WorldWideScience

Sample records for plasmid-mediated multiple antibiotic

  1. Plasmid mediated multiple antibiotic resistance in Escherichia coli isolated from community acquired infection of urinary tract in Aligarh Hospital

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan; Saeedut Zafar Ali; Mohammed S Zaman

    2008-01-01

    This study was to investigate the current trends of multiple drug resistance in bacteria against antibiotics for the proper empirical treatmen.Clinical isolates were collected from community-acquired infection of urinary tract patients in Aligarh India from March 1999 to August 1999.Antibiotic susceptibility test was performed,using the disc diffusion method followed by plasmid isolation by the method of Kado and Liu.Transfer experiments were performed by the method of Lederberg and Cohen.Clinical study revealed that this infection was more common in young women.Various strains of E.coli isolated during the course of study were found to show multiple antibiotic resistance which was further characterized as plasmid-borne drug resistance.This study shows that E.coli may be one of the important causative agents of urinary tract infection (UTI )in young women.

  2. Plasmid mediated antibiotic resistance in isolated bacteria from burned patients.

    Science.gov (United States)

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2015-01-01

    Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samples were isolated and the Gram-negative bacteria were identified using phenotypic method and API 20E System. Antibiotic susceptibility and plasmid profile were determined by standard Agar disc diffusion and plasmid spin column extraction methods. Totally 117 Gram-negative bacteria were isolated, the most common were Pseudomonas aerugionsa (37.6%), P. fluorescens (25.6%), Acinetobacter baumanii (20/5%) and Klebsiella pneumoniae (7.6%), respectively. The isolates showed high frequency of antibiotic resistance against ceftazidime and co-amoxiclave (100%) and low frequency of antibiotic resistance against amikacin with (70%).The results indicated that 60% of the isolates harboured plasmid. On the other hand, the patients infected with A. baumanii and P. aeruginosa were cured (with 60% frequency) whereas, those infected with P. fluorescens were not cured. Hence, probably antibiotic resistance markers of A. baumanii and P. aeruginosa are plasmid mediated; however, P. fluorescens is chromosomally mediated. Based on our findings, P. aerugionsa is a major causative agent of wound infections and amikacin could be considered as a more effective antibiotic for treatment of the burned patients.

  3. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  4. Plasmid mediated antibiotic resistance ofVibrio cholerae O1 biotype El Tor serotype Ogawa associated with an outbreak in Kolkata, India

    Institute of Scientific and Technical Information of China (English)

    Shyamapada Mandal; Manisha DebMandal; Nishith Kumar Pal

    2010-01-01

    Objective:To determine the antibiotic resistance ofVibrio cholerae (V. cholerae)O1 biotype El Tor serotype Ogawa isolates involved in an outbreak of watery diarrhea in Kolkata, and to explore the role of plasmid in mediating antibiotic resistance.Methods: Antibiotic susceptibility and minimum inhibitory concentration(MIC) values of antibiotics for the isolated V. choleraeO1 Ogawa (n=12) were determined by disk diffusion and agar dilution methods, respectively, using ampicillin (Am), chloramphenicol (C), trimethoprim (Tm), tetracycline (T), erythromycine (Er), nalidixic acid (Nx), ciprofloxacin (Cp), amikacin (Ak) and cefotaxime (Cf). Plasmid curing of multidrug resistant(MDR)V. choleraeO1 Ogawa strains was done following ethidium bromide treatment. Following electrophoresis, the plasmidDNAs, extracted from the isolatedMDRV. choleraeO1 Ogawa strains and their cured derivatives, were visualized and documented in‘gel doc’ system.Results: The outbreak causingV. choleraeO1 Ogawa isolates wereMDR as determined by disk diffusion susceptibility test, andMIC determination. The isolates showed three different drug resistance patterns: AmTmTErNx (for6 isolates), TmTErCp (for 5 isolates), and AmTmNx (for one isolate), and showed uniform sensitivity to C, Ak and Cf. The loss of plasmids with the concomitant loss of resistance to Am, Tm, T and Er of the isolates occurred following ethidium bromide treatment.Conclusions: The current findings suggest that theV. choleraeO1Ogawa associated with the cholera outbreak wereMDR, and resistance to Am, Tm, T and Er among the isolates were plasmid mediated.

  5. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  6. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  7. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  8. [The effectiveness of empirical antibiotic therapy of pyelonephritis in patients with type 2 diabetes and without depending on the availability of plasmid-mediated resistance genes].

    Science.gov (United States)

    Chub, O I; Bilchenko, A V

    2015-02-01

    Multi-drug resistance has been increasing in the treatment of urinary tract infections, especially complicated. The prevalence of plasmid-mediated resistance genes among urinary pathogens has nether been studied in Ukraine. So, the aim of our study was to identify the plasmid-mediated resistance genes and to determine their impact on the efficacy of the treatment. A total of 105 adult patients with chronic pyelonephritis were included in the study. Among them, 32 patients were diagnosed with type 2 diabetes mellitus. The diagnosis of pyelonephritis was verified according to the criteria EAU, 2013. Plasmid-mediated resistance genes were determined by polymerase chain reaction (PCR). The prevalence of plasmid-mediated resistance mechanisms among patients with pyelonephritis were 44,4%. ESBLs was the most common isolated genes. Favorable clinical response was seen in 11/31 (35,5%) infected with ESBL-producing organisms compared with 59/74 (79,7%) patients with non-ESBL-producing organisms (ppyelonephritis due to presence of plasmid-mediated resistance genes. Therefore, prоpеr mаnagеment fоr prescriptiоn of аntibiоtics and also idеntificаtiоn of ESBL-prоducing bаcteria in cоmmunitiеs arе impоrtant fоr prevеntion.

  9. Antibiotic-Resistant Extended Spectrum ß-Lactamase- and Plasmid-Mediated AmpC-Producing Enterobacteriaceae Isolated from Retail Food Products and the Pearl River in Guangzhou, China

    Science.gov (United States)

    Ye, Qinghua; Wu, Qingping; Zhang, Shuhong; Zhang, Jumei; Yang, Guangzhu; Wang, Huixian; Huang, Jiahui; Chen, Mongtong; Xue, Liang; Wang, Juan

    2017-01-01

    We conducted a survey in 2015 to evaluate the presence of extended spectrum β-lactamase (ESBL)- and plasmid-mediated AmpC-producing Enterobacteriaceae in retail food and water of the Pearl River in Guangzhou, China, as well as their antibiotic resistance profiles. Samples (88 fresh food samples and 43 water samples) from eight different districts were analyzed by direct plating and after enrichment. Multidrug-resistant strains were found in 41.7 and 43.4% of food and water samples, respectively. ESBLs were found in 3.4 and 11.6% of food and water samples, respectively, and AmpC producers were found in 13.6 and 16.3% of food and water samples, respectively. Molecular characterization revealed the domination of blaCTX−Mgenes; plasmidic AmpC was of the type DHA-1 both in food and water samples. Thirteen of Fifty one β-lactamase-producing positive isolates were detected to be transconjugants, which readily received the β-lactamase genes conferring resistance to β-lactam antibiotics as well as some non-β-lactam antibiotics. These findings provide evidence that retail food and the river water may be considered as reservoirs for the dissemination of β-lactam antibiotics, and these resistance genes could readily be transmitted to humans through the food chain and water. PMID:28217112

  10. Emergence and Spread of A Plasmid-Mediated Polymyxin Resistance Mechanism, MCR-1: Are Bacteria Winning?

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-12-01

    Full Text Available The report of the emergence of mcr-1, the first plasmid-mediated polymyxin resistance mechanism, in Enterobacteriaceae in November 2015 challenged our last psychological line of defense. However, we still trusted that this resistance factor had not spread globally. One month later, in December 2015, the detection of mcr-1 in an Escherichia coliisolate from a septicemic patient in Denmark and in five E. coli isolates from imported chicken meat really defeated us. The worst news was that one of the chicken meat isolates belonged to ST131, a spreading epidemic sequence type. In China, 15%-21% of E. coli strains isolated from raw meat and animals carried mcr-1, and about 1% of patient isolates carried this gene, indicating that E. coli carrying this plasmid is not a rare phenomenon. This gene is transferable by conjugation and can be maintained in Klebsiella pneumonia and Pseudomonas aeruginosa, suggesting the risk of transfer between different bacterial genera. The good news is that the strains carrying mcr-1 do not contain genes for pan-resistance profiles, although some Danish strains contain 15 different resistance genes, including genes for extended-spectrum beta-lactam antibiotics, and gene mutations leading to high-level fluoroquinolone resistance. If the mcr-1-bearing strains acquire multidrug resistance, extensive drug resistance, or pandrug resistance, no antibiotic drugs will be available with which clinicians can treat infected patients. Therefore, the use of antibiotics in both hospitals and the animal breeding industry must be strictly regulated. The origin of mcr-1 may be associated with the wide use of colistin in agriculture. There is no evidence that the Danish mcr-1 gene spread from China. Therefore, it is likely that mcr-1 genes originated in multiple sites simultaneously under the pressure of colistin use, because India and Denmark are the world’ s greatest users of this antibiotic. More surveys must be conducted in different

  11. Prevalence and molecular characterization of plasmid- mediated ...

    African Journals Online (AJOL)

    lactamase genes among nosocomial Staphylococcus aureus drug resistance isolates in Taiwan. .... Table 2: Plasmid profiles of the clinical antibiotic-resistant pathogens. Strain. Profile .... Madec J. Characterization of clinical canine methicillin-.

  12. Identification of plasmid-mediated quinolone resistance genes qnrA1, qnrB1 and aac(6′-1b-cr in a multiple drug-resistant isolate of Klebsiella pneumoniae from Chennai

    Directory of Open Access Journals (Sweden)

    H Magesh

    2011-01-01

    Full Text Available Purpose: Resistance to fluoroquinolones, a commonly prescribed antimicrobial for Gram-negative and Gram-positive microorganisms, is of importance in therapy. The purpose of this study was to screen for the presence of Plasmid-Mediated Quinolone Resistance (PMQR determinants in clinical isolates of Klebsiella pneumoniae. Materials and Methods: Extended-Spectrum Beta-Lactamase (ESBL isolates of K. pneumoniae collected during October 2009 were screened by the antimicrobial susceptibility test. The plasmids from these isolates were analysed by specific Polymerase chain Reaction (PCR for qnrA, qnrB and aac(6′-1b. The amplified products were sequenced to confirm the allele. Results: Our analysis showed that 61% out of the 23 ESBL K. pneumoniae isolates were resistant to ciprofloxacin and 56% to levofloxacin. The PMQR was demonstrated by transforming the plasmids from two isolates P12 and P13 into E. coli JM109. The PMQR gene qnrA was found in 16 isolates and qnrB in 11 isolates. The plasmid pKNMGR13 which conferred an minimum inhibitory concentration (MIC of more than 240 ΅g/ml in sensitive E. coli was found to harbour the qnrA1 and qnrB1 allele. Furthermore, the gene aac(6′-1b-cr encoding a variant aminoglycoside 6′-N Acetyl transferase which confers resistance to fluoroquinolones was found in the same plasmid. Conclusions: Our report shows the prevalence of PMQR mediated by qnrA and qnrB in multidrug-resistant K. pneumoniae isolates from Chennai. A multidrug-resistant plasmid conferring high resistance to ciprofloxacin was found to harbour another PMQR gene, aac(6′-1b-cr mutant gene. This is the first report screening for PMQR in K. pneumoniae isolates from India.

  13. Surveillance on antibiotic susceptibility and plasmid-mediated resistance of Neisseria gonorrhoeae in Panyu Guangzhou%广州市番禺区淋病奈瑟球菌的耐药性及质粒介导耐药株的流行趋势

    Institute of Scientific and Technical Information of China (English)

    郭炽星; 张晖燕; 蒋敏慧; 徐碧红; 黎敬忠; 罗嘉莉

    2014-01-01

    Objective To monitor the minimum inhibitory concentration (MIC) of 5 antibiotics for Neisseria gonorrhoeae and its plasmid-mediated resistant strains,and to analyze the trend of drug resistant strains penicillinase-producing Neisseria gonorrhoeae (PPNG) and tetracycline-resistant Neisseria gonorrhoeae (TRNG).Methods Four hundred and thirty-six isolates of Neisseria gonorrhoeae were collected from Panyu Institute of Chronic Disease,Guangzhou from 2008 and 2012.The production of β-lactamase was determined by paper acidometric method.The agar dilution method was used to determine the MIC of spectinomycin,cefatriaxone,penicillin,tetracycline and ciprofloxacin.Results Out of 436 isolates,147 (33.72%) were plasmid-mediated PPNG strains and 222(50.92%) were TRNG strains.During the 5-year period,the prevalence of PPNG and TRNG ranged from 24.32% to 45.59% and from 21.31% to 67.57%,with significant differences(x2=11.659,38.464,P all<0.05).None of the strains were resistant to spectinomycin and ceftriaxone,but the ceftriaxone intermediate rate fluctuated from 26.13% to 72.13% with significant differences (x2=39.720,P<0.01),and their MIC50 and MIC90 were all in the sensitive ranges.However,the MIC50 and MIC90 of penicillin,tetracycline and ciprofloxacin changed greatly,and were significantly higher than resistant standards,with the resistance rates of 76.37% (333/ 436),88.76% (387/436) and 94.26% (411/436),respectively.Conclusions From 2008 to 2012,spectinomycin and ceftriaxone are both sensitive to Neisseria gonorrhoeae,and are recommended as the first-line antibiotics against gonorrhea.The MIC50 and MIC90 of penicillin,tetracycline and ciprofloxacin are unstable and rise above the resistant standards,indicating that it is inappropriate to use them as the first-line antibiotics in treatment of gonorrhea.%目的 监测淋病奈瑟球菌(淋球菌)对5种抗菌药物的最小抑菌浓度(MIC)和质粒介导耐药株,分析产β-内酰胺酶淋球

  14. Plasmid-mediated tetracycline resistance in Haemophilus ducreyi.

    OpenAIRE

    Albritton, W L; Maclean, I W; Slaney, L A; Ronald, A. R.; Deneer, H G

    1984-01-01

    Clinical isolates of Haemophilus ducreyi were shown to be resistant to tetracycline. Resistance was associated in some strains with a 30-megadalton plasmid capable of transferring resistance in conjugative matings with other strains of H. ducreyi and other species of Haemophilus. Restriction endonuclease digestion patterns suggest a relationship between H. ducreyi plasmids and other tetracycline resistance plasmids in Haemophilus. The presence of plasmid-mediated resistance to the tetracyclin...

  15. 深圳市菌痢流行分子特征与对质粒介导的喹诺酮耐药机制%The molecular characteristics of bacillary dysentery epidemic and the antibiotic resistance mechanisms of plasmid mediated quinolones in Shenzhen

    Institute of Scientific and Technical Information of China (English)

    蔡长争; 舒少为; 陈爱平; 黄国清; 周美容

    2016-01-01

    Objective To analyze the molecular characteristics of bacillary dysentery epidemic and the antibiotic resistance mechanisms of plasmid mediated quinolones in Shenzhen.Methods Clinical specimens were collected in 18 hospitals in Shenzhen form January 2010 to Febuary 2014 and isolation cultivation and serotype identiifcation were applied. The plasmid mediated main type of quinolones genes were detected by PCR. Minimal inhibitory concentration (MIC) was tested by Agar dilution method. Transcojugants genotype and drug resistance were tested by joint transfer experiment.Results Serological distribution: during all 126 strains ofShigella, there were 108 (87.51%) strains ofShigellalfexneri and 16 (12.70%) strains ofShigella sonnei. The superiority serotype of shigella flexneri was serumⅣ-C, with 42 strains counted for 38.89%. Commonly used antimicrobial susceptibility situation analysis: the sensitivity ofShigella lfexneri to NAl, FEP and GM were signiifcantly lower than that ofShigella sonnei, while the sensitivity ofShigella lfexneri to LEV, GIP, NOR, CAZ and AMC were signiifcantly higher than that ofShigella sonnei (P all < 0.05). Ampliifcation results and sequence analysis: 3 (2.38%) cases with qnr genes, 4 cases with aac6’ genes, and 1 case with qepA genes were checked out in 126 strainsShigella. Minimum inhibitory concentration: compared with receptor bacteria, the MIC of transconjugants on NAL, GIP, LEV, NOR, GM were improved by 2-32 times. Conclusions The main types ofShigella infection in Shenzhen areShigella lfexneri andShigellasonnei. The superiority serotype of shigella lfexneri isⅣ-C. Target gene mutation is the main cause of quinolones resistance. The quinolones resistance of different types of shigella varies signiifcantly.%目的:分析深圳市菌痢流行分子特征及对质粒介导的喹诺酮耐药机制。方法对2010年1月至2014年2月深圳市18家医院收集的临床标本进行分离培养与血清型鉴定,

  16. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  17. Multiple antibiotic sensitivity in a pediatric population.

    Science.gov (United States)

    Kamada, M M; Twarog, F; Leung, D Y

    1991-01-01

    Multiple antibiotic sensitivity (MAS), a common but complex clinical problem, has not been reviewed in the pediatric population. We evaluated 120 children with a history of MAS. The offending antibiotics were beta lactam (186 adverse reactions), sulfonamide (86 adverse reactions), macrolide (32 adverse reactions), erythromycin/sulfisoxazole (26 adverse reactions), aminoglycoside (2 adverse reactions), and tetracycline (2 adverse reactions). Urticaria occurred in 183 reactions, followed by polymorphous rash (n = 71), angioedema (n = 19), erythema multiform (n = 9), bronchospasm (n = 8), arthralgia (n = 7), serum sickness (n = 4), and laryngeal edema (n = 3), the mean age for the first reaction was 3 years (range 1 month to 13 years). Adverse reaction to three classes of antibiotics were noted in 22 patients, and two patients were noted to have adverse reactions to four or more antibiotic classes. Skin tests (ST) were performed in 98 children using penicillin G, a commercial benzyl penicilloyl polylysine, a minor determinant mixture, and a beta lactam analog. Positive ST were noted in 26% (31/120) of the MAS patients. Children with a history of MAS are likely to have true IgE-mediated reactions as documented by positive immediate hypersensitivity reactions to penicillin and/or its minor determinants. Therefore, MAS patients should be carefully evaluated for antibiotic sensitivity and not be assumed to have sensitivity to drug formulation as a basis for MAS.

  18. Plasmid-Mediated Colistin Resistance Gene mcr-1 in an Escherichia coli ST10 Bloodstream Isolate in the Sultanate of Oman.

    Science.gov (United States)

    Mohsin, Jalila; Pál, Tibor; Petersen, Jorgen Eskild; Darwish, Dania; Ghazawi, Akela; Ashraf, Tanveer; Sonnevend, Agnes

    2017-08-11

    To identify plasmid-mediated colistin resistance in clinical Enterobacteriaceae isolates in Oman, where this resistance mechanism has not been encountered yet. Twenty-two colistin-resistant Enterobacteriaceae clinical isolates collected between July 2014 and June 2016 in a tertiary care hospital in Muscat were screened by PCR for the mcr-1 and mcr-2 genes. The strain identified as mcr-1 positive was genotyped and its antibiotic susceptibility was established. The mcr-1 containing plasmid was mobilized into Escherichia coli K-12 and its sequence was determined. A single E. coli isolate (OM97) carrying mcr-1 gene was identified, while no strains carrying the mcr-2 gene was found. E. coli OM97 was isolated in June 2016 from blood culture of a male patient with multiple comorbidities. It belonged to ST10. Beyond colistin, it was resistant to amoxicillin-clavulanic acid, piperacillin-tazobactam, amikacin, ciprofloxacin, tetracycline, and cotrimoxazole. The mcr-1 gene was located on a conjugative IncI2-type plasmid of 63722 bp size, which did not harbor any further resistance genes. The genetic surrounding of the mcr-1 gene lacked the ISApl1 element. Although colistin resistance caused by the mcr-1 gene is not common in our collection of clinical isolates, the occurrence of the plasmid-mediated colistin resistance in an E. coli ST10 strain is of concern as this clonal group was already shown to spread ESBL genes and quinolone resistance worldwide. It is especially worrisome that as the mcr-1 gene occurred in a non-ESBL, carbapenem-susceptible E. coli strain, current susceptibility testing algorithms may not detect its presence.

  19. Multiple strategies to activate gold nanoparticles as antibiotics

    Science.gov (United States)

    Zhao, Yuyun; Jiang, Xingyu

    2013-08-01

    Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs.

  20. Acinetobacter baumannii and multiple antibiotic resistances

    Directory of Open Access Journals (Sweden)

    Yeni Arroyave

    2012-06-01

    Full Text Available Acinetobacter baumannii is a strict aerobic gran negative coccobacillus, able to acquire multiple resistance to broad-spectrum antibiotics due to its ability to take fragments of genetic material from other bacteria, for further incorporation of this material into its own chromosome. Acinetobacter baumannii is the cause of several nosocomial infections and of numerous outbreaks in hospitals over different continents. This paper includes a literature review of scientific articles published since January 2010 about this microorganism, its environment, mechanisms of resistance and virulence, as well as commonly used treatment.

  1. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  2. Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1

    Science.gov (United States)

    Hinchliffe, Philip; Yang, Qiu E.; Portal, Edward; Young, Tom; Li, Hui; Tooke, Catherine L.; Carvalho, Maria J.; Paterson, Neil G.; Brem, Jürgen; Niumsup, Pannika R.; Tansawai, Uttapoln; Lei, Lei; Li, Mei; Shen, Zhangqi; Wang, Yang; Schofield, Christopher J.; Mulholland, Adrian J; Shen, Jianzhong; Fey, Natalie; Walsh, Timothy R.; Spencer, James

    2017-01-01

    The polymixin colistin is a “last line” antibiotic against extensively-resistant Gram-negative bacteria. Recently, the mcr-1 gene was identified as a plasmid-mediated resistance mechanism in human and animal Enterobacteriaceae, with a wide geographical distribution and many producer strains resistant to multiple other antibiotics. mcr-1 encodes a membrane-bound enzyme catalysing phosphoethanolamine transfer onto bacterial lipid A. Here we present crystal structures revealing the MCR-1 periplasmic, catalytic domain to be a zinc metalloprotein with an alkaline phosphatase/sulphatase fold containing three disulphide bonds. One structure captures a phosphorylated form representing the first intermediate in the transfer reaction. Mutation of residues implicated in zinc or phosphoethanolamine binding, or catalytic activity, restores colistin susceptibility of recombinant E. coli. Zinc deprivation reduces colistin MICs in MCR-1-producing laboratory, environmental, animal and human E. coli. Conversely, over-expression of the disulphide isomerase DsbA increases the colistin MIC of laboratory E. coli. Preliminary density functional theory calculations on cluster models suggest a single zinc ion may be sufficient to support phosphoethanolamine transfer. These data demonstrate the importance of zinc and disulphide bonds to MCR-1 activity, suggest that assays under zinc-limiting conditions represent a route to phenotypic identification of MCR-1 producing E. coli, and identify key features of the likely catalytic mechanism. PMID:28059088

  3. Multiplex PCR Study of Plasmid-Mediated AmpC Beta-Lactamases Genes in Clinical Isolates of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maryam Dehghani

    2017-02-01

    Full Text Available Background:   AmpC β-lactamases are important cephalosporinases chromosomally encoded in many of Enterobacteriaceae and a few other organisms where they mediate resistance to cephalothin, cefazolin, cefoxitin and penicillins. The six different families of plasmid-mediated AmpC β-lactamases have been described, but no phenotypic test can discriminate among them. AmpC multiplex PCR has been successfully used to discriminate plasmid-mediated ampC specific families in organisms such as Klebsiella pneumonia and Escherichia coli. The aim of this study was to indicate the prevalence of AmpC β-lactamase genes by specifically designed primers through PCR test.Methods:   243 total clinical urine samples were collected, and 227 isolates were identified as Escherichia coli based on standard biochemical tests. Subsequently, the isolates were screened by disc diffusion and combined disc test for β-lactamase production. Resistant isolates were evaluated by PCR for ampC family determination. Results:  Antibiotic resistance pattern were observed as follows: cefepime (%25, ceftazidime (%31, ceftriaxone (%37, cefotaxime (%38. The ratio of isolates was detected as ESBLs and AmpC producers were 34% and 5.2%, respectively. PCR performed on 12 selected isolates via phenotypic tests and the results revealed that among 12 isolates, 11 contained blaCMY-42. Conclusion:  Unfortunately, antibiotic resistance has become an increasingly critical problem in many countries like Iran and occurrence of isolates co-expressing AmpC-β-lactamases and ESBLs can create serious problems in the future. As antibiotic options in the treatment of AmpC β-lactamases and ESBLs producing organisms are extremely limited, molecular screening by laboratories is suggested to reduce the risk of therapeutic defeat.

  4. plasmid mediated resistance in multidrug resistant bacteria isolated ...

    African Journals Online (AJOL)

    User

    3Department of Paediatrics, Ahmadu Bello University Teaching Hospital, Zaria ... The knowledge of the epidemiological and antimicrobial pattern of common pathogens that cause septicaemia is useful for ..... commonly prescribed antibiotics in the locality investigated. ... to monitor and restrict the use and sale of antibiotics.

  5. Plasmid-mediated quinolone resistance in typhoidal Salmonellae: A preliminary report from South India

    Directory of Open Access Journals (Sweden)

    V K Geetha

    2014-01-01

    Full Text Available Background: Fluoroquinolones are the drugs extensively employed for the treatment of Salmonella infections. Over the couple of decades that have elapsed since the introduction of fluoroquinolones, resistance to these agents by Enterobacteriaceae family members has become common and widespread. Although fluoroquinolone resistance is mediated by genomic DNA (deoxyribonucleic acid as well as plasmid DNA, the plasmid-mediated quinolone resistance (PMQR facilitates higher level resistance by interacting with genomic mechanism and is capable of horizontal spread. Materials and Methods: During a period of 1-year, 63 typhoidal Salmonellae were isolated from 14,050 blood cultures and one parietal wall abscess. 36 (56.25% were Salmonella Typhi and 27 (42% were Salmonella Paratyphi A. They were all screened for resistance by the disc diffusion method and their minimum inhibitory concentrations were determined using agar dilution, broth dilution and E-strip method. Ciprofloxacin resistant isolates were screened for PMQR determinants by polymerase chain reaction assay. Results: All the 63 isolates were resistant to nalidixic acid. Among the 36 S. Typhi isolates 20 were resistant to ciprofloxacin, of which 14 carried the plasmid gene qnrB and one carried the aac(6′-Ib-cr gene. qnrA and qnrS genes were not detected. Ciprofloxacin resistance was not seen in any of the S. Paratyphi A isolates. Conclusion: The antibiotic sensitivity pattern of typhoidal Salmonellae shows an increasing trend of PMQR. The allele B of qnr gene was found to be the predominant cause of PMQR in this study.

  6. Plasmid-mediated quinolone resistance; interactions between human, animal and environmental ecologies

    Directory of Open Access Journals (Sweden)

    Laurent ePOIREL

    2012-02-01

    Full Text Available Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV, decreased outer-membrane permeability (porin defect and overexpression of naturally-occurring efflux, the emergence of plasmid-mediated quinolone resistance (PMQR has been reported since 1998. Although these PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones, they are a favorable background for selection of additional chromosome-encoded quinolone resistance mechanisms. Different transferable mechanisms have been identified, corresponding to the production of Qnr proteins, of the aminoglycoside acetyltransferase AAC(6’-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target enzymes (DNA gyrase and type IV topoisomerase from quinolone inhibition (mostly nalidixic acid. The AAC(6’-Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin. Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell. A series of studies have identified the environment to be a reservoir of PMQR genes, with farm animals and aquatic habitats being significantly involved. In addition, the origin of the qnr genes has been identified, corresponding to the waterborne species Shewanella sp. Altogether, the recent observations suggest that the aquatic environment might constitute the original source of PMQR genes, that would secondly spread among animal or human isolates.

  7. Plasmid-mediated quinolone resistance among non-typhi Salmonella enterica isolates, USA

    Science.gov (United States)

    We determined the prevalence of plasmid-mediated quinolone resistance mechanisms among non-Typhi Salmonella (NTS) spp. isolates from humans, food animals, and retail meat in the United States in 2007. Fifty-one (2.4%) of human isolates (n=2165), 5 (1.6%) of isolates from animal isolates (n=1915) an...

  8. [Investigation of plasmid-mediated quinolone resistance in Escherichia coli strains].

