladha, blamor) in commensal E. coli isolated from apparently healthy broiler chickens. Furthermore, we characterized the plasmids and identified those harboring the resistance genes. We isolated 144/200 (72%) of E. coli isolates with resistance to cefotaxime and the resistance gene identified was blaCMY-2. The pulsed-field gel electrophoresis (PFGE) analysis showed high diversity of the genetic profiles. The phylogenetic groups A, B1, B2, and D were identified among E. coli isolates and group D was the most prevalent. The PCR-based replicon typing (PBRT) analysis identified four distinct plasmid incompatibility groups (Inc) in MDR isolates. Moreover, plasmids harboring blaCMY-2, ranged in size from 50kb to 150kb and 51/144 (35%) belonged to IncK, 21/144 (14.5%) to IncB/O, 8/144 (5.5%) to IncA/C, 1/144 (0.5%) to IncI, while 63/144 (44.5%) were not typeable by PBRT. Overall, a high prevalence of blaCMY-2 genes was found in a diverse population of commensal MDR E. coli from poultry in Brazil, harbored into different plasmids. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  7. Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading.

    Science.gov (United States)

    Guérillot, Romain; Da Cunha, Violette; Sauvage, Elisabeth; Bouchier, Christiane; Glaser, Philippe

    2013-05-01

    Integrative and conjugative elements (ICEs) have a major impact on gene flow and genome dynamics in bacteria. The ICEs TnGBS1 and TnGBS2, first identified in Streptococcus agalactiae, use a DDE transposase, unlike most characterized ICEs, which depend on a phage-like integrase for their mobility. Here we identified 56 additional TnGBS-related ICEs by systematic genome analysis. Interestingly, all except one are inserted in streptococcal genomes. Sequence comparison of the proteins conserved among these ICEs defined two subtypes related to TnGBS1 or TnGBS2. We showed that both types encode different conjugation modules: a type IV secretion system, a VirD4 coupling protein, and a relaxase and its cognate oriT site, shared with distinct lineages of conjugative elements of Firmicutes. Phylogenetic analysis suggested that TnGBSs evolved from two conjugative elements of different origins by the successive recruitment of a transposition module derived from insertion sequences (ISs). Furthermore, TnGBSs share replication modules with different plasmids. Mutational analyses and conjugation experiments showed that TnGBS1 and TnGBS2 combine replication and transposition upstream promoters for their transfer and stabilization. Despite an evolutionarily successful horizontal dissemination within the genus Streptococcus, these ICEs have a restricted host range. However, we reveal that for TnGBS1 and TnGBS2, this host restriction is not due to a transfer incompatibility linked to the conjugation machineries but most likely to their ability for transient maintenance through replication after their transfer.

  8. Transpose symmetry of the Jones matrix and topological phases.

    Science.gov (United States)

    Bhandari, Rajendra

    2008-04-15

    The transmission Jones matrix of an arbitrary stack of reciprocal plane-parallel plates that has been turned through 180 degrees about an axis in the plane of the stack is, in an appropriate basis, the transpose of the transmission matrix of the unturned slab with a change in the sign of the off-diagonal elements. We prove this convention-free result for the case where reflection at the interfaces can be ignored and use it to devise an experimental scheme to separate isotropic and topological phase changes in a reciprocal optical medium.

  9. Historical Events That Spawned the Field of Plasmid Biology.

    Science.gov (United States)

    Kado, Clarence I

    2014-10-01

    This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term plasmid biology was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).

  10. Transposed genes in Arabidopsis are often associated with flanking repeats.

    Directory of Open Access Journals (Sweden)

    Margaret R Woodhouse

    2010-05-01

    Full Text Available Much of the eukaryotic genome is known to be mobile, largely due to the movement of transposons and other parasitic elements. Recent work in plants and Drosophila suggests that mobility is also a feature of many nontransposon genes and gene families. Indeed, analysis of the Arabidopsis genome suggested that as many as half of all genes had moved to unlinked positions since Arabidopsis diverged from papaya roughly 72 million years ago, and that these mobile genes tend to fall into distinct gene families. However, the mechanism by which single gene transposition occurred was not deduced. By comparing two closely related species, Arabidopsis thaliana and Arabidopsis lyrata, we sought to determine the nature of gene transposition in Arabidopsis. We found that certain categories of genes are much more likely to have transposed than others, and that many of these transposed genes are flanked by direct repeat sequence that was homologous to sequence within the orthologous target site in A. lyrata and which was predominantly genic in identity. We suggest that intrachromosomal recombination between tandemly duplicated sequences, and subsequent insertion of the circular product, is the predominant mechanism of gene transposition.

  11. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    Science.gov (United States)

    McHenney, M A; Baltz, R H

    1991-09-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  12. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  13. On circulant states with positive partial transpose

    OpenAIRE

    Chruściński, Dariusz; Kossakowski, Andrzej

    2007-01-01

    We construct a large class of quantum "d x d" states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure - that is way we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. ...

  14. A simple method for construction of pir+ Enterobacterial hosts for maintenance of R6K replicon plasmids

    Directory of Open Access Journals (Sweden)

    Kvitko Brian H

    2012-03-01

    Full Text Available Abstract Background The R6K replicon is one of the best studied bacterial plasmid replicons. Replication of the R6K plasmid and derivatives harboring its γ origin of replication (oriR6Kγ is dependent on the pir gene-encoded π protein. Originally encoded by R6K, this protein is usually provided in trans in hosts engineered to support replication of plasmids harboring oriR6Kγ. In Escherichia coli this is commonly achieved by chromosomal integration of pir either via lysogenization with a λpir phage or homologous recombination at a pre-determined locus. Findings Current methods for construction of host strains for oriR6Kγ-containing plasmids involve procedures that do not allow selection for presence of the pir gene and require cumbersome and time-consuming screening steps. In this study, we established a mini-Tn7-based method for rapid and reliable construction of pir+ host strains. Using a curable mini-Tn7 delivery plasmid, pir expressing derivatives of several commonly used E. coli cloning and mobilizer strains were isolated using both the wild-type pir+ gene as well as the copy-up pir-116 allele. In addition, we isolated pir+ and pir-116 expressing derivatives of a clinical isolate of Salmonella enterica serovar Typhimurium. In both E. coli and S. enterica serovar Typhimurium, the presence of the pir+ wild-type or pir-116 alleles allowed the replication of oriR6Kγ-containing plasmids. Conclusions A mini-Tn7 system was employed for rapid and reliable engineering of E. coli and S. enterica serovar Typhimurium host strains for plasmids containing oriR6Kγ. Since mini-Tn7 elements transpose in most, if not all, Gram negative bacteria, we anticipate that with relatively minor modifications this newly established method will for the first time allow engineering of other bacterial species to enable replication of plasmids with oriR6Kγ.

  15. Complete sequencing of the bla(NDM-1-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sekizuka

    Full Text Available The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1 was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38 and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb and Salmonella enterica serovar Newport pSN254 (176.4 kb. The bla(NDM-1 gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1 gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1 gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1 gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  16. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Matsui, Mari; Yamane, Kunikazu; Takeuchi, Fumihiko; Ohnishi, Makoto; Hishinuma, Akira; Arakawa, Yoshichika; Kuroda, Makoto

    2011-01-01

    The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  17. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs.

    Directory of Open Access Journals (Sweden)

    Magdalena Szuplewska

    Full Text Available Functional transposable elements (TEs of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380, (ii isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system, as well as (iii non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs, highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements (262 bp, were identified within two natural plasmids (pZM1P1 and pLM8P2 of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and

  18. Circulant states with positive partial transpose

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2007-09-01

    We construct a large class of quantum d⊗d states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure—that is why we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. This class contains many well-known examples of PPT states from the literature and gives rise to a huge family of completely new states.

  19. Transposed Paternò-Büchi Reaction.

    Science.gov (United States)

    Kumarasamy, Elango; Raghunathan, Ramya; Kandappa, Sunil Kumar; Sreenithya, A; Jockusch, Steffen; Sunoj, Raghavan B; Sivaguru, J

    2017-01-18

    A complementary strategy of utilizing ππ* excited state of alkene instead of nπ* excited state of the carbonyl chromophore in a "transposed Paternò-Büchi" reaction is evaluated with atropisomeric enamides as the model system. Based on photophysical investigations, the nature of excited states and the reactive pathway was deciphered leading to atropselective reaction. This new concept of switching of excited-state configuration should pave the way to control the stereochemical course of photoreaction due to the orbital approaches required for photochemical reactivity.

  20. Computing partial transposes and related entanglement functions

    CERN Document Server

    Maziero, Jonas

    2016-01-01

    The partial transpose (PT) is an important function for entanglement testing and quantification and also for the study of geometrical aspects of the quantum state space. In this article, considering general bipartite and multipartite discrete systems, explicit formulas ready for the numerical implementation of the PT and of related entanglement functions are presented and the Fortran code produced for that purpose is described. What is more, we obtain an analytical expression for the Hilbert-Schmidt entanglement of two-qudit systems and for the associated closest separable state. In contrast to previous works on this matter, we only use the properties of the PT, not applying Lagrange multipliers.

  1. Computing Partial Transposes and Related Entanglement Functions

    Science.gov (United States)

    Maziero, Jonas

    2016-10-01

    The partial transpose (PT) is an important function for entanglement testing and quantification and also for the study of geometrical aspects of the quantum state space. In this article, considering general bipartite and multipartite discrete systems, explicit formulas ready for the numerical implementation of the PT and of related entanglement functions are presented and the Fortran code produced for that purpose is described. What is more, we obtain an analytical expression for the Hilbert-Schmidt entanglement of two-qudit systems and for the associated closest separable state. In contrast to previous works on this matter, we only use the properties of the PT, not applying Lagrange multipliers.

  2. Chemotherapy of Bacterial Plasmids

    Science.gov (United States)

    1979-01-29

    render them non-susceptible to K: z plasmid-encoded enzymes. (3) Development of drugs which are selective inhibitor! 1 4, of plasmid DNA replication. (4... Development of drugs which inhibit phenotypic as expression of plasmid genes, and (5) Development of drugs which are inhibitors o, drug-inactivating...Barnes [2] them non-susceptible to plasmid-encoded enzymes, tabulated data on the incidence of Gram-negative 3) development of drugs which are

  3. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with t

  4. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  5. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  6. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments ...

  7. Transposed-Letter and Laterality Effects in Lexical Decision

    Science.gov (United States)

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  8. Distillability via protocols respecting the positivity of partial transpose

    CERN Document Server

    Eggeling, T; Werner, R F; Wolf, M M; Eggeling, Tilo; Vollbrecht, Karl Gerd H.; Werner, Reinhard F.; Wolf, Michael M.

    2001-01-01

    We show that all quantum states that do not have a positive partial transpose are distillable via channels, which preserve the positivity of the partial transpose. The question whether NPT bound entanglement exist is therefore closely related to the connection between the set of separable superoperators and PPT-preserving maps.

  9. Transposed-Letter and Laterality Effects in Lexical Decision

    Science.gov (United States)

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  10. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    at high frequencies from diverse donors, I showed plasmid or donor dependence of plasmid transfer to other species. Additionally, environmental factors like stress also impact the permissiveness of phylogenetic groups towards plasmids. The developed method and results increase our ability to predict......Horizontal transfer of mobile genetic elements facilitates adaptive and evolutionary processes in bacteria. Among the known mobile genetic elements, plasmids can confer their hosts with accessory adaptive traits, such as antibiotic or heavy metal resistances, or additional metabolic pathways...... and the extent of bacterial phyla permissive towards plasmid receipt are largely unknown. Historically, methods exploring the underlying genetic and environmental factors of plasmid transfer have been heavily reliant on cultivation and expression of plasmid encoded phenotypes. This has provided an incomplete...

  11. Stress responses and replication of plasmids in bacterial cells

    Directory of Open Access Journals (Sweden)

    Wegrzyn Alicja

    2002-05-01

    Full Text Available Abstract Plasmids, DNA (or rarely RNA molecules which replicate in cells autonomously (independently of chromosomes as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage λ that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.

  12. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata

    Science.gov (United States)

    Sun, Fengjun; Zhou, Dongsheng; Sun, Qiang; Luo, Wenbo; Tong, Yigang; Zhang, Defu; Wang, Qian; Feng, Wei; Chen, Weijun; Fan, Yahan; Xia, Peiyuan

    2016-01-01

    We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant. PMID:27658354

  13. Analysis of energetically biased transcripts of viruses and transposable elements

    Directory of Open Access Journals (Sweden)

    Rodrigo Secolin

    2012-01-01

    Full Text Available RNA interference (RNAi is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC. Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.

  14. Linear plasmid in the genome of Clavibacter michiganensis subsp. sepedonicus.

    Science.gov (United States)

    Brown, Susan E; Knudson, Dennis L; Ishimaru, Carol A

    2002-05-01

    Contour-clamped homogeneous electric field gel analysis of genomic DNA of the plant pathogen Clavibacter michiganensis subsp. sepedonicus revealed the presence of a previously unreported extrachromosomal element. This new element was demonstrated to be a linear plasmid. Of 11 strains evaluated, all contained either a 90-kb (pCSL1) or a 140-kb (pCSL2) linear plasmid.

  15. Structure and properties of the algebra of partially transposed permutation operators

    Energy Technology Data Exchange (ETDEWEB)

    Mozrzymas, Marek [Institute for Theoretical Physics, University of Wrocław, 50-204 Wrocław (Poland); Horodecki, Michał; Studziński, Michał [Institute for Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk (Poland); National Quantum Information Centre of Gdańsk, 81-824 Sopot (Poland)

    2014-03-15

    We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreducible representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)

  16. The rulB gene of plasmid pWW0 is a hotspot for the site-specific insertion of integron-like elements found in the chromosomes of environmental Pseudomonas fluorescens group bacteria.

    Science.gov (United States)

    Rhodes, Glenn; Bosma, Hester; Studholme, David; Arnold, Dawn L; Jackson, Robert W; Pickup, Roger W

    2014-08-01

    The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1-FH6). Integration into rulB on pWW0 occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 were 9403 bp in length and contained eight open reading frames (ORFs), while the ILE from FH4 was 16 233 bp in length and contained 16 ORFs. In all three ILEs, the first 5.1 kb (containing ORFs 1-4) were structurally conserved and contained three predicted site-specific recombinases/integrases and a tetR homologue. Downstream of these resided ORFs of the 'variable side' with structural and sequence similarity to those encoding survival traits on the fitness enhancing plasmid pGRT1 (ILE(FH1) and ILE(FH5)) and the NR-II virulence region of genomic island PAGI-5 (ILE(FH4)). Collectively, these ILEs share features with the previously described type III protein secretion system effector ILEs and are considered important to host survival and transfer of fitness enhancing and (a)virulence genes between bacteria.

  17. Reading transposed text: effects of transposed letter distance and consonant-vowel status on eye movements.

    Science.gov (United States)

    Blythe, Hazel I; Johnson, Rebecca L; Liversedge, Simon P; Rayner, Keith

    2014-11-01

    Two experiments were conducted to investigate the flexibility of letter-position encoding in word identification during reading. In both experiments, two tasks were used. First, participants' eye movements were measured as they read sentences containing transposed letter (TL) strings. Second, participants were presented with the TL strings in isolation and were asked to discriminate them from nonwords. In Experiment 1, we manipulated the distance between transposed letters (ligament vs. liagment vs. limagent vs. lieamgnt). Reading/response times increased with the distance between TLs. In Experiment 2, we manipulated whether the TLs were consonants, vowels, or one of each (ssytem vs. faeture vs. fromat). Reading/response times showed that CV transpositions were the most disruptive. In both experiments, response accuracy was particularly poor for words presented in isolation when there was an intervening letter between TLs. These data show that processing across multiple fixations, and the presence of a meaningful sentence context, are important for flexible letter position encoding in lexical identification.

  18. Sequences of a co-existing SXT element, a chromosomal integron (CI) and an IncA/C plasmid and their roles in multidrug resistance in a Vibrio cholerae O1 El Tor strain.

    Science.gov (United States)

    Wang, Ruibai; Li, Jie; Kan, Biao

    2016-09-01

    The ongoing seventh cholera pandemic is attributed to Vibrio cholerae O1 El Tor biotype strains. Although antibiotic therapy ameliorates symptoms in patients and reduces pathogen transfer to the environment, multidrug resistance remains a major clinical threat. An O1 El Tor strain isolated from a patient in 1998 was intermediate or resistant to 13 antibiotics and could potentially produce extended-spectrum β-lactamase (ESBL), which is very rare in O1 strains. Using genome sequencing, three relevant genetic elements were identified in this strain: a hybrid SXT element (ICEVchCHN1307); a new IncA/C plasmid (pVC1307); and a chromosomal integron. Twenty antibiotic resistance genes were located on them, including blaTEM-1, blaCTX-M-14 and phenotypically silenced tetRA genes. These data elucidate the role of individual genetic components in antibiotic resistance and the accumulation of drug resistance genes in V. cholerae. Copyright © 2016. Published by Elsevier B.V.

  19. Parallel matrix transpose algorithms on distributed memory concurrent computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Walker, D.W. [Oak Ridge National Lab., TN (United States); Dongarra, J.J. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science

    1993-10-01

    This paper describes parallel matrix transpose algorithms on distributed memory concurrent processors. It is assumed that the matrix is distributed over a P x Q processor template with a block scattered data distribution. P, Q, and the block size can be arbitrary, so the algorithms have wide applicability. The communication schemes of the algorithms are determined by the greatest common divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algorithm involves complete exchange communication. If P and Q are not relatively prime, processors are divided into GCD groups and the communication operations are overlapped for different groups of processors. Processors transpose GCD wrapped diagonal blocks simultaneously, and the matrix can be transposed with LCM/GCD steps, where LCM is the least common multiple of P and Q. The algorithms make use of non-blocking, point-to-point communication between processors. The use of nonblocking communication allows a processor to overlap the messages that it sends to different processors, thereby avoiding unnecessary synchronization. Combined with the matrix multiplication routine, C = A{center_dot}B, the algorithms are used to compute parallel multiplications of transposed matrices, C = A{sup T}{center_dot}B{sup T}, in the PUMMA package. Details of the parallel implementation of the algorithms are given, and results are presented for runs on the Intel Touchstone Delta computer.

  20. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  1. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET, a new method for plasmid reconstruction from whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Val F Lanza

    2014-12-01

    Full Text Available Bacterial whole genome sequence (WGS methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage, comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC, comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  2. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    Science.gov (United States)

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  3. Mosaic structure and regulation of conjugal transfer of the Escherichia coli plasmid pRK100

    NARCIS (Netherlands)

    Starcic Erjavec, Marjanca

    2003-01-01

    Plasmids are extrachromosomal DNA elements that can be found in prokaryotic as well as in eukaryotic cells. They can vary in size and genetic make-up. The plasmid pRK100, which is the study subject of this thesis, is a large (145 kb) natural conjugative plasmid, which was isolated from an uropathoge

  4. Characterization of extended-spectrum beta-lactamase, carbapenemase, and plasmid quinolone determinants in Klebsiella pneumoniae isolates carrying distinct types of 16S rRNA methylase genes, and their association with mobile genetic elements.