    Science.gov (United States)

    Aktepe, Orhan Cem; Aşık, Gülşah; Cetinkol, Yeliz; Biçmen, Meral; Gülay, Zeynep

    2012-01-01

    Quinolones are widely used antimicrobial agents, particularly for the treatment of infections caused by gram-negative bacilli such as E.coli. As a consequence, quinolone resistance has been increasing among this species in recent years. Bacterial resistance to quinolones usually results from mutations in the chromosomal genes which encode topoisomerases and also the expression of efflux pumps and loss of porines contributed to development of quinolone resistance. However, recent studies have shown that the spread and increase of quinolone resistance may be due to the transfer of plasmid-mediated genes. To date, three groups of plasmid-mediated quinolone resistance genes, namely qnr, aac(6')-Ib-cr, and qepA, have been described. The aim of this study was to investigate the presence of plasmid-mediated quinolone resistance genes in E.coli clinical isolates. A total of 112 quinolone-resistant E.coli strains isolated from different clinical specimens (84 urine, 16 blood, 10 wound, 2 bronchoalveolar lavage) of which 78 (69.6%) were extended-spectrum beta-lactamase (ESBL) positive, in Afyon Kocatepe University Hospital, Microbiology Laboratory were included in the study. In the isolates, qnrA, qnrB, qnrS, qnrC, qepA, and aac(6')-1b-cr plasmid genes were analysed by polymerase chain reaction (PCR). After aac(6')- 1b determinant was amplified by PCR, all aac(6')-1b positive amplicons were analyzed by digestion with BseGI restriction enzyme to identify aac(6')-1b-cr variant. It was found that, none of the strains horboured qnrA, qnrB, qnrS, qnrC and qepA genes, however, plasmid-mediated quinolone resistance gene aac(6')-1b-cr was found positive in 59.8% (67/112) of the strains. It was notable that 86.6% (58/67) of those isolates were ESBL producers. The rates of quinolone resistance among E.coli isolates infections were high in our region and an increasing trend has been observed in recent years. Our data indicated that the presence of plasmid- mediated resistance genes

  9. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa.

    Science.gov (United States)

    Newton-Foot, Mae; Snyman, Yolandi; Maloba, Motlatji Reratilwe Bonnie; Whitelaw, Andrew Christopher

    2017-01-01

    Colistin is a last resort antibiotic for the treatment of carbapenem-resistant Gram negative infections. Until recently, mechanisms of colistin resistance were limited to chromosomal mutations which confer a high fitness cost and cannot be transferred between organisms. However, a novel plasmid-mediated colistin resistance mechanism, encoded by the mcr-1 gene, has been identified, and has since been detected worldwide. The mcr-1 colistin resistance mechanism is a major threat due to its lack of fitness cost and ability to be transferred between strains and species. Surveillance of colistin resistance mechanisms is critical to monitor the development and spread of resistance.This study aimed to determine the prevalence of the plasmid-mediated colistin resistance gene, mcr-1, in colistin-resistant E. coli and Klebsiella spp. isolates in the Western Cape of South Africa; and whether colistin resistance is spread through clonal expansion or by acquisition of resistance by diverse strains. Colistin resistant E. coli and Klebsiella spp. isolates were collected from the NHLS microbiology laboratory at Tygerberg Hospital. Species identification and antibiotic susceptibility testing was done using the API® 20 E system and the Vitek® 2 Advanced Expert System™. PCR was used to detect the plasmid-mediated mcr-1 colistin resistance gene and REP-PCR was used for strain typing of the isolates. Nineteen colistin resistant isolates, including 12 E. coli, six K. pneumoniae and one K. oxytoca isolate, were detected over 7 months from eight different hospitals in the Western Cape region. The mcr-1 gene was detected in 83% of isolates which were shown to be predominantly unrelated strains. The plasmid-mediated mcr-1 colistin resistance gene is responsible for the majority of colistin resistance in clinical isolates of E. coli and Klebsiella spp. from the Western Cape of South Africa. Colistin resistance is not clonally disseminated; the mcr-1 gene has been acquired by several

  10. Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate

    Institute of Scientific and Technical Information of China (English)

    Li-rong CHEN; Hong-wei ZHOU; Jia-chang CAI; Rong ZHANG; Gong-xiang CHEN

    2009-01-01

    Objective: To investigate the mechanism of carbapenem resistance and the occurrence of plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in a clinical isolate of Enterobacter cloacae. Methods: An ertapenem-resistant E. cloacae ZY106, which was isolated from liquor puris of a female gastric cancer patient in a Chinese hospital, was investigated. Antibiotic susceptibilities were determined by agar dilution method. Conjugation experiments, isoelectric focusing, polymerase chain reaction (PCR), and DNA sequence analyses of plasmid-mediated carbapenemases and quinolone resistance determinants were preformed to confirm the genotype. Outer membrane proteins (OMPs) were examined by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Urea-SDS-PAGE). Results: Minimum inhibitory concentrations (MCs) of imipenem, mer-openem, and ertapenem for ZY106 were 2,4, and 16 ug/ml, respectively. Conjugation studies with Escherichia coli resulted in the transfer of significantly reduced carbapenem susceptibility. ZY106 produced IMP-1 metallo-p-lactamase and CTX-M-3 extended-spectrum P-lactamase, and E. coli transconjugant produced IMP-1. Plasmid-mediated quinolone resistance determinant qnrSI was detected in ZY106. Transfer of the qnrSI-encoding-plasmid into E. coli by conjugation resulted in intermediate resistance to ciprofloxacin in E. coli transconjugant. Urea-SDS-PAGE analysis of OMPs showed that ZY106 lacked an OMP of approximately 38 KDa. Conclusion: It is the first IMP-1-producing Enterobacteriaceae in China and the first report of a clinical isolate that harbors both blaIMP and qnrS genes as well. The blaIMP-1, blaCTX-M-3, and qnrSl are encoded at three different plasmids. IMP-1 combined with the loss of an OMP possibly resulted in ertapenem resistance and reduced imipenem and mero-penem susceptibility in E. cloacae.

  11. The presence of plasmid-mediated resistance genes among uropathogenes isolated from diabetic and non-diabetic patients with chronic pyelonephritis

    Directory of Open Access Journals (Sweden)

    O.I. Chub

    2016-08-01

    Full Text Available Increased multidrug resistance of extended-spectrum beta-lactamases (ESBLs compromises the efficacy of treatment of urinary tract infections. The objective of this study is to determine the prevalence of ESBL-producing uropathogens from patients with chronic pyelonephritis (CP and to evaluate the risk factors of these types of infections. Screening for the presence of plasmid-mediated ESBL was performed by polymerase chain reaction. Out of 105 patients, 22 (20.9% revealed strains with resistance genes: 11 (36.7%, 11 (36.7% and 8 (26.7% were identified to carry bla(TEM, bla(SHV and bla(CTX-M beta-lactamase genes, respectively. We have demonstrated that prevalence of the resistance among patients with CP combined with type 2 DM was 31.3%, while among patients with CP without type 2 DM was 27.4%; however the difference between these groups was not significant. The main factors related with appearance of plasmid-mediated resistance genes were age range above 55 years, Chronic Kidney Disease stage ІІІ and ІV, in-patient treatment history, history of using antibiotics last year. Isolation and detection of ESBL-producing strains are essential fоr the sеlection оf the mоst effеctive antibiоtic for the empiric trеatment.

  12. Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae strains isolated in North-East Italy.

    Science.gov (United States)

    Kocsis, B; Mazzariol, A; Kocsis, E; Koncan, R; Fontana, R; Cornaglia, G

    2013-02-01

    We investigated the prevalence of plasmid-mediated quinolone resistance genes in 756 clinical isolates of Enterobacteriaceae originating from Microbiology Diagnostic Laboratories of North-East Italy. Five point zero two percent of isolates carried a qnr determinant while the aac(6')-Ib-cr determinant was detected in 9·25% of isolates. We also investigated the association between the plasmid-mediated quinolone resistance and the beta-lactamase genes, and characterized the plasmids carrying these determinants of resistance.

  13. Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress.

    Directory of Open Access Journals (Sweden)

    Birson Ingti, Deepjyoti Paul, Anand Prakash Maurya

    2017-06-01

    Full Text Available Objectives: Organisms harboring multiple plasmid mediated β-lactamases are major concerns in nosocomial infections. Among these plasmid mediated β-lactamases, ACT (EBC family is a clinically important enzyme capable of hydrolyzing broad spectrum cephalosporins. Therefore, the present study was undertaken to determine the prevalence of ACT determinant along with other co-existing β-lactamase genes in P. aeruginosa strains. Methods: A total of 176 Pseudomonas isolates were phenotypically screened for the presence of AmpC β-lactamase by M3DET Method followed by Molecular detection using PCR assay. Transcriptional evaluation of blaACT-2 gene was analyzed by RT-PCR and its transferability was performed by transformation and conjugation. Results: Present study demonstrates the presence of ACT-2 allele among 12 strains of P. aeruginosa. Co-existence of other β-lactamase genes were encountered among ACT-2 harboring strains which includes CTX-M (n=2, SHV (n=3, TEM (n=2, VEB (n=2, OXA-10 (n=1, CIT (n=2 and DHA (n=3. Fingerprinting by REP PCR revealed the isolates harboring ACT-2 to be distinct and these isolates showed high resistance to expanded-spectrum cephalosporins and even to carbapenem group of drugs. This ACT-2 allele was encoded in the plasmid (L/M, FIA, FIB Inc. Group and conjugatively transferable. Transcriptional analysis revealed a significant increase in ACT-2 expression (483 fold when induced by ceftriaxone at 4 µg/ml followed by ceftazidime at 8 µg/ml (31 fold and cefotaxime 4 µg/ml (8 fold. Conclusion: In this study detection of ACT-2 plasmid mediated AmpC β-lactamase along with other β-lactamase genes in clinical isolates of P. aeruginosa represents a serious therapeutic challenge. Therefore, revision in antimicrobial policy is required for effective treatment of patients infected with pathogen expressing this mechanism. J Microbiol Infect Dis 2017; 7(2: 75-82

  14. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria.

    Science.gov (United States)

    Laarem, Meradi; Barguigua, Abouddihaj; Nayme, Kaotar; Akila, Abdi; Zerouali, Khalid; El Mdaghri, Naima; Timinouni, Mohammed

    2017-02-28

    The emergence and spread of quinolone-resistant Escherichia coli in poultry products puts consumers at risk of exposure to the strains of E. coli that resist antibiotic treatment. The objective of this study was to define the prevalence and virulence potential of poultry-associated nalidixic acid (NAL)-resistant E. coli in the Annaba city, Algeria. In total, 33 samples of retail chicken meat were purchased from various butcher shops and examined for bacterial contamination with NAL-resistant E. coli. These isolates were subjected to antimicrobial susceptibility testing and were also investigated for the presence of plasmid-mediated quinolone resistance (PMQR) genes and virulence genes using conventional polymerase chain reaction (PCR) and DNA sequencing. Phylogenetic grouping of the NAL-resistant E. coli isolates was determined by the conventional multiplex PCR method. Twenty-nine (87.8%) products yielded NAL-resistant E. coli. Antibiograms revealed that 96.55% of NAL-resistant E. coli isolates were multidrug resistant (MDR). Resistance was most frequently observed against sulfamethoxazole-trimethoprim (96.6%), tetracycline (96.6%), ciprofloxacin (72%), and amoxicillin (65.5%). Group A was the most prevalent phylogenetic group, followed by groups D, B1, and B2. The PMQR determinants were detected in three isolates with qnrB72 and qnrS1 type identified. Four (13.8%) isolates carried one of the Shiga toxin E. coli-associated genes stx1, stx2, and ehxA alleles. The high prevalence of NAL-resistant E. coli isolated from retail chicken meat with detection of MDR E. coli harboring Shiga toxin genes in this study gives a warning signal for possible occurrence of foodborne infections with failure in antibiotic treatment.

  15. Progress in research of plasmid-mediated quinolone resistance gene of enterobacteria%肠杆菌科细菌质粒介导的喹诺酮耐药基因研究进展

    Institute of Scientific and Technical Information of China (English)

    符浩; 夏兴; 陈代杰

    2011-01-01

    继首个质粒介导的喹诺酮耐药基因qnrAl之后,qnrB,qnrS,qnrC和qnrD等其他一些类似基因也相继被发现.另 外,两种质粒介导的喹诺酮耐药机制,即外排泵QepA和OqxAB以及氨基糖苷甲基转移酶Aac(6’)-Ib-cr陆续被报道.本文综述肠杆菌科细菌质粒介导的喹诺酮耐药基因研究进展.%Since the first plasmid-mediated quinolone antibiotics resistance gene (PMQR, currently named qnrAl) was reported, some other genes such as qnrB, qnrS, qnrC and qnrD have also been characterized. In addition, two other plasmid-mediated resistance mechanisms: the modification of quinolones with a piperazinyl substituent by the acetyltransferase, Aac (6') -Ib-cr, and active efflux by QepA and OqxAB have also been reported. This review describes the progress in research of plasmid-mediated quinolone resistance gene of enterobacteria.

  16. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain.

    Science.gov (United States)

    Quesada, Alberto; Ugarte-Ruiz, María; Iglesias, M Rocío; Porrero, M Concepción; Martínez, Remigio; Florez-Cuadrado, Diego; Campos, María J; García, María; Píriz, Segundo; Sáez, José Luis; Domínguez, Lucas

    2016-04-01

    Recent findings suggest that use of colistin as a last resort antibiotic is seriously threatened by the rise of a new plasmid mediated mechanism of resistance (MCR-1). This work identifies, for the first time in Southern Europe, the gene mcr-1 in nine strains from farm animals (poultry and swine) corresponding to five Escherichia coli and four Salmonella enterica, among which three belong to serovar Typhimurium and one to Rissen. The MCR-1 was found encoded by a plasmid highly mobilizable by conjugation to the E. coli J53 strain. Two E. coli strains carried two determinants, mcr-1 plus pmrA or pmrB mutations, known to confer colistin resistance.

  17. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

    DEFF Research Database (Denmark)

    Li, Lili; Ye, Lei; Kromann, Sofie

    2017-01-01

    There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone...... resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE...... meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1...

  18. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina

    Directory of Open Access Journals (Sweden)

    Giovanna Rincon Cruz

    2013-11-01

    Full Text Available High quinolone resistance rates were observed among oxyiminocephalosporin-resistant enterobacteria. In the present study, we searched for the prevalence of plasmid-mediated quinolone resistance (PMQR genes within the 55 oxyiminocephalosporin-resistant enterobacteria collected in a previous survey. The main PMQR determinants were aac(6'-Ib-cr and qnrB, which had prevalence rates of 42.4% and 33.3%, respectively. The aac(6'-Ib-cr gene was more frequently found in CTX-M-15-producing isolates, while qnrB was homogeneously distributed among all CTX-M producers.

  19. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water.

    Science.gov (United States)

    Osińska, Adriana; Harnisz, Monika; Korzeniewska, Ewa

    2016-06-01

    Fluoroquinolones (FQs) are fully synthetic broad-spectrum antibacterial agents that are becoming increasingly popular in the treatment of clinical and veterinary infections. Being excreted during treatment, mostly as active compounds, their biological action is not limited to the therapeutic site, but it is moved further as resistance selection pressure into the environment. Water environment is an ideal medium for the aggregation and dissemination of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs), which can pose a serious threat to human health. Because of this, the aim of this study was to determine the number of fluoroquinolone-resistant bacteria (FQRB) and their share in total heterotrophic plate counts (HPC) in treated wastewater (TWW), and upstream and downstream river water (URW, DRW) samples where TWW is discharged. The spread of plasmid-mediated quinolone resistance (PMQR) determinants and the presence/absence of resistance genes to other most popular antibiotic groups (against tetracyclines and beta-lactams) in selected 116 multiresistant isolates were investigated. The share of FQRB in total HPC in all samples was rather small and ranged from 0.7 % in URW samples to 7.5 % in TWW. Bacteria from Escherichia (25.0 %), Acinetobacter (25.0 %), and Aeromonas (6.9 %) genera were predominant in the FQRB group. Fluoroquinolone resistance was mostly caused by the presence of the gene aac(6')-1b-cr (91.4 %). More rarely reported was the occurrence of qnrS, qnrD, as well as oqxA, but qnrA, qnrB, qepA, and oqxB were extremely rarely or never noted in FQRB. The most prevalent bacterial genes connected with beta-lactams' resistance in FQRB were bla TEM, bla OXA, and bla CTX-M. The bla SHV was less common in the community of FQRB. The occurrence of bla genes was reported in almost 29.3 % of FQRB. The most abundant tet genes in FQRB were tet(A), tet(L), tet(K), and tet(S). The prevalence of tet genes was observed in 41.4

  20. Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries.

    Science.gov (United States)

    Yanat, B; Rodríguez-Martínez, J-M; Touati, A

    2017-03-01

    Quinolones are a family of synthetic broad-spectrum antimicrobial drugs. These molecules have been widely prescribed to treat various infectious diseases and have been classified into several generations based on their spectrum of activity. Quinolones inhibit bacterial DNA synthesis by interfering with the action of DNA gyrase and topoisomerase IV. Mutations in the genes encoding these targets are the most common mechanisms of high-level fluoroquinolone resistance. Moreover, three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998 and include Qnr proteins, the aminoglycoside acetyltransferase AAC(6')-Ib-cr, and plasmid-mediated efflux pumps QepA and OqxAB. Plasmids with these mechanisms often encode additional antimicrobial resistance (extended spectrum beta-lactamases [ESBLs] and plasmidic AmpC [pAmpC] ß-lactamases) and can transfer multidrug resistance. The PMQR determinants are disseminated in Mediterranean countries with prevalence relatively high depending on the sources and the regions, highlighting the necessity of long-term surveillance for the future monitoring of trends in the occurrence of PMQR genes.

  1. Transfer of plasmid-mediated ampicillin resistance from Haemophilus to Neisseria gonorrhoeae requires an intervening organism.

    Science.gov (United States)

    McNicol, P J; Albritton, W L; Ronald, A R

    1986-01-01

    Haemophilus species have been implicated as the source of plasmid-mediated ampicillin resistance in Neisseria gonorrhoeae. Previous attempts to transfer conjugally the resistance plasmids from Haemophilus species to N. gonorrhoeae have met with limited success. Using both biparental and triparental mating systems, it was found that transfer will occur if the commensal Neisseria species, Neisseria cinerea, is used as a transfer intermediate. This organism stably maintains resistance plasmids of Haemophilus and facilitates transfer of these plasmids to N. gonorrhoeae, in a triparental mating system, at a transfer frequency of 10(-8). Both Haemophilus ducreyi and N. gonorrhoeae carry mobilizing plasmids capable of mediating conjugal transfer of the same resistance plasmids. However, restriction endonuclease mapping and DNA hybridization studies indicate that the mobilizing plasmids are distinctly different molecules. Limited homology is present within the transfer region of these plasmids.

  2. Multiple Antibiotic Resistances of Vibrio Isolates from Coastal and Brackish Water Areas

    Directory of Open Access Journals (Sweden)

    S. Manjusha

    2005-01-01

    Full Text Available An experiment was designed to assess the occurrence of multiple antibiotic resistances in Vibrio spp. from different (brackish and marine environments. Water samples from nine marine landing sites and two coastal inland aquaculture farms were screened for the Vibrio spp. and assessed their resistance to twenty-two different antibiotics, which are commonly encountered in the aquatic ecosystem. Tissue samples (shrimp, mussel and sepia were tested from the sampling site with highest antibiotic resistance. Of the total 119 Vibrio isolates, 16. 8% were susceptible to all antibiotics. Of the resistant (83.19% Vibrio strains, 30.3% were resistant against three antibiotics, 55.5% were resistant against 4-10 antibiotics, 14.14% were resistant against more than 10 antibiotics and 54% have shown multiple antibiotics resistance (MAR. Antibiotic resistance index was higher in Coastal 3, 6, Aqua farm 2 in isolates from water samples and all the tissues tested. Interestingly, incidence of antibiotic resistance in isolates from water samples was comparatively lower in aquaculture farms than that observed in coastal areas. Highest incidence of antibiotic resistance was evident against Amoxycillin, Ampicillin, Carbencillin and Cefuroxime followed by Rifampicin and Streptomycin and lowest against Chloramphenicol, Tetracycline, Chlortetracycline, Furazolidone, Nalidixic acid, Gentamycin Sulphafurazole, Trimethoprim, Neomycin and Amikacin irrespective of the sampling sites. Results from various tissue samples collected from the sites of highest antibiotic resistance indicated that antibiotic resistance Vibrio spp. collected from fish and tissue samples were higher than that of water samples. Overall results indicated that persistent use of antibiotics against diseases in human beings and other life forms may pollute the aquatic system and their impact on developing antibiotic resistant Vibrio spp. may be a serious threat in addition to the use of

  3. Multiple antibiotic resistance among gram negative bacteria isolated from poultry.

    Science.gov (United States)

    Ansari, F A; Khatoon, H

    1994-03-01

    Gram negative bacteria, including species of Salmonella, Escherichia, Pseudomonas and Klebsiella, isolated from poultry, were screened for their resistance to the commonly used antibiotics: ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, polymyxin B, streptomycin and tetracycline. Of the 500 bacteria screened, 351 were found to be resistant to one or more antibiotics at the level of 50 micrograms/ml. Various patterns of antibiotic resistance observed during these studies have been reported.

  4. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside resistance determinants among carbapeneme non-susceptible Enterobacter cloacae.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Simultaneous resistance to aminoglycosides and fluoroquinolones in carbapeneme non-susceptible (CNS isolates will inevitably create problems. The present study was performed to characterize the prevalence of the plasmid-mediated quinolone resistance determinants (QRDs and aminoglycoside resistance determinants (ARDs among the CNS Enterobacter cloacae (E. cloacae isolates in a Chinese teaching hospital, and to acquire their molecular epidemiological characteristics. METHODS: The β-lactamases genes (including class A carbapenemase genes bla(KPC and bla(SME, metallo-β-lactamase genes (MBLs bla(IMP, bla(VIM and bla(NDM, and extended spectrum β-lactamases (ESBLs,bla(CTX-M, bla(TEM and bla(SHV, QRDs (including qnrA, qnrB, qnrS and aac(6'-Ib-cr and ARDs (including aac(6'-Ib, armA and rmtB of these 35 isolates were determined by PCR and sequenced bidirectionally. The clonal relatedness was investigated by pulsed-field gel electrophoresis (PFGE. RESULTS: Of the 35 isolates, 9 (25.7% harbored a carbapenemase gene; 23 (65.7% carried ESBLs; 24 (68.6% were QRD positive; and 27 (77.1% were ARD positive. Among the 5 bla(IMP-8 positive strains, 4 (80% contained both ESBL and QRD genes, and all the 5 (100% harbored ARD genes. Of the 23 ESBLs positive isolates, 6 (26.1% were carbapenemase positive, 14 (60.9% were QRD positive, and 18 (78.3% were ARD positive. PFGE revealed genetic diversity among the 35 isolates, indicating that the high prevalence of CNS E. cloacae isolates was not caused by clonal dissemination. CONCLUSION: QRD and ARD genes were highly prevalent among the CNS E. cloacae isolates. Multiple resistant genes were co-expressed in the same isolates. The CNS E. cloacae isolate co-expressing bla(NDM-1, bla(IMP-26, qnrA1 and qnrS1 was first reported.

  5. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Science.gov (United States)

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.

  6. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2016-09-01

    Full Text Available Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of “super” efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics.

  7. Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations.

    Science.gov (United States)

    Ibargüen-Mondragón, Eduardo; Mosquera, Saulo; Cerón, Miller; Burbano-Rosero, Edith Mariela; Hidalgo-Bonilla, Sandra P; Esteva, Lourdes; Romero-Leitón, Jhoana P

    2014-03-01

    We formulate a mathematical model that describes the population dynamics of bacteria exposed to multiple antibiotics simultaneously, assuming that acquisition of resistance is through mutations due to antibiotic exposure. Qualitative analysis reveals the existence of a free-bacteria equilibrium, resistant-bacteria equilibrium and an endemic equilibrium where both bacteria coexist.

  8. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    Science.gov (United States)

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  9. Simultaneous breakdown of multiple antibiotic resistance mechanisms in S. aureus.

    Science.gov (United States)

    Kaneti, Galoz; Sarig, Hadar; Marjieh, Ibrahim; Fadia, Zaknoon; Mor, Amram

    2013-12-01

    In previous studies, the oligo-acyl-lysyl (OAK) C12(ω7)K-β12 added to cultures of gram-positive bacteria exerted a bacteriostatic activity that was associated with membrane depolarization, even at high concentrations. Here, we report that multidrug-resistant Staphylococcus aureus strains, unlike other gram-positive species, have reverted to the sensitive phenotype when exposed to subminimal inhibitory concentrations (sub-MICs) of the OAK, thereby increasing antibiotics potency by up to 3 orders of magnitude. Such chemosensitization was achieved using either cytoplasm or cell-wall targeting antibiotics. Moreover, eventual emergence of resistance to antibiotics was significantly delayed. Using the mouse peritonitis-sepsis model, we show that on single-dose administration of oxacillin and OAK combinations, death induced by a lethal staphylococcal infection was prevented in a synergistic manner, thereby supporting the likelihood for synergism to persist under in vivo conditions. Toward illuminating the molecular basis for these observations, we present data arguing that sub-MIC OAK interactions with the plasma membrane can inhibit proton-dependent signal transduction responsible for expression and export of resistance factors, as demonstrated for β-lactamase and PBP2a. Collectively, the data reveal a potentially useful approach for overcoming antibiotic resistance and for preventing resistance from emerging as readily as when bacteria are exposed to an antibiotic alone.

  10. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (Pantibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes.

    Science.gov (United States)

    Alves, Marta S; Pereira, Anabela; Araújo, Susana M; Castro, Bruno B; Correia, António C M; Henriques, Isabel

    2014-01-01

    The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  12. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes

    Directory of Open Access Journals (Sweden)

    Marta S. Alves

    2014-08-01

    Full Text Available The aim of this study was to examine antibiotic resistance (AR dissemination in coastal water, considering the contribution of different sources of faecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of faecal contamination: human-derived sewage and seagull faeces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin and amoxicillin were the most frequent. Higher rates of AR were found among seawater and faeces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull faeces (29% and 32% were lower than in isolates from seawater (39%. Seawater AR profiles were similar to those from seagull faeces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes blaTEM, sul1, sul2, tet(A and tet(B, were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (blaCTX-M-1 and blaSHV-12 and seagull faeces (blaCMY-2. Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull faeces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived faecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  13. Antibiotic-resistant commensal Escherichia coli in faecal droplets from bats and poultry in Nigeria

    Directory of Open Access Journals (Sweden)

    Anthonia Olufunke Oluduro

    2012-09-01

    Full Text Available The prevalence of antibiotic resistance and plasmid carriage among commensal faecal Escherichia coli isolates of bats, broilers and free-range chickens in Ile-Ife, Osun State, Nigeria was studied. A total of 125 E. coli isolates were recovered from the fresh faecal samples of bats, broilers and free-range chickens on eosin methylene blue agar plates and characterised using standard biochemical tests. The susceptibility of the isolates to antibiotics was performed using the disk diffusion method. All isolates developed resistance to antibiotics to varying degrees; resistance to augumentin, amoxicillin and tetracycline was significantly higher (p0.05 with the exception of ciprofloxacin, pefloxacin gentamicin and ofloxacin. A total of 90% of the bat isolates developed multiple antibiotic resistance with 28 multiple antibiotic resistance patterns. The free-range chicken and broiler isolates displayed 10 and 38 multiple antibiotic resistance patterns, respectively. Resistance was mostly plasmid-mediated with molecular weights ranging between 0.91 kb and 40.42 kb. Antibiotic resistance and plasmid carriage among the commensal E. coli isolates studied was relatively high and may be implicated in zoonotic infections.

  14. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae.

    LENUS (Irish Health Repository)

    Walsh, Fiona

    2010-06-01

    A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously.

  15. Relationship between Mutation of IR in the mtr System of Neisseria Gonorrhoeae and Multiple Antibiotic Resistance

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lixia; LIN Nengxing; HUANG Changzheng; CHEN Hongxiang; LIN Yun; TU Yating

    2006-01-01

    To study the relationship between mutation of the inverted repeat sequence (IR) in the multiple transferable resistant system (mtr) of Neisseria gonorrhoeae (NG) and itsmultiple antibiotic resistance, minimal inhibitory concentrations (MICs) for the clinically isolated strains were tested by agar-dilution-method. The mtr system's IR gene of NG was sequenced after amplification by polymerase chain reaction (PCR). Either two susce ptive or five penicillin-resistant strains had no base mutation in IR gene, while all of the 13 strains with multiple-antibiotic-resistance had a singlebase deletion (A/T). The result suggests that a single-base deletion of the thirteen-base IR sequence in mtr system of NG might result in multiple antibiotic resistance but is not associated with single antibiotic resistance.

  16. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  17. Plasmid-mediated quinolone resistance among extended spectrum beta lactase producing Enterobacteriaceae from bloodstream infections.

    Science.gov (United States)

    Domokos, Judit; Kristóf, Katalin; Szabó, Dóra

    2016-09-01

    The purpose of this study was to determine prevalence and molecular characterization of plasmid-mediated quinolone resistance (PMQR) genes [qnrA, qnrB, qnrC, qnrD, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] among extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. isolates from bloodcultures in Hungary. A total of 103 isolates were tested for quinolone susceptibility by microdilution method and PMQR genes were detected by polymerase chain reaction. About 40 ESBL-producing E. coli (39%) and 50 ESBL-producing Klebsiella spp. strains (48%) were resistant to ciprofloxacin; 40 ESBL-producing E. coli (39%) and 47 ESBL-producing Klebsiella spp. strains (45%) were resistant to levofloxacin; and 88 strains including 40 ESBL-producing E. coli (39%) and 48 (47%) ESBL-producing Klebsiella spp. were resistant to moxifloxacin. Among the 103 ESBL-producing isolates, 77 (75%) isolates (30 E. coli and 47 Klebsiella spp.) harbored PMQR genes. The most commonly detected gene was aac(6')-Ib-cr (65%). The occurrence of qnrS gene was 6%. Interestingly, qnrA, qnrB, qnrC, qnrD, and qepA were not found in any isolates. Among 77 PMQR-positive isolates, 27 (35.1%) and 1 (1.3%) carried two and three different PMQR genes, respectively. Only Klebsiella spp. harbored more than one PMQR genes. Observing prevalence of PMQR genes in the last 8 years, the increasing incidence of aac(6')-Ib-cr and oqxAB can be seen. Our results highlight high frequency of PMQR genes among ESBL-producing Klebsiella pneumoniae and E. coli isolates with an increasing dynamics in Hungary.