    Science.gov (United States)

    Wei, Dan-Dan; Wan, La-Gen; Yu, Yang; Xu, Qun-Fei; Deng, Qiong; Cao, Xian-Wei; Liu, Yang

    2015-04-01

    Eighty-four multidrug-resistant Klebsiella pneumoniae (MDR-KP) isolates from a Chinese hospital from January to October 2012 were evaluated to characterize the coexistence of 16S rRNA methylase, extended-spectrum β-lactamase, carbapenemase, and plasmid-mediated quinolone resistance determinants and their association with mobile genetic elements. Among the 84 MDR-KP isolates studied, 19 isolates exhibited high-level resistance to amikacin mediated by the production of the 16S rRNA methylase. They carried 19 armA genes (22.9%) and three rmtB genes (3.6%). CTX-M genes were found in all of the isolates. Among these armA- or rmtB/CTX-M-producing K. pneumoniae isolates, 31.6% carried the carbapenemase genes (blaKPC-2 [26.3%], blaIMP-4 [10.5%], and blaNDM-1 [5.3%]), which made them resistant to imipenem (minimum inhibitory concentration [MIC] ≥16 mg/L). All positive strains possessed qnr-like genes (16 qnrA1, 10 qnrS1, and 7 qnrB4 genes) and 18 harbored an aac(6')-Ib-cr gene. Mobile elements ISEcp1, IS26, ISCR1, ISAba125, and sul-1 integrons were detected in 19/19 (100%), 16/19 (84.2%), 18/19 (94.7%), 9/19 (47.4%), and 18/19 (94.7%) isolates, respectively. The mobilizing elements occurred in different combinations in the study isolates. Majority of armA and qnr genes were in MDR-KP strains carrying integrons containing the ISCR1. Close to 80% of blaTEM-1 and blaSHV-12 were linked to IS26 while ≥90% of blaCTX-Ms and blaCMYs were linked to ISEcp1. ISAba125 was located upstream of blaNDM-1 and some blaCMY-2 genes. In addition, seven transconjugants were available for further analysis, and armA, qnrS1, acc(6')-Ib-cr, blaCTX-M-15, blaTEM-1, and blaNDM-1 were cotransferred. This study points to the dissemination of 16S rRNA methylase genes and the prevalence of selected elements implicated in evolution of resistance determinants in collection of clinical K. pneumoniae in China.

  5. Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue

    NARCIS (Netherlands)

    Rommens, Caius M.T.; Rudenko, George N.; Dijkwel, Paul P.; Haaren, Mark J.J. van; Ouwerkerk, Pieter B.F.; Blok, Karin M.; Nijkamp, H. John J.; Hille, Jacques

    1992-01-01

    We describe the use of plasmid rescue to facilitate studies on the behaviour of Ds and Ac elements in transgenic tomato plants. The rescue of Ds elements relies on the presence of a plasmid origin of replication and a marker gene selective in Escherichia coli within the element. The position within

  6. Transposed-Letter Priming across Inflectional Morpheme Boundaries

    Science.gov (United States)

    Zargar, Ehsan Shafiee; Witzel, Naoko

    2017-01-01

    This study reports findings from two experiments testing whether a transposed-letter (TL) priming effect can be obtained when the transposition occurs across morphological boundaries. Previous studies have primarily tested derivationally complex words or compound words, but have not examined a more rule-based and productive morphological…

  7. Transposed-Letter Priming across Inflectional Morpheme Boundaries

    Science.gov (United States)

    Zargar, Ehsan Shafiee; Witzel, Naoko

    2017-01-01

    This study reports findings from two experiments testing whether a transposed-letter (TL) priming effect can be obtained when the transposition occurs across morphological boundaries. Previous studies have primarily tested derivationally complex words or compound words, but have not examined a more rule-based and productive morphological…

  8. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked?

    Science.gov (United States)

    Million-Weaver, Samuel; Camps, Manel

    2014-09-01

    Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.

  9. Plasmid-to-plasmid recombination in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1986-01-01

    No recombination between plasmids was observed after conjugal transfer of a plasmid into a cell carrying another plasmid. Two types of such recombination took place after transformation, one type being Rec/sup +/ dependent and suggesting a preferred site of recombination. The other much rarer type was at least partially Rec/sup +/ independent.

  10. Plasmid interference for curing antibiotic resistance plasmids in vivo.

    Science.gov (United States)

    Kamruzzaman, Muhammad; Shoma, Shereen; Thomas, Christopher M; Partridge, Sally R; Iredell, Jonathan R

    2017-01-01

    Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.

  11. Plasmid interference for curing antibiotic resistance plasmids in vivo

    Science.gov (United States)

    Kamruzzaman, Muhammad; Shoma, Shereen; Thomas, Christopher M.; Partridge, Sally R.

    2017-01-01

    Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing (‘addiction’) systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative ‘interference plasmids’ were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored. PMID:28245276

  12. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.

    Science.gov (United States)

    Kim, Dong-Uk; Kim, Min-Sun; Lim, Jong-Sung; Ka, Jong-Ok

    2013-05-01

    Variovorax sp. strain DB1 and Pseudomonas pickettii strain 712 are 2,4-dicholorophenoxy-acetic acid (2,4-D)-degrading bacteria, which were isolated from agricultural soils in Republic of Korea and USA, respectively. Each strain harbors a 2,4-D degradative plasmid and is able to utilize 2,4-D as the sole source of carbon for its growth. The 2,4-D degradative plasmid pDB1 of strain DB1 consisted of a 65,269-bp circular molecule with a G+C content of 66.23% and had 68 ORFs. The 2,4-D degradative plasmid p712 of strain 712 was composed of a 62,798-bp circular molecule with a 62.11% G+C content and had 62 ORFs. The plasmids pDB1 and p712 share significantly homologous 2,4-D degradative genes with high similarity to the tfdR, tfdB-II, tfdC-II, tfdD-II, tfdE-II, tfdF-II, tfdK and tfdA genes of plasmid pJP4 of Alcaligenes eutrophus isolated from Australia. In a phylogenetic analysis with trfA, traL, and trbA genes, pDB1 belonged to IncP-1β with pJP4, while p712 belonged to IncP-1ε with pKJK5 and pEMT3. The results indicated that, in spite of the differences in their backbone regions, the 2,4-D catabolic genes of the two plasmids were closely related and also related to the well-known 2,4-D degradative plasmid pJP4 even though all were isolated from different geographic regions. Other similarities in the genetic organization and the presence of IS1071 suggested that these catabolic genes may be on a transposable element, leading to widespread occurrence in soil bacteria. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Occurrence of Plasmids in the Aromatic Degrading Bacterioplankton of the Baltic Sea

    OpenAIRE

    Ain Heinaru; Jaanis Juhanson; Eve Vedler; Eeva Heinaru; Jekaterina Jutkina

    2011-01-01

    Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly p...

  14. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC.

    Directory of Open Access Journals (Sweden)

    Bryon A Nicholson

    Full Text Available Neonatal Meningitis Escherichia coli (NMEC is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.

  15. Partial transpose of random quantum states: Exact formulas and meanders

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)

    2013-04-15

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  16. Genotype transposer: automated genotype manipulation for linkage disequilibrium analysis.

    Science.gov (United States)

    Cox, D G; Canzian, F

    2001-08-01

    The purpose of this work is to provide the modern molecular geneticist with tools to perform more efficient and more accurate analysis of the genotype data they produce. By using Microsoft Excel macros written in Visual Basic, we can translate genotype data into a form readable by the versatile software 'Arlequin', read the Arlequin output, calculate statistics of linkage disequilibrium, and put the results in a format for viewing with the software 'GOLD'. The software is available by FTP at: ftp://xcsg.iarc.fr/cox/Genotype_Transposer/. Detailed instruction and examples are available at: ftp://xcsg.iarc.fr/cox/Genotype&_Transposer/. Arlequin is available at: http://lgb.unige.ch/arlequin/. GOLD is available at: http://www.well.ox.ac.uk/asthma/GOLD/.

  17. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme.

    Science.gov (United States)

    Hancock, Steven J; Phan, Minh-Duy; Peters, Kate M; Forde, Brian M; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Paterson, David L; Walsh, Timothy R; Beatson, Scott A; Schembri, Mark A

    2017-02-01

    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies. Copyright © 2017 American Society for Microbiology.

  18. Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria.

    Science.gov (United States)

    Springael, D; Ryngaert, A; Merlin, C; Toussaint, A; Mergeay, M

    2001-01-01

    Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified in Ralstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), a Pseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40-54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all beta-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. The bph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the beta-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bph genes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.

  19. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  20. An Improved Method for Including Upper Size Range Plasmids in Metamobilomes

    DEFF Research Database (Denmark)

    Norman, Anders; Riber, Leise; Luo, Wenting

    2014-01-01

    cloning vector (pBR322), and a 56 Kbp conjugative plasmid (pKJK10), to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose......, as gene functions associated with these plasmids, such as conjugation, was exclusively encoded in the data output generated through the modified protocol. Thus, with the suggested modification, access to a large uncharacterized pool of accessory elements that reside on medium-to-large plasmids has been...

  1. The evolution of a conjugative plasmid and its ability to increase bacterial fitness

    Science.gov (United States)

    Dionisio, F; Conceição, I.C; Marques, A.C.R; Fernandes, L; Gordo, I

    2005-01-01

    Conjugative plasmids are extra-chromosomal DNA elements that are capable of horizontal transmission and are found in many natural isolated bacteria. Although plasmids may carry beneficial genes to their bacterial host, they may also cause a fitness cost. In this work, we studied the evolution of the R1 plasmid and we found that, in spite of the R1 plasmid conferring an initial cost to its host, after 420 generations the cost disappeared in all five independent evolution experiments. In fact, in two of these five experiments evolved conjugative plasmids actually conferred a fitness advantage to their hosts. Furthermore, the relative fitness of the ancestral clone bearing one of the evolved plasmids is significantly higher than both the plasmid-free ancestral cells and the evolved cells carrying the evolved plasmid. Given that the R1 plasmid may spread among different species of enterobacteria, we wondered what the effect of the evolved plasmid would be inside Salmonella enterica cells. We found that the evolved plasmid is also able to dramatically increase the relative fitness of these cells. Our results suggest that even if general usage of antibiotics is halted, conjugative plasmids that have been selected with antibiotics in previous years can still persist among bacterial populations or even invade new strains. PMID:17148179

  2. An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome.

    Science.gov (United States)

    Wang, Fei; Li, Zhaoying; Fan, Jun; Li, Pengfei; Hu, Wei; Wang, Gang; Xu, Zhengkai; Song, Rentao

    2010-12-01

    Transposon tagging is an important tool for gene isolation and functional studies. In maize, several transposon-tagging systems have been developed, mostly using Activator/Dissociation (Ac/Ds) and Mutator systems. Here, we establish another Ac-based transposon system with the donor Ac tightly linked with sugary1 (su1) on maize chromosome 4S. Newly transposed Ac (tr-Acs) were detected based on a negative dosage effect, and long-distance-transposed Ac events were identified and isolated from the donor Ac by a simple backcross scheme. In this study, we identified 208 independent long-distance-transposed Ac lines. Thirty-one flanking sequences of these tr-Acs were isolated and localized in the maize genome. As found in previous studies, the tr-Acs preferentially inserted into genic sequences. The distribution of tr-Acs is not random. In our study, the tr-Acs preferentially transposed into chromosomes 1, 2, 9 and 10. We discuss the preferential distribution of tr-Acs from Ac systems. Our system is complementary to two other Ac-based regional-mutagenesis systems in maize, and the combined use of these systems will achieve an even and high-density distribution of Ac elements throughout the maize genome for functional-genomics studies.

  3. Quantifying and visualizing the transfer of exogenous plasmids to environmental microbial communities

    DEFF Research Database (Denmark)

    Dechesne, Arnaud

    2015-01-01

    of a community to take up exogenous plasmid should, however, be an important element affecting the fate of mobile genetic elements released in the environment. We have devised a method to evaluate the permissiveness of a bacterial community towards exogenous plasmids, both quantitatively (how many bacteria can......, our findings highlight the high potential for exogenous plasmids to be transferred to soil microbial communities and indicate that community permissiveness – as affected by environmental conditions- needs to be considered to predict the fate of plasmids in the environment....

  4. Conjugative plasmids of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids

  5. Scaling-up recombinant plasmid DNA for clinical trial: current concern, solution and status.

    Science.gov (United States)

    Ismail, Ruzila; Allaudin, Zeenathul Nazariah; Lila, Mohd-Azmi Mohd

    2012-09-07

    Gene therapy and vaccines are rapidly developing field in which recombinant nucleic acids are introduced in mammalian cells for enhancement, restoration, initiation or silencing biochemical function. Beside simplicity in manipulation and rapid manufacture process, plasmid DNA-based vaccines have inherent features that make them promising vaccine candidates in a variety of diseases. This present review focuses on the safety concern of the genetic elements of plasmid such as propagation and expression units as well as their host genome for the production of recombinant plasmid DNA. The highlighted issues will be beneficial in characterizing and manufacturing plasmid DNA for save clinical use. Manipulation of regulatory units of plasmid will have impact towards addressing the safety concerns raised in human vaccine applications. The gene revolution with plasmid DNA by alteration of their plasmid and production host genetics will be promising for safe delivery and obtaining efficient outcomes.

  6. Differences of Skew Schur Functions of Staircases with Transposed Foundations

    CERN Document Server

    Morin, Matthew

    2010-01-01

    We consider the skew diagram $\\Delta_n$, which is the $180^\\circ$ rotation of the staircase diagram $\\delta_n = (n,n-1,n-2,...,2,1)$. We create a staircase with bad foundation by augmenting $\\Delta_n$ with another skew diagram, which we call the \\textit{foundation}. We consider pairs of staircases with bad foundation whose foundations are transposes of one another. Among these pairs, we show that the difference of the corresponding skew Schur functions is Schur-positive in the case when one of the foundations consists of either a one or two row diagram, or a hook diagram.

  7. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids

    Directory of Open Access Journals (Sweden)

    Susu He

    2016-12-01

    Full Text Available The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.

  8. Phenotypic plasticity in bacterial plasmids.

    Science.gov (United States)

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  9. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: Plasmids promote the immigration of other plasmids but repress co-colonizing plasmids.

    Science.gov (United States)

    Gama, João Alves; Zilhão, Rita; Dionisio, Francisco

    2017-08-24

    Conjugative plasmids encode the genes responsible for the synthesis of conjugative pili and plasmid transfer. Expression of the conjugative machinery (including conjugative pili) may be costly to bacteria, not only due to the energetic/metabolic cost associated with their expression but also because they serve as receptors for certain viruses. Consequently, the presence of two plasmids in the same cell may be disadvantageous to each plasmid, because they may impose a higher fitness cost on the host. Therefore, plasmids may encode mechanisms to cope with co-resident plasmids. Moreover, it is possible that the transfer rate of a plasmid is affected by the presence of a distinct plasmid in the recipient cell. In this work, we measured transfer rates of twelve natural plasmids belonging to seven incompatibility groups in three situations, namely when: (i) donor cells contain a plasmid and recipient cells are plasmid-free; (ii) donor cells contain two unrelated plasmids and recipient cells are plasmid-free; and (iii) half of the cells contain a given plasmid and the other half contain another, unrelated, plasmid. In the third situation, recipient cells of a plasmid are the donor cells of the other plasmid. We show that there are more negative interactions (reduction of a plasmid's conjugative efficiency) between plasmids if they reside in the same cell than if they reside in different cells. However, if plasmids interacted intercellularly, the transfer rate of one of the plasmids was often higher (when the unrelated conjugative plasmid was present in the recipient cell) than if the recipient cell was plasmid-free - a positive effect. Experimental data retrieved from the study of mutant plasmids not expressing conjugative pili on the cell surface suggest that positive effects result from a higher efficiency of mating pair formation. Overall, our results suggest that negative interactions are significantly more frequent when plasmids occupy the same cell. Such

  10. Plasmid recombination in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.

    1982-01-01

    DNA recombination in exponential phase and competent Haemophilus influenzae was measured by an electron microscopic assay that relies on the conversion of plasmid RSF0885 monomers into multimeric forms. Dimer circles were present at a frequency of 2% in plasmid preparations from competent Rd (wild-type) cells; multimers were present at a frequency of 0.2% in preparations from exponential phase cells. Thus, plasmid recombination was stimulated in competent cells. Multimer formation occurred efficiently in cells of the transformation defective mutant rec2, implying that the rec2 gene product is not required for plasmid recombination. However, the absence of multimer plasmids in preparations from competent cells of the transformation defective mutant rec1 suggests that the rec1 gene product is required. Digestion of purified plasmids with restriction endonuclease PvuII, which makes a single cut in the monomer, revealed the presence of recombination intermediates composed of two linear plasmids joined to form two pairs of arms resembling the Greek letter chi. Length measurements of these arms taken from a population of recombination intermediates gave evidence that the plasmids were joined at sites of homology. The distributions of individual DNA strands, at the intersections of the four arms, could be resolved in some recombination intermediates and were of two types. The first type of junction appeared as a single-stranded arm appended to each corner. The second type of junction consisted of a single strand of DNA linking the two linear plasmids at a site of homology. The single-stranded linker was frequently situated at the edge of a short gap on one of the plasmids in the pair. The fine structures of the recombinational joints have been interpreted in terms of previously proposed models of recombination.

  11. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Carattoli, Alessandra; Zankari, Ea; García-Fernández, Aurora

    2014-01-01

    In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft...... genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration...... sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection...

  12. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology

    Science.gov (United States)

    Orlek, Alex; Stoesser, Nicole; Anjum, Muna F.; Doumith, Michel; Ellington, Matthew J.; Peto, Tim; Crook, Derrick; Woodford, Neil; Walker, A. Sarah; Phan, Hang; Sheppard, Anna E.

    2017-01-01

    Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes,’ such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made. PMID:28232822

  13. Complete genetic analysis of plasmids carrying mcr-1 and other resistance genes in an Escherichia coli isolate of animal origin.

    Science.gov (United States)

    Li, Ruichao; Xie, Miaomiao; Lv, Jingzhang; Wai-Chi Chan, Edward; Chen, Sheng

    2017-03-01

    To investigate the genetic features of three plasmids recovered from an MCR-1 and ESBL-producing Escherichia coli strain, HYEC7, and characterize the transmission mechanism of mcr-1 . The genetic profiles of three plasmids were determined by PCR, S1-PFGE, Southern hybridization and WGS analysis. The ability of the mcr-1 -bearing plasmid to undergo conjugation was also assessed. The mcr-1 -bearing transposon Tn 6330 was characterized by PCR and DNA sequencing. Complete sequences of three plasmids were obtained. A non-conjugative phage P7-like plasmid, pHYEC7- mcr1 , was found to harbour the mcr-1 -bearing transposon Tn 6330 , which could be excised from the plasmid by generating a circular intermediate harbouring mcr-1 and the IS Apl1 element. The insertion of the circular intermediate into another plasmid, pHYEC7-IncHI2, could form pHNSHP45-2, the original IncHI2-type mcr-1 -carrying plasmid that was reported. The third plasmid, pHYEC7-110, harboured two replicons, IncX1 and IncFIB, and comprised multiple antimicrobial resistance mobile elements, some of which were shared by pHYEC7-IncHI2. The Tn 6330 element located in the phage-like plasmid pHYEC7- mcr1 could be excised from the plasmid and formed a circular intermediate that could be integrated into plasmids containing the IS Apl1 element. This phenomenon indicated that Tn 6330 is a key element responsible for widespread dissemination of mcr-1 among various types of plasmids and bacterial chromosomes. The dissemination rate of such an element may be further enhanced upon translocation into phage-like vectors, which may also be transmitted via transduction events.