  18. Plasmid-Mediated OqxAB Is an Important Mechanism for Nitrofurantoin Resistance in Escherichia coli.

    Science.gov (United States)

    Ho, Pak-Leung; Ng, Ka-Ying; Lo, Wai-U; Law, Pierra Y; Lai, Eileen Ling-Yi; Wang, Ya; Chow, Kin-Hung

    2015-11-09

    Increasing consumption of nitrofurantoin (NIT) for treatment of acute uncomplicated urinary tract infections (UTI) highlights the need to monitor emerging NIT resistance mechanisms. This study investigated the molecular epidemiology of the multidrug-resistant efflux gene oqxAB and its contribution to nitrofurantoin resistance by using Escherichia coli isolates originating from patients with UTI (n = 205; collected in 2004 to 2013) and food-producing animals (n = 136; collected in 2012 to 2013) in Hong Kong. The oqxAB gene was highly prevalent among NIT-intermediate (11.5% to 45.5%) and -resistant (39.2% to 65.5%) isolates but rare (0% to 1.7%) among NIT-susceptible (NIT-S) isolates. In our isolates, the oqxAB gene was associated with IS26 and was carried by plasmids of diverse replicon types. Multilocus sequence typing revealed that the clones of oqxAB-positive E. coli were diverse. The combination of oqxAB and nfsA mutations was found to be sufficient for high-level NIT resistance. Curing of oqxAB-carrying plasmids from 20 NIT-intermediate/resistant UTI isolates markedly reduced the geometric mean MIC of NIT from 168.9 μg/ml to 34.3 μg/ml. In the plasmid-cured variants, 20% (1/5) of isolates with nfsA mutations were NIT-S, while 80% (12/15) of isolates without nfsA mutations were NIT-S (P = 0.015). The presence of plasmid-based oqxAB increased the mutation prevention concentration of NIT from 128 μg/ml to 256 μg/ml and facilitated the development of clinically important levels of nitrofurantoin resistance. In conclusion, plasmid-mediated oqxAB is an important nitrofurantoin resistance mechanism. There is a great need to monitor the dissemination of this transferable multidrug-resistant efflux pump.

  19. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Ciprofloxacin-Nonsusceptible Escherichia coli and Klebsiella pneumoniae Isolated from Blood Cultures in Korea

    Directory of Open Access Journals (Sweden)

    Hee Young Yang

    2014-01-01

    Full Text Available OBJECTIVES:To analyze the prevalence of plasmid-mediated quinolone resistance (PMQR determinants in ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from patients at a tertiary care hospital in Korea.

  20. Extended spectrum β-lactamase and plasmid mediated quinolone resistance in Escherichia coli fecal isolates from healthy companion animals in Algeria.

    Science.gov (United States)

    Yousfi, Massilia; Mairi, Assia; Touati, Abdelaziz; Hassissene, Lila; Brasme, Lucien; Guillard, Thomas; De Champs, Christophe

    2016-07-01

    The aim of this study was to evaluate the rate of fecal carriage of Escherichia coli strains producing Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) isolated from healthy pets (dogs and cats) in Algeria. Fecal samples from 171 healthy pets (102 dogs and 69 cats) in one veterinary practice and private owners were included. After isolates identification, antibiotic susceptibility was determined by disk diffusion procedure. ESBL were detected by combination disk tests. PCR and sequencing were used to characterize genes encoding ESBLs and PMQR. Transfer of ESBL and PMQR genes was assessed by conjugation experiments. Phylogenetic groups of E. coli were determined by PCR. Of the 171 animals, 20 carried an ESBL producing E. coli giving a prevalence of ESBL fecal carriage of 11.7%. All isolates were susceptible to carbapenems, cefoxitin, piperacillin-tazobactam, amikacin and fosfomycine. For the rest of the tested β-lactams, susceptibility rates ranged from 35% to 70% for cefepime and amoxicillin-clavulanic acid respectively. Concerning the non-beta-lactams antibiotics, the rates of susceptibility ranged between 5% to trimethoprim and 95% for chloramphenicol. The beta-lactamase genes identified in E. coli isolates were blaCTX-M-15, blaCTX-M-1, blaSHV-12 and blaTEM-1. The PMQR determinants aac(6')-Ib-cr, qnrS1 and qnrB5 genes were identified in 15 isolates. Transconjugants were obtained for two isolates. Phylogenetic analysis showed that E. coli isolates belong to commensal phylogroups of A and B1. We reported here for the first time in Algeria ESBL and PMQR-producing E. coli in healthy cats and dogs.

  1. Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments.

    Science.gov (United States)

    Castiglioni, Sara; Pomati, Francesco; Miller, Kristin; Burns, Brendan P; Zuccato, Ettore; Calamari, Davide; Neilan, Brett A

    2008-10-01

    Antibiotics are commonly detected in the environment as contaminants. Exposure to antibiotics may induce antimicrobial-resistance, as well as the horizontal transfer of resistance genes in bacterial populations. We selected the resistance gene marA, mediating resistance to multiple antibiotics, and explored its distribution in sediment and water samples from surface and sewage treatment waters. Ciprofloxacin and ofloxacin (fluoroquinolones), sulphamethoxazole (sulphonamide), erythromycin, clarythromycin, and spiramycin (macrolides), lincomycin (lincosamide), and oxytetracycline (tetracycline) were measured in the same samples to determine antibiotic contamination. Bacterial populations from environmental samples were challenged with antibiotics to identify resistant isolates. The gene marA was found in almost all environmental samples and was confirmed by PCR amplification in antibiotic-resistant colonies. 16S rDNA sequencing revealed that the majority of resistant isolates belonged to the Gram-positive genus Bacillus, not previously known to possess the regulator marA. We assayed the incidence of marA in environmental bacterial populations of Escherichia coli and Bacillus by quantitative real-time PCR in correlation with the levels of antibiotics. Phylogenetic analysis indicated the possible lateral acquisition of marA by Bacillus from Gram-negative Enterobacteriaceae revealing a novel marA homolog in Bacillus. Quantitative PCR assays indicate that the frequency of this gene in antropised environments seems to be related to bacterial exposure to water-borne antibiotics.

  2. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2015-10-01

    Full Text Available that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR...

  3. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico). Dept. of Biology; Hazen, T.C. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  4. Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China.

    Science.gov (United States)

    Xia, Ruirui; Ren, Ye; Xu, Hai

    2013-12-01

    We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) qnr genes by the polymerase chain reaction (PCR) in antibiotic-resistant bacteria isolates collected from aquatic environments in Jinan during 2 years (2008.3-2009.11). Genes were identified to variant level by PCR restriction fragment length polymorphism analysis or sequencing. qnrA1, qnrB2, qnrB4, qnrB6, qnrB9, qnrS1, and the new qnrB variant qnrB26 were detected in 31 strains from six genera (Klebsiella spp., Escherichia coli, Enterobacter spp., Proteus spp., Shigella spp., and Citrobacter spp.), four of which contained double qnr genes. Other PMQR genes, aac(6')-Ib-cr and qepA, were found in 12 (38.7%) and 5 (16.1%) of 31 isolates, respectively; while qepA was found in Shigella spp. for the first time. Eight types of β-lactamase genes and eight other types of resistance genes were also present in the 31 qnr-positive isolates. The detection rate for five β-lactamase genes (blaTEM, blaCTX, ampR, blaDHA, and blaSHV) was >45%. Class 1 integrons and complex class 1 integrons were prevalent in these strains, which contained 15 different gene cassette arrays and 5 different insertion sequence common region 1 (ISCR1)-mediated downstream structures. qnrA1, qnrB2, and qnrB6 were present in three ISCR1-mediated downstream structures: qnrA1-ampR, sapA-like-qnrB2, and sdr-qnrB6. We also analyzed the horizontal transferability of PMQR genes and other resistance determinants. The qnr genes and some integrons and resistance genes from 18 (58.1%) of the 31 qnr-positive strains could be transferred to E. coli J53 Azi(R) or E. coli DH5α recipient strains using conjugation or transformation methods. The results showed that a high number of qnr genes were associated with other resistance genes in aquatic environments in Jinan. This suggests that we should avoid over-using antibiotics and monitor aquatic environments to control the spread of antibiotic resistance genes.

  5. Plasmid-mediated colistin resistance in Escherichia coli from the Arabian Peninsula

    Directory of Open Access Journals (Sweden)

    Ágnes Sonnevend

    2016-09-01

    Conclusions: This is the first report on the presence of the plasmid-coded mcr-1 gene in a variety of multi-resistant clinical isolates from the Arabian Peninsula indicating that several commonly used antibiotics can potentially facilitate the spread of mcr-1 carrying strains, or directly, mcr-1 containing plasmids.

  6. Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments.

    Science.gov (United States)

    Guglielmetti, Elena; Korhonen, Jenni M; Heikkinen, Jouni; Morelli, Lorenzo; von Wright, Atte

    2009-04-01

    The transferability of a large plasmid that harbors a tetracycline resistance gene tet(S), to fish and human pathogens was assessed using electrotransformation and conjugation. The plasmid, originally isolated from fish intestinal Lactococcus lactis ssp. lactis KYA-7, has potent antagonistic activity against the selected recipients (Lactococcus garvieae and Listeria monocytogenes), preventing conjugation. Therefore the tetracycline resistance determinant was transferred via electroporation to L. garvieae. A transformant clone was used as the donor in conjugation experiments with three different L. monocytogenes strains. To our knowledge, this is the first study showing the transfer of an antibiotic resistance plasmid from fish-associated lactic bacteria to L. monocytogenes, even if the donor L. garvieae was not the original host of the tetracycline resistance but experimentally created by electroporation. These results demonstrate that the antibiotic resistance genes in the fish intestinal bacteria have the potential to spread both to fish and human pathogens, posing a risk to aquaculture and consumer safety.

  7. Unregulated use of antibiotics in Siliguri city vis-a-vis occurrence of MAR bacteria in community waste water and river Mahananda, and their potential for resistance gene transfer.

    Science.gov (United States)

    Mukherjee, Shriparna; Bhadra, Bhaskar; Chakraborty, Ratna; Gurung, Anirudra; Some, Sudip; Chakraborty, Ranadhir

    2005-04-01

    The unregulated use of antibiotics, including therapeutic and prophylactic prescribing, in the fastest growing city of West Bengal, Siliguri, was studied indirectly from a random survey conducted on retail medicine sellers at their counters. Ciprofloxacin, ampicillin, norfioxacin and amoxycillin were the highest retailed antibiotics and 58% of the city pharmacies sold antibiotics even without prescriptions. To understand the influence of the extent of antibiotic use by the community on the collective bacterial flora in the aquatic environment, we have determined the fraction(s) of Standard Plate Count (SPC) bacteria resistant to different antibiotics and multiple antibiotic resistance (MAR) profile of resistant SPC isolates from two municipal open drains and Mahananda river water samples of Siliguri. Within the MAR groups of Drain I and Drain II samples, 37.44% and 77.43% respectively were resistant to all seven antibiotics (ampicillin, chloramphenicol, ciprofloxacin, kanamycin, netilmicin, streptomycin and tetracycline) used in the study. Twenty Gram-negative SPC MAR isolates were examined for the presence of plasmids. Antibiotic resistance was shown to be associated with a carriage of a 47 kb (D1QN - 9), 48 kb (D2QN - 14) and 49.4 and 3.6 kb (MR - 1) plasmids, which were transmissible to the Escherichia coli DH5alpha recipient. The rapid spread of antibiotic resistance genes in bacterial population as a consequence of indiscriminate use of antibiotics, which can be partly attributed to plasmid-mediated horizontal transfer was discussed.

  8. First environmental sample containing plasmid-mediated colistin-resistant ESBL-producing Escherichia coli detected in Norway.

    Science.gov (United States)

    Jørgensen, Silje Bakken; Søraas, Arne; Arnesen, Lotte Stenfors; Leegaard, Truls; Sundsfjord, Arnfinn; Jenum, Pål A

    2017-09-01

    We hereby report the detection of the plasmid borne mcr-1 gene conferring colistin resistance in an extended-spectrum β-lactamase (ESBL) producing Escherichia coli ST10 strain retrieved from seawater at a public beach in Norway. The sample was collected in September 2010 and was investigated by whole-genome sequencing in 2016. This report illustrates that E. coli strains carrying plasmid-mediated colistin resistance genes have also reached areas where this drug is hardly used at all. Surveillance of colistin resistance in environmental, veterinary, and human strains is warranted also in countries where colistin resistance is rare in clinical settings. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Microbiological characterization of plasmid-mediated AmpC ß-lactamases and E. coli hyperproducers: how and why ?

    Directory of Open Access Journals (Sweden)

    Annibale Raglio

    2010-03-01

    Full Text Available The aim of this study is the evaluation of phenotypic method for the detection of plasmid-mediated AmpC producing Enterobacteriaceae by agar diffusion.We developed a phenotypic method with double disk test (CLSI and evaluation of synergism between Cloxacillin and/or Boronic Acid with cefotaxime and ceftazidime and cefepime with amoxicillin/clavulanic acid. As reference method for AmpC detection we used a multiplex PCR according to Perez-Perez. Among 7476 Enterobacteriaceae we detected 45 strains: 37 (82.2% plasmid-mediated AmpC producers, 6 (13.3% E. coli hyperproducers and 2 E. coli (4.5% positive for both.The AmpC phenotypic test was positive for all the isolates, showing a typical ghost zone between cloxacillin and cephalosporins or boronic acid and cephalosporins.The AmpC multiplex PCR confirmed that 28 P. mirabilis and 7 E. coli harboured a gene belonging to the bla-CMY-LAT family. Sequencing defined the presence of CMY-16 in all P. mirabilis, CMY-2 in E. coli, DHA-1 in 3 K. pneumoniae and FOX in 1 K. pneumoniae and allowed us to identify eight strains as E. coli hyperproducer: six E. coli yielded no amplicon and 2 were also producer of CMY-2. In this study the phenotypic method showed a sensitivity and a specificity of 100%.Waiting for the indication of international authorities, we think this phenotypic screening method could be useful in the routine of microbiological laboratories.

  10. Laboratory surveillance for prospective plasmid-mediated AmpC beta-lactamases in the Kinki region of Japan.

    Science.gov (United States)

    Yamasaki, Katsutoshi; Komatsu, Masaru; Abe, Noriyuki; Fukuda, Saori; Miyamoto, Yugo; Higuchi, Takeshi; Ono, Tamotsu; Nishio, Hisaaki; Sueyoshi, Noriyuki; Kida, Kaneyuki; Satoh, Kaori; Toyokawa, Masahiro; Nishi, Isao; Sakamoto, Masako; Akagi, Masahiro; Nakai, Isako; Kofuku, Tomomi; Orita, Tamaki; Wada, Yasunao; Jikimoto, Takumi; Kinoshita, Shohiro; Miyamoto, Kazuaki; Hirai, Itaru; Yamamoto, Yoshimasa

    2010-09-01

    Extended-spectrum beta-lactamases, plasmid-mediated AmpC beta-lactamases (PABLs), and plasmid-mediated metallo-beta-lactamases confer resistance to many beta-lactams. In Japan, although several reports exist on the prevalence of extended-spectrum beta-lactamases and metallo-beta-lactamases, the prevalence and characteristics of PABLs remain unknown. To investigate the production of PABLs, a total of 22,869 strains of 4 enterobacterial species, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis, were collected during six 6-month periods from 17 clinical laboratories in the Kinki region of Japan. PABLs were detected in 29 (0.13%) of 22,869 isolates by the 3-dimensional test, PCR analysis, and DNA sequencing analysis. PABL-positive isolates were detected among isolates from 13 laboratories. Seventeen of 13,995 (0.12%) E. coli isolates, 8 of 5,970 (0.13%) K. pneumoniae isolates, 3 of 1,722 (0.17%) K. oxytoca isolates, and 1 of 1,182 (0.08%) P. mirabilis isolates were positive for PABLs. Of these 29 PABL-positive strains, 20 (69.0%), 6 (20.7%), 2 (6.9%), and 1 (3.4%) carried the genes for CMY-2, DHA-1, CMY-8, and MOX-1 PABLs, respectively. Pattern analysis of randomly amplified polymorphic DNA and pulsed-field gel electrophoretic analysis revealed that the prevalence of CMY-2-producing E. coli strains was not due to epidemic strains and that 3 DHA-1-producing K. pneumoniae strains were identical, suggesting their clonal relatedness. In conclusion, the DHA-1 PABLs were predominantly present in K. pneumoniae strains, but CMY-2 PABLs were predominantly present in E. coli strains. The present findings will provide significant information to assist in preventing the emergence and further spread of PABL-producing bacteria.

  11. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    Science.gov (United States)

    Chen, Wenyao; Fang, Tingzi; Zhou, Xiujuan; Zhang, Daofeng; Shi, Xianming; Shi, Chunlei

    2016-01-01

    The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6′)-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid

  12. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7.

    Science.gov (United States)

    Yeldho, Deepthi; Rebello, Sharrel; Jisha, M S

    2011-01-01

    Sodium dodecyl sulphate (SDS), an anionic surfactant, has been used extensively due to its low cost and excellent foaming properties. Fifteen different bacterial isolates capable of degrading SDS were isolated from detergent contaminated soil by enrichment culture technique and the degradation efficiency was assessed by Methylene Blue Active Substances (MBAS) assay. The most efficient SDS degrading isolate was selected and identified as Pseudomonas aeruginosa S7. The selected isolate was found to harbor a single 6-kb plasmid. Acridine orange, ethidium bromide, SDS and elevated temperatures of incubation failed to cure the plasmid. The cured derivatives of SDS degrading Pseudomonas aeruginosa were obtained only when ethidium bromide and elevated temperature (40 °C) were used together. Transformation of E. coli DH5α with plasmid isolated from S7 resulted in subsequent growth of the transformants on minimal salt media with SDS (0.1%) as the sole source of carbon. The SDS degradation ability of S7 and the transformant was found to be similar as assessed by Methylene Blue Active Substance Assay. The antibiotic resistance profiles of S7, competent DH5α and transformant were analyzed and it was noted that the transfer of antibiotic resistance correlated with the transfer of plasmid as well as SDS degrading property.

  13. Plasmid-mediated colistin resistance in Escherichia coli from the Arabian Peninsula.

    Science.gov (United States)

    Sonnevend, Ágnes; Ghazawi, Akela; Alqahtani, Manaf; Shibl, Atef; Jamal, Wafa; Hashmey, Rayhan; Pal, Tibor

    2016-09-01

    Searching for the presence of the mcr-1 gene in colistin resistant Enterobacteriaceae in countries of the Arabian Peninsula. Seventy-five independent, colistin resistant Enterobacteriaceae strains isolated from clinical cases in Bahrain, Kuwait, Oman, Saudi Arabia and the United Arab Emirates were tested by PCR for the mcr-1 gene. mcr-1 positive strains were genotyped, and their antibiotic susceptibility was established. The mcr-1 containing plasmids were mobilized into Escherichia coli K-12 and their sequence was determined. Four E. coli isolates (two from Bahrain, one from Saudi Arabia and one from the United Arab Emirates) were identified carrying the mcr-1 gene on conjugative plasmids. They belonged to global multidrug resistant E. coli clones, i.e. ST648, ST224, ST68 and ST131, respectively. One strain carried the blaNDM-1 carbapenemase gene. Three strains carried mcr-1 on IncI2 type plasmids, one of them also harboring a blaCTX-M-64 gene. In the fourth strain mcr-1 was located on a 240kb IncHI2 plasmid co-harboring 13 other resistance genes. This is the first report on the presence of the plasmid-coded mcr-1 gene in a variety of multi-resistant clinical isolates from the Arabian Peninsula indicating that several commonly used antibiotics can potentially facilitate the spread of mcr-1 carrying strains, or directly, mcr-1 containing plasmids. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Occurrence of the Plasmid-Mediated Fluoroquinolone Resistance qepA1 Gene in Two Clonal Clinical Isolates of CTX-M-15-Producing Escherichia coli from Algeria.

    Science.gov (United States)

    Yanat, Betitera; Dali Yahia, Radia; Yazi, Leila; Machuca, Jesús; Díaz-De-Alba, Paula; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2016-10-13

    QepA is a plasmid-mediated quinolone resistance determinant of low prevalence described worldwide, mainly in Enterobacteriaceae. This study describes, for the first time in Algeria, two clonally related, QepA-producing Escherichia coli clinical isolates positive for CTX-M-15. The clonal spread of these multidrug-resistant isolates is a major public health concern.

  15. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015

    DEFF Research Database (Denmark)

    Hasman, H.; Hammerum, A. M.; Hansen, F.

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addi...

  16. Characterization of Plasmid-Mediated AmpC and Carbapenemases among Iranain Nosocomial Isolates of Klebsiella pneumoniae Using Phenotyping and Genotyping Methods

    NARCIS (Netherlands)

    A. Japoni-Nejad (Alireza); E. Ghaznavi Rad (Ehsanollah); A.F. van Belkum (Alex)

    2014-01-01

    textabstractObjectives: Plasmid-mediated AmpC β-lactamases (PMABLs) and carbapenemases are emerging groups of antimicrobial-resistance determinants. The aims of the study were to evaluate the occurrence of PMABLs and carbapenemases in clinical isolates of Klebsiella pneumoniae and compare the test p

  17. Characterization of Plasmid-Mediated AmpC and Carbapenemases among Iranain Nosocomial Isolates of Klebsiella pneumoniae Using Phenotyping and Genotyping Methods

    NARCIS (Netherlands)

    A. Japoni-Nejad (Alireza); E. Ghaznavi Rad (Ehsanollah); A.F. van Belkum (Alex)

    2014-01-01

    textabstractObjectives: Plasmid-mediated AmpC β-lactamases (PMABLs) and carbapenemases are emerging groups of antimicrobial-resistance determinants. The aims of the study were to evaluate the occurrence of PMABLs and carbapenemases in clinical isolates of Klebsiella pneumoniae and compare the test p

  18. Kinetic Properties of Four Plasmid-Mediated AmpC β-Lactamases

    Science.gov (United States)

    Bauvois, Cédric; Ibuka, Akiko Shimizu; Celso, Almeida; Alba, Jimena; Ishii, Yoshikazu; Frère, Jean-Marie; Galleni, Moreno

    2005-01-01

    The heterologous production in Escherichia coli, the purification, and the kinetic characterization of four plasmid-encoded class C β-lactamases (ACT-1, MIR-1, CMY-2, and CMY-1) were performed. Except for their instability, these enzymes are very similar to the known chromosomally encoded AmpC β-lactamases. Their kinetic parameters did not show major differences from those obtained for the corresponding chromosomal enzymes. However, the Km values of CMY-2 for cefuroxime, cefotaxime, and oxacillin were significantly decreased compared to those of the chromosomal AmpC enzymes. Finally, the susceptibility patterns of different E. coli hosts producing a plasmid- or a chromosome-encoded class C enzyme toward β-lactam antibiotics are mainly due to the overproduction of the β-lactamase in the periplasmic space of the bacteria rather than to a specific catalytic profile of the plasmid-encoded β-lactamases. PMID:16189104

  19. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat

    Directory of Open Access Journals (Sweden)

    Larissa Alvarenga Batista Botelho

    2015-04-01

    Full Text Available The dissemination of plasmid-mediated antimicrobial resistance genes may pose a substantial public health risk. In the present work, the occurrences of blaCTX-M and plasmid-mediated ampC and qnr genes were investigated in Escherichia coli from 16 chicken carcasses produced by four commercial brands in Brazil. Of the brands tested, three were exporters, including one of organic chicken. Our study assessed 136 E. coli isolates that were grouped into 77 distinct biotypes defined by their origin, resistance profiling, the presence of β-lactamase and plasmid-mediated quinolone resistance genes and enterobacterial repetitive intergenic consensus-polimerase chain reaction typing. The blaCTX-M-15, blaCTX-M-2 and blaCTX-M-8 genes were detected in one, 17 and eight different biotypes, respectively (45 isolates. Twenty-one biotypes (46 isolates harboured blaCMY-2. Additionally, blaCMY-2 was identified in isolates that also carried either blaCTX-M-2 or blaCTX-M-8. The qnrB and/or qnrS genes occurred in isolates carrying each of the four types of β-lactamase determinants detected and also in oxyimino-cephalosporin-susceptible strains. Plasmid-mediated extended-spectrum β-lactamase (ESBL and AmpC determinants were identified in carcasses from the four brands tested. Notably, this is the first description of blaCTX-M-15 genes in meat or food-producing animals from South America. The blaCTX-M-8, blaCTX-M-15 and blaCMY-2 genes were transferable in conjugation experiments. The findings of the present study indicate that plasmid-mediated ESBL and AmpC-encoding genes are widely distributed in Brazilian chicken meat.

  20. Research for the Agents of the Urinary Infection Resistant to Multiple Antibiotics and Risk Factors

    Directory of Open Access Journals (Sweden)

    Gokcen Gurkok Budak

    2014-03-01

    Full Text Available Aim: In our study, we aimed to determine the risk factors of multiple antibiotics resistant urinary system infections which are found in urology clinics. Material and Method: In this study, 255 cases in Ižzmir Bozyaka Education and Research Hospital Urology clinic from January 2007 to December 2009 in whose urine cultures urinary infection agents (multi-drug resistance bacteria have grown, were investigated and the patient files were examined retrospectively. The patients whose asymptomatic bacteriuria in culture samples was accepted as contamination or the ones with asymptomatic candiduria or the ones younger than 18 were not included. Results: From their urine cultures, 255 multiple resistant microorganisms were isolated. In 219 of the cultures gram negative (86% and in 36 (14% gram positive agents were isolated. The mean age of the cases accepted to the study was 69 (between 18 and 82. 66% of the cases were male, 34% were female. Most of the patients histories were significant with several urological diagnoses (Benign prostatic hyperplasia, urinary tract stone disease etc. In more than half of the cases, there was a history of urinary tract infection diagnosed in the last six months (71%; and there was antibiotic use history in 86% of the patients in the last six months. In 89% of the patients urinary catheter was applied. The mostly applied catheterizations to patients were bladder catheterization with 81%. Discussion: In our study, all the patients who have got multiple antibiotic resistances in their urine cultures, had at least two of followings: Frequent hospital admissions and hospitalization, urinary catheterization and repeated urological surgical intervention history. We found out existence of urinary catheter and recent use of antibiotics, as the highest risk factor for resistant urinary infection development.

  1. Plasmid-Mediated Dimethoate Degradation by Bacillus licheniformis Isolated From a Fresh Water Fish Labeo rohita

    Directory of Open Access Journals (Sweden)

    Manisha Deb Mandal

    2005-01-01

    Full Text Available The Bacillus licheniformis strain isolated from the intestine of Labeo rohita by an enrichment technique showed capability of utilizing dimethoate as the sole source of carbon. The bacterium rapidly utilized dimethoate beyond 0.6 mg/mL and showed prolific growth in a mineral salts medium containing 0.45 mg/mL dimethoate. The isolated B licheniformis exhibited high level of tolerance of dimethoate (3.5 mg/mL in nutrient broth, while its cured mutant did not tolerate dimethoate beyond 0.45 mg/mL and it was unable to utilize dimethoate. The wild B licheniformis strain transferred dimethoate degradation property to E coli C600 (Nar, F− strain. The transconjugant harbored a plasmid of the same molecular size (approximately 54 kb as that of the donor plasmid; the cured strain was plasmid less. Thus a single plasmid of approximately 54 kb was involved in dimethoate degradation. Genes encoding resistance to antibiotic and heavy metal were also located on the plasmid.

  2. Plasmid-Mediated Dimethoate Degradation by Bacillus licheniformis Isolated From a Fresh Water Fish Labeo rohita

    Science.gov (United States)

    2005-01-01

    The Bacillus licheniformis strain isolated from the intestine of Labeo rohita by an enrichment technique showed capability of utilizing dimethoate as the sole source of carbon. The bacterium rapidly utilized dimethoate beyond 0.6 mg/mL and showed prolific growth in a mineral salts medium containing 0.45 mg/mL dimethoate. The isolated B licheniformis exhibited high level of tolerance of dimethoate (3.5 mg/mL) in nutrient broth, while its cured mutant did not tolerate dimethoate beyond 0.45 mg/mL and it was unable to utilize dimethoate. The wild B licheniformis strain transferred dimethoate degradation property to E coli C600 (Nar, F−) strain. The transconjugant harbored a plasmid of the same molecular size (approximately 54 kb) as that of the donor plasmid; the cured strain was plasmid less. Thus a single plasmid of approximately 54 kb was involved in dimethoate degradation. Genes encoding resistance to antibiotic and heavy metal were also located on the plasmid. PMID:16192686

  3. Multiple prescriptions of antibiotics for children aged 0 to 5 years in relation to type of antibiotic

    DEFF Research Database (Denmark)

    Thrane, Nana; Olesen, Charlotte; Schønheyder, Henrik Carl

    1999-01-01

    The risk of receiving more than one prescription within an antibiotic course was examined for all children aged 0 to 5 years in a Danish county during 1997. We identified 29,307 prescriptions of systemic antibiotics for 16,245 children in a prescription database. Ten per cent of the prescriptions...

  4. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wenjuan Yin

    2017-06-01

    Full Text Available The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3.

  5. Crystal structure of Mox-1, a unique plasmid-mediated class C β-lactamase with hydrolytic activity towards moxalactam.

    Science.gov (United States)

    Oguri, Takuma; Furuyama, Takamitsu; Okuno, Takashi; Ishii, Yoshikazu; Tateda, Kazuhiro; Bonomo, Robert A; Shimizu-Ibuka, Akiko

    2014-07-01

    Mox-1 is a unique plasmid-mediated class C β-lactamase that hydrolyzes penicillins, cephalothin, and the expanded-spectrum cephalosporins cefepime and moxalactam. In order to understand the unique substrate profile of this enzyme, we determined the X-ray crystallographic structure of Mox-1 β-lactamase at a 1.5-Å resolution. The overall structure of Mox-1 β-lactamase resembles that of other AmpC enzymes, with some notable exceptions. First, comparison with other enzymes whose structures have been solved reveals significant differences in the composition of amino acids that make up the hydrogen-bonding network and the position of structural elements in the substrate-binding cavity. Second, the main-chain electron density is not observed in two regions, one containing amino acid residues 214 to 216 positioned in the Ω loop and the other in the N terminus of the B3 β-strand corresponding to amino acid residues 303 to 306. The last two observations suggest that there is significant structural flexibility of these regions, a property which may impact the recognition and binding of substrates in Mox-1. These important differences allow us to propose that the binding of moxalactam in Mox-1 is facilitated by the avoidance of steric clashes, indicating that a substrate-induced conformational change underlies the basis of the hydrolytic profile of Mox-1 β-lactamase.

  6. Responses of plasmid-mediated quinolone resistance genes and bacterial taxa to (fluoro)quinolones-containing manure in arable soil.

    Science.gov (United States)

    Xiong, Wenguang; Sun, Yongxue; Ding, Xueyao; Zhang, Yiming; Zhong, Xiaoxia; Liang, Wenfei; Zeng, Zhenling

    2015-01-01

    The aim of the present study was to investigate the fate of plasmid-mediated quinolone resistance (PMQR) genes and the disturbance of soil bacterial communities posed by (fluoro)quinolones (FQNs)-containing manure in arable soil. Representative FQNs (enrofloxacin (ENR), ciprofloxacin (CIP) and norfloxacin (NOR)), PMQR genes (qepA, oqxA, oqxB, aac(6')-Ib-cr and qnrS) and bacterial communities in untreated soil, +manure and +manure+FQNs groups were analyzed using culture independent methods. The significantly higher abundance of oqxA, oqxB and aac(6')-Ib-cr, and significantly higher abundance of qnrS in +manure group than those in untreated soil disappeared at day 30 and day 60, respectively. All PMQR genes (oqxA, oqxB, aac(6')-Ib-cr and qnrS) dissipated 1.5-1.7 times faster in +manure group than those in +manure+FQNs group. The disturbance of soil bacterial communities posed by FQNs-containing manure was also found. The results indicated that significant effects of PMQR genes (oqxA, oqxB, aac(6')-Ib and qnrS) on arable soils introduced by manure disappeared 2 month after manure application. FQNs introduced by manure slowed down the dissipation of PMQR genes. The presence of high FQNs provided a selective advantage for species affiliated to the phylum including Acidobacteria, Verrucomicrobia and Planctomycetes while suppressing Proteobacteria and Actinobacteria.

  7. Genetic environments of the transferable plasmid-mediated blaCTX-M-3 gene in Serratia marcescens isolates.

    Science.gov (United States)

    Chu, Pei-Yu; Peng, Chien-Fang

    2014-01-01

    In this study, genetic environments of the transferable plasmid-mediated blaCTX-M-3 gene were characterized among 14 isolates of cefotaxime-resistant Serratia marcescens using PCR and BLAST DNA sequence analysis. A total of 3 types of genetic architectures in the regions surrounding this blaCTX-M-3 gene were identified. Type I architecture was characterized by the presence of a complete insertion sequence of tnpA-ISEcp1, identified as interrupting a reverse IS26 sequence in the upstream region of the blaCTX-M-3 gene. A reverse-directional orf477 fragment was located downstream of the blaCTX-M-3 gene, which was in the same direction of the mucA gene. A common region containing the orf513 element was located upstream of the mucA gene. Moreover, a copy of the 3'-CS2 element was located immediately upstream of the orf513 element. A novel complex class 1 integron was characterized by the presence of the dfrA19 gene, which was flanked by two copies of class 1 integrons. This is the first report to describe the dfrA19 gene within a novel complex class 1 integron in S. marcescens isolates from Taiwan. This novel complex class 1 integron structure was located distantly upstream of the blaCTX-M-3 gene.

  8. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals?

    Directory of Open Access Journals (Sweden)

    Jaffar A. Al-Tawfiq

    2017-01-01

    Conclusion: The emergence and horizontal transmission of colistin resistance highlights the need for heightened stewardship efforts across the One Health platform for this antibiotic of last resort, and indeed for all antibiotics used in animals and humans.

  9. Research of quinolones plasmid-mediated resistance mechanisms and countermeasure%喹诺酮类药物的质粒介导耐药机制及其对抗防御措施研究

    Institute of Scientific and Technical Information of China (English)

    李建华; 宋丰贵

    2008-01-01

    随着喹诺酮类抗菌药物在临床上的广泛应用,细菌对喹诺酮类药物的耐药性上升迅速.研究发现,细菌对喹诺酮类药物耐药的机制主要为靶位改变及主动外排,两者均为染色体介导.近年发现与两者完全不同的质粒介导耐药机制,且越来越多的临床菌株得以证实.本文主要对喹诺酮类药物的质粒介导的耐药机制及如何采取相应对抗防御措施进行综述.%Along with widespread application of quinolones antibiotics in clinic,quinolones resistanceof bacteria has rapidly risen. It is discovered that mechanisms of quinolones resistance of bacteria are mainlyinvolves change of target site and initiative excretion, which are both mediated by chromosome. In recentyears,plasmid-mediated drug resistance mechanism has been discovered,which is completely different fromthem. More and more clinical bacteria strains have been confirmed. The paper summarizes plasmid-mediatedquinolones resistance mechanisms and measures taken.

  10. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    N O Yilmaz

    2013-01-01

    Full Text Available Background: Detecting plasmid-mediated AmpC (pAmpC β-lactamase-producing organism is important for optimal infection control and providing accurate and effective treatment option for physicians. Objectives: The aim of this study was to investigate the prevalence of pAmpC β-lactamase and compare the results of boronic acid (BA disk test with other phenotypic tests detecting AmpC positive isolates. Materials and Methods: A total of 273 clinical isolates of Klebsiella pneumoniae (n: 82 and Escherichia coli (n: 191 were analysed. The presence of pAmpC β-lactamase was determined by BA disk test, cefoxitin (FOX screening test, modified three dimensional test (M3DT, and multiplex polymerase chain reaction (PCR. Pulsed-field gel electrophoresis was performed to evaluate the genetic similarities between isolates. To detect extended spectrum β-lactamases (ESBL in the presence of AmpC β-lactamase, ESBL confirmation test was carried out with and without BA solution. Results: Of the 273 strains tested, 127 strains were found FOX resistant, 114 were positive by M3DT, 108 were positive in BA disk test, and the multiplex PCR detected 24 pAmpC β-lactamase-positive isolate. The prevalence of AmpC-producing strains was 10.9% in E. coli and 3.6% in K. pneumoniae in the tested population by PCR. CIT and MOX group genes were predominant type in these strains. Conclusion: These results emphasize that clinical laboratories should consider testing the presence of pAmpC enzymes particularly in FOX-resistant isolates, and BA disk test will improve detection of this emerging resistance phenotype.

  11. Analysis of plasmid-mediated multidrug resistance in Escherichia coli and Klebsiella oxytoca isolates from clinical specimens in Japan.

    Science.gov (United States)

    Ode, Takashi; Saito, Ryoichi; Kumita, Wakako; Sato, Kenya; Okugawa, Shu; Moriya, Kyoji; Koike, Kazuhiko; Okamura, Noboru

    2009-10-01

    This study investigated the relationship of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance among oxyimino-cephalosporin-resistant Escherichia coli (n=46) and Klebsiella oxytoca (n=28) clinical isolates in Japan. Seventy-three isolates appeared to produce an extended-spectrum beta-lactamase (ESBL) and one K. oxytoca isolate produced IMP-1 metallo-beta-lactamase (MBL). Polymerase chain reaction (PCR) and sequencing confirmed that eight CTX-M-9/SHV-12-producing isolates, one IMP-1-producing K. oxytoca isolate, and six ESBL-positive E. coli isolates respectively possessed PMQR genes qnrA1, qnrB6, and aac(6')-Ib-cr. All qnr-positive isolates also carried either aac(6')-Ib or aac(6')-IIc aminoglycoside acetyltransferase genes. Resistance determinants to beta-lactams, quinolones and aminoglycosides were co-transferred with a plasmid of ca. 140 kb. The qnrA1 gene was located downstream of insertion sequence ISCR1 in complex class 1 integrons. A novel qnrA1-carrying class 1 integron with the cassette arrangement aac(6')-IIc-aadA2 as well as a unique class 1 integron with bla(IMP-1)-aac(6')-IIc cassettes on the plasmid carrying qnrB6 were found in K. oxytoca isolates. We describe the identification of qnrB6 and aac(6')-Ib-cr and the close association of qnr with aac(6')-Ib and aac(6')-IIc for the first time in clinical isolates producing ESBL or MBL in Japan.

  12. Plasmid-Mediated Quinolone Resistance in Escherichia coli Isolates from Wild Birds and Chickens in South Korea.

    Science.gov (United States)

    Oh, Jae-Young; Kwon, Yong-Kuk; Tamang, Migma Dorji; Jang, Hyung-Kwan; Jeong, Ok-Mi; Lee, Hee-Soo; Kang, Min-Su

    2016-01-01

    A total of 2,423 nonduplicate isolates of Escherichia coli recovered from wild birds (n=793) and chickens (n=1,630) in South Korea were investigated for plasmid-mediated quinolone resistance (PMQR) genes. Altogether, 56 isolates with PMQR genes were identified, including 25 (3.2%) from wild birds and 31 (1.9%) from chickens, which were further characterized using molecular methods. Among them, qnrS, aac(6')-Ib-cr, qnrB, and qepA genes were detected in 47 (1.9%), 6 (0.24%), 2 (0.08%), and 1 (0.04%) isolates, respectively. The most prevalent gene, qnrS, was identified in 21 (0.9%) and 26 (1.1%) isolates from wild birds and chickens, respectively. The qnrB gene was identified in two chicken isolates, which included qnrB19 and a novel qnrB44 gene. Plasmid isolation and Southern hybridization revealed that qnrS1 was located on a large (>200 kbp) plasmid. The spread of the PMQR genes was attributed to a combination of horizontal dissemination and clonal expansion. The horizontal dissemination of PMQR genes was mostly mediated by IncK plasmids. Molecular typing demonstrated that the majority of the PMQR-positive isolates were genetically diverse. Only one chicken isolate belonged to ST131, which harbored an additional CMY-2 gene. Our findings suggest that the wild birds could serve as reservoirs of PMQR genes and spread them over long distances through migration. To our knowledge, this is the first report of PMQR genes in Korean wild birds. This study also reports qnrS2, qnrB19, qnrB44, and qepA genes for the first time in animal E. coli isolates from South Korea.

  13. Multiple-antibiotic-resistant Helicobacter pylori infection eradicated with a tailor-made quadruple therapy.

    Science.gov (United States)

    Nakajima, Shigemi; Inoue, Hisayuki; Inoue, Tetsuya; Maruoka, Yuri

    2012-04-01

    In 2008, a 44-year-old woman with mild epigastralgia diagnosed as having Helicobacter pylori-positive chronic gastritis without peptic ulcer underwent eradication therapy with lansoprazole (LPZ), amoxicillin (AMPC) and clarithromycin (CAM) for 7 days, but it failed, so treatment with rabeprazole, AMPC, and metronidazole (MNZ) for another 7 days was given, but it also failed. She was then prescribed a modified, 14-day sequential therapy of LPZ and AMPC with an increased dose of CAM followed by MNZ supplement, but the infection was still not eradicated. The H. pylori was cultured and examined for antibiotic susceptibility with the agar dilution method and was found to be resistant to CAM, MNZ, and levofloxacin, and non-sensitive to AMPC, namely multiple-antibiotic-resistant, although sensitive to minocycline. The CYP2C19 genotype of the patient was an extensive metabolizer (G681A: G/A, G636A: G/G). In 2010, she gave informed consent for a 14-day, tailor-made, modified classical (or modified high-dose PPI + AMPC) quadruple therapy comprising 30 mg LPZ, 500 mg AMPC and 500 mg bismuth subnitrate, qid, and 100 mg minocycline, bid. Two months later, her urea breath test was negative. Histology and bacterial culture were still negative 1 year after the therapy. She did not have any adverse events during or after the novel therapy, nor did she feel any further epigastralgia.

  14. A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway.

    Science.gov (United States)

    Wang, Kathy K; Stone, Laura K; Lieberman, Tami D; Shavit, Michal; Baasov, Timor; Kishony, Roy

    2016-02-01

    Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid's components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China.

    Directory of Open Access Journals (Sweden)

    Yanping Wen

    Full Text Available Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4% were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2 and 32 isolates (17.0% were positive for aac(6'-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6'-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05. In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05. All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6'-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.

  16. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  17. Dissemination of a clone carrying a fosA3-harbouring plasmid mediates high fosfomycin resistance rate of KPC-producing Klebsiella pneumoniae in China.

    Science.gov (United States)

    Jiang, Yan; Shen, Ping; Wei, Zeqing; Liu, Lilin; He, Fang; Shi, Keren; Wang, Yanfei; Wang, Haiping; Yu, Yunsong

    2015-01-01

    Fosfomycin has been proposed as an adjunct to other active agents for treating KPC-producing Klebsiella pneumoniae infections. This study aimed to investigate the prevalence of fosfomycin resistance and plasmid-mediated resistance determinants among KPC-producing K. pneumoniae isolates from clinical samples in China. In total, 278 KPC-producing and 80 extended-spectrum β-lactamase (ESBL)-producing (non-KPC-producing) clinical K. pneumoniae isolates were collected in 12 hospitals from 2010 to 2013. Fosfomycin susceptibility testing was carried out using the agar dilution method. Phylogenetic clonal patterns were revealed by pulsed-field gel electrophoresis (PFGE). Isolates were screened for plasmid-mediated fosfomycin resistance genes (fosA, fosA3 and fosC2) by PCR amplification. A plasmid was completely sequenced by next-generation sequencing. The fosfomycin resistance rate in KPC-producers (60.8%; 169/278) was significantly higher than in ESBL-producers (12.5%; 10/80). In addition, 94 KPC-producing isolates were positive for fosA3 and most of them were clonally related. A 23939-bp plasmid (pFOS18) co-harbouring fosA3 and bla(KPC-2) was completely sequenced, revealing that the fosA3 gene was flanked by two copies of IS26; however, bla(KPC-2) was located on a Tn3-Tn4401 integration structure. Although the fosA3 and blaKPC-2 genes are located on different transposon systems, they are able to spread together worldwide through plasmid transfer. Dissemination of the clone carrying the fosA3-harbouring plasmid mediates the high fosfomycin resistance rate of KPC-producing K. pneumoniae in China. Fosfomycin as an alternative option for treating infections caused by KPC-producing K. pneumoniae should not be recommended in hospitals in which fosfomycin-resistant clonal dissemination is emerging.

  18. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran

    Directory of Open Access Journals (Sweden)

    Ehsaneh Shams

    2015-01-01

    Full Text Available The purpose of this study was to determine the prevalence and molecular characterization of plasmid-mediated quinolone resistance (PMQR genes (qnrA, qnrB, qnrS, aac(6′-Ib-cr, and qepA among ESBL-producing Klebsiella pneumoniae isolates in Kashan, Iran. A total of 185 K. pneumoniae isolates were tested for quinolone resistance and ESBL-producing using the disk diffusion method and double disk synergy (DDST confirmatory test. ESBL-producing strains were further evaluated for the blaCTX-M genes. The PCR method was used to show presence of plasmid-mediated quinolone resistance genes and the purified PCR products were sequenced. Eighty-seven ESBL-producing strains were identified by DDST confirmatory test and majority (70, 80.5% of which carried blaCTX-M genes including CTX-M-1 (60%, CTX-M-2 (42.9%, and CTX-M-9 (34.3%. Seventy-seven ESBL-producing K. pneumoniae isolates harbored PMQR genes, which mostly consisted of aac(6′-Ib-cr (70.1% and qnrB (46.0%, followed by qnrS (5.7%. Among the 77 PMQR-positive isolates, 27 (35.1% and 1 (1.3% carried 2 and 3 different PMQR genes, respectively. However, qnrA and qepA were not found in any isolate. Our results highlight high ESBL occurrence with CTX-M type and high frequency of plasmid-mediated quinolone resistance genes among ESBL-producing K. pneumoniae isolates in Kashan.

  19. Emergence of plasmid-mediated colistin resistance (MCR-1) among Escherichia coli isolated from South African patients.

    Science.gov (United States)

    Coetzee, Jennifer; Corcoran, Craig; Prentice, Elizabeth; Moodley, Mischka; Mendelson, Marc; Poirel, Laurent; Nordmann, Patrice; Brink, Adrian John

    2016-04-19

    The polymyxin antibiotic colistin is an antibiotic of last resort for the treatment of extensively drug-resistant Gram-negative bacteria, including carbapenemase-producing Enterobacteriaceae. The State of the World's Antibiotics report in 2015 highlighted South Africa (SA)'s increasing incidence of these 'superbugs' (3.2% of Klebsiella pneumoniae reported from SA were carbapenemase producers), and in doing so, underscored SA's increasing reliance on colistin as a last line of defence. Colistin resistance effectively renders such increasingly common infections untreatable.

  20. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015.

    Science.gov (United States)

    Hasman, Henrik; Hammerum, Anette M; Hansen, Frank; Hendriksen, Rene S; Olesen, Bente; Agersø, Yvonne; Zankari, Ea; Leekitcharoenphon, Pimlapas; Stegger, Marc; Kaas, Rolf S; Cavaco, Lina M; Hansen, Dennis S; Aarestrup, Frank M; Skov, Robert L

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China.

  1. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  2. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several...... antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related...

  3. [Investigation of plasmid-mediated quinolone resistance genes in quinolone-resistant Escherichia coli and Klebsiella spp. isolates from bloodstream infections].

    Science.gov (United States)

    Buruk, Celal Kurtuluş; Öztel Ocak, Hikmet; Bayramoğlu, Gülçin; Aydın, Faruk

    2016-04-01

    One of the treatment options of Escherichia coli and Klebsiella spp. infections which are the most common opportunistic pathogens of gram-negative sepsis is quinolones. Resistance to quinolones which act by disrupting DNA synthesis has been increasing. Horizontal transfer of plasmid-mediated quinolone resistance (PMQR) genes play an important role in the spread of resistance. The data about the prevalence of PMQR genes in our country is quite limited. The aim of this study was to investigate the presence of known PMQR genes namely qnrA, qnrB, qnrC, qnrS, qnrD, aac(6')-Ib-cr, qepA and oqxAB amongst quinolone-resistant E. coli and Klebsiella spp. strains isolated from blood cultures. One hundred twenty seven E.coli and 66 Klebsiella isolates detected as nalidixic acid- and/or ciprofloxacin-resistant by phenotypical methods, from 193 blood samples of 187 patients admitted to Karadeniz Technical University, Faculty of Medicine, Department of Medical Microbiology, Bacteriology Unit of Patient Service Laboratory between January 2012 to August 2013 were included in the study. The presence of PMQR genes were investigated by polymerase chain reaction (PCR) and for the detection of aac(6')-Ib-cr variants PCR-restriction fragment length polymorphism (PCR-RFLP) method was used. The positive bands were sequenced using the same primers, and aligned with formerly defined resistance gene sequences, and confirmed. In the study, 56.7% (72/127) of E.coli and 19.7% (13/66) of Klebsiella spp. isolates, with a total of 44% (85/193) of all the isolates were found to be phenotypically resistant to quinolones. Of the 13 resistant Klebsiella isolates, 11 were K.pneumoniae, and two were K.oxytoca. Extended-spectrum beta-lactamase (ESBL)-producing isolates showed higher resistance (50/80, 62.5%) to quinolones than the negative ones (35/113, 30.9%). The prevalence of quinolone resistance genes among resistant E. coli and Klebsiella spp. isolates was determined as qnrA, 1.4% and 15.4%; qnrB, 4

  4. Occurrence and antibiotic resistance of Vibrio parahaemolyticus from shellfish in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Vengadesh eLetchumanan

    2015-12-01

    plasmid. After plasmid curing, the plasmid containing pathogenic strains isolated in our study have chromosomally mediated ampicillin resistance while the remaining resistance phenotypes are plasmid mediated. Overall, our results indicate that while the incidence of pathogenic Vibrio parahaemolyticus in shellfish in Selangor still appears to be at relatively reassuring levels, antibiotic resistance is a real concern and warrants ongoing surveillance.

  5. Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia.

    Science.gov (United States)

    Letchumanan, Vengadesh; Pusparajah, Priyia; Tan, Loh Teng-Hern; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    curing, the plasmid containing pathogenic strains isolated in our study have chromosomally mediated ampicillin resistance while the remaining resistance phenotypes are plasmid mediated. Overall, our results indicate that while the incidence of pathogenic V. parahaemolyticus in shellfish in Selangor still appears to be at relatively reassuring levels, antibiotic resistance is a real concern and warrants ongoing surveillance.

  6. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain.

    Science.gov (United States)

    Carramiñana, Juan J; Rota, Carmina; Agustín, I; Herrera, Antonio

    2004-11-30

    Salmonellosis is a major foodborne infection in Spain, and strains that are resistant to a great variety of antibiotics have become a major public health concern. The aim of this study was to determine the level of antibiotic resistance in 133 Salmonella isolates obtained from a poultry slaughterhouse in Zaragoza (NE Spain). Antimicrobial resistance testing was performed by disk diffusion method using 19 antibiotics. Results were interpreted following the NCCLS criteria. Overall, the highest percentage of resistance was found to the following antimicrobial agents: sulfadiazine (96.2%), neomycin (53.4%), tetracycline (21.8%), and streptomycin (11.3%). All isolates were found to be resistant to one or more of the antibiotics tested. Multiple resistance was observed in 87 strains (65.4%). We found 23 different patterns of resistance in Salmonella Enteritidis. Resistance to sulfadiazine was the most common single resistance. The most frequent patterns of multiresistant strains were neomycin+sulfadiazine and neomycin+tetracycline+sulfadiazine. S. 4,5,12:b: showed the highest percentages of resistance to the tested drugs, with five different resistance patterns found. Ampicillin+chloramphenicol+streptomycin+sulphonamides+tetracycline (ACSSuT) resistance pattern, commonly associated with S. Typhimurium DT 104, was not detected in strains of the same phage type from broilers. The appearance of substantial multiresistance in foodborne Salmonella isolates suggests the need for more prudent use of antibiotics by farmers, veterinarians, and physicians.

  7. Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic-resistant Salmonella Typhimurium in broilers fed Original XPC™.

    Science.gov (United States)

    Feye, K M; Anderson, K L; Scott, M F; McIntyre, D R; Carlson, S A

    2016-12-01

    Salmonella carriage is an insidious problem for the poultry industry. While most Salmonella serotypes are avirulent in poultry, these bacteria can contaminate chicken meat during processing, leading to one of the most important food safety hazards. In this study, we examined the anti-Salmonella effects of Diamond V Original XPC(™) (XPC) included in the finisher diet fed to commercial broilers. On 3 occasions between day one (D1) and D20, broilers were experimentally infected with multiple antibiotic-resistant Salmonella Typhimurium. After confirming that the chicks were shedding Salmonella in the feces on D21, broiler chicks were fed a diet containing XPC (n = 57 birds; 1.25 kg/MT) or an XPC-free control diet (CON) (n = 57 birds) to D49. Fecal samples were obtained weekly and subjected to selective culture for enumerating and determining the antibiotic resistance of the Salmonella Salmonella isolates were then subjected to an in vitro virulence assay, which predicts the ability of Salmonella to cause illness in a mammalian host. Broilers were euthanized on D49 and a segment of the large intestine was removed and subjected to the same assays used for the fecal samples. When compared to the birds fed the CON diet, Salmonella fecal shedding, virulence (invasion and invasion gene expression), and antibiotic resistance were significantly decreased in birds fed XPC (5-fold, 7.5-fold, 6-fold, and 5.3-fold decreases, respectively). Birds fed XPC exhibited heavier body weight (BW) and greater BW gains than those fed the CON diet. The decrease in virulence was associated with a decreased expression of a genetic regulator of Salmonella invasion into cells (hilA), while the decrease in antibiotic resistance was due to a loss of an integron (SGI1) from the input strain. This study revealed that Original XPC(™) inhibits the shedding, downstream virulence, and antibiotic resistance of Salmonella residing in broilers. © The Author 2016. Published by Oxford University Press

  8. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2013-06-01

    The chlorination behaviours of 12 antibiotics belonging to six classes at environmentally relevant concentrations were systematically examined under typical conditions relevant to municipal wastewater chlorination. Cefotaxime, cefalexin, ampicillin and tetracycline were completely removed under all three initial free chlorine dosages (5 mg/L, 10 mg/L, and 15 mg/L). The removal efficiencies of sulphamethoxazole, sulphadiazine, roxithromycin, anhydro-erythromycin, ofloxacin, and trimethoprim were closely correlated to the residual free chlorine concentration, and no further significant mass removal was observed after the residual free chlorine concentration decreased to less than ≈ 0.75 mg/L. Ammonia plays a critical role during chlorination because of its competition with antibiotics for free chlorine to form combined chlorine, which reacts slowly with these antibiotics. Except for norfloxacin and ciprofloxacin, the removal behaviours of the 10 other target antibiotics under ammonia nitrogen concentrations ranging from 2 to 15 mg/L were characterised by a rapid initial removal rate upon contact with free chlorine during the first 5 s-1 min (depending on the specific antibiotic and ammonia nitrogen concentration) and then a much slower removal rate. Free chlorine was responsible for the reaction with antibiotics during the rapid stage (first 5 s-1 min), whereas combined chlorine reacted with antibiotics in the subsequent slow stage. Combined chlorine can remove norfloxacin and ciprofloxacin at a relatively faster rate. The presence of suspended solids at 30 mg/L slightly decreased the antibiotic removal rate. The kinetic rate constants decreased by 2.1-13.9%, while the half-lives increased by 2.0-15.0% compared to those of a 0 mg/L suspended solid for the target antibiotics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Didier Mazel

    2013-05-01

    Full Text Available The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT, mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.

  10. POTENCY OF HONEY AS ANTIBACTERIAL AGENT AGAINST MULTIPLE ANTIBIOTIC RESISTANT PATHOGENS EVALUATED BY DIFFERENT METHODS

    Directory of Open Access Journals (Sweden)

    Mohamed Mustafa Aween

    2014-01-01

    Full Text Available Honey is rich with complex natural components which could be useful as antibacterial agents or as preservative. Honey contains high concentration of sugars, low amount of water, high osmolality and often dark colour which influence its antibacterial activity. Disc diffusion, well method, micro dilution assay are methods commonly used to determine the antibacterial activity of honey. In this study, microtiter and microbial plate count were included to ascertain the potency of honey as antibacterial agent against multiple antibiotic resistant pathogenic bacteria (Staphylococcus aureus, Salmonella Typhimurium, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa with concentration of 0.2 g mL-1. Results found that well diffusion method tends to give higher inhibitory zone than disc diffusion method but there was no correlation among the bacteria was observed except for S. Typhimurium, E. coli (R = 0.310, 0.505 and 0.316, respectively. Nan photometer assay and microtiter plates assay showed comparable results with moderately strong correlation (R2 = 0.681 and 0.767, respectively for S. aureus and S. typhimurium, but poor correlation was found for E. coli, B. subtilis and P. aeruginosa (R2 = 0.441, 0.308 and 0.383, respectively. Determining the number of survivors by plating on agar after nanophotometer assay or microtiter plate assay had confirmed the effectiveness of honey as antimicrobial agent against target bacteria; which confirmed that honey has the potency to inhibit pathogens even at low concentration.

  11. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    Science.gov (United States)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying.

  12. Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychrophilus permafrost strain.