  14. Transposing, Transforming and Transcending Tradition in Creative Digital Media

    DEFF Research Database (Denmark)

    Prager, Phillip; Thomas, Maureen; Selsjord, Marianne

    2015-01-01

    and storytelling arts combine to create rich, complex, and engaging moving-image based artworks with wide appeal. It examines how dramatist and interactive media artist Maureen Thomas and 3D media artist and conservator Marianne Selsjord deploy creative digital technologies to transpose, transform, and transcend...... of the aspirations and approaches of 20th-century avant-garde artists, revealing these as a potent source of conceptual riches for the digital media creators of today and tomorrow.......How can digital media technologies, contemporary theories of creativity, and tradition combine to develop the aesthetics of computer-based art today and in the future? Through contextualised case-studies, this chapter investigates how games, information technologies, and traditional visual...

  15. Transposing, Transforming and Transcending Tradition in Creative Digital Media

    DEFF Research Database (Denmark)

    Prager, Phillip; Thomas, Maureen; Selsjord, Marianne

    2015-01-01

    How can digital media technologies, contemporary theories of creativity, and tradition combine to develop the aesthetics of computer-based art today and in the future? Through contextualised case-studies, this chapter investigates how games, information technologies, and traditional visual...... and storytelling arts combine to create rich, complex, and engaging moving-image based artworks with wide appeal. It examines how dramatist and interactive media artist Maureen Thomas and 3D media artist and conservator Marianne Selsjord deploy creative digital technologies to transpose, transform, and transcend...... of the aspirations and approaches of 20th-century avant-garde artists, revealing these as a potent source of conceptual riches for the digital media creators of today and tomorrow....

  16. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107

  17. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  18. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones.

    Science.gov (United States)

    Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis

    2015-01-01

    Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements.

  19. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  20. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    Science.gov (United States)

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  1. The 64 508 bp IncP-1beta antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1beta group.

    Science.gov (United States)

    Schlüter, A; Heuer, H; Szczepanowski, R; Forney, L J; Thomas, C M; Pühler, A; Top, E M

    2003-11-01

    The complete 64508 bp nucleotide sequence of the IncP-1beta antibiotic-resistance plasmid pB10, which was isolated from a waste-water treatment plant in Germany and mediates resistance against the antimicrobial agents amoxicillin, streptomycin, sulfonamides and tetracycline and against mercury ions, was determined and analysed. A typical class 1 integron with completely conserved 5' and 3' segments is inserted between the tra and trb regions. The two mobile gene cassettes of this integron encode a beta-lactamase of the oxacillin-hydrolysing type (Oxa-2) and a gene product of unknown function (OrfE-like), respectively. The pB10-specific gene load present between the replication module (trfA1) and the origin of vegetative replication (oriV) is composed of four class II (Tn3 family) transposable elements: (i). a Tn501-like mercury-resistance (mer) transposon downstream of the trfA1 gene, (ii). a truncated derivative of the widespread streptomycin-resistance transposon Tn5393c, (iii). the insertion sequence element IS1071 and (iv). a Tn1721-like transposon that contains the tetracycline-resistance genes tetA and tetR. A very similar Tn501-like mer transposon is present in the same target site of the IncP-1beta degradative plasmid pJP4 and the IncP-1beta resistance plasmid R906, suggesting that pB10, R906 and pJP4 are derivatives of a common ancestor. Interestingly, large parts of the predicted pB10 restriction map, except for the tetracycline-resistance determinant, are identical to that of R906. It thus appears that plasmid pB10 acquired as many as five resistance genes via three transposons and one integron, which it may rapidly spread among bacterial populations given its high promiscuity. Comparison of the pB10 backbone DNA sequences with those of other sequenced IncP-1beta plasmids reveals a mosaic structure. While the conjugative transfer modules (trb and tra regions) and the replication module are very closely related to the corresponding segments of the IncP-1

  2. Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food.

    Science.gov (United States)

    Zurfluh, Katrin; Nüesch-Inderbinen, Magdalena; Klumpp, Jochen; Poirel, Laurent; Nordmann, Patrice; Stephan, Roger

    2017-01-01

    Mcr-1-harboring Enterobacteriaceae are reported worldwide since their first discovery in 2015. However, a limited number of studies are available that compared full-length plasmid sequences of human and animal origins. In this study, mcr-1-bearing plasmids from seven Escherichia coli isolates recovered from patients (n = 3), poultry meat (n = 2) and turkey meat (n = 2) in Switzerland were further analyzed and compared. Isolates were characterized by multilocus sequence typing (MLST). The mcr-1-bearing plasmids were transferred by transformation into reference strain E. coli DH5α and MCR-1-producing transformants were selected on LB-agar supplemented with 2 mg/L colistin. Purified plasmids were then sequenced and compared. MLST revealed six distinct STs, illustrating the high clonal diversity among mcr-1-positive E. coli isolates of different origins. Two different mcr-1-positive plasmids were identified from a single E. coli ST48 human isolate. All other isolates possessed a single mcr-1 harboring plasmid. Transferable IncI2 (size ca. 60-61 kb) and IncX4 (size ca. 33-35 kb) type plasmids each bearing mcr-1 were found associated with human and food isolates. None of the mcr-1-positive IncI2 and IncX4 plasmids possessed any additional resistance determinants. Surprisingly, all but one of the sequenced mcr-1-positive plasmids lacked the ISApl1 element, which is a key element mediating acquisition of mcr-1 into various plasmid backbones. There is strong evidence that the food chain may be an important transmission route for mcr-1-bearing plasmids. Our data suggest that some "epidemic" plasmids rather than specific E. coli clones might be responsible for the spread of the mcr-1 gene along the food chain.

  3. Comparative genomics of the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Fricke, W Florian; Welch, Timothy J; McDermott, Patrick F; Mammel, Mark K; LeClerc, J Eugene; White, David G; Cebula, Thomas A; Ravel, Jacques

    2009-08-01

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.

  4. Conjugative transfer of an IncA/C plasmid-borne blaCMY-2 gene through genetic re-arrangements with an IncX1 plasmid.

    Science.gov (United States)

    Wiesner, Magdalena; Fernández-Mora, Marcos; Cevallos, Miguel A; Zavala-Alvarado, Crispín; Zaidi, Mussaret B; Calva, Edmundo; Silva, Claudia

    2013-11-21

    Our observation that in the Mexican Salmonella Typhimurium population none of the ST19 and ST213 strains harbored both the Salmonella virulence plasmid (pSTV) and the prevalent IncA/C plasmid (pA/C) led us to hypothesize that restriction to horizontal transfer of these plasmids existed. We designed a conjugation scheme using ST213 strain YU39 as donor of the blaCMY-2 gene (conferring resistance to ceftriaxone; CRO) carried by pA/C, and two E. coli lab strains (DH5α and HB101) and two Typhimurium ST19 strains (SO1 and LT2) carrying pSTV as recipients. The aim of this study was to determine if the genetic background of the different recipient strains affected the transfer frequencies of pA/C. YU39 was able to transfer CRO resistance, via a novel conjugative mechanism, to all the recipient strains although at low frequencies (10-7 to 10-10). The presence of pSTV in the recipients had little effect on the conjugation frequency. The analysis of the transconjugants showed that three different phenomena were occurring associated to the transfer of blaCMY-2: 1) the co-integration of pA/C and pX1; 2) the transposition of the CMY region from pA/C to pX1; or 3) the rearrangement of pA/C. In addition, the co-lateral mobilization of a small (5 kb) ColE1-like plasmid was observed. The transconjugant plasmids involving pX1 re-arrangements (either via co-integration or ISEcp1-mediated transposition) obtained the capacity to conjugate at very high levels, similar to those found for pX1 (10-1). Two versions of the region containing blaCMY-2 were found to transpose to pX1: the large version was inserted into an intergenic region located where the "genetic load" operons are frequently inserted into pX1, while the short version was inserted into the stbDE operon involved in plasmid addiction system. This is the first study to report the acquisition of an extended spectrum cephalosporin (ESC)-resistance gene by an IncX1 plasmid. We showed that the transfer of the YU39 blaCMY-2 gene

  5. DNA rearrangement has occurred in the carbazole-degradative plasmid pCAR1 and the chromosome of its unsuitable host, Pseudomonas fluorescens Pf0-1.

    Science.gov (United States)

    Shintani, Masaki; Matsumoto, Takashi; Yoshikawa, Hirofumi; Yamane, Hisakazu; Ohkuma, Moriya; Nojiri, Hideaki

    2011-12-01

    The carbazole-degradative plasmid pCAR1 carries the class II transposon Tn4676, which contains the car and ant genes, essential for conversion of carbazole into anthranilate, and anthranilate into catechol, respectively. In our previous study, DNA rearrangements in pCAR1 were frequently detected in the host Pseudomonas fluorescens Pf0-1 in the presence of carbazole, resulting in the improvement of host survivability. Several Pf0-1 mutants harbouring pCAR1 were isolated, and deletion of DNA in the plasmid ant gene was found. Here, we compared genome sequences of the parent strain Pf0-1L(pCAR1::rfp) and one of its mutants, 5EP83, to assess whether other DNA rearrangements occurred in either the plasmid or the host chromosome. We found transposition of Tn4676 into the 5EP83 chromosome. In addition, ISPre1 had transposed into the car gene intergenic region on the pCAR1-derivative plasmid of 5EP83, which inhibited car transcription. As a result of these transpositions, 5EP83 was able to metabolize carbazole due to the Tn4676 on its chromosome, although the car genes on its plasmid were non-functional. We also found that one copy of duplicate carAa genes had been deleted, and that ISPre4 had transposed into both the host chromosome and the plasmid. Our findings suggest that Pf0-1 harbouring pCAR1 is subjected to DNA rearrangements not only on the plasmid but also on its chromosome in the presence of carbazole.

  6. Multi-particle entanglement under asymptotic positive partial transpose preserving operations

    OpenAIRE

    Ishizaka, S; Plenio, M. B.

    2005-01-01

    We demonstrate that even under positive partial transpose preserving operations in an asymptotic setting GHZ and W states are not reversibly interconvertible. We investigate the structure of minimal reversible entanglement generating set (MREGS) for tri-partite states under positive partial transpose (ppt) preserving operations. We demonstrate that the set consisting of W and EPR states alone cannot be an MREGS. In this context we prove the surprising result that the relative entropy of entan...

  7. A novel transposable Mu-like prophage in Bacillus alcalophilus CGMCC 1.3604(ATCC 27647)

    Institute of Scientific and Technical Information of China (English)

    Junjie; Yang; Yimeng; Kong; Xuan; Li; Sheng; Yang

    2015-01-01

    <正>Dear Editor,Transposable phages,which are reproduced by transposition(Harshey,2012;Taylor,1963),have been widely applied in the field of biotechnology to manipulate operon/gene fusions,in vivo cloning,randomion mutagenesis,and integration of DNA into bacterial genomes(Abalakina et al.,2008;Akhverdyan et al.,2011).One of the best-studied transposable phages is

  8. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    Science.gov (United States)

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods.

  9. Plasmid profile in oral Fusobacterium nucleatum from humans and Cebus apella monkeys

    Directory of Open Access Journals (Sweden)

    Paula Marcia O.

    2003-01-01

    Full Text Available Fusobacterium nucleatum is a strict anaerobe and is indigenous of the human oral cavity. This organism is commonly recovered from different monomicrobial and mixed infections in humans and animals. In this study, the plasmid profile, the plasmid stability and the penicillin-resistance association in oral F. nucleatum isolated from periodontal patients, healthy subjects and Cebus apella monkeys were evaluated. Forty-five F. nucleatum strains from patients, 38 from healthy subjects and seven from C. apella were identified and analyzed. Plasmid extraction was performed in all the isolated strains. These elements were found in 26.7% strains from patients and one strain from C. apella. Strains from healthy subjects did not show any plasmid. Most of strains showed two plasmid bands ranging from 4 to 16 Kb, but digestions with endonucleases showed that they belonged to a single plasmid. The plasmid profile was similar and stable in human and monkey strains. Also, plasmids were classified into three groups according to size. Two strains were positive to beta-lactamase production and no plasmid DNA-hybridization with a beta-lactamase gene probe was observed, suggesting a chromosomal resistance.

  10. Dimension-Independent Positive-Partial-Transpose Probability Ratios

    CERN Document Server

    Slater, P B

    2005-01-01

    We conduct quasi-Monte Carlo numerical integrations in two very high (80 and 79)-dimensional domains -- the parameter spaces of rank-9 and rank-8 qutrit-qutrit (9 x 9) density matrices. We, then, estimate the ratio of the probability -- in terms of the Hilbert-Schmidt metric -- that a generic rank-9 density matrix has a positive partial transpose (PPT) to the probability that a generic rank-8 density matrix has a PPT (a precondition to separability/nonentanglement). Close examination of the numerical results generated -- despite certain large fluctuations -- indicates that the true ratio may, in fact, be 2. Our earlier investigation (eprint quant-ph/0410238) also yielded estimates close to 2 of the comparable ratios for qubit-qubit and qubit-qutrit pairs (the only two cases where the PPT condition fully implies separability). Therefore, it merits conjecturing (as Zyczkowski was the first to do) that such Hilbert-Schmidt (rank-NM/rank-(NM-1)) PPT probability ratios are 2 for all NM-dimensional quantum systems.

  11. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells.

    Science.gov (United States)

    Yant, Stephen R; Kay, Mark A

    2003-12-01

    Herein, we report that the DNA-dependent protein kinase (DNA-PK) regulates the DNA damage introduced during Sleeping Beauty (SB) element excision and reinsertion in mammalian cells. Using both plasmid- and chromosome-based mobility assays, we analyzed the repair of transposase-induced double-stranded DNA breaks in cells deficient in either the DNA-binding subunit of DNA-PK (Ku) or its catalytic subunit (DNA-PKcs). We found that the free 3' overhangs left after SB element excision were efficiently and accurately processed by the major Ku-dependent nonhomologous-end-joining pathway. Rejoining of broken DNA molecules in the absence of Ku resulted in extensive end degradation at the donor site and greatly increased the frequency of recombination with ectopic templates. Therefore, the major DNA-PK-dependent DNA damage response predominates over more-error-prone repair pathways and thereby facilitates high-fidelity DNA repair during transposon mobilization in mammalian cells. Although transposable elements were not found to be efficiently circularized after transposase-mediated excision, DNA-PK deficiency supported more-frequent transposase-mediated element insertion than was found in wild-type controls. We conclude that, based on its ability to regulate excision site junctional diversity and transposon insertion frequency, DNA-PK serves an important protective role during transpositional recombination in mammals.

  12. Role of Plasmids in Lactobacillus brevis BSO 464 Hop Tolerance and Beer Spoilage

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa

    2014-01-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate. PMID:25501474

  13. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  14. Co-resident plasmids travel together.

    Science.gov (United States)

    Gama, João Alves; Zilhão, Rita; Dionisio, Francisco

    2017-08-24

    Conjugative plasmids encode genes that enable them to transfer, by conjugation, from a given host cell to another cell. Conjugative transfer, despite being an important feature of conjugative plasmids, is not constitutive for most plasmids, the reason being that genes involved in horizontal transfer are mostly repressed. Only upon their transient de-repression are plasmids able to transfer horizontally. If host cells harbour multiple plasmids, their simultaneous transfer depends on simultaneous transient de-repression of all plasmids. If de-repression of different plasmids was random and independent events, simultaneous de-repression should be a rare event because the probability of simultaneous de-repression would be the product of the probabilities of de-repression of each plasmid. Some previous observations support this hypothesis, while others show that co-transfer of plasmids is more frequent than this reasoning indicates. Here, we show that co-transfer of multiple plasmids mainly results from non-independent events: the probability that all plasmids within a cell become de-repressed is much higher than if de-repression of plasmids genes were independent. We found a simple model for the probability of co-transfer: the plasmid having the lowest conjugation rates is the one who limits co-transfer. In this sense, cells receiving the plasmid with the lower transfer rate also receive the other plasmid. If de-repression happens simultaneously on co-resident plasmids, common cues may stimulate de-repression of distinct plasmids. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Chlamydophila felis plasmid is highly conserved.

    Science.gov (United States)

    Harley, Ross; Day, Sarinder; Di Rocco, Camillo; Helps, Chris

    2010-11-20

    The presence of a plasmid in the Chlamydiaceae is both species and strain specific. Knowledge of the prevalence of the plasmid in different Chlamydia species is important for future studies aiming to investigate the role of the plasmid in chlamydial biology and disease. Although strains of Chlamydophila felis with or without the plasmid have been identified, only a small number of laboratory-adapted strains have been analysed and the prevalence of the plasmid in field isolates has not been determined. This study aimed to determine the prevalence of the plasmid in C. felis-positive conjunctival and oropharyngeal clinical samples submitted for routine diagnosis of C. felis by real-time (Q)PCR. DNA extracts from four laboratory-adapted strains were also analysed. QPCR assays targeting regions of C. felis plasmid genes pCF01, pCF02 and pCF03 were developed for the detection of plasmid DNA. QPCR analysis of DNA extracts from C. felis-positive clinical samples found evidence of plasmid DNA in 591 of 595 samples representing 561 of 564 (99.5%) clinical cases. Plasmid DNA was also detected by QPCR in laboratory-adapted strains 1497V, K2487 and K2490, but not strain 905. We conclude that the plasmid is highly conserved in C. felis, and plasmid-deficient strains represent a rare but important population for future studies of chlamydial plasmid function.

  16. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

    Directory of Open Access Journals (Sweden)

    Corey M Hudson

    Full Text Available Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for β-lactamases being of particular concern. Some β-lactamases are active on a broad spectrum of β-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-β-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight β-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses

  17. PLASMIDS FROM ANAEROCELLUM THERMOPHILUM AND USES THEREOF

    DEFF Research Database (Denmark)

    2003-01-01

    The present invention concerns the isolation of plasmids from extremely thermophilic anaerobic microorganisms and their use in genetic transformation of thermophilic and mesophilic microorganisms. More particular the invention concerns the use of thermostable plasmid vectors as tools for creating...

  18. Plasmid required for virulence of Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Watson, B.; Currier, T.C.; Gordon, M.P.; Chilton, M.D.; Nester, E.W.

    1975-07-01

    The irreversible loss of crown gall-inducing ability of Agrobacterium tumefaciens strain C-58 during growth at 37/sup 0/C is shown to be due to loss of a large plasmid (1.2 x 10/sup 8/ daltons). The gene responsible for this high rate of plasmid loss at elevated temperatures seems to be located on the plasmid. In addition, another spontaneous avirulent variant, A. tumefaciens strain IIBNV6, is shown to lack the virulence plasmid which its virulent sibling strain, IIBV7, possesses. Deoxyribonucleic acid reassociation measurements prove that the plasmid is eliminated, not integrated into the chromosome, in both of the avirulent derivatives. Transfer of virulence from donor strain C-58 to avirulent recipient strain A136 results from the transfer of a plasmid, which appears identical to the donor plasmid by deoxyribonucleic acid reassociation measurements. The transfer of virulence in another cross, K27 x A136, was also shown to result from the transfer of a large plasmid. These findings establish unequivocally that the large plasmid determines virulence. Two additional genetic determinants have been located on the virulence plasmid of A. tumefaciens strain C-58: the ability to utilize nopaline and sensitivity to a bacteriocin produced by strain 84. The latter trait can be exploited for selection of avirulent plasmid-free derivatives of strain C-58. The trait of nopaline utilization appears to be on the virulence plasmid also in strains IIBV7 and K27.