    Science.gov (United States)

    Petrova, Mayya; Gorlenko, Zhosephine; Mindlin, Sofia

    2009-06-01

    A Psychrobacter psychrophilus strain resistant to tetracycline and streptomycin was isolated from a 15,000-35,000-year-old permafrost subsoil sediment sampled from the coast of the Eastern-Siberian Sea. The genes conferring antibiotic resistance were localized on an c. 30-kb pKLH80 plasmid. It was shown that the antibiotic resistance region of this plasmid has a mosaic structure and contains closely linked streptomycin resistance (strA-strB) and tetracycline resistance [tetR-tet(H)] genes, followed by a novel IS element (ISPpy1) belonging to the IS3 family. Both the strA-strB and tetR-tet(H) genes of pKLH80 were highly similar to those found in modern clinical bacterial isolates. It was shown that the ISPpy1 element of pKLH80 can direct translocation of the adjacent antibiotic resistance genes to different target plasmids, either by one-ended transposition or by formation of a composite transposon resulting from the insertion of the ISPpy1 second copy at the other side of the antibiotic resistance region. Thus, our data demonstrate that clinically important antibiotic resistance genes originated long before the introduction of antibiotics into clinical practice and confirm an important role of horizontal gene transfer in the distribution of these genes in natural bacterial populations.

  13. Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery

    Institute of Scientific and Technical Information of China (English)

    S W Lee; M Najiah; W Wendy; A Zahrol; M Nadirah

    2009-01-01

    In this article,antibiogram and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery in Malaysia are described.Although giant freshwater prawn was introduced into Malaysia since the 1980s,there was no database information on antibiogram and heavy metal resistance profile of bacteria from giant freshwater prawn (M.rosenbergii) hatchery in Malaysia.Therefore,this study was carried out to determine the effectiveness of antibiotic and heavy metal resistance profile to control bacterial diseases in M.rosenbergii hatchery.The results can provide valuable information for local M.rosenbergii post-larval producer.Antibiotic sensitivity test was carried out by disk-diffusion method against 15 types of antibiotics as follows:oxolinic acid (2 μg),ampicillin (10 μg),erythromycin (15 μg),furazolidone (15 μg),lincomycin (15 μg),amoxicillin (25 μg),col istin sulphate (25 μg),doxycycline (30 μg),florfenicol (30 μg),flumequine (30 μg),nalidixic acid (30 μg),tetracycline (30 μg),oleandomyein (15 μg),fosfomycin (50 μg),and spiramycin (100 μg),whereas heavy metal resistance profile of the present bacterial isolates was determined by 2-fold agar dilution technique.In this study,5 types of bacteria were successfully isolated;they were Aeromonas spp.(n= 77),Escherichia coil (n = 73),Edwardsiella spp.(n = 62),Salmonella spp.(n= 75),and Vibrio spp.(n = 43).The result showed that furazolidone was the most effective antibiotic to control the bacteria isolated in this study,approximately 89.7% of the bacterial isolates were sensitive to this antibiotic.Multiple antibiotic resistance (MAR) index indicated that the hatchery water source and M.rosenbergii post-larval and sediment tanks were at high-risk exposure to the tested antibiotic.Furthermore,all the tested heavy metals (Cd2+,Cr6+ Hg2+,and Cu2+) failed to inhibit the growth of the bacterial isolates.Therefore,it indicated that the water source of the hatchery is

  14. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008.

    Science.gov (United States)

    Yang, Haiyan; Duan, Guangcai; Zhu, Jingyuan; Zhang, Weidong; Xi, Yuanlin; Fan, Qingtang

    2013-08-01

    A total of 293 Shigella isolates were isolated from patients with diarrhoea in four villages of Henan, China. This study investigated the prevalence of the plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qepA and aac(6')-Ib-cr and compared the polymorphic quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC and parE. Of the isolates, 292 were found to be resistant to nalidixic acid and pipemidic acid, whereas 77 were resistant to ciprofloxacin (resistance rate of 26.3%). Resistance of the Shigella isolates to ciprofloxacin significantly increased from 2001 to 2008 (PShigella isolates are common in China. This study found that there was a significant increase in mutation rates of the QRDR and the resistant rates to ciprofloxacin. Other mechanisms may be present in the isolates that also contribute to their resistance to ciprofloxacin.

  15. Real-time quantitative PCR assay with Taqman® probe for rapid detection of MCR-1 plasmid-mediated colistin resistance

    Directory of Open Access Journals (Sweden)

    S. Chabou

    2016-09-01

    Full Text Available Here we report the development of two rapid real-time quantitative PCR assays with TaqMan® probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli with a calibration curve that was linear from 101 to 108 DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing.

  16. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella spp. from Companion Animals in Italy

    DEFF Research Database (Denmark)

    Donati, Valentina; Feltrin, Fabiola; Hendriksen, Rene S.

    2014-01-01

    We report the genetic characterization of 15 Klebsiella pneumoniae (KP) and 4 isolates of K. oxytoca (KO) from clinical cases in dogs and cats and showing extended-spectrum cephalosporin (ESC) resistance. Extended spectrum beta-lactamase (ESBL) and AmpC genes, plasmid-mediated quinolone resistance...... patterns observed, including two clusters of two (ST340) and four (ST101) indistinguishable isolates, respectively. All isolates harbored at least one ESBL or AmpC gene, all carried on transferable plasmids (IncR, IncFII, IncI1, IncN), and 16/19 were positive for PMQR genes (qnr family or aac(6')-Ib...... of multidrug-resistant Klebsiella with ESBL, AmpC and PMQR determinants, poses further and serious challenges in companion animal therapy and raise concerns for possible bidirectional transmission between pets and humans, especially at household level....

  17. Plasmid-mediated extended-spectrum beta-lactamase-producing strains of Enterobacteriaceae isolated from diabetes foot infections in a Brazilian diabetic center

    Directory of Open Access Journals (Sweden)

    R.N. Motta

    2003-04-01

    Full Text Available We bacteriologically analyzed 156 species of Enterobacteriaceae, isolated from 138 patients with community-acquired diabetic foot ulcers, in a prospective study made at a diabetic center and at the Federal University of Ceará, Brazil, from March, 2000, to November, 2001.The samples were cultured using selective media, and identification, susceptibility tests and detection of plasmid-mediated-extended-spectrum-beta-lactamase (ESBL producing strains were made with conventional and automated methods. The most frequently occurring pathogens were K. pneumoniae (21.2%, Morganella morganii (19.9% and E. coli (15.4%. High resistance rates were noted for ampicillin, first generation cephalosporin, trimethoprim/sulfamethoxazole, tetracycline, amoxicillin-clavulanic acid and chloramphenicol. ESBL-producing strains were detected in 6% of the patients. Resistance among gram-negative bacteria has become increasingly common, even in community-acquired infections.

  18. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    Science.gov (United States)

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine.

  19. Multiple antibiotic resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available Regarded as an emerging diarrheal micropathogen, Vibrio cholerae serogroup O139 was first identified in 1992 and has become an important cause of cholera epidemics over the last two decades. O139 strains have been continually isolated since O139 cholera appeared in China in 1993, from sporadic cases and dispersed foodborne outbreaks, which are the common epidemic types of O139 cholera in China. Antibiotic resistance profiles of these epidemic strains are required for development of clinical treatments, epidemiological studies and disease control. In this study, a comprehensive investigation of the antibiotic resistance of V. cholerae O139 strains isolated in China from 1993 to 2009 was conducted. The initial O139 isolates were resistant to streptomycin, trimethoprim-sulfamethoxazole and polymyxin B only, while multidrug resistance increased suddenly and became common in strains isolated after 1998. Different resistance profiles were observed in the isolates from different years. In contrast, most V. cholerae O1 strains isolated in the same period were much less resistant to these antibiotics and no obvious multidrug resistance patterns were detected. Most of the non-toxigenic strains isolated from the environment and seafood were resistant to four antibiotics or fewer, although a few multidrug resistant strains were also identified. These toxigenic O139 strains exhibited a high prevalence of the class I integron and the SXT element, which were rare in the non-toxigenic strains. Molecular subtyping of O139 strains showed highly diverse pulsed-field gel electrophoresis patterns, which may correspond to the epidemic state of sporadic cases and small-scale outbreaks and complex resistance patterns. Severe multidrug resistance, even resistance transfers based on mobile antibiotic resistance elements, increases the probability of O139 cholera as a threat to public health. Therefore, continual epidemiological and antibiotic sensitivity surveillance

  20. Multiple antibiotic resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009.

    Science.gov (United States)

    Yu, Li; Zhou, Yanyan; Wang, Ruibai; Lou, Jing; Zhang, Lijuan; Li, Jie; Bi, Zhenqiang; Kan, Biao

    2012-01-01

    Regarded as an emerging diarrheal micropathogen, Vibrio cholerae serogroup O139 was first identified in 1992 and has become an important cause of cholera epidemics over the last two decades. O139 strains have been continually isolated since O139 cholera appeared in China in 1993, from sporadic cases and dispersed foodborne outbreaks, which are the common epidemic types of O139 cholera in China. Antibiotic resistance profiles of these epidemic strains are required for development of clinical treatments, epidemiological studies and disease control. In this study, a comprehensive investigation of the antibiotic resistance of V. cholerae O139 strains isolated in China from 1993 to 2009 was conducted. The initial O139 isolates were resistant to streptomycin, trimethoprim-sulfamethoxazole and polymyxin B only, while multidrug resistance increased suddenly and became common in strains isolated after 1998. Different resistance profiles were observed in the isolates from different years. In contrast, most V. cholerae O1 strains isolated in the same period were much less resistant to these antibiotics and no obvious multidrug resistance patterns were detected. Most of the non-toxigenic strains isolated from the environment and seafood were resistant to four antibiotics or fewer, although a few multidrug resistant strains were also identified. These toxigenic O139 strains exhibited a high prevalence of the class I integron and the SXT element, which were rare in the non-toxigenic strains. Molecular subtyping of O139 strains showed highly diverse pulsed-field gel electrophoresis patterns, which may correspond to the epidemic state of sporadic cases and small-scale outbreaks and complex resistance patterns. Severe multidrug resistance, even resistance transfers based on mobile antibiotic resistance elements, increases the probability of O139 cholera as a threat to public health. Therefore, continual epidemiological and antibiotic sensitivity surveillance should focus on the

  1. Distribution characteristics and drug resistant analysis of plasmid-mediated quinolone drug resistant gene qnr of Klebsiella pneumoniae isolates separated from sputum samples in our hospital%痰标本中质粒介导喹诺酮耐药基因qnr在肺炎克雷伯菌中的分布特征及耐药分析

    Institute of Scientific and Technical Information of China (English)

    菅凌燕; 何晓静; 于莹

    2012-01-01

    目的:了解从痰标本中分离出的肺炎克雷伯菌对16种抗茵药物的耐药性,以及研究由质粒介导的喹诺酮类耐药基因qnr在肺炎克雷伯菌中的存在情况.方法:用PCR及直接测序的方法对135株肺炎克雷伯菌进行qnr基因检测,并用K-B纸片法检测其对16种抗茵药物的体外抗菌活性.另外,用琼脂平皿二倍稀释法检测阳性菌株对左氧氟沙星的MIC值.结果:135株肺炎克雷伯菌中,9株(6.6%)检出qnr基因.阳性菌株均对亚胺培南敏感且对多种抗生素耐药,其中2株qnr阳性菌株对左氧氟沙星敏感.结论:肺炎克雷伯菌中存在质粒介导喹诺酮类耐药基因qnr基因,qnr阳性菌株呈现多重耐药.临床工作中,应加强对耐药基因的监测,降低细菌耐药的发生.%OBJECTIVE To explore the drug resistant characteristics to 16 kinds of antibiotics and the distribution of plasmid-mediated quinolone drug resistant gene qnr of Klebsiella pneumoniae isolates separated from sputum samples. METHODS By using PCR and direct sequencing method, the gene qnr of Klebsiella pneumoniae was detected. Then, the antibacterial activities of 16 kinds of antibiotics on Klebsiella pneumoniae isolates in vitro were studied. Finally, was detected the MIC value of levofloxacin on gene qnr positive Klebsiella pneumoniae isolates with agar plate two-fold dilution method. RESULTS Among all 135 Klebsiella pneumoniae isolates, 9 Klebsiella pneumoniae isolates was determined with gene qnr. These isolates were all sensitive to imipenem and resistant to the other kinds of antibiotics. There were also 2 Klebsiella pneumoniae isolates sensitive to levofloxacin. CONCLUSION There are plasmid-mediated quinolone drug resistant gene qnr in our hospital. Qnr positive i-solates were multi-drug resistant. In clinic, we should pay attention to monitor on drug resistant genes and decrease the frequencies of drug resistant.

  2. High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment.

    Science.gov (United States)

    Ozaktas, Tugba; Taskin, Bilgin; Gozen, Ayse G

    2012-12-01

    Freshwater fish, Alburnus alburnus (bleak), were captured from Lake Mogan, situated in Ankara, during spring. The surface mucus of the fish was collected and associated bacteria were cultured and isolated. By sequencing PCR-amplified 16S RNA encoding genes, the isolates were identified as members of 12 different genera: Acinetobacter, Aeromonas, Bacillus, Brevundimonas, Gordonia, Kocuria, Microbacterium, Mycobacterium, Pseudomonas, Rhodococcus, and Staphylococcus, in addition to one strain that was unidentified. The mucus-dwelling bacterial isolates were tested for resistance against ampicillin, kanamycin, streptomycin and chloramphenicol. About 95% of the isolates were found to be resistant to ampicillin, 93% to chloramphenicol, and 88% to kanamycin and streptomycin. A Microbacterium oxydans and the unidentified environmental isolate were resistant to all four antibiotics tested at very high levels (>1600 μg/ml ampicillin and streptomycin; >1120 μg/ml kanamycin; >960 μg/ml chloramphenicol). Only a Kocuria sp. was sensitive to all four antibiotics at the lowest concentrations tested (3.10 μg/ml ampicillin and streptomycin; 2.15 μg/ml kanamycin; 1.85 μg/ml chloramphenicol). The rest of the isolates showed different resistance levels. Plasmid isolations were carried out to determine if the multiple antibiotic resistance could be attributed to the presence of plasmids. However, no plasmid was detected in any of the isolates. The resistance appeared to be mediated by chromosome-associated functions. This study indicated that multiple antibiotic resistance at moderate to high levels is common among the current phenotypes of the fish mucus-dwelling bacterial populations in this temperate, shallow lake which has not been subjected to any aquaculturing so far but under anthropogenic effect being in a recreational area.

  3. International collaborative study on the occurrence of plasmid mediated quinolone resisitance in Salmonella enterica en Escherichia coli isolated from animals, humans, food and the environment in 13 European countries.

    NARCIS (Netherlands)

    Veldman, K.T.; Cavaco, L.M.; Mevius, D.J.; Battisti, A.; Botteldoorn, N.; Bruneau, M.; Cerny, T.; Franco, A.; Frutos Escobar, De C.; Guerra, B.; Gutierrez, M.; Hopkins, K.; Myllyniemi, A.L.; Perrin-Guyomard, A.; Schroeter, A.; Sunde, M.; Wasyl, D.; Aarestrup, F.M.

    2011-01-01

    Objectives This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes. Methods Databases of national reference laboratories contai

  4. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    Science.gov (United States)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  5. Multiple antibiotic resistance of heterotrophic bacteria in the littoral zone of Lake Shira as an indicator of human impact on the ecosystem.

    Science.gov (United States)

    Lobova, Tatiana I; Barkhatov, Yuri V; Salamatina, Ol'ga V; Popova, Lyudmila Yu

    2008-01-01

    Resistance to Ampicillin and Kanamycin displayed by heterotrophic bacteria isolated in Summer and in Spring from the littoral and the central parts of Lake Shira (a therapeutic lake in the Khakasia Republic, Russia) has been investigated. It has been found that in Summer, human and animal microflora featuring multiple antibiotic resistance (to Ampicillin and Kanamycin) predominates in all the studied stations of the littoral zone of the lake. In Spring, concentrations of bacteria featuring multiple antibiotic resistance decrease significantly and bacteria sensitive to antibiotics predominate in the lake. Emergence of multiple antibiotic resistance in bacteria of Lake Shira is caused by the input of allochthonous bacteria into the lake; this feature of heterotrophic bacteria of Lake Shira can be used to monitor the impact on the ecosystem made by health resorts.

  6. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    Directory of Open Access Journals (Sweden)

    Barke Jörg

    2010-08-01

    Full Text Available Abstract Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.

  7. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    OpenAIRE

    Barke Jörg; Seipke Ryan F; Grüschow Sabine; Heavens Darren; Drou Nizar; Bibb Mervyn J; Goss Rebecca JM; Yu Douglas W; Hutchings Matthew I

    2010-01-01

    This work was supported by a UEA-funded PhD studentship (JB) and an MRC Milstein award, G0801721 (MIH, RJMG and DY). MIH is a Research Councils UK Fellow. DY also received support from the Yunnan provincial government (20080A001) and the Chinese Academy of Sciences (0902281081). Background: Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypot...

  8. High Prevalence of β-lactamase and Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Dogs in Shaanxi, China

    Science.gov (United States)

    Liu, Xiaoqiang; Liu, Haixia; Li, Yinqian; Hao, Caiju

    2016-01-01

    Objective: The aim of this study was to investigate the occurrence and molecular characterization of extended-spectrum β-lactamases (ESBL), plasmid-mediated AmpC β-lactamase (pAmpC) and carbapenemases as well as plasmid-mediated quinolone-resistant (PMQR) among extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli from dogs in Shaanxi province in China. Methods: A total of 40 ESC-R Escherichia coli selected from 165 Extraintestinal pathogenic E. coli (ExPEC) isolated from dogs were screened and characterized for the genes encoding for the ESBLs, pAmpC, carbapenemases and PMQR genes by PCR and sequencing. Phylogenetic groups, virulence gene profiles and multilocus sequence typing (MLST) were used to investigate the genetic background of the ESC-R E. coli isolates. Results: Among 40 ESC-R E. coli, the predominant β-lactamase gene was blaCTX−Ms (n = 35), and followed by blaTEM−1 (n = 31), blaSHV−12 (n = 14), blaOXA−48 (n = 8), blaTEM−30 (n = 4), blaCMY−2 (n = 3) and blaDHA−1 (n = 2). The most common specific blaCTX−M gene subtype was blaCTX−M−15 (n = 31), and followed by blaCTX−M−123 (n = 14), blaCTX−M−1 (n = 10), blaCTX−M−14 (n = 10) and blaCTX−M−9 (n = 7). PMQR genes were detected in 32 (80%) isolates, and the predominant PMQR gene was aac(6′)-Ib-cr (n = 26), followed by qnrS (n = 12), qnrD (n = 9), qnrB (n = 8), qepA (n = 4), and all PMQR genes were detected in co-existence with β-lactamase genes. traT (n = 34) and fimH (n = 32) were the most prevalent virulence genes, and virulence genes fimH, iutA, fyuA, malX, iha, and sat were more prevalent in phylogenetic group B2. The 40 ESC-R isolates analyzed were assigned to 22 sequence types (STs), and the clonal lineages ST131 (n = 10) and ST10 (n = 9) were the predominant STs. Conclusion: High prevalence of β-lantamases and PMQR genes were detected among ESC-R E. coli from companion animals. This is also the first description of the co-existence of six

  9. Prevalence and characteristics of extended-spectrum β-lactamase and plasmid-mediated fluoroquinolone resistance genes in Escherichia coli isolated from chickens in Anhui province, China.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The aim of this study was to characterize the prevalence of extended-spectrum β-lactamase (ESBL genes and plasmid-mediated fluoroquinolone resistance (PMQR determinants in 202 Escherichia coli isolates from chickens in Anhui Province, China, and to determine whether ESBL and PMQR genes co-localized in the isolates. Antimicrobial susceptibility for 12 antimicrobials was determined by broth microdilution. Polymerase chain reactions (PCRs, DNA sequencing, and pulsed field gel electrophoresis (PFGE were employed to characterize the molecular basis for β-lactam and fluoroquinolone resistance. High rates of antimicrobial resistance were observed, 147 out of the 202 (72.8% isolates were resistant to at least 6 antimicrobial agents and 28 (13.9% of the isolates were resistant to at least 10 antimicrobials. The prevalence of blaCTX-M, blaTEM-1 and blaTEM-206 genes was 19.8%, 24.3% and 11.9%, respectively. Seventy-five out of the 202 (37.1% isolates possessed a plasmid-mediated quinolone resistance determinant in the form of qnrS (n = 21; this determinant occurred occasionally in combination with aac(6'-1b-cr (n = 65. Coexistence of ESBL and/or PMQR genes was identified in 31 of the isolates. Two E. coli isolates carried blaTEM-1, blaCTX-M and qnrS, while two others carried blaCTX-M, qnrS and aac(6'-1b-cr. In addition, blaTEM-1, qnrS and aac(6'-1b-cr were co-located in two other E. coli isolates. PFGE analysis showed that these isolates were not clonally related and were genetically diverse. To the best of our knowledge, this study is the first to describe detection of TEM-206-producing E. coli in farmed chickens, and the presence of blaTEM-206, qnrS and aac(6'-1b-cr in one of the isolates.

  10. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China.

    Science.gov (United States)

    Guo, Yu-Fang; Zhang, Wen-Hui; Ren, Si-Qi; Yang, Lin; Lü, Dian-Hong; Zeng, Zhen-Ling; Liu, Ya-Hong; Jiang, Hong-Xia

    2014-01-01

    To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China. A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST). All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6')-Ib-cr), floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant. CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.

  11. Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4.

    Science.gov (United States)

    Tsutsui, Hirofumi; Anami, Yasutaka; Matsuda, Masami; Hashimoto, Kurumi; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2013-06-01

    Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i.e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity.

  12. High Prevalence of β-lactamase and Plasmid-mediated Quinolone Resistance Genes in Extended-spectrum Cephalosporin-resistant Escherichia coli from Dogs in Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    2016-11-01

    Full Text Available Objective: The aim of this study was to investigate the occurrence and molecular characterization of extended-spectrum β-lactamases (ESBL, plasmid-mediated AmpC β-lactamase (pAmpC and carbapenemases as well as plasmid-mediated quinolone-resistant (PMQR among extended-spectrum cephalosporin-resistant (ESC-R Escherichia coli from dogs in Shaanxi province in China.Methods: A total of 40 ESC-R Escherichia coli selected from 165 Extraintestinal pathogenic E. coli (ExPEC isolated from dogs were screened and characterized for the genes encoding for the ESBLs, pAmpC, carbapenemases and PMQR genes by PCR and sequencing. Phylogenetic groups, virulence gene profiles and multilocus sequence typing (MLST were used to investigate the genetic background of the ESC-R E. coli isolates. Results: Among 40 ESC-R E. coli, the predominant β-lactamase gene was blaCTX-Ms (n=35, and followed by blaTEM-1 (n=31, blaSHV-12 (n=14, blaOXA-48 (n=8, blaTEM-30 (n=4, blaCMY-2 (n=3 and blaDHA-1 (n=2. The most common specific blaCTX-M gene subtype was blaCTX-M-15 (n=31, and followed by blaCTX-M-123 (n=14, blaCTX-M-1 (n=10, blaCTX-M-14 (n=10 and blaCTX-M-9 (n=7. PMQR genes were detected in 32 (80% isolates, and the predominant PMQR gene was aac(6'-Ib-cr (n=26, followed by qnrS (n=12, qnrD (n=9, qnrB (n=8, qepA (n=4, and all PMQR genes were detected in co-existence with β-lactamase genes. traT (n=34 and fimH (n=32 were the most prevalent virulence genes, and virulence genes fimH, iutA, fyuA, malX, iha and sat were more prevalent in phylogenetic group B2. The 40 ESC-R isolates analyzed were assigned to 22 sequence types (STs, and the clonal lineages ST131 (n=10 and ST10 (n=9 were the predominant STs. Conclusion: High prevalence of β-lantamases and PMQR genes were detected among ESC-R E. coli from companion animals. This is also the first description of the co-existence of six β-lantamase genes and five PMQR genes in one E. coli isolate. Moreover, ten ST131 clones harboring CTX

  13. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China.

    Directory of Open Access Journals (Sweden)

    Yu-Fang Guo

    Full Text Available OBJECTIVES: To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China. METHODS: A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE, PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST. RESULTS: All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55, plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6'-Ib-cr, floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12 and A (n = 11, and virulent group D (n = 8. There was a good correlation between phylogenetic groups and sequence types (ST. Twenty-four STs were identified, of which the ST complexes (STC 101/B1 (n = 6, STC10/A (n = 5, and STC155/B1 (n = 3 were dominant. CONCLUSIONS: CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.

  14. A cfr-Like Gene from Clostridium difficile Confers Multiple Antibiotic Resistance by the Same Mechanism as the cfr Gene

    DEFF Research Database (Denmark)

    Hansen, Lykke H; Vester, Birte

    2015-01-01

    The Cfr RNA methyltransferase causes multiple resistances to peptidyl transferase inhibitors by methylation of A2503 23S rRNA. Many cfr-like gene sequences in the databases code for unknown functions. This study confirms that a Cfr-like protein from a Peptoclostridium difficile (formerly Clostrid......The Cfr RNA methyltransferase causes multiple resistances to peptidyl transferase inhibitors by methylation of A2503 23S rRNA. Many cfr-like gene sequences in the databases code for unknown functions. This study confirms that a Cfr-like protein from a Peptoclostridium difficile (formerly...... Clostridium difficile) strain does function as a Cfr protein. The enzyme is expressed in Escherichia coli and shows elevated MICs for five classes of antibiotics. A primer extension stop indicates a modification at A2503 in 23S rRNA....

  15. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay.

    Science.gov (United States)

    Mi, Tiejun; Wang, Zhanhui; Eremin, Sergei A; Shen, Jianzhong; Zhang, Suxia

    2013-10-02

    This paper describes a rapid one-step fluorescence polarization immunoassay (FPIA) for the simultaneous determination of multiple (fluoro)quinolone antibiotics (FQs) in food samples. Several fluorescent tracers were synthesized and evaluated in the FPIA method based on a broad-specificity of monoclonal antibodies toward FQs. The heterogeneous tracer, SAR-5-FAM, was considered as the optimal choice to prepare the immunocomplex single reagent, which allows a rapid and sensitive displacement reaction by addition of analytes. Optimized single-reagent FPIA exhibited broad cross-reactivities in the range of 7.8-172.2% with 16 FQs tested and was capable of determining most FQs at the level of maximum residue limits. Recoveries for spiked milk and chicken muscle samples were from 77.8 to 116%, with relative standard deviation lower than 17.4%. Therefore, this method could be applicable in routine screening analysis of multiple FQ residues in food samples.

  16. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the 'amplifier' function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks.

  17. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia

    Science.gov (United States)

    Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the ‘amplifier’ function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks. PMID:26930352

  18. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia.

    Science.gov (United States)

    Pang, Bo; Du, Pengcheng; Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the 'amplifier' function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks.

  19. Investigation of plasmid profile, antibiotic susceptibility pattern multiple antibiotic resistance index calculation of Escherichia coli isolates obtained from different human clinical specimens at tertiary care hospital in Bareilly-India

    Directory of Open Access Journals (Sweden)

    Ajay Francis Christopher

    2013-01-01

    Full Text Available Background: Escherichia coli is well known as noninvasive commensal and has been established as etiological agent of various human infections. E. coli also contributes to high rate of resistance to several antibiotics due to multiresistant antibiotic plasmid genes e.g., extended spectrum β-lactamases (ESBL. Material and Methods: To analyse the situation of antibiotic resistance, a total of 77 E.coli isolates from urine, pus, sputum and endotracheal aspirate were screened for their antibiograms for antibiotic resistance, multiple antibiotic resistance (MAR index for evaluating the spread of resistance and plasmid profiles for the presence and characterization of plasmids. Results: Very high resistance level (> 90% was detected against ampicillin, amoxycillin, ceftazidime, norfloxacin, tetracycline while imipenem and amikacin recorded the least resistance levels of 2.3% and 13.9%, respectively, among the isolates. An increased resistance to amoxycillin, tetracycline, cotrimoxazole and norfloxacin were observed in this geographical area which however displayed a lower resistance in other countries. The MAR index varied considerably, the lowest was 0.18 and the highest was 0.89. Plasmids of 10 size ranges were detected in the isolates. Some isolates possessed single-sized plasmid while other possessed multiple plasmids. Isolates with high MAR profiles were found to possess multiple plasmids. Conclusion: Regular antimicrobial sensitivity surveillance is necessary and acquisition of plasmid could greatly contribute in the antibiotic resistance and poses a significant risk of the spread of microbial resistance in this community. Also, it was observed that route of administration of antibiotics perhaps reduced its misuse and hence led to the reduction in the emergence of resistant bacterial strains.

  20. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease.