  19. Origin and Evolution of Rickettsial Plasmids.

    Science.gov (United States)

    El Karkouri, Khalid; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2016-01-01

    Rickettsia species are strictly intracellular bacteria that have undergone a reductive genomic evolution. Despite their allopatric lifestyle, almost half of the 26 currently validated Rickettsia species have plasmids. In order to study the origin, evolutionary history and putative roles of rickettsial plasmids, we investigated the evolutionary processes that have shaped 20 plasmids belonging to 11 species, using comparative genomics and phylogenetic analysis between rickettsial, microbial and non-microbial genomes. Plasmids were differentially present among Rickettsia species. The 11 species had 1 to 4 plasmid (s) with a size ranging from 12 kb to 83 kb. We reconstructed pRICO, the last common ancestor of the current rickettsial plasmids. pRICO was vertically inherited mainly from Rickettsia/Orientia chromosomes and diverged vertically into a single or multiple plasmid(s) in each species. These plasmids also underwent a reductive evolution by progressive gene loss, similar to that observed in rickettsial chromosomes, possibly leading to cryptic plasmids or complete plasmid loss. Moreover, rickettsial plasmids exhibited ORFans, recent gene duplications and evidence of horizontal gene transfer events with rickettsial and non-rickettsial genomes mainly from the α/γ-proteobacteria lineages. Genes related to maintenance and plasticity of plasmids, and to adaptation and resistance to stress mostly evolved under vertical and/or horizontal processes. Those involved in nucleotide/carbohydrate transport and metabolism were under the influence of vertical evolution only, whereas genes involved in cell wall/membrane/envelope biogenesis, cycle control, amino acid/lipid/coenzyme and secondary metabolites biosynthesis, transport and metabolism underwent mainly horizontal transfer events. Rickettsial plasmids had a complex evolution, starting with a vertical inheritance followed by a reductive evolution associated with increased complexity via horizontal gene transfer as well as

  20. Chlamydophila felis: plasmid detection in Italian isolates.

    Science.gov (United States)

    Di Francesco, Antonietta; Donati, Manuela; Salvatore, Daniela; Cevenini, Roberto; Di Paolo, Maria; Baldelli, Raffaella

    2010-04-01

    Plasmids have been detected in the majority of strains in the genus Chlamydia and in many Chlamydophila species. Previous studies showed that FP Pring and FP Cello Chlamydophila felis strains have an extrachromosomial plasmid, whereas the FP Baker strain does not. Azuma et al. recently sequenced the entire genomic DNA sequence of the Japanese Cp. felis strain Fe/C-56 and described a 7,552 base pair circular plasmid. In the present study a highly conserved plasmid gene was detected in 11 Italian Cp. felis isolates, showing 100% nucleotide identity with the plasmid gene of Fe/C-56 Cp. felis strain.

  1. Genome Sequence of Listeria monocytogenes Plasmid pLM-C-273 Carrying Genes Related to Stress Resistance.

    Science.gov (United States)

    Liang, Lindsay; Gnaneshan, Saravanamuttu; Garduño, Rafael A; Mallo, Gustavo V

    2016-10-13

    Mobile genetic elements in bacteria, such as plasmids, act as important vectors for the transfer of antibiotic resistance, virulence, and metal resistance genes. Here, we report the genome sequence of a new plasmid pLM-C-273, identified in a Listeria monocytogenes strain isolated from a clinical sample in Ontario, Canada.

  2. Genome Sequence of Listeria monocytogenes Plasmid pLM-C-273 Carrying Genes Related to Stress Resistance

    Science.gov (United States)

    Liang, Lindsay; Gnaneshan, Saravanamuttu; Garduño, Rafael A.

    2016-01-01

    Mobile genetic elements in bacteria, such as plasmids, act as important vectors for the transfer of antibiotic resistance, virulence, and metal resistance genes. Here, we report the genome sequence of a new plasmid pLM-C-273, identified in a Listeria monocytogenes strain isolated from a clinical sample in Ontario, Canada. PMID:27738039

  3. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali

    2015-01-01

    SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spind......SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes...

  4. TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.

    Science.gov (United States)

    Allen, Genevera I; Tibshirani, Robert

    2010-06-01

    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.

  5. Do transposed-letter similarity effects occur at a prelexical phonological level?

    Science.gov (United States)

    Perea, Manuel; Carreiras, Manuel

    2006-09-01

    Nonwords created by transposing two letters (e.g., RELOVUTION) are very effective at activating the lexical representation of their base words (Perea & Lupker, 2004). In the present study, we examined whether the nature of transposed-letter (TL) similarity effects was purely orthographic or whether it could also have a phonological component. Specifically, we examined transposed-letter similarity effects for nonwords created by transposing two nonadjacent letters (e.g., relovución-REVOLUCION) in a masked form priming experiment using the lexical decision task (Experiment 1). The controls were (a) a pseudohomophone of the transposed-letter prime (relobución-REVOLUCION; note that B and V are pronounced as /b/ in Spanish) or (b) an orthographic control (relodución-REVOLUCION). Results showed a similar advantage of the TL nonword condition over the phonological and the orthographic control conditions. Experiment 2 showed a masked phonological priming effect when the letter positions in the prime were in the right order. In a third experiment, using a single-presentation lexical decision task, TL nonwords produced longer latencies than the orthographic and phonological controls, whereas there was only a small phonological effect restricted to the error data. These results suggest that TL similarity effects are orthographic--rather than phonological--in nature.

  6. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    Science.gov (United States)

    Chen, Wenyao; Fang, Tingzi; Zhou, Xiujuan; Zhang, Daofeng; Shi, Xianming; Shi, Chunlei

    2016-01-01

    The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6′)-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid

  7. Isolation of Plasmids in Legionella pneumophila and Legionella-Like Organisms

    Science.gov (United States)

    1981-03-01

    INtF1(-r1iN ANt11;MM NITY. St.?? NAI 1 1271 2. Voj . NO .j toNO TES (Isolation of Plasmids in Legionella pneumophila and Legionella -Like Organisms...Agarose gel electrophoresis was employed to screen nine strains of Legionella - like bacteria and one strain of Legionella pneumophila for the presence of...similar to sideration of the ubiquitous nature of plasmid but genetically distinct front Legionella pneumophila elements. These results indicate that

  8. An En/Spm based transposable element system for gene isolation in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Aarts, M.G.M.

    1996-01-01

    At the start of the research described in this thesis, the main aim was to develop, study and apply an efficient En/Spm-I/dSpm based transposon tagging system in Arabidopsis thaliana to generate tagged mutants and to provide insights in the possibilities for future applications of such a transposon

  9. Regulation of Metastasis and DNA Damage Resistance Pathways by Transposable Elements

    Science.gov (United States)

    2014-10-01

    Subtask 2. Develop a novel siRNA screen for genetic requirements for DSB induced TE reactivation. The primary objective for Task 1 was to understand how...Kähkönen M, Schwartzentruber J, Kircher M, University of Washington Centre for Mendelian Genomics, FORGE Canada Consortium, Majewski J, Dyment DA

  10. A tiger mouse and relatives. Variants caused by an activated transposable element?

    Science.gov (United States)

    Wallace, M E; Nash, H R

    1984-01-01

    In a laboratory-bred population of wild Peruvian house mice, one male had an excessive rate of non-pairing of the X and Y chromosomes. After crossing him with laboratory stock mice, a mouse of very unusual phenotype appeared from a yellow (AyA) mother. He was yellow with black dorsal stripes; hence Tiger. He was mated to many females, and inbred F2 and F3 generations were raised. There were no more tiger phenotypes, but his F1 contained an excess of black-and-tans over yellows, showing him to be a gonosomic mosaic Ayat/atat; the homozygous cell line probably arose from the heterozygous one. The mitotic karyotype was normal. Some of Tiger's mates were of known allozyme types and their progeny were scored. The allozyme segregations were normal, except at the Es-3 locus (esterase-3), for which Tiger was typed as homozygous. Several unusual events among Tiger's close relatives included a mutation to an unstable pattern mutant, three probable translocations, and several cases of somatic defect. All unusual mice derived from Tiger's yellow mother, whose genome was one-quarter Peruvian. Yellow is associated with an ecotropic murine leukemia virus. The Peru genome is characterized by a high occurrence of mutation and aberrant karyotypes. It is suggested that something from the Peru genome in Tiger's mother caused instability of the DNA sequence associated with yellow, with related disturbance at different locations thereafter. The nature of this instability, and of the Peru genome, is discussed.

  11. Activation and Inactivation of Pseudomonas stutzeri Methylbenzene Catabolism Pathways Mediated by a Transposable Element

    Science.gov (United States)

    Bolognese, Fabrizio; di Lecce, Cinzia; Galli, Enrica; Barbieri, Paola

    1999-01-01

    The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No IS was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family. PMID:10223973

  12. Convex set of quantum states with positive partial transpose analysed by hit and run algorithm

    Science.gov (United States)

    Szymański, Konrad; Collins, Benot; Szarek, Tomasz; Życzkowski, Karol

    2017-06-01

    The convex set of quantum states of a composite K × K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K≥slant 3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0, 4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi-circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0, 3], which describes well the level density obtained numerically for PPT states.

  13. Effects of Un-transposed UHV Transmission Line on Fault Analysis of Power Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Anning; CHEN Qing; ZHOU Zhanping

    2008-01-01

    The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method with the symmetrical distributed parameter circuit model as the equivalent circuit of the un-transposed ultra high voltage (UHV) transmission line were studied under both normal operation and fault, and the corresponding problems arising were pointed out. By contrast with electromagnetic transient and power electronics (EMTPE) simulation results with the asymmetrical distributed parameter circuit model of un-transposed line, it is shown that the conventional method cannot show the existence of negative and zero sequences before fault happening and there are many errors on voltage and current after fault happening which are different with fault types. The error ranges of voltage and current are 2.13%-81.13% and -7.82%-86.15%, respectively.

  14. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Aditya S Pratihar; Vishnu P Tripathi; Mukesh P Yadav; Dharani D Dubey

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2OO4, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2OO4 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727-associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2OO4 or ars727 remains unaltered by the extended chromosomal context.

  15. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  16. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates.

    Science.gov (United States)

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like

  17. The muc+ gene of plasmid pKM101 prevents respiration shutoff in far ultraviolet-irradiated Salmonella typhimurium.

    Science.gov (United States)

    Swenson, P A

    1981-01-01

    The plasmid PKM101 is known to protect Escherichia coli and Salmonella typhimurium against killing by far UV irradiation and to enhance UV-induced mutagenesis. The muc+ gene of the plasmid is responsible for both of these effects. This paper shows that respiration of S. typhimurium shuts off about an hour after UV irradiation and that pKM101 prevents the shutoff. Plasmids which contained Tn5 translocatable elements, either in (and having produced a muc mutation) or flanking the muc+ gene, have been introduced into S. typhimurium. The muc mutant plasmid, which does not protect its host against UV killing and does not enhance UV induced mutagenesis, also does not protect against UV induced respiration shutoff. Likewise, plasmids in which the Tn5 translocatable elements flank the muc+ gene protect against shutoff of respiration. Thus the muc+ gene of pKM101 is responsible for protection against UV induced shutoff of respiration in S. typhimurium.

  18. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  19. Persistence of Antibiotic Resistance Plasmids in Biofilms

    Science.gov (United States)

    2014-10-01

    plasmids* in*populations*of* Gram > negative *bacteria*grown*in*biofilms*and*well>mixed*liquid*cultures.** * Task2:*Characterize*the*evolution*of*plasmid...R.! Edwards.! 2005.! Overview! of! nosocomial! infections! caused! by! gramP negative ! bacilli .!Clin.!Infect.!Dis.!41:848P854.! LoftiePEaton,!W.,!A... negative ! interaction!between!one!of! its!chromosomal!segments!and!the!plasmid! by!simply!deleting!the!appropriate!chromosomal!segment.!! 7. None

  20. Plasmid profiles of Moraxella bovis isolates.

    Science.gov (United States)

    McDonald, T J; Pugh, G W

    1986-04-01

    Two-hundred isolates of Moraxella bovis were selected at random and examined for the presence of plasmid DNA by a rapid alkaline-detergent lysis method. All isolates contained from 1 to 6 plasmids, with varying agarose-gel electrophoretic migration patterns. Most (80%) isolates carried 2 to 4 plasmids, which ranged in molecular weight from 2.6 to 80 megadaltons. Seemingly, plasmid profiles can be used as a simple, reliable epizootiologic tool to establish a strain identification scheme for M bovis.

  1. Plasmid transfer systems in the rhizobia.

    Science.gov (United States)

    Ding, Hao; Hynes, Michael F

    2009-08-01

    Rhizobia are agriculturally important bacteria that can form nitrogen-fixing nodules on the roots of leguminous plants. Agricultural application of rhizobial inoculants can play an important role in increasing leguminous crop yields. In temperate rhizobia, genes involved in nodulation and nitrogen fixation are usually located on one or more large plasmids (pSyms) or on symbiotic islands. In addition, other large plasmids of rhizobia carry genes that are beneficial for survival and competition of rhizobia in the rhizosphere. Conjugative transfer of these large plasmids thus plays an important role in the evolution of rhizobia. Therefore, understanding the mechanism of conjugative transfer of large rhizobial plasmids provides foundations for maintaining, monitoring, and predicting the behaviour of these plasmids during field release events. In this minireview, we summarize two types of known rhizobial conjugative plasmids, including quorum sensing regulated plasmids and RctA-repressed plasmids. We provide evidence for the existence of a third type of conjugative plasmid, including pRleVF39c in Rhizobium leguminosarum bv. viciae strain VF39SM, and we provide a comparison of the different types of conjugation genes found in members of the rhizobia that have had their genomes sequenced so far.

  2. The replication origin of a repABC plasmid

    Directory of Open Access Journals (Sweden)

    Cevallos Miguel A

    2011-06-01

    Full Text Available Abstract Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The ori

  3. Effect of chromosome homology an plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1984-05-14

    The pairing between plasmid and the homologous part of the chromosome associated with plasmid establishment may differ from the pairing which results from integration of a homologous region of the plasmid into the chromosome. Thus the rate of novobiocin transformation decreases with duplication of the chromosomal portion in pMB2, but the rate of establishment of the plasmid increases with this duplication. A model to explain these data is given. 17 references, 5 figures, 4 tables.

  4. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  5. Genomic and functional characterization of qnr-encoding plasmids from municipal wastewater biosolid Klebsiella pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Ella eKaplan

    2015-12-01

    Full Text Available Municipal wastewater treatment facilities are considered to be hotspots for antibiotic resistance since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp, multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to 5 different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9Kbp and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other p

  6. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ivanov Ivan

    2011-03-01

    Full Text Available Abstract Background Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ gene placed under the control of different regulatory elements (promoter and ribosome-binding sites were used as a model. Results Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985. The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites and segregational plasmid stability (determined by the above model was also observed. Conclusions Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy

  7. Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM.

    Science.gov (United States)

    Peng, Yun; Lu, Jun; Wong, Joyce J W; Edwards, Ross A; Frost, Laura S; Mark Glover, J N

    2014-11-11

    The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH β-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.

  8. Broad-Host-Range IncP-1 plasmids and their resistance potential

    Directory of Open Access Journals (Sweden)

    Magdalena ePopowska

    2013-03-01

    Full Text Available The plasmids of the incompatibility group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad host range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.

  9. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid.

    Science.gov (United States)

    Tagg, Kaitlin A; Iredell, Jonathan R; Partridge, Sally R

    2014-08-01

    Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Repetitive elements, architects of genomic variation in Verticillium

    Science.gov (United States)

    Vascular wilt pathogens in the genus Verticillium show considerable variation with respect to their host ranges, genomic organization, and the variety and number of transposable elements (TEs) that they carry. These families of TE sequences were first documented in the wide host range, plant pathog...

  11. Genetic Manipulation of Prochlorococcus Strain MIT9313: Green Fluorescent Protein Expression from an RSF1010 Plasmid and Tn5 Transposition▿

    Science.gov (United States)

    Tolonen, Andrew C.; Liszt, Gregory B.; Hess, Wolfgang R.

    2006-01-01

    Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans. PMID:17041154

  12. Genetic manipulation of Prochlorococcus strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition.

    Science.gov (United States)

    Tolonen, Andrew C; Liszt, Gregory B; Hess, Wolfgang R

    2006-12-01

    Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.

  13. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    Science.gov (United States)

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2015-11-02

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.

  14. Molecular biology of maize Ac/Ds elements: an overview.

    Science.gov (United States)

    Lazarow, Katina; Doll, My-Linh; Kunze, Reinhard

    2013-01-01

    Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.

  15. RepA and RepB exert plasmid incompatibility repressing the transcription of the repABC operon.

    Science.gov (United States)

    Pérez-Oseguera, Angeles; Cevallos, Miguel A

    2013-11-01

    Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.

  16. Transposed-letter priming effects in reading aloud words and nonwords.

    Science.gov (United States)

    Mousikou, Petroula; Kinoshita, Sachiko; Wu, Simon; Norris, Dennis

    2015-10-01

    A masked nonword prime generated by transposing adjacent inner letters in a word (e.g., jugde) facilitates the recognition of the target word (JUDGE) more than a prime in which the relevant letters are replaced by different letters (e.g., junpe). This transposed-letter (TL) priming effect has been widely interpreted as evidence that the coding of letter position is flexible, rather than precise. Although the TL priming effect has been extensively investigated in the domain of visual word recognition using the lexical decision task, very few studies have investigated this empirical phenomenon in reading aloud. In the present study, we investigated TL priming effects in reading aloud words and nonwords and found that these effects are of equal magnitude for the two types of items. We take this result as support for the view that the TL priming effect arises from noisy perception of letter order within the prime prior to the mapping of orthography to phonology.

  17. Development of a novel plasmid as a shuttle vector for heterologous gene expression in Mycoplasma yeatsii.

    Science.gov (United States)

    Kent, Bethany N; Foecking, Mark F; Calcutt, Michael J

    2012-10-01

    A circular plasmid, pMyBK1, was detected in Mycoplasma yeatsii strain GIH(T). Analysis of the sequence of the 3432-bp replicon identified two predicted open reading frames (ORFs), one with sequence similarity to multiple plasmid mobilization proteins and one that matches only to hypothetical ORFs encoded by integrated chromosomal elements in the sequenced genomes of two Mycoplasma species. Shuttle vectors were constructed in Escherichia coli which could be introduced into M. yeatsii at high efficiency (10(4)-10(5) per μg DNA) by electroporation. Independent deletion analysis of the two ORFs disclosed that whereas mob was dispensable, orf2 was necessary for plasmid replication or maintenance. The absence of plasmid-encoded database matches for ORF2 indicates that pMyBK1 represents a novel plasmid family. One shuttle vector was used to demonstrate heterologous expression of the Mycoplasma fermentans malp gene and was stable during multiple passages. The host-plasmid system described has potential application for genetic manipulation in a genus for which few replicative vectors are available.

  18. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles.

    Directory of Open Access Journals (Sweden)

    George Lezin

    Full Text Available Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E. coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps.

  19. Genetic diversity of Xanthomonas axonopodis pv. citri based on plasmid profile and pulsed field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Carvalho Flávia Maria de Souza

    2005-01-01

    Full Text Available Xanthomonas axonopodis pv. citri strains that cause disease in citrus were investigated by pulsed field and plasmid profile analysis. For the first method, genomic DNA was digested by the rare-cutting enzymes Xba I and Vsp I. The strains evaluated were collected in seven different States of Brazil and in Argentina, Bolivia, Paraguay and Uruguay. Genetic variability was found among strains of X. axonopodis pv. citri from different geographical areas Argentina, Bolivia and Uruguay, with similarities varying from 0.62 to 0.83. However, the strains collected in Brazil, despite being from different States, have shown a genetic similarity ranging from 0.83 to 1.00. Cluster analysis showed a relationship between genomic similarity and geographical origin of the strains. Plasmids were observed in all strains, with a total of five different plasmids, with sizes between 57.7 and 83.0 kilobases. The 72.6 kb plasmid was the most frequent, present in 15 out of 22 strains, while the 68.1 kb plasmid was observed in two strains only. Although the plasmid diversity detected in the present study was not very great, the X. axonopodis pv. citri strains evaluated showed a considerable degree of diversity with regard to this extrachromosomal genetic element.

  20. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.

    Science.gov (United States)

    Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F

    2016-06-20

    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.

  1. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen.

    Directory of Open Access Journals (Sweden)

    Pablo Llop

    Full Text Available Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.

  2. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen.

    Science.gov (United States)

    Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H M; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M

    2011-01-01

    Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.

  3. Plasmid typing of Shigella sonnei epidemic strains and molecular relationship of their R-plasmids.

    Science.gov (United States)

    Mendoza, M C; Gonzalez, A J; Mendez, F J; Hardisson, C

    1988-06-01

    We conducted a surveillance program on epidemic and/or endemic Shigella strains in Asturias (Spain), their frequency and dispersion in our community, and their R-plasmids. We analyzed initial isolates of Shigella sonnei from two epidemic outbreaks using antibiotic resistance patterns and plasmid profile analysis as epidemiological markers. We found that the 2 outbreaks were caused by different S. sonnei strains, which respectively carried one and two R-plasmids together with other plasmids. The molecular relationship among these and three other R-plasmids from two S. sonnei strains isolated during a previous outbreak, were studied by restriction enzyme analysis and DNA-DNA hybridizations. We were able to establish different levels of relationship among the six R-plasmids.

  4. Plasmids in the driving seat: The regulatory RNA Rcd gives plasmid ColE1 control over division and growth of its E. coli host.

    Science.gov (United States)

    Gaimster, Hannah; Summers, David

    2015-03-01

    Regulation by non-coding RNAs was found to be widespread among plasmids and other mobile elements of bacteria well before its ubiquity in the eukaryotic world was suspected. As an increasing number of examples was characterised, a common mechanism began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modifying their translation. One regulatory RNA that seemed to swim against the tide was Rcd, encoded within the multimer resolution site of ColE1. Required for high fidelity maintenance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein target, elevating indole production by stimulating tryptophanase. Rcd production is up-regulated in dimer-containing cells and the consequent increase in indole is part of the response to the rapid accumulation of dimers by over-replication (known as the dimer catastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid replication, stopping the catastrophe and allowing time for the resolution of dimers to monomers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded in the 1980s, appears to be enjoying a revival. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Recombinational instability of F' plasmids in Escherichia coli K-12: localization of fre-sites.

    Science.gov (United States)

    Bresler, S E; Krivonogov, S V; Lanzov, V A

    1981-01-01

    The F' plasmids ORF-1 (purE+ tsxs proC+ lac+) and F'14 (argE+ metB+ ilv+) contain active regions of recombination, fre I and fre II correspondingly. The plasmid ORF-1 is stable in recF- cells (i.e., with the RecBC pathway of recombination) and decays in rec+ cells (RecBCF pathway) giving two types of product: F+ and plasmid pCK-1 (tsxs proC+ lac+) containing part of the initial DNA. They are extremely instable in the presence of the RecF pathway, (recBC- sbcB-), yielding F+ and plasmid pCK-2 (proC+ lac+). The instability of plasmids depends on a region of homology between the chromosome and the episome. The instability of ORF-1 shows the participation of IS3 elements (alpha 1 beta 3 and alpha 3 beta 1) in the recA, recF-dependent recombinational decay and allows localization of two active sites on the chromosome: fre I1 between purE and tsx markers and fre I2 between tsx and proC. The plasmid F'14, in accordance with published data, is able to yield F+ cells by recA-independent recombination. But eventually this plasmid may undergo a recA, recF-dependent decay. Genetic analysis of these events allows localization of an active point of recombination, freII1, between argE and metB. Another active point is localized inside the F factor. The recA-dependent decay of plasmid F-14 is also excluded on the RecBC pathway (recF- strains).

  6. Indistinguishability of bipartite states by positive-partial-transpose operations in the many-copy scenario

    Science.gov (United States)

    Li, Yinan; Wang, Xin; Duan, Runyao

    2017-05-01

    A bipartite subspace S is called strongly positive-partial-transpose (PPT) unextendible if for every positive integer k , there is no PPT operator supporting on the orthogonal complement of S⊗k. We show that a subspace is strongly PPT unextendible if it contains a PPT-definite operator (a positive semidefinite operator whose partial transpose is positive definite). Based on these, we are able to propose a simple criterion for verifying whether a set of bipartite orthogonal quantum states is indistinguishable by PPT operations in the many-copy scenario. Utilizing this criterion, we further point out that any entangled pure state and its orthogonal complement cannot be distinguished by PPT operations in the many-copy scenario. On the other hand, we investigate that the minimum dimension of strongly PPT-unextendible subspaces in an m ⊗n system is m +n -1 , which involves a generalization of the result that non-positive-partial-transpose subspaces can be as large as any entangled subspace [N. Johnston, Phys. Rev. A 87, 064302 (2013), 10.1103/PhysRevA.87.064302].

  7. Prevalence and molecular characterization of plasmid- mediated ...

    African Journals Online (AJOL)

    lactamase genes among nosocomial Staphylococcus aureus drug resistance isolates in Taiwan. .... Table 2: Plasmid profiles of the clinical antibiotic-resistant pathogens. Strain. Profile .... Madec J. Characterization of clinical canine methicillin-.

  8. antimicrobial susceptibility and plasmids from escherichia coli ...

    African Journals Online (AJOL)

    2001-10-10

    Oct 10, 2001 ... transmission to humans of E. coli containing antibiotic resistance plasmids ... resistant micro-organisms, which may in turn transfer resistance to .... cells were washed with sterile normal saline to remove leached. Я-lactamase ...

  9. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  10. Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain

    Directory of Open Access Journals (Sweden)

    Skilton Rachel J

    2009-05-01

    suggest that the plasmid is not a highly mobile genetic element and does not transfer readily between isolates. Comparative analysis of the plasmid sequences has revealed the most conserved regions that should be used to design future plasmid based nucleic acid amplification tests, to avoid diagnostic failures.

  11. Protein diversity confers specificity in plasmid segregation.

    Science.gov (United States)

    Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2005-04-01

    The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation.

  12. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic......-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning. Udgivelsesdato: July 1...

  13. Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant.

    Science.gov (United States)

    Li, Ruichao; Xie, Miaomiao; Zhang, Jinfei; Yang, Zhiqiang; Liu, Lizhang; Liu, Xiaobo; Zheng, Zhiwei; Chan, Edward Wai-Chi; Chen, Sheng

    2017-02-01

    To analyse and compare mcr-1-bearing plasmids from animal Escherichia coli isolates, and to investigate potential mechanisms underlying dissemination of mcr-1. Ninety-seven ESBL-producing E. coli strains isolated from pig farms in China were screened for the mcr-1 gene. Fifteen mcr-1-positive strains were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured. Three major types of mcr-1-bearing plasmids were recovered: IncX4 (∼33 kb), IncI2 (∼60 kb) and IncHI2 (∼216-280 kb), among which the IncX4 and IncI2 plasmids were found to harbour the mcr-1 gene only, whereas multiple resistance elements including blaCTX-M, blaCMY, blaTEM, fosA, qnrS, floR and oqxAB were detected, in various combinations, alongside mcr-1 in the IncHI2 plasmids. The profiles of mcr-1-bearing plasmids in the test strains were highly variable, with coexistence of two mcr-1-bearing plasmids being common. However, the MIC of colistin was not affected by the number of mcr-1-carrying plasmids harboured. Comparative analysis of the plasmids showed that they contained an mcr-1 gene cassette with varied structures (mcr-1-orf, ISApl1-mcr-1-orf and Tn6330), with the IncHI2 type being the most active in acquiring foreign resistance genes. A novel transposon, Tn6330, with the structure ISApl1-mcr-1-orf-ISApl1 was found to be the key element mediating translocation of mcr-1 into various plasmid backbones through formation of a circular intermediate. The mcr-1 gene can be disseminated via multiple mobile elements including Tn6330, its circular intermediate and plasmids harbouring such elements. It is often co-transmitted with other resistance determinants through IncHI2 plasmids. The functional mechanism of Tn6330, a typical composite transposon harbouring mcr-1, should be further investigated. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  14. Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.

  15. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  16. Multiple plasmid interference - Pledging allegiance to my enemy's enemy.

    Science.gov (United States)

    Gama, João Alves; Zilhão, Rita; Dionisio, Francisco

    2017-08-24

    As shown in the previous article, two distinct conjugative plasmids sometimes interact within bacterial cells, implicating changes of transfer rates. In most cases of interactions within bacteria, the transfer of one of the plasmids decreases. Less frequently, the transfer rate of one of the plasmids increases. Here we analyse what happens if three distinct conjugative plasmids colonize the same bacterial cell. Our aim is to understand how interactions between two plasmids affect the transfer rate of the third plasmid. After showing that plasmids interact in 59 out of 84 possible interactions we show that, with some exceptions, if the transfer rate of a plasmid decreases in the presence of a second plasmid, a decrease is also observed in the presence of a third plasmid. Moreover, if the conjugation rate of a plasmid increases in the presence of another, an increase is also observed if there is a third plasmid in the cell. Both types of interactions are mostly independent of the third plasmid's identity, even if sometimes the third plasmid quantitatively distorts the interaction of the other two plasmids. There is a bias towards negative intensifying interactions, which provide good news concerning the spread conjugative plasmids encoding antibiotic-resistance genes and virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nucleotide Sequence and Evolution of the Five-Plasmid Complement of the Phytopathogen Pseudomonas syringae pv. maculicola ES4326

    OpenAIRE

    2004-01-01

    Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasm...

  18. Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea.

    Science.gov (United States)

    Kim, Eun Sil; Chong, Yong Pil; Park, Su-Jin; Kim, Mi-Na; Kim, Sung-Han; Lee, Sang-Oh; Choi, Sang-Ho; Woo, Jun Hee; Jeong, Jin-Yong; Kim, Yang Soo

    2017-10-01

    The plasmid-mediated colistin resistance gene, mcr-1, was identified for the first time from a hospitalized patient in South Korea. The mcr-1 gene was successfully transferred to E. coli J53 recipient and conferred resistance to colistin in the recipient. The mcr-1-harboring plasmid possessed a typical IncI2 group and did not have the mcr-1-associated ISApl1 element. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Clostridium perfringens type A–E toxin plasmids

    Science.gov (United States)

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  20. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2010-12-20

    The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

  1. Characterization of the Complete Nucleotide Sequences of IncA/C2 Plasmids Carrying In809-Like Integrons from Enterobacteriaceae Isolates of Wildlife Origin.

    Science.gov (United States)

    Papagiannitsis, Costas C; Kutilova, Iva; Medvecky, Matej; Hrabak, Jaroslav; Dolejska, Monika

    2017-09-01

    A total of 18 Enterobacteriaceae (17 from gulls and 1 from a clinical sample) collected from Australia, carrying IncA/C plasmids with the IMP-encoding In809-like integrons, were studied. Seven plasmids, being representatives of different origins, plasmid sizes, replicon combinations, and resistance genes, were completely sequenced. Plasmid pEc158, identified in a clinical Escherichia coli ST752 isolate, showed extensive similarity to type 2 IncA/C2 plasmids. pEc158 carried none of the blaCMY-2-like region or ARI-B and ARI-A regions, while it contained a hybrid transposon structure. The six remaining plasmids, which were of wildlife origin, were highly similar to each other and probably were fusion derivatives of type 1 and type 2 A/C2 plasmids. The latter plasmids contained an ARI-B region and hybrid transposon structures. In all plasmids, hybrid transposon structures containing In809-like integrons were inserted 3,434 bp downstream of the rhs2 start codon. In all cases, the one outermost 38-bp inverted repeat (IR) of the transposon was associated with the Tn1696 tnp module, while the other outermost 38-bp IR of the transposon was associated with either a Tn6317-like module or a Tn21 mer module. However, the internal structure of the transposon and the resistance genes were different in each plasmid. These findings indicated that, for the specific periods of time and settings, different IncA/C2 plasmid types carrying In809-like elements circulated among isolates of wildlife and clinical origins. Additionally, they provided the basis for speculations regarding the reshuffling of IncA/C2 plasmids with In809-like integrons and confirmed the rapid evolution of IncA/C2 plasmid lineages. Copyright © 2017 American Society for Microbiology.

  2. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents.

  3. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids

    OpenAIRE

    Jalasvuori, Matti; Friman, Ville-Petri; Nieminen, Anne; Jaana K.H. Bamford; Buckling, Angus

    2011-01-01

    Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple ant...

  4. The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages.

    Science.gov (United States)

    Boccard, F; Smokvina, T; Pernodet, J L; Friedmann, A; Guérineau, M

    1989-03-01

    Streptomyces ambofaciens ATCC23877 and derivatives contain the 11-kb element pSAM2 present in an integrated state or as a free and integrated plasmid. This element, able to integrate site-specifically in the genome of different Streptomyces species, is conjugative and mobilizes chromosomal markers. Besides these plasmid functions, we have shown that the site-specific recombination system of pSAM2 presents strong similarities with that of several temperate phages. The integration event is promoted by a site-specific recombinase of the integrase family. The int gene encoding this integrase is closely linked to the plasmid attachment site (attP). A small open reading frame (ORF) overlaps the int gene and the predicted protein exhibits similarities with Xis proteins involved in phages excision. The integrated copy of pSAM2 in strain ATCC23877 is flanked by att sequences (attL and attR). Another att sequence (attX) is present in this strain and attX and attL are the boundaries of a 42-kb fragment (xSAM1) absent, as well as pSAM2, from S.ambofaciens DSM40697. Sequences partially similar to pSAM2 int gene are found near the chromosomal integration zone in both S.ambofaciens strains. The possible origin of pSAM2, an element carrying plasmid as well as phage features, is discussed.

  5. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China.

    Science.gov (United States)

    Sun, Fengjun; Yin, Zhe; Feng, Jiao; Qiu, Yefeng; Zhang, Defu; Luo, Wenbo; Yang, Huiying; Yang, Wenhui; Wang, Jie; Chen, Weijun; Xia, Peiyuan; Zhou, Dongsheng

    2015-01-01

    Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of bla NDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY bla NDM-1-carrying plasmid pKOX_NDM1. The bla NDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of bla NDM-1 gene contexts.

  6. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China

    Directory of Open Access Journals (Sweden)

    Dongsheng eZhou

    2015-05-01

    Full Text Available Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, harboring conjugative plasmids pYNKP001-NDM and pP10164-NDM with determination of complete nucleotide sequences, respectively, were isolated from two different Chinese patients. Production of NDM-1 enzyme by these plasmids accounts for carbapenem resistance of these two strains. This is the first report of blaNDM in L. adecarboxylata and the third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01 and p271A, while pP10164-NDM is similar to the IncFIIY blaNDM-1-carrying plasmid pKOX_NDM1. The blaNDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the prototype NDM-1-encoding Tn125 as observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE or its remnant denotes MITE felicitates transposition and mobilization of blaNDM-1 gene contexts.

  7. Molecular Diversity and Plasmid Analysis of KPC-Producing Escherichia coli.

    Science.gov (United States)

    Chavda, Kalyan D; Chen, Liang; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2016-07-01

    The emergence and spread of Klebsiella pneumoniae carbapenemase (KPC) among Enterobacteriaceae presents a major public health threat to the world. Although not as common as in K. pneumoniae, KPC is also found in Escherichia coli strains. Here, we genetically characterized 9 carbapenem-resistant E. coli strains isolated from six hospitals in the United States and completely sequenced their blaKPC-harboring plasmids. The nine strains were isolated from different geographical locations and belonged to 8 different E. coli sequence types. Seven blaKPC-harboring plasmids belonged to four different known incompatibility groups (IncN, -FIA, -FIIK2, and -FIIK1) and ranged in size from ∼16 kb to ∼241 kb. In this analysis, we also identified two plasmids that have novel replicons: (i) pBK28610, which is similar to p34978-3 with an insertion of Tn4401b, and (ii) pBK31611, which does not have an apparent homologue in the GenBank database. Moreover, we report the emergence of a pKP048-like plasmid, pBK34397, in E. coli in the United States. Meanwhile, we also found examples of interspecies spread of blaKPC plasmids, as pBK34592 is identical to pBK30683, isolated from K. pneumoniae In addition, we discovered examples of acquisition (pBK32602 acquired an ∼46-kb fragment including a novel replication gene, along with Tn4401b and other resistance genes) and/or loss (pKpQIL-Ec has a 14.5-kb deletion compared to pKpQIL-10 and pBK33689) of DNA, demonstrating the plasticity of these plasmids and their rapid evolution in the clinic. Overall, our study shows that the spread of blaKPC-producing E. coli is largely due to horizontal transfer of blaKPC-harboring plasmids and related mobile elements into diverse genetic backgrounds.

  8. A Type III protein-RNA toxin-antitoxin system from Bacillus thuringiensis promotes plasmid retention during spore development.

    Science.gov (United States)

    Short, Francesca L; Monson, Rita E; Salmond, George P C

    2015-01-01

    Members of the Bacillus cereus sensu lato group of bacteria often contain multiple large plasmids, including those encoding virulence factors in B. anthracis. Bacillus species can develop into spores in response to stress. During sporulation the genomic content of the cell is heavily compressed, which could result in counterselection of extrachromosomal genomic elements, unless they have robust stabilization and segregation systems. Toxin-antitoxin (TA) systems are near-ubiquitous in prokaryotes and have multiple biological roles, including plasmid stabilization during vegetative growth. Here, we have shown that a Type III TA system, based on an RNA antitoxin and endoribonuclease toxin, from plasmid pAW63 in Bacillus thuringiensis serovar kurstaki HD-73 can dramatically promote plasmid retention in populations undergoing sporulation and germination, and we provide evidence that this occurs through the post-segregational killing of plasmid-free forespores. Our findings show how an extremely common genetic module can be used to ensure plasmid maintenance during stress-induced developmental transitions, with implications for plasmid dynamics in B. cereus s.l. bacteria.