    Science.gov (United States)

    Lamb, Rebecca; Ozsvari, Bela; Lisanti, Camilla L; Tanowitz, Herbert B; Howell, Anthony; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica; Lisanti, Michael P

    2015-03-10

    Here, we propose a new strategy for the treatment of early cancerous lesions and advanced metastatic disease, via the selective targeting of cancer stem cells (CSCs), a.k.a., tumor-initiating cells (TICs). We searched for a global phenotypic characteristic that was highly conserved among cancer stem cells, across multiple tumor types, to provide a mutation-independent approach to cancer therapy. This would allow us to target cancer stem cells, effectively treating cancer as a single disease of "stemness", independently of the tumor tissue type. Using this approach, we identified a conserved phenotypic weak point - a strict dependence on mitochondrial biogenesis for the clonal expansion and survival of cancer stem cells. Interestingly, several classes of FDA-approved antibiotics inhibit mitochondrial biogenesis as a known "side-effect", which could be harnessed instead as a "therapeutic effect". Based on this analysis, we now show that 4-to-5 different classes of FDA-approved drugs can be used to eradicate cancer stem cells, in 12 different cancer cell lines, across 8 different tumor types (breast, DCIS, ovarian, prostate, lung, pancreatic, melanoma, and glioblastoma (brain)). These five classes of mitochondrially-targeted antibiotics include: the erythromycins, the tetracyclines, the glycylcyclines, an anti-parasitic drug, and chloramphenicol. Functional data are presented for one antibiotic in each drug class: azithromycin, doxycycline, tigecycline, pyrvinium pamoate, as well as chloramphenicol, as proof-of-concept. Importantly, many of these drugs are non-toxic for normal cells, likely reducing the side effects of anti-cancer therapy. Thus, we now propose to treat cancer like an infectious disease, by repurposing FDA-approved antibiotics for anti-cancer therapy, across multiple tumor types. These drug classes should also be considered for prevention studies, specifically focused on the prevention of tumor recurrence and distant metastasis. Finally, recent

  1. Prevalence of Multiple Antibiotic Resistant Infections in Diabetic versus Nondiabetic Wounds

    Directory of Open Access Journals (Sweden)

    Urvish Trivedi

    2014-01-01

    Full Text Available Diabetes mellitus (DM affects 23.6 million people in the USA and approximately 20–25% of diabetic patients will develop foot ulceration during the course of their disease. Up to a quarter of these patients will develop infections that will necessitate amputation. Although many studies report that the rates of antibiotic resistant infections have increased dramatically in the DM population over the last decade, to our knowledge there have been no reports directly comparing the rates of antibiotic resistant infections in DM versus non-DM wounds. We performed a retrospective study comparing the wound infections of 41 DM patients to those of 74 non-DM patients to test the hypothesis that infections with multidrug resistant organisms (MDRO were more prevalent in the DM population. We found that 63.4% of DM and 50% of non-DM patients had MDRO infections, which was not statistically different. However, 61% of the DM patients had Pseudomonas infections compared to only 18.9% of non-DM patients. Furthermore, DM patients had significantly more coinfections with both Pseudomonas and Staphylococcus aureus. Though our initial hypothesis was incorrect, we demonstrated a significant correlation between Pseudomonas and Pseudomonas/S. aureus coinfections within DM wounds.

  2. [Study on the effect of Klotho gene interferred by plasmid-mediated short hairpin RNA (shRNA) on sinoatrial node pacing channel gene].

    Science.gov (United States)

    Cai, Yingying; Wang, Han; Hou, Yanbin; Fang, Chenli; Tian, Peng; Wang, Guihua; Li, Lu; Deng, Juelin

    2013-06-01

    The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4 and HCN2) for studying sick sinus syndrome, with Klotho gene under the interference of Plasmid-mediated short hairpin RNA. Twenty-five C57BL/6J mice were divided into four groups, i. e, plasmid shRNA 24h group, plasmid shRNA 12h group, sodium chloride 24h group and sodium chloride 12h group. Plasmid shRNA 50microL (1microg/microL) and sodium chloride 50microl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group. After 12h or 24h respectively, all mice were executed and their sinoatrial node tissues were cut. The mRNA of Klotho, HCN4 and HCN2 gene were detected by RT-PCR. The results of RT-PCR showed that Klotho, HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval. The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  3. Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Antonio Gálvez

    2010-08-01

    Full Text Available Heat-stable enterotoxins are the most notable virulence factors associated with Staphylococcus aureus, a common pathogen associated with serious community and hospital acquired diseases. Staphylococcal enterotoxins (SEs cause toxic shock-like syndromes and have been implicated in food poisoning. But SEs also act as superantigens that stimulate T-cell proliferation, and a high correlation between these activities has been detected. Most of the nosocomial S. aureus infections are caused by methicillin-resistant S. aureus (MRSA strains, and those resistant to quinolones or multiresistant to other antibiotics are emerging, leaving a limited choice for their control. This review focuses on these diverse roles of SE, their possible correlations and the influence in disease progression and therapy.

  4. Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Kim Wook

    2003-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents.

  5. Emergence of co-production of plasmid-mediated AmpC beta-lactamase and ESBL in cefoxitin-resistant uropathogenic Escherichia coli.

    Science.gov (United States)

    Ghosh, B; Mukherjee, M

    2016-09-01

    Plasmid-mediated AmpC (pAmpC) and ESBL co-production was detected in Escherichia coli a major etiologic agent of urinary tract infection. Isolates resistant to cefoxitin by CLSI methodology were tested for pAmpC beta-lactamase using phenylboronic acid and ESBLs by combined disk diffusion method. pAmpC/ESBL genes were characterized by PCR and sequencing. Transconjugation experiments were done to study the transfer of pAmpC and ESBL production from clinical isolates as donor to E. coli J53 AziR as recipient. Incompatibility groups of transmissible plasmids were classified by PCR-based replicon typing (PBRT). Among 148 urine culture positive isolates, E. coli was reported in 39.86 % (59/148), with 93.22 % (55/59) of cefoxitin resistance. pAmpC production was detected in 25, with varied distribution of blaCMY-2 and blaDHA-1type genes alone (n = 13 and 7 respectively) or in combination (n = 5). ESBL co-production was observed in 88 % (22/25) of pAmpC producing isolates with predominance of blaTEM (n = 20). Twenty-three transconjugants showed transmission of pAmpC-and ESBL-resistant genes with co-carriage of blaCMY-2 and blaTEM (n = 15) in plasmids of IncF type (n = 9) being predominant, followed by IncI1 (n = 4) and IncH1 (n = 2) in combination. All clinical isolates were clonally diverse. Resistance against different beta-lactams in uropathogenic E. coli has been an emerging concern in resource- poor countries such as India. Knowledge on the occurrence of AmpC beta-lactamases and ESBL amongst this pathogen and its transmission dynamics may aid in hospital infection control.

  6. Identification of DHA-23, a Novel Plasmid-mediated and Inducible AmpC beta-Lactamase from Enterobacteriaceae in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Shyang eHsieh

    2015-05-01

    Full Text Available Objectives: AmpC β-lactamases are classified as Amber Class C and Bush Group 1. AmpC β-lactamases can hydrolyze broad and extended-spectrum cephalosporins, and are not inhibited by β-lactamase inhibitors such as clavulanic acid. This study was conducted to identify DHA-23, a novel plasmid-mediated and inducible AmpC β-lactamase obtained from Enterobacteriaceae. Methods: A total of 210 carbapenem-resistant Enterobacteriaceae isolates were collected from a medical center (comprising 2 branches in Northern Taiwan during 2009–2012. AmpC β-lactamase genes were analyzed through a polymerase chain reaction using plasmid DNA templates and gene sequencing. The genetic relationships of the isolates were typed using pulsed-field gel electrophoresis following the digestion of intact genomic DNA by using XbaI. Results: Three enterobacterial isolates (one Escherichia coli and 2 Klebsiella pneumoniae were obtained from 3 hospitalized patients. All 3 isolates were resistant or intermediately susceptible to all β-lactams, and exhibited reduced susceptibility to carbapenems. These 3 isolates expressed a novel AmpC β-lactamase, designated DHA-23, approved by the curators of the Lahey website. DHA-23 differs from DHA-1 and DHA-6 by one amino acid substitution (Ser245Ala, exhibiting 2 amino acid changes compared with DHA-7 and DHA-Morganella morganii; 3 amino acid changes compared with DHA-3; 4 amino acid changes compared with DHA-5; and 8 amino acid changes compared with DHA-2 (> 97% identity. This AmpC β-lactamase is inducible using a system involving ampR. Conclusion: This is the first report to address DHA-23, a novel AmpC β-lactamase. DHA-type β-lactamases are continuous threat in Taiwan.

  7. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales.

    Science.gov (United States)

    Doumith, Michel; Godbole, Gauri; Ashton, Philip; Larkin, Lesley; Dallman, Tim; Day, Martin; Day, Michaela; Muller-Pebody, Berit; Ellington, Matthew J; de Pinna, Elizabeth; Johnson, Alan P; Hopkins, Katie L; Woodford, Neil

    2016-08-01

    In response to the first report of transmissible colistin resistance mediated by the mcr-1 gene in Escherichia coli and Klebsiella spp. from animals and humans in China, we sought to determine its presence in Enterobacteriaceae isolated in the UK. The PHE archive of whole-genome sequences of isolates from surveillance collections, submissions to reference services and research projects was retrospectively analysed for the presence of mcr-1 using Genefinder. The genetic environment of the gene was also analysed. Rapid screening of the genomes of ∼24 000 Salmonella enterica, E. coli, Klebsiella spp., Enterobacter spp., Campylobacter spp. and Shigella spp. isolated from food or humans identified 15 mcr-1-positive isolates. These comprised: 10 human S. enterica isolates submitted between 2012 and 2015 (8 Salmonella Typhimurium, 1 Salmonella Paratyphi B var Java and 1 Salmonella Virchow) from 10 patients; 3 isolates of E. coli from 2 patients; and 2 isolates of Salmonella Paratyphi B var Java from poultry meat imported from the EU. The mcr-1 gene was located on diverse plasmids belonging to the IncHI2, IncI2 and IncX4 replicon types and its association with ISApl1 varied. Six mcr-1-positive S. enterica isolates were from patients who had recently travelled to Asia. Analysis of WGS data allowed rapid confirmation of the presence of the plasmid-mediated colistin resistance gene mcr-1 in diverse genetic environments and plasmids. It has been present in E. coli and Salmonella spp. harboured by humans in England and Wales since at least 2012. © Crown copyright 2016.

  8. A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nico Melzer

    Full Text Available In multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE, impairment of glial "Excitatory Amino Acid Transporters" (EAATs together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS. In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a beta-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in "Myelin Oligodendrocyte Glycoprotein" (MOG-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFgamma and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs e.g. dendritic cells (DCs and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a beta-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis.

  9. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a Chinese teaching hospital

    Directory of Open Access Journals (Sweden)

    Zhang Xue-qing

    2010-06-01

    transposon, Tn3, was located upstream of the rmtB. Nineteen clonal patterns were obtained by PFGE, with type H representing the prevailing pattern. Conclusion A high prevalence of plasmid-mediated rmtB gene was found among clinical E. coli isolates from a Chinese teaching hospital. Both horizontal gene transfer and clonal spread were responsible for the dissemination of the rmtB gene.

  10. Characterization of plasmid-mediated quinolone resistance (PMQR genes in extended-spectrum β-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico.

    Directory of Open Access Journals (Sweden)

    Jesus Silva-Sánchez

    Full Text Available This work describes the characterization of plasmid-mediated quinolone-resistance (PMQR genes from a multicenter study of ESBL-producing Enterobacteriaceae pediatric clinical isolates in Mexico. The PMQR gene-positive isolates were characterized with respect to ESBLs, and mutations in the GyrA and ParC proteins were determined. The phylogenetic relationship was established by PFGE and the transfer of PMQR genes was determined by mating assays. The prevalence of the PMQR genes was 32.1%, and the rate of qnr-positive isolates was 15.1%; 93.3% of the latter were qnrB and 6.4% were qnrA1. The distribution of isolates in terms of bacterial species was as follows: 23.5% (4/17 corresponded to E. cloacae, 13.7% (7/51 to K. pneumoniae, and 13.6% (6/44 to E. coli. In addition, the prevalence of aac(6'-Ib-cr and qepA was 15.1% and 1.7%, respectively. The molecular characteristics of qnr- and qepA-positive isolates pointed to extended-spectrum β-lactamase (ESBL CTX-M-15 as the most prevalent one (70.5%, and to SHV-12 in the case of aac(6'-Ib-cr-positive isolates. GyrA mutations at codons Ser-83 and Asp-87, and ParC mutations at codons Ser-80 were observed in 41.1% and 35.2% of the qnr-positive isolates, respectively. The analysis of the transconjugants revealed a co-transmission of bla(CTX-M-15 with the qnrB alleles. In general, the prevalence of PMQR genes (qnr and aac(6'-Ib-cr presented in this work was much lower in the pediatric isolates, in comparison to the adult isolates in Mexico. Also, ESBL CTX-M-15 was the main ESBL identified in the pediatric isolates, whereas in the adult ones, ESBLs corresponded to the CTX-M and the SHV families. In comparison with other studies, among the PMQR-genes identified in this study, the qnrB-alleles and the aac(6'-Ib-cr gene were the most prevalent, whereas the qnrS1, qnrA1 and qnrB-like alleles were the most prevalent in China and Uruguay.

  11. Extended-spectrum-beta-lactamases, AmpC beta-lactamases and plasmid mediated quinolone resistance in klebsiella spp. from companion animals in Italy.

    Directory of Open Access Journals (Sweden)

    Valentina Donati

    Full Text Available We report the genetic characterization of 15 Klebsiella pneumoniae (KP and 4 isolates of K. oxytoca (KO from clinical cases in dogs and cats and showing extended-spectrum cephalosporin (ESC resistance. Extended spectrum beta-lactamase (ESBL and AmpC genes, plasmid-mediated quinolone resistance (PMQR and co-resistances were investigated. Among KP isolates, ST101 clone was predominant (8/15, 53%, followed by ST15 (4/15, 27%. ST11 and ST340, belonging to Clonal Complex (CC11, were detected in 2012 (3/15, 20%. MLST on KP isolates corresponded well with PFGE results, with 11 different PFGE patterns observed, including two clusters of two (ST340 and four (ST101 indistinguishable isolates, respectively. All isolates harbored at least one ESBL or AmpC gene, all carried on transferable plasmids (IncR, IncFII, IncI1, IncN, and 16/19 were positive for PMQR genes (qnr family or aac(6'-Ib-cr. The most frequent ESBL was CTX-M-15 (11/19, 58%, detected in all KP ST101, in one KP ST15 and in both KP ST340. blaCTX-M-15 was carried on IncR plasmids in all but one KP isolate. All KP ST15 isolates harbored different ESC resistance genes and different plasmids, and presented the non-transferable blaSHV-28 gene, in association with blaCTX-M-15, blaCTX-M-1 (on IncR, or on IncN, blaSHV-2a (on IncR or blaCMY-2 genes (on IncI1. KO isolates were positive for blaCTX-M-9 gene (on IncHI2, or for the blaSHV-12 and blaDHA-1 genes (on IncL/M. They were all positive for qnr genes, and one also for the aac(6'-Ib-cr gene. All Klebsiella isolates showed multiresistance towards aminoglycosides, sulfonamides, tetracyclines, trimethoprim and amphenicols, mediated by strA/B, aadA2, aadB, ant (2"-Ia, aac(6'-Ib, sul, tet, dfr and cat genes in various combinations. The emergence in pets of multidrug-resistant Klebsiella with ESBL, AmpC and PMQR determinants, poses further and serious challenges in companion animal therapy and raise concerns for possible bi-directional transmission between

  12. Genome Sequence of the Multiple-β-Lactam-Antibiotic-Resistant Bacterium Acidovorax sp. Strain MR-S7.

    Science.gov (United States)

    Miura, Takamasa; Kusada, Hiroyuki; Kamagata, Yoichi; Hanada, Satoshi; Kimura, Nobutada

    2013-06-27

    Acidovorax sp. strain MR-S7 was isolated from activated sludge in a treatment system for wastewater containing β-lactam antibiotic pollutants. Strain MR-S7 demonstrates multidrug resistance for various types of β-lactam antibiotics at high levels of MIC. The draft genome sequence clarified that strain MR-S7 harbors unique β-lactamase genes.

  13. Genome sequence of a novel multiple antibiotic resistant member of Erysipelotrichaceae family isolated from a swine manure storage pit

    Science.gov (United States)

    The swine gastro intestinal (GI) tract and stored manure may serve as reservoirs of antibiotic resistance genes as well as sources of novel bacteria. We report the draft genome sequence of “Cottaibacterium suis” strain MTC7, a novel antibiotic resistant bacterium. The strain was isolated from a swin...

  14. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan.

    OpenAIRE

    2012-01-01

    In 2010, a total of 1327 clinical Escherichia coli isolates from five hospitals in the Kyoto and Shiga regions of Japan were analysed by PCR. The prevalences of plasmid-mediated AmpC β-lactamase (pAmpC)-producers, extended-spectrum β-lactamase (ESBL)-producers and co-producers of pAmpC and ESBL were 1.7%, 9.7% and 0.3%, respectively. Less than one-half of the pAmpC-producers were reported to be resistant to third-generation cephalosporins, cephamycins and β-lactam/β-lactam inhibitors using th...

  15. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs

    Directory of Open Access Journals (Sweden)

    Chakrabarti Pinak

    2011-05-01

    Full Text Available Abstract Background The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs as bactericidal agent on MB45. Methods Diluted Luria broth/Agar (10-3 media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs. Results and conclusions The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain.

  16. Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli causing urinary tract infection in the Auckland community likely to be resistant to commonly prescribed antimicrobials.

    Science.gov (United States)

    Drinkovic, Dragana; Morris, Arthur J; Dyet, Kristin; Bakker, Sarah; Heffernan, Helen

    2015-03-13

    To estimate the prevalence and characterise plasmid-mediated AmpC beta-lactamase (PMACBL)- producing Escherichia coli in the Auckland community. All cefoxitin non-susceptible (NS) E. coli identified at the two Auckland community laboratories between 1 January and 31 August 2011 were referred to ESR for boronic acid double-disc synergy testing, to detect the production of AmpC beta-lactamase, and polymerase chain reaction (PCR) to identify the presence of PMACBL genes. PMACBL-producing isolates were typed using pulsed-field gel electrophoresis (PFGE), and PCR was used to determine their phylogenetic group and to identify multilocus sequence type (ST)131. Antimicrobial susceptibility testing and detection of extended-spectrum beta-lactamases (ESBLs) were performed according to the Clinical and Laboratory Standards Institute recommendations. 101 (51%) and 74 (37%) of 200 non-duplicate cefoxitin-NS E. coli were PMACBL producers or assumed hyper-producers of chromosomal AmpC beta-lactamase, respectively. The prevalence of PMACBL-producing E. coli was 0.4%. PMACBL-producing E. coli were significantly less susceptible to norfloxacin, trimethoprim and nitrofurantoin than E. coli that produced neither a PMACBL nor an ESBL. Very few (4%) PMACBL-producing E. coli co-produced an ESBL. Most (88%) of the PMACBL-producing isolates had a CMY-2-like PMACBL. The PMACBL-producing E. coli isolates were diverse based on their PFGE profiles, 44% belonged to phylogenetic group D, and only four were ST131. 100 of the 101 PMACBL-producing E. coli were cultured from urine, and were causing urinary tract infection (UTI) in the majority of patients. The median patient age was 56 years and most (94%) of the patients were women. A greater proportion of patients with community-acquired UTI caused by PMACBL-producing E. coli received a beta-lactam antimicrobial than patients with community-acquired UTI caused by other non-AmpC, non-ESBL-producing E. coli. Thirty-six (43%) patients with community

  17. Studies on the ecology of aquatic bacteria of the lower Niger Delta: multiple antibiotic resistance among the standard plate count organisms.

    Science.gov (United States)

    Ogan, M T; Nwiika, D E

    1993-05-01

    The ecology of multiple antibiotic resistant (MAR) bacteria in the fresh-waters of the lower Niger Delta was studied in the Port Harcourt area, Rivers State. On the basis of decreasing pollution levels three zones, A, B, C, were recognized. Cell recovery by two viable count media, casein-peptone-starch (CPS) and plate count (PC) agar containing chloramphenicol, tetracycline, penicillin, streptomycin or ampicillin were compared in an initial study. Higher numbers of antibiotic resistant (AR) bacteria were recovered on CPS containing tetracycline, penicillin, streptomycin and ampicillin from the faecally-polluted New Calabar River (zone A) than on SPC agar containing similar antibiotics but the reverse was observed for forest stream (zone B) samples. Differences between the two media were also observed at individual sample sites. The proportions of strains of AR bacteria resistant to their primary isolation antibiotic varied from 55% (zone B) to 72% in the least polluted Isiokpo and Elele-Alimini streams (zone C), for ampicillin, and mostly count media without antibiotics included mainly species of Bacillus (12) and enterobacteria (18). Between five and 10 strains were resistant to > or = three antibiotics; seven were resistant to all five. The antibiograms of most strains were variable and depended on the method of drug application (discs or incorporation into agar), media and temperature of incubation (25 degrees, 37 degrees or 44.5 degrees C). Twenty-one strains were consistently resistant to ampicillin by the two methods; 10 to 19 were consistent for chloramphenicol, tetracycline and penicillin.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    Science.gov (United States)

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.

  19. Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo, A.; Borade, S.; Dhawde, R.; Gajbhiye, S.N.; Dastager, S.G.

    commonly used for treating human infections. Antibiotic resistance of bacteria was determined by the disc diffusion method. Of 235 isolates, 99 fecal coliforms, 30 Escherichia coli, 43 Enterobacter spp., 56 Klebsiella spp., and seven Salmonella spp. were...

  20. Plasmid interference for curing antibiotic resistance plasmids in vivo

    Science.gov (United States)

    Kamruzzaman, Muhammad; Shoma, Shereen; Thomas, Christopher M.; Partridge, Sally R.

    2017-01-01

    Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing (‘addiction’) systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative ‘interference plasmids’ were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored. PMID:28245276

  1. Plasmid interference for curing antibiotic resistance plasmids in vivo.

    Science.gov (United States)

    Kamruzzaman, Muhammad; Shoma, Shereen; Thomas, Christopher M; Partridge, Sally R; Iredell, Jonathan R

    2017-01-01

    Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.

  2. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  3. Antibiotic Safety

    Science.gov (United States)

    ... are not effectively treated with an antibiotic • Viral gastroenteritis Bacterial infections should be treated with antibiotics. Some ... you antibiotics for a viral infection. Antibiotics kill bacteria, not viruses. • T ake all of your prescribed ...

  4. Drug-resistance mechanisms and prevalence of Enterobacter cloacae resistant to multi-antibiotics

    Institute of Scientific and Technical Information of China (English)

    张杰; 顾怡明; 俞云松; 周志慧; 杜小玲

    2004-01-01

    @@The main drug-resistance mechanism of gram-negative bacteria is producing β-lactamases. Two kinds of enzymes cause drug resistance by hydrolyzing oxyimino-cephalosporins and aztreonam: one is chromosomally encoded AmpC β-lactamases, the other is plasmid-mediated extended-spectrum β-lactamases (ESBLs). Enterobacter cloacae can produce both of them, so that these strains are seriously resistance to many antibiotics. In order to study the main drug-resistant mechanism in Enterobacter cloacae, PCR and nucleotide sequencing were performed on 58 multidrug resistant strains.

  5. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes.

    Science.gov (United States)

    Jones-Dias, Daniela; Carvalho, Ana Sofia; Moura, Inês Barata; Manageiro, Vera; Igrejas, Gilberto; Caniça, Manuela; Matthiesen, Rune

    2017-03-06

    Tetracyclines are among the most commonly used antibiotics administrated to farm animals for disease treatment and prevention, contributing to the worldwide increase in antibiotic resistance in animal and human pathogens. Although tetracycline mechanisms of resistance are well known, the role of metabolism in bacterial reaction to antibiotic stress is still an important assignment and could contribute to the understanding of tetracycline related stress response. In this study, spectral counts-based label free quantitative proteomics has been applied to study the response to tetracycline of the environmental-borne Escherichia coli EcAmb278 isolate soluble proteome. A total of 1484 proteins were identified by high resolution mass spectrometry at a false discovery rate threshold of 1%, of which 108 were uniquely identified under absence of tetracycline whereas 126 were uniquely identified in presence of tetracycline. These proteins revealed interesting difference in e.g. proteins involved in peptidoglycan-based cell wall proteins and energy metabolism. Upon treatment, 12 proteins were differentially regulated showing more than 2-fold change and presistant E. coli provides novel insight into tetracycline related stress. The lack of new antibiotics to fight infections caused by multidrug resistant microorganisms has motivated the use of old antibiotics, and the search for new drug targets. The evolution of antibiotic resistance is complex, but it is known that agroecosystems play an important part in the selection of antibiotic resistance bacteria. Tetracyclines are still used as phytopharmaceutical agents in crops, selecting resistant bacteria and changing the ecology of farm soil. Little is known about the metabolic response of genetically resistant populations to antibiotic exposure. Indeed, to date there are no quantitative tetracycline resistance studies performed with the latest generation of high resolution mass spectrometers allowing high mass accuracy in both

  6. An epidemiological survey on Escherichia coli producing plasmid-mediated AmpC enzyme and regulation of expression of AmpC enzyme%产质粒介导AmpC酶大肠埃希菌的流行病学调查及其酶的表达调控

    Institute of Scientific and Technical Information of China (English)

    邓江锦; 张文林; 张志祥; 李小庆

    2013-01-01

    Objective To explore the expression and regulation of Escherichia coli producing plasmid-mediated AmpC enzymes.Methods 30 strains of E.Coli producing plasmid-mediated AmpC enzyme were isolated.An epidemiological survey were conducted on Escherichia coli producing plasmidmediated AmpC enzyme,and transfer bonding test was carried out.6 primer bacterial plasmid DNA extracted for the multiplex PCR amplification were set.Results According to the epidemiological survey,a total of 20 strains producing β-lactamase were detected,5 of which produced AmpC β-lactamase enzymes and extended-spectrum β-lactamase enzyme,12 only produced extended-spectrum β-lactamase enzymes,and 3 produced lactamase AmpC β alone.5 strains were transferred successfully.PCR amplification test and the Genbank database sequence alignment analysis showed that 6 strains were amplified to produce plasmidmediated ampC gene,4 of which were CIT and 2 of which were type DHA.Conclusions Clinically,strains of Escherichia coli producing plasmid AmpC enzyme widely spread.Control of the regulatory mechanism of high expression is helpful in guiding clinical antibiotic uses.%目的 研究产质粒介导AmpC酶大肠埃希菌的流行病学状况及其酶的表达调控.方法 选择临床中分离到的疑似产质粒介导AmpC酶的大肠埃希菌30株,对产质粒介导AmpC酶大肠埃希菌的流行病学特征进行调查分析,并行转移接合试验.用6组引物对提取的细菌质粒DNA进行多重PCR扩增,从而对质粒介导的AmpC酶的表达调控进行分析.结果 流行病学调查,共检出20株产β-内酰胺酶菌株,其中有5株菌株同时产AmpC β-内酰胺酶和超广谱β-内酰胺酶,12株只产超广谱β-内酰胺酶,3株只产AmpC β-内酰胺酶,5株转移接合成功.PCR扩增试验后,与Genbank数据库进行序列比对分析,发现有6株扩增产生质粒介导的AmpC基因,其中CIT型4株,DHA型2株.结论 产质粒AmpC酶大肠埃希菌在临床上广泛传播,把握

  7. Simultaneous Identification and Susceptibility Determination to Multiple Antibiotics of Staphylococcus aureus by Bacteriophage Amplification Detection Combined with Mass Spectrometry.

    Science.gov (United States)

    Rees, Jon C; Pierce, Carrie L; Schieltz, David M; Barr, John R

    2015-07-01

    The continued advance of antibiotic resistance in clinically relevant bacterial strains necessitates the development and refinement of assays that can rapidly and cost-effectively identify bacteria and determine their susceptibility to a panel of antibiotics. A methodology is described herein that exploits the specificity and physiology of the Staphylococci bacteriophage K to identify Staphylococcus aureus (S. aureus) and determine its susceptibility to clindamycin and cefoxitin. The method uses liquid chromatography-mass spectrometry to monitor the replication of bacteriophage after it is used to infect samples thought to contain S. aureus. Amplification of bacteriophage K indicates the sample contains S. aureus, for it is only in the presence of a suitable host that bacteriophage K can amplify. If bacteriophage amplification is detected in samples containing the antibiotics clindamycin or cefoxitin, the sample is deemed to be resistant to these antibiotics, respectively, for bacteriophage can only amplify in a viable host. Thus, with a single work flow, S. aureus can be detected in an unknown sample and susceptibility to clindamycin and cefoxitin can be ascertained. This Article discusses implications for the use of bacteriophage amplification in the clinical laboratory.