  9. Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid

    Directory of Open Access Journals (Sweden)

    Gunge Norio

    2003-01-01

    Full Text Available Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid which carried the host telomeric repeats TG1-3 of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat, suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1-3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.

  10. Orthographic Reading Deficits in Dyslexic Japanese Children: Examining the Transposed-Letter Effect in the Color-Word Stroop Paradigm

    Science.gov (United States)

    Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo

    2016-01-01

    In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as “cholocate” as the correct word “chocolate.” Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading. PMID:27303331

  11. Distribution of small native plasmids in Streptococcus pyogenes in India.

    Science.gov (United States)

    Bergmann, René; Nerlich, Andreas; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric

    2014-05-01

    Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India.

  12. On the structure of the body of states with positive partial transpose

    Energy Technology Data Exchange (ETDEWEB)

    Szarek, Stanislaw J [Case Western Reserve University, Cleveland, OH (United States); Universite Paris VI, Paris (France); Bengtsson, Ingemar [Fysikum, Stockholm University, Stockholm (Sweden); Zyczkowski, Karol [Perimeter Institute, Waterloo, Ontario (Canada); Institute of Physics, Jagiellonian University, Cracow (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland)

    2006-02-03

    We show that the convex set of separable mixed states of the 2 x 2 system is a body of a constant height. This fact is used to prove that the probability of finding a random state to be separable equals twice the probability of finding a random boundary state to be separable, provided that the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) measure. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system. (letter to the editor)

  13. On the structure of the body of states with positive partial transpose

    CERN Document Server

    Szarek, S; Zyczkowski, K; Szarek, Stanislaw; Bengtsson, Ingemar; Zyczkowski, Karol

    2005-01-01

    We show that the convex set of separable mixed states of the 2 x 2 system is a body of constant height. This fact is used to prove that the probability to find a random state to be separable equals 2 times the probability to find a random boundary state to be separable, provided the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) distance. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.

  14. LETTER TO THE EDITOR: On the structure of the body of states with positive partial transpose

    Science.gov (United States)

    Szarek, Stanislaw J.; Bengtsson, Ingemar; Zyczkowski, Karol

    2006-02-01

    We show that the convex set of separable mixed states of the 2 × 2 system is a body of a constant height. This fact is used to prove that the probability of finding a random state to be separable equals twice the probability of finding a random boundary state to be separable, provided that the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) measure. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.

  15. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiangling; YUAN Hanying; HE Wei; HU Xianghua; LU Hong; LI Yuyang

    2005-01-01

    Based on a previously used plasmid pHC11, a new plasmid pHC11R was constructed. Cutting plasmid pHC11R with proper restriction enzymes, the resulting larger DNA fragment pHC11R' was co-transformed with a PCR amplified expression cassette of human IFNα2b into yeast. By means of the homologous sequences at both ends of two DNA fragments, a novel expression plasmid pHC11R-IFNα2b was formed via homologous recombination in the yeast. Compared with pHC11-IFNα2b, the expression plasmid pHC11R-IFNα2b was smaller in size and in absence of antibiotic resistant gene. The stability and copy number of pHC11R- IFNα2b were greatly increased and the expression level of heterologous protein was improved. As the derivatives of pHC11R, a series of recombination expression vectors pHRs containing different combination of expression elements were developed. This led to a rapid and powerful method for cloning and expressing of different genes in yeast.

  16. Development and application of a general plasmid reference material for GMO screening.

    Science.gov (United States)

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences

    Science.gov (United States)

    Balaj, Leonora; Lessard, Ryan; Dai, Lixin; Cho, Yoon-Jae; Pomeroy, Scott L.; Breakefield, Xandra O.; Skog, Johan

    2011-01-01

    Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. PMID:21285958

  18. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  19. Complete Sequences of mcr-1-Harboring Plasmids from Extended-Spectrum-β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae

    Science.gov (United States)

    Li, Aiqing; Yang, Yong; Miao, Minhui; Chavda, Kalyan D.; Mediavilla, José R.; Xie, Xiaofang; Feng, Ping; Kreiswirth, Barry N.

    2016-01-01

    Here we completely sequenced four mcr-1-haboring plasmids, isolated from two extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli and two carbapenemase-producing Klebsiella pneumoniae clinical isolates. The mcr-1-harboring plasmids from an E. coli sequence type 2448 (ST2448) isolate and two K. pneumoniae ST25 isolates were identical (all pMCR1-IncX4), belonging to the IncX4 incompatibility group, while the plasmid from an E. coli ST2085 isolate (pMCR1-IncI2) belongs to the IncI2 group. A nearly identical 2.6-kb mcr-1-pap2 element was found to be shared by all mcr-1-carrying plasmids. PMID:27090180

  20. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Science.gov (United States)

    Fernández-Alarcón, Claudia; Singer, Randall S; Johnson, Timothy J

    2011-01-01

    Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  1. Complete Sequences of Four Plasmids of Lactococcus lactis subsp. cremoris SK11 Reveal Extensive Adaptation to the Dairy Environment†

    Science.gov (United States)

    Siezen, Roland J.; Renckens, Bernadet; van Swam, Iris; Peters, Sander; van Kranenburg, Richard; Kleerebezem, Michiel; de Vos, Willem M.

    2005-01-01

    Lactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp. cremoris SK11 is widely used by the dairy industry in cheese making. Its complete plasmid complement was sequenced and found to contain the plasmids pSK11A (10,372 bp), pSK11B (13,332 bp), pSK11L (47,165 bp), and pSK11P (75,814 bp). Six highly homologous repB-containing replicons were found, all belonging to the family of lactococcal theta-type replicons. Twenty-three complete insertion sequence elements segment the plasmids into numerous modules, many of which can be identified as functional units or containing functionally related genes. Plasmid-encoded functions previously known to reside on L. lactis SK11 plasmids were now mapped in detail, e.g., lactose utilization (lacR-lacABCDFEGX), the proteolytic system (prtM-prtP, pepO, pepF), and the oligopeptide permease system (oppDFBCA). Newly identified plasmid-encoded functions could facilitate the uptake of various cations, while the pabA and pabB genes could be essential for folate biosynthesis. A competitive advantage could be obtained by using the putative flavin adenine dinucleotide-dependent d-lactate dehydrogenase and oxalate:formate antiporter for enhanced ATP synthesis, while the activity of the predicted α-acetolactate decarboxylase may contribute to the formation of an additional electron sink. Various stress response proteins are plasmid encoded, which could enhance strain robustness. A substantial number of these “adaptation” genes have not been described before on L. lactis plasmids. Moreover, several genes were identified for the first time in L. lactis, possibly reflecting horizontal gene transfer. PMID:16332824

  2. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  3. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  4. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  5. Plasmids spread very fast in heterogeneous bacterial communities.

    Science.gov (United States)

    Dionisio, Francisco; Matic, Ivan; Radman, Miroslav; Rodrigues, Olivia R; Taddei, François

    2002-01-01

    Conjugative plasmids can mediate gene transfer between bacterial taxa in diverse environments. The ability to donate the F-type conjugative plasmid R1 greatly varies among enteric bacteria due to the interaction of the system that represses sex-pili formations (products of finOP) of plasmids already harbored by a bacterial strain with those of the R1 plasmid. The presence of efficient donors in heterogeneous bacterial populations can accelerate plasmid transfer and can spread by several orders of magnitude. Such donors allow millions of other bacteria to acquire the plasmid in a matter of days whereas, in the absence of such strains, plasmid dissemination would take years. This "amplification effect" could have an impact on the evolution of bacterial pathogens that exist in heterogeneous bacterial communities because conjugative plasmids can carry virulence or antibiotic-resistance genes. PMID:12524329

  6. Endogenous mutagenesis in recombinant sulfolobus plasmids.

    Science.gov (United States)

    Sakofsky, Cynthia J; Grogan, Dennis W

    2013-06-01

    Low rates of replication errors in chromosomal genes of Sulfolobus spp. demonstrate that these extreme thermoacidophiles can maintain genome integrity in environments with high temperature and low pH. In contrast to this genetic stability, we observed unusually frequent mutation of the β-D-glycosidase gene (lacS) of a shuttle plasmid (pJlacS) propagated in Sulfolobus acidocaldarius. The resulting Lac(-) mutants also grew faster than the Lac(+) parent, thereby amplifying the impact of the frequent lacS mutations on the population. We developed a mutant accumulation assay and corrections for the effects of copy number and differential growth for this system; the resulting measurements and calculations yielded a corrected rate of 5.1 × 10(-4) mutational events at the lacS gene per plasmid replication. Analysis of independent lacS mutants revealed three types of mutations: (i) G · C-to-A · T transitions, (ii) slipped-strand events, and (iii) deletions. These mutations were frequent in plasmid-borne lacS expressed at a high level but not in single-copy lacS in the chromosome or at lower levels of expression in a plasmid. Substitution mutations arose at only two of 12 potential priming sites of the DNA primase of the pRN1 replicon, but nearly all these mutations created nonsense (chain termination) codons. The spontaneous mutation rate of plasmid-borne lacS was 175-fold higher under high-expression than under low-expression conditions. The results suggest that important DNA repair or replication fidelity functions are impaired or overwhelmed in pJlacS, with results analogous to those of the "transcription-associated mutagenesis" seen in bacteria and eukaryotes.

  7. Plasmid-mediated tetracycline resistance in Haemophilus ducreyi.

    OpenAIRE

    Albritton, W L; Maclean, I W; Slaney, L A; Ronald, A. R.; Deneer, H G

    1984-01-01

    Clinical isolates of Haemophilus ducreyi were shown to be resistant to tetracycline. Resistance was associated in some strains with a 30-megadalton plasmid capable of transferring resistance in conjugative matings with other strains of H. ducreyi and other species of Haemophilus. Restriction endonuclease digestion patterns suggest a relationship between H. ducreyi plasmids and other tetracycline resistance plasmids in Haemophilus. The presence of plasmid-mediated resistance to the tetracyclin...

  8. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes.

    OpenAIRE

    Dowty, M E; Williams, P.; G. Zhang; Hagstrom, J E; Wolff, J A

    1995-01-01

    These studies were initiated to elucidate the mechanism of DNA nuclear transport in mammalian cells. Biotin- or gold-labeled plasmid and plasmid DNA expression vectors for Escherichia coli beta-galactosidase or firefly luciferase were microinjected into the cytoplasm of primary rat myotubes in culture. Plasmid DNA was expressed in up to 70% of the injected myotubes, which indicates that it entered intact, postmitotic nuclei. The nuclear transport of plasmid DNA occurred through the nuclear po...

  9. Replication of plasmids in gram-negative bacteria.

    OpenAIRE

    1989-01-01

    Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical d...

  10. Protein export elements from Lactococcus lactis

    NARCIS (Netherlands)

    Perez-Martinez, Gaspar; Kok, Jan; Venema, Gerhardus; Dijl, Jan Maarten van; Smith, Hilda; Bron, Sierd

    1992-01-01

    Broad-host-range plasmids carrying α-amylase or β-lactamase reporter genes lacking a signal sequence were used to select export elements from Lactococcus lactis chromosomal DNA that could function as signal sequences. Fragments containing such elements were identified by their ability to direct the

  11. Protein export elements from Lactococcus lactis

    NARCIS (Netherlands)

    Perez-Martinez, Gaspar; Kok, Jan; Venema, Gerhardus; Dijl, Jan Maarten van; Smith, Hilda; Bron, Sierd

    Broad-host-range plasmids carrying α-amylase or β-lactamase reporter genes lacking a signal sequence were used to select export elements from Lactococcus lactis chromosomal DNA that could function as signal sequences. Fragments containing such elements were identified by their ability to direct the

  12. Plasmid Segregation: Spatial Awareness at the Molecular Level

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Gerdes, Kenn

    2007-01-01

    In bacteria, low-copy number plasmids ensure their stable inheritance by partition loci (par), which actively distribute plasmid replicates to each side of the cell division plane. Using time-lapse fluorescence microscopic tracking of segregating plasmid molecules, a new study provides novel insi...

  13. Cloning of Two Bacteriocin Genes from a Lactococcal Bacteriocin Plasmid

    NARCIS (Netherlands)

    Belkum, Marco J. van; Hayema, Bert Jan; Geis, Arnold; Kok, Jan; Venema, Gerard

    1989-01-01

    Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6 (60 kilobases [kb]), which specifies bacteriocin production and immunity, was analyzed with restriction endonucleases, and fragments of this plasmid were cloned into shuttle vectors based on the broad-host-range plasmid pWVO1. Two regions on p9B4

  14. Multilocus sequence typing of IncN plasmids

    DEFF Research Database (Denmark)

    García-Fernández, Aurora; Villa, Laura; Moodley, Arshnee

    2011-01-01

    categorization of IncN plasmids. METHODS: Twelve fully sequenced IncN plasmids available at GenBank were analysed in silico for selecting the loci for the IncN-specific pMLST. A total of 58 plasmids originating from different reservoirs (human, pig, poultry, cattle and horses) and geographic regions (Italy...

  15. Mouse endogenous retroviral long terminal repeat (LTR) elements and environmental carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.K.; Ch' ang, L-Y; Myer, F.E.; Yang, M.D.; Koh, C.K.

    1988-01-01

    For the past several years, the working hypothesis of this laboratory has been that chromosomal retrovirus-related gene elements play important roles in gene-rearrangement and gene-activation events of carcinogenesis and mutagenesis induced by environmental agents. This working hypothesis is based on the concept of transposable genes as well as the recent understanding of retroviruses (RNA tumor viruses) in relation to the carcinogenesis problem. Activation of transposable gene elements has been discussed from the viewpoint of unprogrammed genomic changes in response to unanticipated genomic shocks. This view was used in considering the possibility of transposable gene elements involved in genetic changes of cancer formation in the animal. In this regard, this concept is similar to the perspectives of RNA tumor viruses, the oncogene-virogene hypothesis, and the provirus hypothesis because retroviruses replicate through DNA forms that carry long terminal repeat (LTR) sequences resembling the insertion sequences (or the IS elements) of prokaryotic transposons. The finding of oncogene myc activation in avian leukosis virus-induced leukemogenesis and proviral insertion in the mouse dilute locus mutation have also pointed to the functional similarity between retroviruses and transposable genes.

  16. Bacteriophages limit the existence conditions for conjugative plasmids.

    Science.gov (United States)

    Harrison, Ellie; Wood, A Jamie; Dytham, Calvin; Pitchford, Jonathan W; Truman, Julie; Spiers, Andrew; Paterson, Steve; Brockhurst, Michael A

    2015-06-02

    Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately

  17. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.

    Science.gov (United States)

    Jalasvuori, Matti; Friman, Ville-Petri; Nieminen, Anne; Bamford, Jaana K H; Buckling, Angus

    2011-12-23

    Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.

  18. Changing plasmid types responsible for extended-spectrum cephalosporin resistance in Escherichia coli O157:H7 in the USA, 1996-2009.

    Science.gov (United States)

    Folster, J P; Pecic, G; Stroika, S; Rickert, R; Whichard, J M

    2014-06-01

    Escherichia coli O157 is a major cause of food-borne illness. Plasmids are genetic elements that mobilise antimicrobial resistance determinants, including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESCs). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of the reservoirs of blaCMY, the types of plasmids carrying blaCMY among E. coli O157 were determined. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven isolates (0.29%) were ceftriaxone-resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 as well as a single 2001 isolate had blaCMY encoded on IncA/C plasmids, whilst all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20 and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157. Published by Elsevier Ltd.

  19. Changing plasmid types responsible for extended spectrum cephalosporin resistance in Escherichia coli O157:H7 in the United States, 1996-2009.

    Science.gov (United States)

    Folster, J P; Pecic, G; Stroika, S; Rickert, R; Whichard, J

    2014-06-01

    Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157.

  20. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains.

    Directory of Open Access Journals (Sweden)

    Nadine Händel

    Full Text Available The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates

  1. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains.

    Science.gov (United States)

    Händel, Nadine; Otte, Sarah; Jonker, Martijs; Brul, Stanley; ter Kuile, Benno H

    2015-01-01

    The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL) plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC) resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates and shows how these

  2. Mobile genetic elements in protozoan parasites

    Indian Academy of Sciences (India)

    Sudha Bhattacharya; Abhijeet Bakre; Alok Bhattacharya

    2002-08-01

    Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids—Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtelomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.

  3. The first report of fully sequenced resistance plasmid from Shigella boydii

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-10-01

    Full Text Available The purpose of this study was to characterize mechanisms of plasmid-mediated antimicrobial resistance in Shigella boydii. S. boydii strain 2246 with resistance to ciprofloxacin, ceftriaxone and azithromycin was isolated from a human case of watery diarrhea in a Chinese public hospital. Resistance in strain 2246 to ceftriaxone and azithromycin was attributable to the presence of blaCTX-M-14, and erm(B and mph(A, respectively, which were co-located on a multidrug-resistant (MDR plasmid p2246-CTXM. p2246-CTXM represented a novel IncFII-type MDR plasmid with a very complex chimera structure. Its master backbone was genetically closely related to the R100 plasmid, but p2246-CTXM had evolved to integrate additional R100-unrelated backbone regions as well as massive exogenous mobile elements that carried multiple resistance determinants. In p2246-CTXM, erm(B together with its leading peptide gene erm(C, mph(A together with its regulatory genes mrx and mphR(A, and blaCTX-M-14 were captured by three different mobile elements Tn6295, the IS26-mph(A-mrx-mphR(A-IS6100 unit, and a truncated ISEcp1-blaCTX-M-14-IS903D-iroN transposition unit, respectively, all of which were harbored in a large Tn3-family transposon Tn6285. p2246-CTXM still carried additional resistance determinants mer (mercury resistance, aacA4 (aminoglycoside resistance, cmlA1 (chloramphenicol resistance and qacED1 (quaternary ammonium compound resistance. This is the first report of identifying a clinical S. boydii strain simultaneously resistant to ciprofloxacin, ceftriaxone and azithromycin, and determining the complete sequence of a resistance plasmid from S. boydii.