  8. 一株耐碳青霉烯类的阴沟肠杆菌的KPC酶检测%Detection of plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in a strain of carbapenem-resistant Enterobacter cloacae

    Institute of Scientific and Technical Information of China (English)

    蔡加昌; 周宏伟; 陈功祥; 张嵘

    2008-01-01

    Objective To investigate the mechanism of carbapenem resistance in Enterobacter cloacae.Methods A carbapenem-resistant strain of E.cloacae (strain ZY1465)was isolated.Antibiotic susceptibilities were determined by agar dilution method.Conjugation experiments were carried out in mixed broth cultures.Plasmid DNA preparations were obtained by using an alkalinelysis technique and were digested by various endonucleases;The crude β-lactamase extracts of E.cloacae and E.coli transconjugant were subjected to analytical isoelectric focusing(IEF).Specific PCR amplification and DNA sequence analysis were preformed to confirm the β-lactamase type.Outer membrane proteins(OMPs)were isolated and examined by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Results The E. cloacae isolate showed resistance against carbapenems.The MICs of imipenem and meropenem were both 32 μg/ml.The isolate was also resistant strongly against penicillins,cephalosporins,cefoxitin,aztreonam,quinolones,and aminoglycosides.Conjugation studies with E.coli resulted in the transfer of reduced carbapenem susceptibility from E.cloacae isolate.Plasmid restriction analysis showed identical restriction profiles between the transconjugants of E. cloacae ZY1465 and Serratia marcescens ZN008.Isoelectric focusing demonstrated six β-lactamases,with the isoelectrie points(pls)of5.4,6.7,7.3,7.8,7.9,and 8.6,in E.cloacae ZY1465.and only one β-lactamase with the pI of 6.7 in transconiugant.Specific PCR amplification and DNA sequence analysis confirmed that E.cloacae ZY1465 harbored TEM-1,KPC-2,DHA-1,CTX-M-14,CTX-M-3 and chromosomal AmpC(not detected in IEF)genes.Urea-SDS-PAGE analysis of OMPs showed that E. cloacae ZY1465 lacked an OMP of approximately 38 000 Da which was present in E. cloacae ATCC13047.Conclusion It is the first detection of plasmid-mediated carbapenemhydrolyzing β-lactamase KPC-2 in a clinical isolate of E.cloacae from China.Production of multiple β-lactamases,especially KPC-2 and

  9. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Brown, Ashley N; Smith, Kathryn; Samuels, Tova A; Lu, Jiangrui; Obare, Sherine O; Scott, Maria E

    2012-04-01

    We show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.

  10. Occurrence of Plasmid Borne Multiple Antibiotic Resistant Genes in Escherichia coli Isolated from Well Water in Eku, Ethiope East Local Government Area, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    E. Akponah

    2014-05-01

    Full Text Available Five wells in Eku were assessed for total heterotrophic bacterial and coliform counts from January to December. Sixty isolates of Escherichia coli were also obtained from the well water samples throughout the study period. It was observed that, values of total heterotrophic bacterial and coliform load obtained varied with seasons although the total heterotrophic bacterial counts were significantly higher than the coliform load at all times. During the dry season, values of the total heterotrophic bacterial count ranged from 2.08 to 5.48 (log cfu/mL while coliform counts ranged from 2.3 to 3.26 (log cfu/mL. On the other hand, total heterotrophic bacterial and coliform counts ranged from 3.34 to 7.14 (log cfu/mL and 3.15 to 3.98 (log cfu/mL respectively during the rainy season. Results obtained revealed that 76.6% of total Escherichia coli isolates evaluated, demonstrated multiple antibiotics resistance while 18.3% showed single antibiotics resistance. On curing, 83.3% of test Escherichia coli population lost their antibiotics resistant gene indicating that these genes resided on plasmid.

  11. Emergence of serotype K1 Klebsiella pneumoniae ST23 strains co-producing the plasmid-mediated AmpC beta-lactamase DHA-1 and an extended-spectrum beta-lactamase in Korea

    Directory of Open Access Journals (Sweden)

    Hae Suk Cheong

    2016-11-01

    Full Text Available Abstract Background Serotype K1 Klebsiella pneumoniae has emerged as an important community pathogen causing various infections, including liver abscesses. Although serotype K1 K. pneumoniae community isolates have been reported as susceptible to most classes of antimicrobial agents, a few cases of infection caused by extended-spectrum beta-lactamase (ESBL-producing serotype K1 K. pneumoniae have recently been reported in Asian countries. We identified three ESBL-producing strains of serotype K1 K. pneumoniae and conducted a molecular characterization of their drug resistance. Methods Three ESBL-producing serotype K1 K. pneumoniae ST23 strains were identified from strains in the Asian Bacterial Bank. Antimicrobial susceptibility testing was performed using the broth microdilution method, and ESBL production was tested by the double-disk synergy test and a confirmatory test. PCR was performed to detect the genes for plasmid-mediated ESBL and AmpC beta-lactamases. Results All three strains were resistant to cefotaxime, ceftazidime, and piperacillin/tazobactam, and all were determined to be ESBL-producers. No known ESBL genes, including bla SHV, bla TEM, bla CTX-M, bla GES, bla PER, and bla VEB, were detected among the three strains. Of all plasmid-mediated AmpC beta-lactamase (PAB genes, including bla DHA-1, bla CMY, bla FOX, and bla MOX, the bla DHA-1 gene was detected in two of the strains. The PFGE patterns revealed that the two isolates carrying bla DHA-1 were closely related (84% similarity. Conclusions No ESBL genes were detected among three ESBL-producing serotype K1 K. pneumoniae ST23 strains. Two strains contained the PAB gene bla DHA-1. The emergence of resistant strains of community-origin serotype K1 K. pneumoniae has important implications for effective treatment and infection control practices.

  12. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids

    Directory of Open Access Journals (Sweden)

    Rajagopalan Saranathan

    2014-01-01

    Full Text Available Background & objectives: The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR, consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids among the clinical isolates of A. baumannii. In addition, the study was performed to check the presence of common β-lactamases encoding genes on these plasmids. Methods: A total of 55 clinical isolates of A. baumannii were included in the study and all were subjected to plasmid DNA isolation, followed by PCR to check the presence of resistance gene determinants such as blaOXA-23 , blaOXA-51, blaOXA-58 and blaIMP-1 on these plasmids that encode for oxacillinase (OXA and metallo-β-lactamase (MBL type of carbapenemases. Plasmid curing experiments were carried out on selected isolates using ethidium bromide and acridine orange as curing agents and the antibiotic resistance profiles were evaluated before and after curing. Results: All the isolates were identified as A. baumannii by 16SrDNA amplification and sequencing. Plasmid DNA isolated from these isolates showed the occurrence of multiple plasmids with size ranging from 500bp to ≥ 25 kb. The percentage of blaOXA-51 and blaOXA-23 on plasmids were found to be 78 and 42 per cent, respectively and 20 isolates (36% carried blaIMP-1 gene on plasmids. Significant difference was observed in the antibiograms of plasmid cured isolates when compared to their parental ones. The clinical isolates became susceptible to more than two antibiotic classes after curing of plasmids indicating plasmid borne resistance. Interpretation & conclusions: Our study determined the plasmid mediated resistance mechanisms and occurrence of different resistance genes on various plasmids isolated from MDR A. baumannii. The present findings showed the evidence for antibiotic resistance mediated through multiple plasmids in

  13. Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics.

    Science.gov (United States)

    Fernando, Dinesh M; Xu, Wayne; Loewen, Peter C; Zhanel, George G; Kumar, Ayush

    2014-11-01

    In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.

  14. The Fractional-Order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection

    Directory of Open Access Journals (Sweden)

    Bahatdin Daşbaşı

    2017-06-01

    Full Text Available In this study, it is described the general forms of fractional-order differential equations and asymtotic stability of their system’s equilibria. In addition that, the stability analysis of equilibrium points of the local bacterial infection model which is fractional-order differential equation system, is made. Results of this analysis are supported via numerical simulations drawn by datas obtained from literature for mycobacterium tuberculosis and the antibiotics isoniazid (INH, rifampicin (RIF, streptomycin (SRT and pyrazinamide (PRZ used against this bacterial infection.

  15. Multiple Genetic Analysis System-Based Antibiotic Susceptibility Testing in Helicobacter pylori and High Eradication Rate With Phenotypic Resistance-Guided Quadruple Therapy.

    Science.gov (United States)

    Dong, Fangyuan; Ji, Danian; Huang, Renxiang; Zhang, Fan; Huang, Yiqin; Xiang, Ping; Kong, Mimi; Nan, Li; Zeng, Xianping; Wu, Yong; Bao, Zhijun

    2015-11-01

    Antibiotics resistance in Helicobacter pylori (H. pylori) is the major factor for eradication failure. Molecular tests including fluorescence in situ hybridization, PCR-restriction fragment length polymorphism, and dual priming oligonucleotide-PCR (DPO-PCR) play critical roles in the detection of antibiotic susceptibility; however, limited knowledge is known about application of multiple genetic analysis system (MGAS) in the area of H. pylori identification and antibiotics resistance detection.The aim of this study is to determine the antibiotics resistance using different molecular tests and evaluate the treatment outcomes of E-test-based genotypic resistance.A total of 297 patients with dyspepsia complaint were recruited for gastroscopies. Ninety patients with H. pylori culture positive were randomly divided into 2 groups (test group and control group). E-test, general PCR, and MGAS assay were performed in test group. Patients in control group were treated with empirical therapy (rabeprazole + bismuth potassium citrate + amoxicillin [AMX] + clarithromycin [CLR]), whereas patients in test group received quadruple therapy based on E-test results twice daily for 14 consecutive days. The eradication effect of H. pylori was confirmed by C-urea breath test after at least 4 weeks when treatment was finished.Rapid urease test showed 46.5% (128/297) patients with H. pylori infection, whereas 30.3% (90/297) patients were H. pylori culture positive. E-test showed that H. pylori primary resistance rate to CLR, AMX, metronidazole, tetracycline, and levofloxacin (LVX) was 40.0% (18/45), 4.4% (2/45), 53.3% (24/45), 0% (0/45), and 55.6% (25/45), respectively. In addition, there are many multidrug resistant (MDR) phenotypes, and the MDR strains have higher minimum inhibitory concentration than their single-drug resistant counterparts. Considering E-test as the reference test, the sensitivities of general PCR and MGAS in detecting CLR resistance were 83.3% (15/18) and 94.4% (17

  16. Occurrence and Multiple Antibiotic Resistance Profiles of Non-fermentative Gram-Negative Microflora in Five Brands of Non-carbonated French Bottled Spring Water.

    Science.gov (United States)

    Mary; Defives; Hornez

    2000-05-01

    Five brands of French bottled mineral water were analyzed by heterotrophic plate counts (HPC) and for the presence of multiple antibiotic resistant bacteria. HPC at 22 degrees C were around 10(4) colony forming units ml(-1) on R2A medium. Enumeration on PCA/10, MH, and especially PCA and King B media was less efficient. At 37 degrees C, HPC were two to three orders of magnitude less than at 22 degrees C. Moreover, phenotypic diversity (7 to 15 phenotypes) was optimal on R2A incubated at 22 degrees C. All isolates were identified as non-fermentative Gram-negative rods and 75% were non-identifiable with the API 20NE system. Stenotrophomonas maltophilia and fluorescent Pseudomonas were isolated on VIA and CFC selective agar media, respectively. Burkholderia cepacia strains were not isolated on BCSA medium. The species S. maltophilia was found in 33%, 28%, and 11% of sample from springs A, D, and E, respectively. Independent of brand, isolates from HPC media were less efficient to achieve confluent growth in 18 h on MH at 30 or 37 degrees C (0 to 40%) than isolates from selective media (28 to 63%). Seventy percent of the total isolates from dominant microflora (1-5 x 10(3) CFU ml(-1) on HPC media) were resistant against two or four antibiotics. The antibiotics concerned were principally aztreonam, ampicillin, and nalidixic acid. The remaining dominant bacteria showed a 6-9 multiple antibiotic resistant (MAR) pattern. All isolates were susceptible to newer antimicrobial agents. Owing to their low nutrient and temperature requirements, these isolates are unlikely to cause concern to public heath. Fifty percent of strains isolated from selective media (non-dominant microflora, 4-40 CFU l(-1)) showed a 10-18 MAR pattern and 33%, identified as S. maltophilia, a 20-27 MAR pattern. However, minocycline was effective against all isolates. Owing to its low concentration, colonization of human intestine by MAR S. maltophilia is unlikely.

  17. Ceftriaxone (single dose) versus cefoxitin (multiple doses): success and failure of antibiotic prophylaxis in 1052 cesarean sections.

    Science.gov (United States)

    von Mandach, U; Huch, R; Malinverni, R; Huch, A

    1993-01-01

    The efficacy of perioperative antibiotic prophylaxis in cesarean section with a single dose of ceftriaxone, a long-acting cephalosporin not widely used for prophylaxis, was tested. Ceftriaxone as a single dose of 1 g i.v. versus three doses of cefoxitin 1 g i.v. respectively were used in a prospective, randomized, controlled study consisting of 1052 patients undergoing cesarean section. Postoperative infection rate as measured by fever, endometritis and wound infection was 6.5% with ceftriaxone and 6.4% with cefoxitin. Urinary tract infections were significantly more frequent in the cefoxitin than in the ceftriaxone group (17.8% vs. 9.7%, p < 0.001). Enterococci and Escherichia coli accounted for urinary tract infections 1.86-, respectively, 4.3-fold more frequently with cefoxitin than with ceftriaxone. The time of hospitalization in patients with urinary tract infections was significantly lower with ceftriaxone than with cefoxitin (11 vs. 12 days, p < 0.05). The tolerance in both groups was equally satisfactory. A single dose of ceftriaxone, which is simple, reliable (compliance), well tolerated, inexpensive (fewer urinary tract infections and therefore fewer treatment costs than with cefoxitin) and safe (no overgrowth of pathogens) in our opinion is the antibiotic regimen of choice for prophylaxis in cesarean section in the described circumstances.

  18. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics.

    Science.gov (United States)

    Wang, En Tao; Tan, Zhi Yuan; Willems, Anne; Fernández-López, Manuel; Reinhold-Hurek, Barbara; Martínez-Romero, Esperanza

    2002-09-01

    Sinorhizobium morelense sp. nov. is described to designate a group of bacteria isolated from root nodules of Leucaena leucocephala. S. morelense shows 98% 16S rRNA gene sequence similarity to some Sinorhizobium species and to Ensifer adhaerens. This novel species is distinguished from other Sinorhizobium species and from E. adhaerens by DNA-DNA hybridization, 165 rRNA gene restriction fragments and sequence and some distinctive phenotypic features. Strains of this species are highly resistant to some antibiotics, such as carbenicillin (1 mg ml(-1)), kanamycin (500 microg ml(-1)) and erythromycin (300 microg ml(-1)). They do not form nodules, but a nodulating strain, Lc57, is closely related to the novel species. Strain Lc04T (= LMG 21331T = CFN E1007T) is designated as the type strain of this novel species.

  19. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts.

    Science.gov (United States)

    Moon, Hye Yun; Lee, Dong Wook; Sim, Gyu Hun; Kim, Hong-Jin; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kang, Bo-Kyu; Kim, Jong Man; Kang, Hyun Ah

    2016-09-10

    The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption.

  20. Emergence of plasmid-mediated colistin resistance and New Delhi metallo-β-lactamase genes in extensively drug-resistant Escherichia coli isolated from a patient in Thailand.

    Science.gov (United States)

    Paveenkittiporn, Wantana; Kerdsin, Anusak; Chokngam, Sukanya; Bunthi, Charatdao; Sangkitporn, Somchai; Gregory, Christopher J

    2017-02-01

    We reported a case of Escherichia coli with colistin resistance and an extensively drug-resistant phenotype. Molecular analysis revealed that the isolate carried mcr-1 and multiple β-lactamase genes includingblaNDM1, blaCTX-M-15, blaTEM1, and blaCMY-2. This is the first report of a clinical mcr-1 isolate in Thailand highlighting the urgent need for a comprehensive antimicrobial resistance containment strategy to prevent further spread.

  1. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  2. Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance.

    Science.gov (United States)

    Aktan, Yasin; Tan, Sema; Icgen, Bulent

    2013-06-01

    Contamination of surface waters has a direct impact on the public health of entire communities. Microorganisms inhabiting contaminated surface waters have developed mechanisms of coping with a variety of toxic metals and drugs. Investigations were carried out to isolate and identify lead-resistant bacteria from the river Kızılırmak along the city of Kırıkkale, Turkey. Of the 33 lead-resistant isolates, one isolate with a minimal inhibitory concentration of 1,200 mg L(-1) was isolated and identified as Enterococcus faecalis by using biochemical tests and 16S rRNA sequencing. Lead-resistant E. faecalis isolate was found out to be resistant to other heavy metals like aluminum, lithium, barium, chromium, iron, silver, tin, nickel, zinc, and strontium and to drugs like amikacin, aztreonam, and gentamicin. E. faecalis harbored four plasmids with the molecular sizes of 1.58, 3.06, 22.76, and 28.95 kb. Plasmid profile analyses of cured derivatives revealed that the lead resistance ability of E. faecalis was still existing despite the elimination of all the plasmids. Moreover, the antibiotic resistance pattern of the cured derivatives did not demonstrate any change from the parental strain. Our findings indicated that the lead resistance genes of E. faecalis were located on the chromosomal DNA rather than the plasmid.

  3. Emergence of CTX-M-3, TEM-1 and a new plasmid-mediated MOX-4 AmpC in a multiresistant Aeromonas caviae isolate from a patient with pneumonia.

    Science.gov (United States)

    Ye, Ying; Xu, Xi-Hai; Li, Jia-Bin

    2010-07-01

    Aeromonas species rarely cause pulmonary infection. We report, for what is believed to be the first time, a case of severe pneumonia in a cancer patient caused by Aeromonas caviae. Detailed microbiological investigation revealed that this isolate carried three beta-lactamase-encoding genes (encoding MOX-4, CTX-M-3 and TEM-1) conferring resistance to all beta-lactams but imipenem. The beta-lactamase with a pI of 9.0 was transferred by conjugation and associated with a 7.3 kb plasmid, as demonstrated by Southern blot hybridization. Analysis of the nucleotide and amino acid sequences showed a new ampC gene that was closely related to those encoding the MOX-1, MOX-2 and MOX-3 beta-lactamases. This new plasmid-mediated AmpC beta-lactamase from China was named MOX-4. This is believed to be the first report of MOX-4, CTX-M-3 and TEM-1 beta-lactamases in a multiresistant A. caviae.

  4. Phenotypic and Molecular Characterization of Plasmid Mediated AmpC β-Lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis Isolated from Urinary Tract Infections in Egyptian Hospitals

    Directory of Open Access Journals (Sweden)

    Mai M. Helmy

    2014-01-01

    Full Text Available The incidence of resistance by Enterobacteriaceae to β-lactam/β-lactamase inhibitors combination is increasing in Egypt. Three phenotypic techniques, comprising AmpC disk diffusion and inhibition dependent methods using phenylboronic acid (PBA and cloxacillin, were compared to PCR based method for detection of plasmid mediated AmpC β-lactamase in common urinary tract isolates. A total of 143 isolates, including E. coli, Klebsiella pneumonia, and Proteus mirabilis, were collected from urinary tract infections cases in Egyptian hospitals. Plasmid encoded AmpC genes were detected by PCR in 88.46% of cefoxitin resistant isolates. The most prevalent AmpC gene family was CIT including CMY-2, CMY-4, and two CMY-2 variants. The second prevalent gene was DHA-1 which was detected in E. coli and Klebsiella pneumonia. The genes EBC, FOX, and MOX were also detected but in small percentage. Some isolates were identified as having more than one pAmpC gene. The overall sensitivity and specificity of phenotypic tests for detection of AmpC β-lactamase showed that AmpC disk diffusion and inhibition dependent method by cloxacillin were the most sensitive and the most specific disk tests. PCR remains the gold standard for detection of AmpC β-lactamases. This study represents the first report of CMY-2 variants of CMY-42 and CMY-102 β-lactamase-producing E. coli, Klebsiella pneumonia, and Proteus mirabilis isolates in Egypt.

  5. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A beta-lactamase LAP-1.

    Science.gov (United States)

    Park, Yeon-Joon; Yu, Jin Kyung; Kim, Sang-Il; Lee, Kyungwon; Arakawa, Yoshichika

    2009-01-01

    A new plasmid-mediated fluoroquinolone efflux pump gene, qepA, is known to be associated with the rmtB gene, which confers high-level resistance to aminoglycosides. We investigated the qepA gene in 573 AmpC-producing Enterobacteriaceae including one Citrobacter freundii known to harbor rmtB. Of them, two clonally unrelated E. aerogenes harbored qepA. Both isolates co-harbored rmtB, qnrS1, qepA, and bla(LAP-1) on an IncFI type plasmid. The qepA was flanked by two copies of IS26 containing ISCR3C, tnpA, tnpR, bla(TEM), and rmtB. The qnrS1 and bla(LAP-1) were located upstream of qepA. All the resistance determinants (qepA, qnrS1, rmtB, and bla(LAP-1)) were co-transferred to E. coli J53 by filter mating from both isolates. Although the prevalence of qepA is currently low, considering the presence of ISCR3C and the possibility of co-selection and co-transferability of plasmids, more active surveillance for these multi-drug resistant bacteria and prudent use of antimicrobials are needed.

  6. 质粒介导细菌对喹诺酮类抗菌药物的耐药机制%Plasmid Mediated Mechanism of Bacterial Resistance to Quinolones

    Institute of Scientific and Technical Information of China (English)

    马晓波; 宋秀宇

    2009-01-01

    喹诺酮类抗菌药物是临床最为常用的抗菌药物之一,但其耐药的问题也日益严重。细菌对喹诺酮类抗菌药物的耐药机制有:(1)染色体介导的耐药,包括药物作用靶位的改变(特别是喹诺酮耐药决定区(QRDR)的基因突变]、外膜通透性的下降、主动外排作用。(2)质粒介导的耐药。质粒介导的喹诺酮类耐药(plasmid mediated quinolone resistance,PMQR)由qnr(quinolone resistance,后来更名为qnrA)、aac-(6’)-Ⅰb-cr及qepA(quinolone efflux proteinA)等参与。PMQR机制的发现使人们对细菌耐喹诺酮类药物的机制有了新的认识。

  7. In vitro activities and detection performances of cefmetazole and flomoxef for extended-spectrum β-lactamase and plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae.

    Science.gov (United States)

    Matsumura, Yasufumi; Yamamoto, Masaki; Nagao, Miki; Tanaka, Michio; Takakura, Shunji; Ichiyama, Satoshi

    2016-04-01

    To investigate the in vitro activities of cephamycins (cefmetazole and flomoxef) for extended-spectrum β-lactamase (ESBL)- and plasmid-mediated AmpC β-lactamase (pAmpC)-producing Enterobacteriaceae, a total of 574 third-generation cephalosporin-resistant clinical isolates were collected at a Japanese multicenter study. PCR and sequencing identified 394 isolates with only ESBL genes, 63 isolates with only pAmpC genes, and 6 isolates with both ESBL and pAmpC genes. blaCTX-M types predominated 95.5% of the ESBL genes, and blaCMY-2 predominated 91.3% of the pAmpC genes. The MIC50/90 values of cefmetazole and flomoxef were ≤ 1/4 and ≤ 1/≤ 1 μg/mL for isolates with only ESBL genes, respectively, and 16/>16 and 8/16 μg/mL for isolates with only pAmpC genes, respectively. Flomoxef ≥ 4 μg/mL had the best screening performance for the detection of isolates with pAmpC genes. Flomoxef had better in vitro activities against ESBL-producing Enterobacteriaceae and provided a clearer distinction between ESBL and pAmpC-producing Enterobacteriaceae compared to cefmetazole.

  8. Cefotaxime for the detection of extended-spectrum β-lactamase or plasmid-mediated AmpC β-lactamase and clinical characteristics of cefotaxime-non-susceptible Escherichia coli and Klebsiella pneumoniae bacteraemia.

    Science.gov (United States)

    Matsumura, Y; Yamamoto, M; Matsushima, A; Nagao, M; Ito, Y; Takakura, S; Ichiyama, S

    2012-08-01

    We investigated the performance of cefotaxime for the detection of extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC) and the clinical characteristics of cefotaxime-non-susceptible Escherichia coli or Klebsiella pneumoniae (CTXNS-EK) bacteraemia. All of the consecutive bloodstream isolates between 2005 and 2010 in a Japanese university hospital were characterised using polymerase chain reaction (PCR). Risk factors and outcomes of CTXNS-EK were analysed by multivariate logistic regression analysis. We identified 58 CTXNS-EK (15.6%) from 249 E. coli and 122 K. pneumoniae. Cefotaxime with a minimum inhibitory concentration (MIC) of >1 μg/mL had a sensitivity of 98.3% and a specificity of 99.7% for the detection of ESBL or pAmpC. CTXNS-EK had increased from 4.5% in 2005 to 23% in 2009. Risk factors for CTXNS-EK were previous isolation of multidrug-resistant bacteria, use of oxyimino-cephalosporins or fluoroquinolones, and high Sequential Organ Failure Assessment (SOFA) score. Patients with CTXNS-EK bacteraemia less frequently received appropriate empirical therapy than patients with cefotaxime-susceptible EK bacteraemia (81% vs. 97%, pcefotaxime alone can identify ESBL or pAmpC producers. CTXNS-EK is an important and increasingly prevalent bacteraemia pathogen.

  9. Antibiotics Quiz

    Science.gov (United States)

    ... Get Smart: Know When Antibiotics Work on the Farm Get Smart About Antibiotics Week Antibiotics Quiz Recommend on Facebook Tweet Share Compartir Try your hand at this quiz. Read each question and then click the button to the right of the answer ...

  10. Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China.

    Science.gov (United States)

    Xiong, Wenguang; Sun, Yongxue; Zhang, Tong; Ding, Xueyao; Li, Yafei; Wang, Mianzhi; Zeng, Zhenling

    2015-08-01

    Environmental antibiotic resistance has drawn increasing attention due to its great threat to human health. In this study, we investigated concentrations of antibiotics (tetracyclines, sulfonamides and (fluoro)quinolones) and abundances of antibiotic resistance genes (ARGs), including tetracycline resistance genes, sulfonamide resistance genes, and plasmid-mediated quinolone resistance genes, and analyzed bacterial community composition in aquaculture environment in Guangdong, China. The concentrations of sulfametoxydiazine, sulfamethazine, sulfamethoxazole, oxytetracycline, chlorotetracycline, doxycycline, ciprofloxacin, norfloxacin, and enrofloxacin were as high as 446 μg kg(-1) and 98.6 ng L(-1) in sediment and water samples, respectively. The relative abundances (ARG copies/16S ribosomal RNA (rRNA) gene copies) of ARGs (sul1, sul2, sul3, tetM, tetO, tetW, tetS, tetQ, tetX, tetB/P, qepA, oqxA, oqxB, aac(6')-Ib, and qnrS) were as high as 2.8 × 10(-2). The dominant phyla were Proteobacteria, Bacteroidetes, and Firmicutes in sediment samples and Proteobacteria, Actinobacteria and Bacteroidetes in water samples. The genera associated with pathogens were also observed, such as Acinetobacter, Arcobacter, and Clostridium. This study comprehensively investigated antibiotics, ARGs, and bacterial community composition in aquaculture environment in China. The results indicated that fish ponds are reservoirs of ARGs and the presence of potential resistant and pathogen-associated taxonomic groups in fish ponds might imply the potential risk to human health.

  11. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    2014-01-01

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in pa

  12. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  13. Shigellosis in Bay of Bengal Islands, India: clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011.

    Science.gov (United States)

    Bhattacharya, D; Bhattacharya, H; Thamizhmani, R; Sayi, D S; Reesu, R; Anwesh, M; Kartick, C; Bharadwaj, A P; Singhania, M; Sugunan, A P; Roy, S

    2014-02-01

    This study aims to determine the clinical features and seasonal patterns associated with shigellosis, the antimicrobial resistance frequencies of the isolates obtained during the period 2006-2012 for 22 antibiotics, and the molecular characterization of multidrug-resistant strains isolated from endemic cases of shigellosis in the remote islands of India, with special reference to fluoroquinolone and third-generation cephalosporins resistance. During the period from January 2006 to December 2011, stool samples were obtained and processed to isolate Shigella spp. The isolates were evaluated with respect to their antibiotic resistance pattern and various multidrug resistance determinants, including resistance genes, quinolone resistance determinants, and extended-spectrum β-lactamase (ESBL) production. Morbidity for shigellosis was found to be 9.3 % among children in these islands. Cases of shigellosis occurred mainly during the rainy seasons and were found to be higher in the age group 2-5 years. A wide spectrum of resistance was observed among the Shigella strains, and more than 50 % of the isolates were multidrug-resistant. The development of multidrug-resistant strains was found to be associated with various drug-resistant genes, multiple mutations in the quinolone resistance-determining region (QRDR), and the presence of plasmid-mediated quinolone-resistant determinants and efflux pump mediators. This report represents the first presentation of the results of long-term surveillance and molecular characterization concerning antimicrobial resistances in clinical Shigella strains in these islands. Information gathered as part of the investigations will be instrumental in identifying emerging antimicrobial resistance, for developing treatment guidelines appropriate for that community, and to provide baseline data with which to compare outbreak strains in the future.

  14. Antibiotic therapy in Shiga toxin producing Escherichia coli infection and colonization

    Directory of Open Access Journals (Sweden)

    Knobloch, Johannes K.-M.