  4. The First Report of a Fully Sequenced Resistance Plasmid from Shigella boydii

    Science.gov (United States)

    Wang, Li; Liu, Lei; Liu, Dong; Yin, Zhe; Feng, Jiao; Zhang, Defu; Fang, Haihong; Qiu, Yefeng; Chen, Weijun; Yang, Ruisheng; Wang, Jinglin; Fa, Yunzhi; Zhou, Dongsheng

    2016-01-01

    The purpose of this study was to characterize mechanisms of plasmid-mediated antimicrobial resistance in Shigella boydii. S. boydii strain 2246 with resistance to ciprofloxacin, ceftriaxone and azithromycin was isolated from a human case of watery diarrhea in a Chinese public hospital. Resistance in strain 2246 to ceftriaxone and azithromycin was attributable to the presence of blaCTX-M-14, and erm(B) and mph(A), respectively, which were co-located on a multidrug-resistant (MDR) plasmid p2246-CTXM. p2246-CTXM represented a novel IncFII-type MDR plasmid with a very complex chimera structure. Its master backbone was genetically closely related to the R100 plasmid, but p2246-CTXM had evolved to integrate additional R100-unrelated backbone regions as well as massive exogenous mobile elements that carried multiple resistance determinants. In p2246-CTXM, erm(B) together with its leading peptide gene erm(C), mph(A) together with its regulatory genes mrx and mphR(A), and blaCTX-M-14 were captured by three different mobile elements Tn6295, the IS26-mph(A)-mrx-mphR(A)-IS6100 unit, and a truncated ISEcp1-blaCTX-M-14-IS903D-iroN transposition unit, respectively, all of which were harbored in a large Tn3-family transposon Tn6285. p2246-CTXM still carried additional resistance determinants mer (mercury resistance), aacA4 (aminoglycoside resistance), cmlA1 (chloramphenicol resistance), and qacED1 (quaternary ammonium compound resistance). This is the first report of identifying a clinical S. boydii strain simultaneously resistant to ciprofloxacin, ceftriaxone, and azithromycin, and determining the complete sequence of a resistance plasmid from S. boydii. PMID:27766094

  5. Stable propagation of `selfish' genetic elements

    Indian Academy of Sciences (India)

    Soundarapandian Velmurugan; Shwetal Mehta; Dina Uzri; Makkuni Jayaram

    2003-09-01

    Extrachromosomal or chromosomally integrated genetic elements are common among prokaryotic and eukaryotic cells. These elements exhibit a variety of `selfish’ strategies to ensure their replication and propagation during the growth of their host cells. To establish long-term persistence, they have to moderate the degree of selfishness so as not to imperil the fitness of their hosts. Earlier genetic and biochemical studies together with more recent cell biological investigations have revealed details of the partitioning mechanisms employed by low copy bacterial plasmids. At least some bacterial chromosomes also appear to rely on similar mechanisms for their own segregation. The 2 m plasmid of Saccharomyces cerevisiae and related yeast plasmids provide models for optimized eukaryotic selfish DNA elements. Selfish DNA elements exploit the genetic endowments of their hosts without imposing an undue metabolic burden on them. The partitioning systems of these plasmids appear to make use of a molecular trick by which the plasmids feed into the segregation pathway established for the host chromosomes.

  6. Multi-particle entanglement manipulation under positive partial transpose preserving operations

    CERN Document Server

    Ishizaka, S; Ishizaka, Satoshi; Plenio, Martin B.

    2004-01-01

    We consider the transformation of multi-partite states in the single copy setting under positive-partial-transpose-preserving operations (PPT-operations) and obtain both qualitative and quantitative results. Firstly, for some pure state transformations that are impossible under local operations and classical communication (LOCC), we demonstrate that they become possible with a surprisingly large success probability under PPT-operations. Furthermore, we clarify the convertibility of arbitrary multipartite pure states under PPT-operations, and show that a drastic simplification in the classification of pure state entanglement occurs when the constrained set of operations is switched from LOCC to PPT-operations. Indeed, the infinitely many types of LOCC-incomparable entanglement are reduced to only one type under the action of PPT-operations. This is a clear manifestation of the increased power afforded by the use of PPT-bound entanglement. In addition, we consider more generalized PPT-operations to clarify the ...

  7. Properties and construction of extreme bipartite states having positive partial transpose

    CERN Document Server

    Chen, Lin

    2012-01-01

    We investigate the set E of extreme points of the compact convex set of PPT states (i.e., the states having positive semidefinite partial transpose) of a bipartite MxN quantum system. Let E(M,N,r) denote the subset of E consisting of states of rank r which are supported on MxN. We show that for M,N>2 the sets E(M,N,M+N-2) are nonempty. On the other hand we show that for M,N>3 the sets E(M,N,N+1) are empty. It is known that the set E(M,N,MN) is empty, and we show that also the set E(M,N,MN-1) is empty. We divide the set of all states into the good and the bad states (the definition is too technical to be given here). We show that the good states have many good properties.

  8. Role of Plasmid in Production of Acetobacter Xylinum Biofilms

    Directory of Open Access Journals (Sweden)

    Abbas Rezaee

    2005-01-01

    Full Text Available Acetobacter xylinum has the ability to produce cellulotic biofilms. Bacterial cellulose is expected to be used in many industrial or biomedical materials for its unique characteristics. A. xylinum contains a complex system of plasmid DNA molecules. A 44 kilobases (kb plasmid was isolated in wild type of A. xylinum. To improve the cellulose producing ability of A. xylinum, role of the plasmid in production of cellulose was studied. The comparisons between wild type and cured cells of A. xylinum showed that there is considerably difference in cellulose production. In order to study the relationship between plasmid and the rate of cellulose production, bacteria were screened for plasmid profile by a modified method for preparation of plasmid. This method yields high levels of pure plasmid DNA that can be used for common molecular techniques, such as digestion and transformation, with high efficiency.

  9. Modeling sRNA-Regulated Plasmid Maintenance

    Science.gov (United States)

    Klumpp, Stefan

    2017-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed. PMID:28085919

  10. Modeling sRNA-regulated Plasmid Maintenance

    CERN Document Server

    Gong, Chen Chris

    2016-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin's mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, ...

  11. The sudden dominance of blaCTX-M harbouring plasmids in Shigella spp. Circulating in Southern Vietnam.

    Directory of Open Access Journals (Sweden)

    Nhu Thi Khanh Nguyen

    2010-06-01

    Full Text Available Plasmid mediated antimicrobial resistance in the Enterobacteriaceae is a global problem. The rise of CTX-M class extended spectrum beta lactamases (ESBLs has been well documented in industrialized countries. Vietnam is representative of a typical transitional middle income country where the spectrum of infectious diseases combined with the spread of drug resistance is shifting and bringing new healthcare challenges.We collected hospital admission data from the pediatric population attending the hospital for tropical diseases in Ho Chi Minh City with Shigella infections. Organisms were cultured from all enrolled patients and subjected to antimicrobial susceptibility testing. Those that were ESBL positive were subjected to further investigation. These investigations included PCR amplification for common ESBL genes, plasmid investigation, conjugation, microarray hybridization and DNA sequencing of a bla(CTX-M encoding plasmid.We show that two different bla(CTX-M genes are circulating in this bacterial population in this location. Sequence of one of the ESBL plasmids shows that rather than the gene being integrated into a preexisting MDR plasmid, the bla(CTX-M gene is located on relatively simple conjugative plasmid. The sequenced plasmid (pEG356 carried the bla(CTX-M-24 gene on an ISEcp1 element and demonstrated considerable sequence homology with other IncFI plasmids.The rapid dissemination, spread of antimicrobial resistance and changing population of Shigella spp. concurrent with economic growth are pertinent to many other countries undergoing similar development. Third generation cephalosporins are commonly used empiric antibiotics in Ho Chi Minh City. We recommend that these agents should not be considered for therapy of dysentery in this setting.

  12. Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica

    NARCIS (Netherlands)

    Vrijbloed, J.W.; Jelínková, M.; Hessels, G.I.; Dijkhuizen, L.

    1995-01-01

    The actinomycete Amycolatopsis methanolica contains a 13.3 kb plasmid (pMEA300), capable of enhancing the spontaneous mutation frequency of its host. Depending on the growth medium pMEA300 is not only maintained as an integrated element but can additionally be present as a multicopy, autonomously re

  13. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  14. Identification of bla KPC-2 on different plasmids of three Morganella morganii isolates.

    Science.gov (United States)

    Shi, D-S; Wang, W-P; Kuai, S-G; Shao, H-F; Huang, M

    2012-05-01

    Three Morganella morganii strains resistant to carbapenems were recovered from the surgical intensive care unit (SICU) in our hospital. Carbapenemases and extended-spectrum β-lactamases (ESBLs) were respectively detected by the modified Hodge test and the modified Clinical and Laboratory Standards Institute (CLSI) ESBL confirmatory test in all isolates. Amplification of whole-cell and plasmid DNAs extracted from isolates with primers specific for the bla (KPC) produced an amplicon confirmed to be bla (KPC-2) by sequence analysis. Pulsed-field gel electrophoresis (PFGE) typing revealed that three isolates belonged to two closely related types. Plasmids electrophoresis and restriction analysis revealed that the bla (KPC-2) was located on different plasmids. The transfer of carbapenem resistance from the three original isolates to Escherichia coli EC600 was successful by conjugation. An examination of the outer membrane proteins showed a lack of a 38-kDa outer membrane protein (OMP) compared with M. morganii susceptible to carbapenems. The production of KPC-2 and ESBLs, combined with OMP deficiency, resulted in high-level carbapenem resistance in the M. morganii strains. The genetic environment around bla (KPC-2) analysis revealed that this β-lactamase was located on the same mobile genetic elements which could transfer between different plasmids.

  15. Plasmid-borne prokaryotic gene expression: Sources of variability and quantitative system characterization

    Science.gov (United States)

    Bagh, Sangram; Mazumder, Mostafizur; Velauthapillai, Tharsan; Sardana, Vandit; Dong, Guang Qiang; Movva, Ashok B.; Lim, Len H.; McMillen, David R.

    2008-02-01

    One aim of synthetic biology is to exert systematic control over cellular behavior, either for medical purposes or to “program” microorganisms. An engineering approach to the design of biological controllers demands a quantitative understanding of the dynamics of both the system to be controlled and the controllers themselves. Here we focus on a widely used method of exerting control in bacterial cells: plasmid vectors bearing gene-promoter pairs. We study two variants of the simplest such element, an unregulated promoter constitutively expressing its gene, against the varying genomic background of four Escherichia coli cell strains. Absolute protein numbers and rates of expression vary with both cell strain and plasmid type, as does the variability of expression across the population. Total variability is most strongly coupled to the cell division process, and after cell size is scaled away, plasmid copy number regulation emerges as a significant effect. We present simple models that capture the main features of the system behavior. Our results confirm that complex interactions between plasmids and their hosts can have significant effects on both expression and variability, even in deliberately simplified systems.

  16. CARTOGRAPHIE DU PLASMIDE pSU100, PLASMIDE CRYPTIQUE DE LACTOBACILLUS CASEI

    Directory of Open Access Journals (Sweden)

    F BENSALAH

    2003-06-01

    Ce plasmide appelé pSU100 a été cloné dans le vecteur de transformation pUC18 au site EcoRI chez E. coli JM103. Les profils électrophorétiques de restriction obtenus par des digestions simples, doubles et triples sous l’action de 33 endonucléases, ont contribué à l’élaboration d’une carte de restriction de ce plasmide. Cinq sites uniques ont été identifiés, ainsi que d’autres sites doubles et multiples. Une étude préliminaire du rôle physiologique de ce plasmide a permis de déceler une résistance à la kanamycine.

  17. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats.

    Science.gov (United States)

    Vera, Manuel; Bello, Xabier; Álvarez-Dios, Jose-Antonio; Pardo, Belen G; Sánchez, Laura; Carlsson, Jens; Carlsson, Jeanette E L; Bartolomé, Carolina; Maside, Xulio; Martinez, Paulino

    2015-12-01

    The flat oyster (Ostrea edulis) is one of the most appreciated molluscs in Europe, but its production has been greatly reduced by the parasite Bonamia ostreae. Here, new generation genomic resources were used to analyse the repetitive fraction of the oyster genome, with the aim of developing molecular markers to face this main oyster production challenge. The resulting oyster database, consists of two sets of 10,318 and 7159 unique contigs (4.8 Mbp and 6.8 Mbp in total length) representing the oyster's genome (WG) and haemocyte transcriptome (HT), respectively. A total of 1083 sequences were identified as TE-derived, which corresponded to 4.0% of WG and 1.1% of HT. They were clustered into 142 homology groups, most of which were assigned to the Penelope order of retrotransposons, and to the Helitron and TIR DNA-transposons. Simple repeats and rRNA pseudogenes, also made a significant contribution to the oyster's genome (0.5% and 0.3% of WG and HT, respectively).The most frequent short tandem repeats identified in WG were tetranucleotide motifs while trinucleotide motifs were in HT. Forty identified microsatellite loci, 20 from each database, were selected for technical validation. Success was much lower among WG than HT microsatellites (15% vs 55%), which could reflect higher variation in anonymous regions interfering with primer annealing. All microsatellites developed adjusted to Hardy-Weinberg proportions and represent a useful tool to support future breeding programmes and to manage genetic resources of natural flat oyster beds.

  18. REACTIVATION POTENTIAL OF EPIGENETICALLY INACTIVE MU TRANSPOSABLE ELEMENTS OF ZEA MAYS L. DECREASES IN SUCCESSIVE GENERATIONS. (R824900)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus

    National Research Council Canada - National Science Library

    Schmidt, Joshua M; Good, Robert T; Appleton, Belinda; Sherrard, Jayne; Raymant, Greta C; Bogwitz, Michael R; Martin, Jon; Daborn, Phillip J; Goddard, Mike E; Batterham, Philip; Robin, Charles

    2010-01-01

    The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change...

  20. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis.

    Science.gov (United States)

    Oliver, Keith R; Greene, Wayne K

    2012-11-01

    In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. "Adaptive potential" and "evolutionary potential" are proposed as the extremes of a continuum of "intra-genomic potential" due to TE-Thrust. Specific data is given, indicating "adaptive potential" being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of "evolutionary potential" is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.

  1. Plasmid transfer between bacteria in soil microcosms and the field

    Directory of Open Access Journals (Sweden)

    Eric Smit

    1997-01-01

    Full Text Available In ibis review factors influencing conjugal plasmid transfer between bacteria and the possible role of naturally occurring selftransmissible plasmide for the dissemination of recombinant DNA in soil will be discussed. In microcosm studies, plasmid transfer between various species of introduced bacteria has been detected. Moreover, plamid transfer to indigenous soil micoorganisms was observed. Soil is an oligotrophic environment and plasmid transfer occurred mainly under conditions which were nutritionally favourable for bacteria, such as in the plant rhizosphere and in the presence of clay minerais or added nutrients. Mobilizable plasmids, lacking the ability to transfer themselves, have been reported to be transferred in the presence of selftransmissible plasmids. A study comparing conjugal transfer in microcosme with those in the field revealed that the transfer rates found in microcosme and in the field were similar. Transfer of chromosomal DNA by plasmid RP4 could only be shown on filters and was not observed in soil. Transfer of plasmids carrying biodegradative genes appeared to be favoured in the presence of the compound that can be degraded. Evidence was found for the presence of naturally-occurring selftransmissible plasmids in bacteria in the rhizosphere which could mobilize recombinant plasmids.

  2. Transposition pattern of a modified Ds element in tomato

    NARCIS (Netherlands)

    Rommens, Caius M.T.; Munyikwa, Tichafa R.I.; Overduin, Bert; Nijkamp, H. John J.; Hille, Jacques

    1993-01-01

    Several aspects of transposition of an in vitro modified Ds element are described. This Ds element, designated Ds-r, is equipped with bacterial plasmid sequences and can, therefore, be rescued from the plant genome. Our results indicate that the Ds-r element has a 'late' timing of transposition from

  3. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10.

    OpenAIRE

    Hill, K E; A. J. Weightman; Fry, J C

    1992-01-01

    This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobil...

  4. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium.

    Science.gov (United States)

    Petrova, Mayya; Kurakov, Anton; Shcherbatova, Natalya; Mindlin, Sofia

    2014-10-01

    A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.

  5. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis in Drosophila melanogaster.

    Science.gov (United States)

    Crozatier, M; Vaury, C; Busseau, I; Pelisson, A; Bucheton, A

    1988-10-11

    I-R hybrid dysgenesis in D. melanogaster is controlled by transposable elements known as I factors which terminate at their 3' ends by an A-rich sequence. Inducer strains contain active I factors. Both reactive and inducer stocks possess defective I elements. We have cloned various I elements from both categories of strains. The I elements having recently transposed in inducer strains have a structure closely related to that of active I factors. However we have isolated one such I element that is truncated at its 5' end. The I elements common to reactive and inducer strains are affected by various rearrangements and many point mutations. They do not appear to be simple derivatives of complete I factors.

  6. Extended Function of Plasmid Partition Genes: the Sop System of Linear Phage-Plasmid N15 Facilitates Late Gene Expression▿

    Science.gov (United States)

    Ravin, Nikolai V.; Rech, Jérôme; Lane, David

    2008-01-01

    The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage λ) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to λ, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3−-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3+ fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3+-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth. PMID:18359814

  7. Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression.

    Science.gov (United States)

    Ravin, Nikolai V; Rech, Jérôme; Lane, David

    2008-05-01

    The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage lambda) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to lambda, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3(-)-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3(+) fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3(+)-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth.

  8. Isolation of clinical strains of Pseudomonas aeruginosa harboring different plasmids.

    Science.gov (United States)

    Ranjbar, R; Owlia, P; Saderi, H; Bameri, Z; Izadi, M; Jonaidi, N; Morovvati, S

    2007-09-01

    Aim of this study was to investigate the presence of plasmids among the strains of P. aeruginosa isolated from clinically diagnosed cases in Tehran in 2006. A total of 38 strains of P. aeruginosa were isolated. With the exception of one isolate, all P. aeruginosa strains harbored at least one plasmid band. The electrophoretic analysis of plasmid DNAs showed different number of plasmid bands among the strains tested. The DNA band of 1.4 kbp was evident in 84.2% of the strains. Approximately 71 and 21% of the isolates harbored concomitantly two and three plasmids, respectively. Isolation of strains with diverse types of plasmids suggests the different cluster of P. aeruginosa might be disseminated during the current study period.

  9. Transformation of Haemophilus influenzae by plasmid RSF0885

    Energy Technology Data Exchange (ETDEWEB)

    Notani, N.K.; Setlow, J.K.; McCarthy, D.; Clayton, N.L.

    1981-12-01

    Plasmid RSF0885, which conferred ampicillin resistance, transformed competent Haemophilus influenzae cells with low efficiency (maximun, less than 0.01%). As judged by competition experiments and uptake of radioactivity, plasmid RSF0885 deoxyribonucleic acid was taken up into competent H. influenzae cells several orders of magnitude less efficiently than H. influenzae chromosomal deoxyribonucleic acid. Plasmid RSF0885 transformed cells with even lower efficiency than could be accounted for by the low uptake. Transformation was not affected by rec-1 and rec-2 mutations in the recipient, and strains cured of the plasmid did not show increased transformation. Plasmid molecules cut once with a restriction enzyme that made blunt ends did not transform. Transformation was favored by the closed circular form of the plasmid.

  10. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum.

    Directory of Open Access Journals (Sweden)

    Kristin M Marshall

    Full Text Available BACKGROUND: Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs. The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative. METHODOLOGY/PRINCIPAL FINDINGS: C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3, pCLJ (strain 657Ba and pCLL (strain Eklund 17B were tagged with the erythromycin resistance marker (Erm using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor:recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism. CONCLUSIONS/SIGNIFICANCE: This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.

  11. Photonic plasmid stability of transformed Salmonella Typhimurium: A comparison of three unique plasmids

    Directory of Open Access Journals (Sweden)

    Lay Donald

    2009-07-01

    Full Text Available Abstract Background Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S. typh-lux using three different plasmids and characterize their respective photonic properties. Results In presence of ampicillin (AMP, S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 plasmids exhibited 100% photon-emitting colonies over a 10-d study period. Photon emitters of S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 without AMP selection decreased over time (P 7 to 1 × 109 CFU, P 0.05; although photonic emissions across a range of bacterial concentrations were not different (1 × 104 to 1 × 106 CFU, P > 0.05. For very low density bacterial concentrations imaged in 96 well plates photonic emissions were positively correlated with bacterial concentration (P 3 to 1 × 105 CFU low to high were different in the 96-well plate format (P Conclusion These data characterize photon stability properties for S. typh-lux transformed with three different photon generating plasmids that may facilitate real-time Salmonella tracking using in vivo or in situ biophotonic paradigms.

  12. Bacteriophages Limit the Existence Conditions for Conjugative Plasmids

    Science.gov (United States)

    Wood, A. Jamie; Dytham, Calvin; Pitchford, Jonathan W.; Truman, Julie; Spiers, Andrew; Paterson, Steve; Brockhurst, Michael A.

    2015-01-01

    ABSTRACT Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. PMID:26037122

  13. Plasmid genes required for microcin B17 production.

    Science.gov (United States)

    San Millán, J L; Kolter, R; Moreno, F

    1985-09-01

    The production of the antibiotic substance microcin B17 (Mcc) is determined by a 3.5-kilobase DNA fragment from plasmid pMccB17. Several Mcc- mutations on plasmid pMccB17 were obtained by both transposon insertion and nitrosoguanidine mutagenesis. Plasmids carrying these mutations were tested for their ability to complement Mcc- insertion or deletion mutations on pMM102 (pMM102 is a pBR322 derivative carrying the region encoding microcin B17). Results from these experiments indicate that at least four plasmid genes are required for microcin production.

  14. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K.; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  15. [Isolation of the R'his plasmids of Vibrio cholerae].

    Science.gov (United States)

    Rusina, O Iu; Tiganova, I G; Aleshkin, G I; Andreeva, I V; Skavronskaia, A G

    1987-06-01

    V. cholerae strain VT5104 capable of donor activity in conjugation has been constructed by the genetic technique based on plasmid RP4::Mucts62 integration into V. cholerae chromosome due to plasmid homology with Mucts62 inserted into the chromosome. The gene for histidine synthesis has been mobilized and transferred into the recipient cells from VT5104 donor. The conjugants obtained are able to efficiently transfer his+ gene included into the plasmid structure in conjugation with eltor recipient. Thus, the constructed strain VT5104 generates R' plasmids carrying V. cholerae chromosomal genes.

  16. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis.

    Science.gov (United States)

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and

  17. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis.

    Directory of Open Access Journals (Sweden)

    Iman Mehdizadeh Gohari

    Full Text Available The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb and 81 (~430 kb regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a

  18. Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria

    Directory of Open Access Journals (Sweden)

    Bahig E.  Deeb

    2009-01-01

    Full Text Available Problem statement: Heavy metals are known to be powerful inhibitors of xenobiotics biodegradation activities. Alleviation the inhibitory effect of these metals on the phenol biodegradation activities in presence of heavy metals resistant plasmid was investigated. Approach: Combination of genetic systems of degradation of xenobiotic compound and heavy metal resistance was one of the approaches to the creation of polyfunctional strains for bioremediation of soil after co-contamination with organic pollutants and heavy metals. Results: A bacterial strain Pseudomonas putida PhCN (pPhCN1, pPhCN2 had been obtained. This bacterium contained two plasmids, a 120 Kb catabolic plasmid that encode for breakdown of phenol (pPhCN1 and pPhCN2 plasmid (100 Kb that code for cadmium and copper resistant. Cyanide assimilation by this bacterium was encoded by chromosomal genes. The inhibitory effect of cadmium (Cd2+ or copper (Cu2+ on the degradation of phenol and cyanide by P. putida strains PhCN and PhCN1 (contained pPhCN1 were investigated. The resistant strain PhCN showed high ability to degrade phenol and cyanide in presence of Cd2+ or Cu2+ comparing with the sensitive strain PhCN1. In addition, Cd2+ or Cu2+ was also found to exert a strong inhibitory effect on the C23O dioxygenase enzyme activity in the presence of cyanide as a nitrogen source. Conclusion: The presence of heavy metal resistance plasmid alleviated the inhibitory effect of metals on the phenol and cyanide assimilation by resistant strain.

  19. Diversity and epidemiology of plasmids from Enterobacteriaceae from human and non-human reservoirs

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria

    The family of Enterobacteriaceae is comprised of Gram negative bacteria found in a variety of natural environments as well as in the gastrointestinal (GI) tracts of humans and many animals including diverse mammals, birds and reptiles. Three species of the enteric bacteria are largely responsible....... It is believed that these practices lead to the generation of reservoirs of antimicrobial resistance genes in the GI tracts of intensively reared food - production animals like pigs, poultry and cattle. Moreover, it has been previously shown that the bla genes (e.g. genes encoding resistance to ß-lactams) could...... be transmitted between different bacteria on mobile genetic elements (MGEs) like plasmids and variety of transposons. Evidences were also published indicating that zoonotic bacteria like E. coli or S. enterica resistant to diverse antimicrobials and harbouring plasmids might have been transmitted from farm...

  20. [A novel Salmonella Typhimurium plasmid, pAnkS: an example for plasmid evolution in antibiotic resistance].

    Science.gov (United States)

    Sahin, Fikret; Karasartova, Djursun; Gerçeker, Devran; Aysev, A Derya; Erdem, Birsel

    2008-07-01

    In this study, a plasmid, carrying ampicillin resistance (ampR) gene, isolated from a clinical isolate of Salmonella enterica serotype Typhimurium presenting ACSSuT (ampicilin, chloramphenicol, streptomycin, sulphonamide, tetracycline) resistance phenotype, was defined. The length of complete sequence of this plasmid was 8271 base pairs (bp), and it was named as pAnkS owing to its isolation place (plasmid-Ankara- Salmonella). The plasmid was analyzed for potential reading frames and structural features indicative of transposons and transposon relics. The Xmnl enzyme restriction fragments of pAnkS were cloned into E. coli plasmid vectors (pBSK), sequenced and analyzed with the BLAST programs. Plasmid pAnkS has contained a previously defined enterohemorrhagic E. coli (EHEC) plasmid p4821 as a core region and also contained a complete Tn3-like transposon of 4950 bp consisting of the left terminal repeat, Tn3-related tnpR and tnpA genes for transposition functions, ampicillin resistance gene bla(TEM), and the right terminal repeats, pAnkS showed strong homology with another Salmonella plasmid, pNTP16, for sequences that belong to p4821 and partial Tn3 segments. It was found that pNTP16 also carries kanamycin resistance gene (kanR) in addition to ampR gene. Plasmid pAnkS is one of the few completely sequenced plasmids from Salmonella Typhimurium and is in the middle of the pathway of evolution of plasmid from p4821 to pNTP16. The identification of pAnkS might help better understanding of plasmid evolution.

  1. Spec Rekindled-A Simple Torque Correction Mechanics for Transposed Teeth in Conjunction with Pre-adjusted Edgewise Appliance System

    Science.gov (United States)

    Singh, Harpreet; Thakkar, Surbhi

    2016-01-01

    Complete transposition of teeth is a rather rare phenomenon. After correction of transposed and malaligned lateral incisor and canine, attainment of appropriate individual antagonistic tooth torque is indispensable, which many orthodontists consider to be a herculean task. Here, a novel method is proposed which demonstrates the use of Spec reverse torquing auxillary as an effective adjunctive aid in conjunction with pre-adjusted edgewise brackets. PMID:28209017

  2. Spec Rekindled-A Simple Torque Correction Mechanics for Transposed Teeth in Conjunction with Pre-adjusted Edgewise Appliance System.

    Science.gov (United States)

    Singh, Harpreet; Maurya, Raj Kumar; Thakkar, Surbhi

    2016-12-01

    Complete transposition of teeth is a rather rare phenomenon. After correction of transposed and malaligned lateral incisor and canine, attainment of appropriate individual antagonistic tooth torque is indispensable, which many orthodontists consider to be a herculean task. Here, a novel method is proposed which demonstrates the use of Spec reverse torquing auxillary as an effective adjunctive aid in conjunction with pre-adjusted edgewise brackets.

  3. Effect of plasmid R391 and other IncJ plasmids on the survival of Escherichia coli after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pembroke, J.T.; Stevens, E. (University Coll., Galway (Ireland))

    1984-07-01

    The presence of the IncJ plasmids R391, R997, R705, R706, R748, and R749 was shown to sensitize Escherichia coli AB1157 and both its uvr A and lexA derivatives to UV irradiation. No alteration in post-irradiation survival was observed in a recA mutant containing these plasmids, compared with the non-plasmid-containing recA strain. Analysis of recombination frequency in Hfr crosses to recA/sup +/ cells containing plasmid R391 indicated a reduction in recombination frequency compared with that obtained in similar crosses to a non-plasmid-containing strain. This effect was not due to plasmid-encoded restriction or entry exclusion systems and therefore must be considered as a real block in recombination. When cells containing plasmid R391 were irradiated and allowed to photoreactivate, an increase in survival was observed which was comparable to that observed in the non-plasmid-containing derivative. This indicated that post-irradiation processing of UV-induced damage, or lack of such processing, by mechanisms other than photoreactivation was responsible for the UV sensitivity associated with plasmid R391.

  4. Complete DNA sequence and gene analysis of the virulence plasmid pCP301 of Shigella flexneri 2a

    Institute of Scientific and Technical Information of China (English)

    张继瑜; 刘红; 张笑兵; 杨剑; 杨帆; 杨国威; 沈岩; 侯云德; 金奇

    2003-01-01

    The complete nucleotide sequence and organization of the large virulence plasmid pCP301 (termed by us) of Shigella flexneri 2a strain 301 were determined and analyzed. The result showed that the entire DNA sequence of pCP301 is composed of 221618 bp which form a circular plasmid. Sequence analysis identified 272 open reading frames (ORFs), among which, 194 correspond to the proteins described previously, 61 have low identity (<60%) to known proteins and the rest 17 have no regions of significant homology with proteins in database. The genes of pCP301 mainly include the genes associated with bacterial virulence, the genes associated with regulation and the genes relating to plasmid maintenance, stability and DNA metabolism. Insertion sequence (IS) elements are 68 kb in length and account for 30 percent of complete sequence of the plasmid which indicates that gene multiple rearrangements of the pCP301 have taken place in Shigella flexneri evolution history. The research result is helpful for interpreting the pathogenesis of Shigella, as well as the genetics and evolution of the plasmid.

  5. The worldwide distribution of genetically and phylogenetically diverse Bacillus cereus isolates harbouring Bacillus anthracis-like plasmids.

    Science.gov (United States)

    Kaminska, Paulina Sylwia; Yernazarova, Aliya; Drewnowska, Justyna Malgorzata; Zambrowski, Grzegorz; Swiecicka, Izabela

    2015-10-01

    Bacillus cereus is a close relative of B. anthracis, the causative agent of anthrax whose pathogenic determinants are located on pXO1 and pXO2 plasmids. Bacillus anthracis-like plasmids have been also noted among B. cereus, however, genetic features of B. cereus harbouring these elements remain largely undescribed, especially from the global perspective. Herein, we present the genetic polymorphism, population structure and phylogeny of B. cereus with pXO1-/pXO2-like plasmids originating from Argentina, Kazakhstan, Kenya and Poland. The plasmids were found in about 17% of the isolates, but their frequencies and expression of replicons differed within and between populations. In the multi-locus sequence typing, the bacteria exhibited high genetic polymorphism reflected by 116 sequencing types, including 84 singletons and 10 clonal complexes, which mainly consisted of isolates of the same origin. The phylogenetic analysis of pXO1-/pXO2-like positive B. cereus isolates revealed six independent clades; in certain clades individual populations predominated. Generally, B. cereus with pXO1-/pXO2-like plasmids did not indicate the genetic relationship with B. anthracis, and cannot be classified into an evolutionary independent anthrax line within the B. cereus group. Our report is of a crucial importance for discovering the genetic specificity and evolution of B. cereus bacilli.

  6. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David W; Ingmer, Hanne

    2016-01-01

    identity of these plasmids compared to the strict nucleotide conservation of their qacC means that this gene has recently spread. In the absence of insertion sequences or other genetic elements explaining the mobility, we sought for an explanation of mobilization by sequence comparison. Publically...... available sequences of qac genes, their flanking genes and the replication gene that is invariably present in RC-plasmids were compared to reconstruct the evolutionary history of these plasmids and to explain the recent spread of qacC. Here we propose a new model that explains how qacC is mobilized...... in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance). The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations....

  7. Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Faber, Klaas Nico; Swaving, Gert Jan; Faber, Folkert; Ab, Geert; Harder, Willem; Veenhuis, Marten; Haima, Pieter

    1992-01-01

    Using an optimized transformation protocol we have studied the possible interactions between transforming plasmid DNA and the Hansenula polymorpha genome. Plasmids consisting only of a pBR322 replicon, an antibiotic resistance marker for Escherichia coli and the Saccharomyces cerevisiae LEU2 gene we

  8. Genomic comparison of archaeal conjugative plasmids from Sulfolobus

    DEFF Research Database (Denmark)

    Greve, Bo Bjørn

    2004-01-01

    All of the known self-transmissable plasmids of the Archaea have been found in the genus Sulfolobus. To gain more insight into archaeal conjugative processes, four newly isolated self-transmissable plasmids, pKEF9, pHVE14, pARN3 and pARN4, were sequenced and subjected to a comparative sequence...

  9. Homology of plasmids in strains of unicellular cyanobacteria

    NARCIS (Netherlands)

    Hondel, C.A.M.J.J. van den; Keegstra, W.; Borrias, W.E.; Arkel, G.A. van

    1979-01-01

    Six strains of unicellular cyanobacteria were examined for the presence of plasmids. Analysis of lysates of these strains by CsCl-ethidium bromide density centrifugation yielded a major chromosomal DNA band and a minor band containing covalently closed circular plasmid DNA, as shown by electron micr

  10. Examination of uropathogenic Escherichia coli strains conferring large plasmids

    Directory of Open Access Journals (Sweden)

    SUHARTONO

    2010-04-01

    Full Text Available Suhartono (2010 Examination of uropathogenic Escherichia coli strains conferring large plasmids. Biodiversitas 11: 59-64. Of major uropathogens, Escherichia coli has been widely known as a main pathogen of UTIs globally and has considerable medical and financial consequences. A strain of UPEC, namely E. coli ST131, confers a large plasmid encoding cephalosporinases (class C β-lactamase or AmpC that may be disseminated through horizontal transfer among bacterial populations. Therefore, it is worth examining such large plasmids by isolating, purifying, and digesting the plasmid with restriction enzymes. The examination of the large plasmids was conducted by isolating plasmid DNA visualized by agarose gel electrophoresis as well as by PFGE. The relationship of plasmids among isolates was carried out by HpaI restriction enzyme digestion. Of 36 isolates of E. coli ST 131, eight isolates possessed large plasmids, namely isolates 3, 9, 10, 12, 17, 18, 26 and 30 with the largest molecular size confirmed by agarose gel electrophoresis and PFGE was ~42kb and ~118kb respectively. Restriction enzyme analysis revealed that isolates 9, 10, 12, 17 and 18 have the common restriction patterns and those isolates might be closely related.

  11. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human papil

  12. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human papil

  13. Plasmid cloning vehicle for Haemophilus influenzae and Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Clayton, N.L.; Setlow, J.K.

    1982-09-01

    A new plasmid cloning vehicle (pDM2) was used to introduce a library of Haemophilus influenzae chromosomal fragments into H. influenzae. Transformants of the higly recombination-defective rec-1 mutant were more likely to contain exclusively recombinant plasmids after exposure to ligated DNA mixtures than was the wild type. pDM2 could replicate in Escherichia coli K-12.

  14. Functional analysis of three plasmids from Lactobacillus plantarum

    NARCIS (Netherlands)

    Kranenburg, R. van; Golic, N.; Bongers, R.; Leer, R.J.; Vos, W.M. de; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism. Th

  15. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... diversity of recipient bacterial phyla for the plasmid was observed, especially in WWTP outlets. We also identified permissive bacteria potentially able to cross WWTPs and engage in conjugation before and after water treatment. Bacterial activity and lifestyle seem to influence conjugation extent...

  16. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae

    DEFF Research Database (Denmark)

    Johnson, Timothy J.; Bielak, Eliza Maria; Fortini, Daniela;

    2012-01-01

    and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid...

  17. [Influence of spv plasmid genes group in Salmonella Enteritidis virulence for chickens. I. Occurrence of spv plasmid genes group in Salmonella Enteritidis large virulence plasmid].

    Science.gov (United States)

    Madajczak, Grzegorz; Binek, Marian

    2005-01-01

    Many Salmonella Enteritidis virulence factors are encoded by genes localized on plasmids, especially large virulence plasmid, in highly conserved fragment, they create spv plasmid gene group. The aims of realized researches were spv genes occurrence evaluation and composition analysis among Salmonella Enteritidis strains caused infection in chickens. Researches were realized on 107 isolates, where in every cases large virulence plasmid 59 kbp size were detected. Specific nucleotides sequences of spv genes (spvRABCD) were detected in 47.7% of isolates. In the rest of examined bacteria spv genes occurred variably. Most often extreme genes of spv group, like spvR and spvD were absent, what could indicate that factors encoded by them are not most important for Salmonella Enteritidis live and their expressed virulence.

  18. Sample displacement chromatography of plasmid DNA isoforms.

    Science.gov (United States)

    Černigoj, Urh; Martinuč, Urška; Cardoso, Sara; Sekirnik, Rok; Krajnc, Nika Lendero; Štrancar, Aleš

    2015-10-02

    Sample displacement chromatography (SDC) is a chromatographic technique that utilises different relative binding affinities of components in a sample mixture and has been widely studied in the context of peptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoforms under overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) or linear isoform. Since displacement is more efficient when mass transfer between stationary and mobile chromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM) monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobicities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) were tested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoform separation was shown to be dependent on column selectivity for individual isoform, column efficiency and on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative mode elution often operate in parallel, therefore negative mode elution additionally influences the efficiency of the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNA homogeneity and a dynamic binding capacity of over 1mg/mL at a relatively low concentration of AS. SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes, and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used. This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, which is compatible with continuous, multicolumn chromatography systems, and could therefore be used to increase productivity of pDNA production in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    larger than previously assumed. I was able to show abundant plasmid transfer from the Gram negative donor strains to a wide diversity of Gram positive soil bacteria, formerly thought to constitute distinct clusters of gene transfer. Moreover, among the observed transconjugants, I identified a core super...... environmental factors that modulate plasmid transfer in soil microbial communities. In order to attain these goals, I developed a high-throughput method that enabled me to evaluate the permissiveness of bacterial communities towards introduced plasmids. This new approach is based on the introduction...... fraction of soil the bacteria (up to 1 in 10,000) were able to take up any of these broad host range conjugal plasmids. The transconjugal pools comprised 11 bacterial phyla. This finding indicates that the realized transfer range of broad host range plasmids in environmental microbial communities is much...

  20. Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056.

    Science.gov (United States)

    Murawska, Emilia; Fiedoruk, Krzysztof; Swiecicka, Izabela

    2014-01-01

    Bacillus thuringiensis subsp. thuringiensis IS5056, a strain highly toxic to Trichoplusia ni larvae, produces the newly described Cry1Ab21 delta