    2013-07-01

    Full Text Available The post diarrheal hemolytic uremic syndrome (HUS is a major complication of enteric infections with Shiga toxin producing (STEC. According to the present recommendations, antibiotic therapy of acute bloody diarrhea caused by STEC is generally discouraged. These recommendations are based on historically conflicting results describing the potential induction of HUS by antibiotic treatment during the early phase of infection with enterohemorrhagic O157 whereas no guidelines are available for the use of antibiotics in cases of already fully established HUS or in asymptomatic long term STEC carriers. In 2011, a large outbreak of hemorrhagic colitis complicated by HUS occurred in northern Germany caused by a STEC strain of serotype O104:H4 harbouring both a phage encoding Stx 2 as well as a plasmid mediated enteroaggregative phenotype. The majority of infections were observed in adults, complicated by the highest number of HUS cases ever encountered. Due to different newly introduced therapeutic strategies (e.g. complement blockade antibiotic therapy was used in many patients once HUS was established. The outbreak therefore provided important new insights for the understanding of antibiotic therapy of STEC associated HUS in adults and for decolonization of long term STEC carriers. This review highlights new aspects concerning use of antibiotics in STEC infection and colonization.

  15. Antibiotic resistance genes occurrence and bacterial community composition in the Liuxi River

    Directory of Open Access Journals (Sweden)

    Wenguang eXiong

    2014-12-01

    Full Text Available Antibiotic resistance genes (ARGs in the environment have paid great concern due to their health risk. We investigated antibiotics concentrations (tetracyclines, sulfonamides and fluoroquinolones, ARGs abundances (tetracycline, sulfonamide and plasmid-mediated quinolone resistance (PMQR genes, and bacterial community composition in sediment and water samples in the Liuxi River, China. Antibiotics concentrations were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. ARGs abundances were quantified by a culture-independent method. Bacterial community composition was analyzed by metagenomic approach based on Ion Torrent Personal Genome Machine platform. Antibiotics concentrations were at the levels of 1.19 to 622 ug kg-1 in sediment samples and below the limit of detection to 127 ng L-1 in water samples. Relative abundances (ARGs copies/16S rRNA gene copies of detected ARGs were at the range of 10-5 to 10-2. The dominant phyla were Proteobacteria, Bacteroidetes and Verrucomicrobia in sediment samples, and were Proteobacteria, Actinobacteria and Bacteroidetes in water samples. The results indicated that the river environment was contaminated by antibiotics and may be as a reservoir of ARGs. This study provided quantitative data on antibiotics, ARGs and bacterial community composition in the Liuxi River, a geographical location different from the reported studies.

  16. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  17. Countrywide dissemination of a DHA-1-type plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae ST11 international high-risk clone in Hungary, 2009-2013.

    Science.gov (United States)

    Kis, Zoltán; Tóth, Ákos; Jánvári, Laura; Damjanova, Ivelina

    2016-09-01

    The first plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae (pAmpC KP) isolate was detected in December 2009 in Hungary. Hungarian microbiological laboratories were asked to send all KP strains showing cefoxitin resistance and decreased susceptibility or resistance to any third-generation cephalosporins to the Reference Laboratories at the National Center for Epidemiology. Investigation was conducted in order to outline spatio-temporal distribution and genetic characterization of pAmpC-KP isolates in Hungary. Between December 2009 and December 2013, 312 consecutive KP clinical isolates were confirmed as producing pAmpCs. All isolates showed resistance to third-generation cephalosporins, aminoglycosides and fluoroquinolones, and 77 % were non-susceptible to at least one carbapenem. Analysis of β-lactamase genes showed blaDHA-1 in all and additionally blaCTX-M-15 in 90 % of isolates. PFGE typing revealed 12 pulsotypes; of these, KP053 (262/312) and KP070 (38/312) belonged to sequence type ST11 and comprised 96 % of the isolates. The blaDHA-1 and blaCTX-M-15 co-producing KP053/ST11 clone affected 234 patients and spread to 55 healthcare centres across Hungary during the study period. Three KP053 isolates were also resistant to colistin. In two of these, the mgrB gene was truncated by IS10R, while in the third isolate, insertional inactivation of mgrB by ISKPn14 was identified. Hungary is the first European country showing endemic spread of blaDHA-1 facilitated by the international high-risk clone ST11. The rapid countrywide spread of this multidrug-resistant clone seriously endangers Hungarian healthcare facilities and warrants strengthening of infection control practices and prudent use of carbapenems and colistin.

  18. Molecular characterization of extended-spectrum β-lactamase, plasmid-mediated AmpC cephalosporinase and carbapenemase genes among Enterobacteriaceae isolates in five medical centres of East and West Azerbaijan, Iran.

    Science.gov (United States)

    Sadeghi, Mohammad Reza; Ghotaslou, Reza; Akhi, Mohammad Taghi; Asgharzadeh, Mohammad; Hasani, Alka

    2016-11-01

    Very little is known about the occurrence and various types of extended-spectrum β-lactamase (ESBL), AmpC and carbapenemase in Iran. The aims of this study were to determine the prevalence of ESBLs, AmpCs and carbapenemase genes among Enterobacteriaceae in Azerbaijan and to characterize the genetic composition of the detected genes. A total of 307 Enterobacteriaceae isolates, recovered from five medical centres, were screened for ESBL, AmpC and carbapenemase activities by the disc diffusion method and phenotypic confirmatory tests. The 162 selected strains (third-generation cephalosporins, cefoxitin- or carbapenem-resistant strains with positive or negative phenotypic confirmatory tests) were selected for multiplex PCR screening for β-lactamase genes, and detected genes were confirmed by sequencing. Of 162 isolates, 156 harboured 1 to 6 β-lactamase genes of 41 types. The most prevalent genes were blaTEM-1 (29.9 %), followed by blaCTX-M-15 (25.7 %). Plasmid-mediated AmpC was detected in 66 strains (21.5 %) alone or in combination with other genes. Carbapenemase-encoding genes were detected in 18 strains (5.8 %) of 27 carbapenem-non-susceptible isolates including 11, 7, 3 and 1 cases of blaOXA-48, blaNDM-1, blaKPC-2 and blaKPC-3 genes, respectively. Interestingly, 148 (94.8 %) of 156 strains with any β-lactamase gene were found to have a multidrug-resistant pattern. The rate of resistance to β-lactams and multidrug-resistant Enterobacteriaceae is high in Azerbaijan. All positive strains for carbapenemase genes were resistant to all β-lactams. The present study reveals the high occurrence of CTX-M-type ESBLs followed by TEM and SHV variants among Enterobacteriaceae isolates. East Azerbaijan seems to be an alarming focus for OXA-48, NDM-1 and KPC dissemination.

  19. Plasmid-Mediated Sulfamethoxazole Resistance Encoded by the sul2 Gene in the Multidrug-Resistant Shigella flexneri 2a Isolated from Patients with Acute Diarrhea in Dhaka, Bangladesh

    Science.gov (United States)

    Iqbal, Mohd S.; Rahman, Mostafizur; Islam, Rafiad; Banik, Atanu; Amin, M. Badrul; Akter, Fatema; Talukder, Kaisar Ali

    2014-01-01

    In this study, mechanisms of plasmid-mediated sulfamethoxazole resistances in the clinical strains of multi-drug resistant (MDR) Shigella flexneri 2a were elucidated for the first time in Bangladesh. From 2006 to 2011, a total of 200 S. flexneri 2a strains were randomly selected from the stock of the Enteric and Food Microbiology Laboratory of icddr,b. Antimicrobial susceptibility of the strains showed 73%, 98%, 93%, 58%, 98%, 64% and 4% resistance to trimethoprim-sulfamethoxazole, nalidixic acid, ampicillin, erythromycin, tetracycline, ciprofloxacin and ceftriaxone respectively. Plasmid profiling revealed heterogeneous patterns and interestingly, all the trimethoprim-sulfamethoxazole resistant (SXTR) strains yielded a distinct 4.3 MDa plasmid compared to that of the trimethoprim-sulfamethoxazole susceptible (SXTS) strains. Curing of this 4.3 MDa plasmid resulted in the susceptibility to sulfamethoxazole alone suggesting the involvement of this plasmid in the resistance of sulfamethoxazole. Moreover, PCR analysis showed the presence of sul2 gene in SXTR strains which is absent in SXTS strains as well as in the 4.3 MDa plasmid-cured derivatives, confirming the involvement of sul2 in the resistance of sulfamethoxazole. Furthermore, pulsed-field gel electrophoresis (PFGE) analysis revealed that both the SXTR and SXTS strains were clonal. This study will significantly contributes to the knowledge on acquired drug resistance of the mostly prevalent S. flexneri 2a and further warrants continuous monitoring of the prevalence and correlation of this resistance determinants amongst the clinical isolates of Shigella and other enteric pathogens around the world to provide effective clinical management of the disease. PMID:24416393

  20. Plasmid-mediated sulfamethoxazole resistance encoded by the sul2 gene in the multidrug-resistant Shigella flexneri 2a isolated from patients with acute diarrhea in Dhaka, Bangladesh.

    Directory of Open Access Journals (Sweden)

    Mohd S Iqbal

    Full Text Available In this study, mechanisms of plasmid-mediated sulfamethoxazole resistances in the clinical strains of multi-drug resistant (MDR Shigella flexneri 2a were elucidated for the first time in Bangladesh. From 2006 to 2011, a total of 200 S. flexneri 2a strains were randomly selected from the stock of the Enteric and Food Microbiology Laboratory of icddr,b. Antimicrobial susceptibility of the strains showed 73%, 98%, 93%, 58%, 98%, 64% and 4% resistance to trimethoprim-sulfamethoxazole, nalidixic acid, ampicillin, erythromycin, tetracycline, ciprofloxacin and ceftriaxone respectively. Plasmid profiling revealed heterogeneous patterns and interestingly, all the trimethoprim-sulfamethoxazole resistant (SXT(R strains yielded a distinct 4.3 MDa plasmid compared to that of the trimethoprim-sulfamethoxazole susceptible (SXT(S strains. Curing of this 4.3 MDa plasmid resulted in the susceptibility to sulfamethoxazole alone suggesting the involvement of this plasmid in the resistance of sulfamethoxazole. Moreover, PCR analysis showed the presence of sul2 gene in SXT(R strains which is absent in SXT(S strains as well as in the 4.3 MDa plasmid-cured derivatives, confirming the involvement of sul2 in the resistance of sulfamethoxazole. Furthermore, pulsed-field gel electrophoresis (PFGE analysis revealed that both the SXT(R and SXT(S strains were clonal. This study will significantly contributes to the knowledge on acquired drug resistance of the mostly prevalent S. flexneri 2a and further warrants continuous monitoring of the prevalence and correlation of this resistance determinants amongst the clinical isolates of Shigella and other enteric pathogens around the world to provide effective clinical management of the disease.

  1. Characterization of Plasmid-Mediated Quinolone Resistance Determinants in High-Level Quinolone-Resistant Enterobacteriaceae Isolates from the Community: First Report of qnrD Gene in Algeria.

    Science.gov (United States)

    Yanat, Betitera; Machuca, Jesús; Díaz-De-Alba, Paula; Mezhoud, Halima; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2017-01-01

    The objective was to assess the prevalence of plasmid-mediated quinolone resistance (PMQR)-producing isolates in a collection of quinolone-resistant Enterobacteriaceae of community origin isolated in Bejaia, Algeria. A total of 141 nalidixic acid-resistant Enterobacteriaceae community isolates were collected in Bejaia (Northern Algeria) and screened for PMQR genes using polymerase chain reaction (PCR). For PMQR-positive strains, antimicrobial susceptibility testing was performed by broth microdilution and disk diffusion. Mutations in the quinolone resistance-determining regions of the target genes, gyrA and parC, were detected with a PCR-based method and sequencing. Southern blotting, conjugation and transformation assays and molecular typing by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing were also performed. The prevalence of PMQR-producing Enterobacteriaceae isolates was 13.5% (19/141); 11 of these isolates produced Aac(6')-Ib-cr and 8 were qnr-positive (4 qnrB1-like, 2 qnrS1-like, and 2 qnrD1-like), including the association with aac(6')-Ib-cr gene in three cases. PMQR gene transfer by conjugation was successful in 6 of 19 isolates tested. PFGE revealed that most of the PMQR-positive Escherichia coli isolates were unrelated, except for two groups comprising two and four isolates, respectively, including the virulent multidrug-resistant clone E. coli ST131 that were clonally related. Our findings indicate that PMQR determinants are prevalent in Enterobacteriaceae isolates from the community studied. We describe the first report of the qnrD gene in Algeria.

  2. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan.

    Science.gov (United States)

    Matsumura, Yasufumi; Yamamoto, Masaki; Higuchi, Takeshi; Komori, Toshiaki; Tsuboi, Fusayuki; Hayashi, Akihiko; Sugimoto, Yoshihisa; Hotta, Gou; Matsushima, Aki; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2012-08-01

    In 2010, a total of 1327 clinical Escherichia coli isolates from five hospitals in the Kyoto and Shiga regions of Japan were analysed by PCR. The prevalences of plasmid-mediated AmpC β-lactamase (pAmpC)-producers, extended-spectrum β-lactamase (ESBL)-producers and co-producers of pAmpC and ESBL were 1.7%, 9.7% and 0.3%, respectively. Less than one-half of the pAmpC-producers were reported to be resistant to third-generation cephalosporins, cephamycins and β-lactam/β-lactam inhibitors using the old 2009 Clinical and Laboratory Standards Institute (CLSI) breakpoints. CMY-2 was the most prevalent pAmpC type (95%), and CTX-M-14 (38%), CTX-M-15 (26%) and CTX-M-27 (19%) were the most prevalent ESBL types. The worldwide O25b-ST131-B2 clone accounted for 11% of pAmpC-producers and 41% of ESBL-producers. The O25b-ST131-B2 clone was characterised by a CTX-M-27- or CTX-M-15-type ESBL and ciprofloxacin-non-susceptibility with quadruple mutations in the quinolone resistance-determining regions (S83L and D87N in GyrA and S80I and E84V in ParC). A significant proportion of pAmpC-producers and the O25b-ST131-B2 clone were found in Japan by a recent regional surveillance programme.

  3. Effect of clavulanic acid on activity of beta-lactam antibiotics in Serratia marcescens isolates producing both a TEM beta-lactamase and a chromosomal cephalosporinase.

    Science.gov (United States)

    Bush, K; Flamm, R K; Ohringer, S; Singer, S B; Summerill, R; Bonner, D P

    1991-01-01

    An isolate of Serratia marcescens that produced both an inducible chromosomal and a plasmid-mediated TEM-1 beta-lactamase was resistant to ampicillin and amoxicillin and also demonstrated decreased susceptibility to extended-spectrum beta-lactam antibiotics (ESBAs). Clavulanic acid did not lower the MICs of the ESBAs, but it decreased the MICs of the penicillins. The TEM-1-producing plasmid was transferred to a more susceptible S. marcescens strain that produced a well-characterized inducible chromosomal beta-lactamase. The MICs of the ESBAs remained at a low level for the transconjugant. Ampicillin and amoxicillin which were good substrates for the plasmid-mediated enzyme, were not well hydrolyzed by the chromosomal enzymes; the ESBAs were hydrolyzed slowly by all the enzymes. When each of the S. marcescens strains was grown with these beta-lactam antibiotics, at least modest increases in chromosomal beta-lactamase activity were observed. When organisms were grown in the presence of clavulanic acid and an ESBA, no enhanced induction was observed. The increases in the MICs of the ESBAs observed for the initial clinical isolate may have been due to a combination of low inducibility, slow hydrolysis, and differences in permeability between the S. marcescens isolates. When clavulanic acid and a penicillin were added to strains that produced both a plasmid-mediated TEM and a chromosomal beta-lactamase, much higher levels of chromosomal beta-lactamase activity were present than were observed in cultures induced by the penicillin alone. This was due to the higher levels of penicillin that were available for induction as a result of inhibition of the TEM enzyme by clavulanate. Images PMID:1803992

  4. Multiple Discharges of Treated Municipal Wastewater Have a Small Effect on the Quantities of Numerous Antibiotic Resistance Determinants in the Upper Mississippi River.

    Science.gov (United States)

    LaPara, Timothy M; Madson, Matthew; Borchardt, Spencer; Lang, Kevin S; Johnson, Timothy J

    2015-10-06

    This study evaluated multiple discharges of treated wastewater on the quantities of antibiotic resistance genes (ARGs) in the Upper Mississippi River. Surface water and treated wastewater samples were collected along the Mississippi River during three different periods of 4 days during the summer of 2012, and quantitative real-time PCR (qPCR) was used to enumerate several ARGs and related targets. Even though the wastewater effluents contained 75- to 831-fold higher levels of ARGs than the river water, the quantities of ARGs in the Mississippi River did not increase with downstream distance. Plasmids from the incompatibility group A/C were detected at low levels in the wastewater effluents but not in the river water; synthetic DNA containing an ampicillin resistance gene (bla) from cloning vectors was not detected in either the wastewater effluent or river samples. A simple 1D model suggested that the primary reason for the small impact of the wastewater discharges on ARG levels was the large flow rate of the Mississippi River compared to that of the wastewater discharges. Furthermore, this model generally overpredicted the ARG levels in the Mississippi River, suggesting that substantial loss mechanisms (e.g., decay or deposition) were occurring in the river.

  5. Instability of multiple drug resistance plasmids in Salmonella typhimurium isolated from poultry.

    Science.gov (United States)

    Brown, D J; Threlfall, E J; Rowe, B

    1991-04-01

    Plasmids in five strains of Salmonella typhimurium resistant to ampicillin, chloramphenicol, gentamicin, neomycin/kanamycin, streptomycin, sulphonamides, tetracyclines and trimethoprim (ACGKSSuTTm), CGKSSuTTm, ACSSuT or CSSuT which had been isolated from poultry in the first 3 months of 1989 have been characterized and compared with plasmids in two strains of R-types ACGKSSuTTm and ASSuTTm isolated from two patients later in the year. With the exception of the human isolate of R-type ASSuTTm, all strains carried two non-conjugative plasmids, one coding for SSu and belonging to incompatibility group Q, and a second coding for multiple resistance and belonging to the FIme incompatibility group. The human isolate of R-type ASSuTTm did not carry the IncQ SSu plasmid but like the poultry isolates, carried a non-conjugative FIme plasmid. Restriction endonuclease digestion with the enzymes EcoR I, Pst I and Hind III demonstrated that the FIme plasmids from strains of different R-types showed a high degree of homology but exhibited numerous fragment size polymorphisms. The restriction digest fingerprint of plasmids in the human isolate of R-type ACGKSSuTTm was indistinguishable from a poultry isolate of the same R-type. Analysis of segregants of one of the poultry isolates of R-type ACGKSSuTTm demonstrated that resistance determinants could be rapidly lost from the FIme plasmid to give rise to a number of R-types and fingerprint patterns. Loss of tetracycline resistance from this plasmid appeared to be correlated with the integration of other plasmid-mediated resistances into the bacterial chromosome. Evidence is presented for the rapid loss of antimicrobial resistance determinants from a multiple resistance plasmid of the FIme incompatibility group in response to withdrawal of antibiotic selective pressure.

  6. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts.

    Directory of Open Access Journals (Sweden)

    Carola Venturini

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC and atypical enteropathogenic E. coli (aEPEC are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb from a human O26:H- EHEC, and pO111-CRL115 (115kb from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex

  7. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A

    2012-01-01

    In view of the alarming spread of antimicrobial resistance in the absence of new antibiotics, this study aimed at assessing the availability of potentially useful older antibiotics. A survey was performed in 38 countries among experts including hospital pharmacists, microbiologists, and infectiou...

  8. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from environmental a

  9. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from environmental

  10. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    Numerous opportunities are available in primary care for alleviating the crisis of increasing antibiotic resistance. Preventing patients from developing an acute respiratory infection (ARI) will obviate any need for antibiotic use downstream. Hygiene measures such as physical barriers and hand...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....... antibiotic prescribing are a major factor in the prescribing for ARIs. Professional interventions with educational components are effective, although they have modest effects, and are expensive. GPs' perceptions - that mistakenly assume as a default that patients want antibiotics for their ARIs - are often...

  11. Identification of plasmid-mediated AmpC gene, blaDHA-1 from clinical isolates of Escherichia coli and Klebsiella pneumoniae%从大肠埃希菌和肺炎克雷伯菌中检出质粒介导的AmpC DHA-1型β内酰胺酶基因

    Institute of Scientific and Technical Information of China (English)

    王煜; 李振华

    2008-01-01

    目的 了解产质粒介导AmpC酶大肠埃希菌和肺炎克雷伯菌的耐药性和基因型.方法 收集2002年1月-2004年5月间我院呼吸科临床标本中分离的大肠埃希菌和肺炎克雷伯菌共110株,用酶提取物三维试验检测AmpC酶;用等电聚焦电泳、耐药质粒电转化试验、聚合酶链反应(PCR)及测序确定AmpC酶基因型.结果 大肠埃希菌和肺炎克雷伯菌中AmpC酶检出率分剐为9.30%和4.48%.药敏试验显示产酶株对头孢西丁全部耐药,对第三代头孢菌素、酶抑制剂、氨曲南、阿米卡星及环丙沙星均有不同程度耐药,对头孢吡肟及亚胺培南较敏感.7株产AmpC酶菌株中有5株通过电转化试验可将头孢西丁耐药性传递给受体菌,经PCR扩增和测序证实为质粒介导DHA-1型AmpC酶.结论 我院临床分离的大肠埃希菌和肺炎克雷伯菌中已经出现产质粒介导AmpC酶菌株,其耐药性能够水平传播,给临床抗感染治疗带来重大威胁.%[Objective]To investigate the susceptibility and genotype characteristics of Escherichia coli and Klebsiella pneumoniae producing plasmid-mediated AmpC β-lactamase. [Methods]A total of 110 strains of Escherichia coli and Klebsiella pneumoniae were collected from the patients hospitalized in our respiratory ward from January 2002 to May 2004. The isohtes harboring AmpC β-lactamase were detected by three-dimensional test, isoelectric focusing analysis, electroporation and PCR, the PCR products were sequenced subsequently. [Results]AmpC enzyme was detected in 9.30% of Escherichia coli and 4.48 % of Klebsiella pneumoniae. The susceptibility test showed 7 isolates producing plnsmid-mediated AmpC β-lactamase were all resistant to cefoxitin, part of these strains were resistant to the third-generation Cephalosparins, β-lactamase combined with the β-lactamase inhibitors, Aztreonam,Amikacin and Cipmfloxacin, most of them were susceptible to cefeime and imipenem. 3 strains of Klebsiella

  12. Oral cavities of healthy infants harbour high proportions of Streptococcus salivarius strains with phenotypic and genotypic resistance to multiple classes of antibiotics.

    Science.gov (United States)

    Palma, Thaís H; Harth-Chú, Erika N; Scott, Jodie; Stipp, Rafael N; Boisvert, Heike; Salomão, Mariana F; Theobaldo, Jéssica D; Possobon, Rosana F; Nascimento, Leandro C; McCafferty, Jonathan W; Faller, Lina; Duncan, Margaret J; Mattos-Graner, Renata O

    2016-12-01

    Emerging antibiotic resistance in the oropharyngeal microbiota, of which Streptococcus salivarius is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of Streptococcussalivarius as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 Streptococcussalivarius isolates from 22 healthy infants (2-16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (mel, mefA/E and macB), ribosomal protection [erm(B), tet(M) and tet(O)] and β-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that Streptococcussalivarius strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.

  13. Persistence of a wild type Escherichia coli and its multiple antibiotic-resistant (MAR) derivatives in the abattoir and on chilled pig carcasses.

    Science.gov (United States)

    Delsol, Anne A; Halfhide, Deborah E; Bagnall, Mary C; Randall, Luke P; Enne, Virve I; Woodward, Martin J; Roe, John M

    2010-06-15

    The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coli recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (PMAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain.

  14. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics.

    Science.gov (United States)

    González-Bello, Concepción

    2017-09-15

    Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Study on drug resistance and plasmid-mediated resistance mechanisms of ciprofloxacin-resistant Pseudomonas aeruginosa%铜绿假单胞菌耐药性及质粒介导的耐环丙沙星分子机制研究

    Institute of Scientific and Technical Information of China (English)

    陈茶; 黄彬; 陈利达; 吴强贵; 陈树林; 李有强; 林冬玲; 张妮

    2012-01-01

    OBJECTIVE To study the drug resistance and detect plasmid-mediated ciprofloxacin-resistant genes in clinical isolates of Pseudomonas aeruginosa , and study the molecular resistant mechanisms. METHODS The clinical isolates were identified by the automatic VITEK 2 system and the antimicrobial susceptibility was tested by K-B disc diffusion. The quinolone-resistant genes mediated by plasmids including qnrA, qnrB, qnrC, qnrD, qnrS, qepA and aac(6')-Ibcr were analyzed by polymerase chain reaction. RESULTS The resistance rates of 423 isolates of P. aeruginosa to ciprofloxacin and levofloxacin were 23. 2%, the resistance rates to the first and third generation of cephalosporins were higher than 49. 2% except 22. 7% to ceftazidime, the resistance rates to aminoglycoside antibiotics such as gentamicin, tobramycin, and amikacin were 17. 5%, 17. 5% and 13. 0%, respectively; the drug resistance rates to penicillins were higher than 40. 4% except 26. 2% to piperacillin, there was large difference in the resistant rate to β-lactamase inhibitor combinations, piperacillin/tazobactam (17. 0%) and ampicillin/sulbactam (98. 6%); the resistance rates to imipenem and meropenem were 24. 6% and 26. 0%, respectively; of 127 strains of ciprofloxacin-resistant P. aeruginosa isolates, the drug resistance increased significantly, the resistance rate to levofloxacin was 86. 6%, the resistance rate to the third generation of cephalosporin rose above 61. 4% , the resistance rate to the fourth generation of cephalosporin cefepime rose from 20.3% to 62. 2%; the resistance rate to β-lactamase inhibitor complexes increased from 17. 0% to 49. 6% or above, and the resistance rates to aminoglycosides (gentamicin, tobramycin) rose to 64. 6% or above, the resistance rate to amikacin increased from 13. 0% to 48. 8% ; there were no qnrS and qnrC that were detected in ciprofloxacin-resistant P. aeruginosa, the positive rates of qnrA, qnrB, qnrD, qepA and aac(6')-Ib-cr gene were 31. 2% , 87. 5% , 15. 6

  16. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  17. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  18. Origins and evolution of antibiotic resistance.

    Science.gov (United States)

    Davies, Julian; Davies, Dorothy

    2010-09-01

    Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

  19. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... What Everyone Should Know What You Can Do Antibiotic Resistance Q&As Fast Facts Antibiotics Quiz Glossary For ... Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Core Elements of Outpatient Antibiotic Stewardship ...

  20. Antibiotic-Associated Diarrhea

    Science.gov (United States)

    Antibiotic-associated diarrhea Overview By Mayo Clinic Staff Antibiotic-associated diarrhea refers to passing loose, watery stools ... after taking medications used to treat bacterial infections (antibiotics). Most often, antibiotic-associated diarrhea is mild and ...

  1. High rates of intestinal colonisation with fluoroquinolone-resistant ESBL-harbouring Enterobacteriaceae in hospitalised patients with antibiotic-associated diarrhoea.

    Science.gov (United States)

    Vervoort, J; Gazin, M; Kazma, M; Kotlovsky, T; Lammens, C; Carmeli, Y; Goossens, H; Malhotra-Kumar, S

    2014-12-01

    The purposes of this study were to investigate the intestinal carriage of extended-spectrum β-lactamase-harbouring Enterobacteriaceae (ESBL-EN) and associated fluoroquinolone resistance (FQ-R) in 120 hospitalised patients with antibiotic-associated diarrhoea, and to investigate a correlation between Clostridium difficile (C. difficile) infection and intestinal colonisation with ESBL-EN in these patients. Stool samples were screened for C. difficile infection by toxin A/B enzyme-linked immunosorbent assay (ELISA) and for the presence of enterobacterial isolates producing β-lactamases by plating on β-lactamase screening (BLSE) agar. Recovered isolates were confirmed pheno- and genotypically for the presence of ESBL genes (bla CTX-M, bla TEM, bla SHV) by the double-disc synergy test and polymerase chain reaction (PCR) sequencing, and tested for the presence of topoisomerase mutations (gyrA, parC) and plasmid-mediated quinolone resistance (PMQR) determinants [qnrA, qnrB, qnrS, qepA, aac(6')-Ib-cr] by PCR sequencing. ESBL-EN were detected in 44/120 (37 %) stool samples. C. difficile-infected patients showed a significantly higher frequency of intestinal colonisation with ESBL-EN compared to C. difficile non-infected patients (62 % vs. 31 %, p = 0.008). Of the 73 ESBL-EN recovered, 46 (63 %) showed high-level FQ-R [ciprofloxacin minimum inhibitory concentration (MIC) ≥32 mg/L]. The largest group consisted of 21 bla CTX-M-15-harbouring Enterobacteriaceae (ciprofloxacin MIC ≥64 mg/L) with multiple topoisomerase mutations in gyrA and parC, in combination with co-carriage of aac(6')-Ib-cr. Most of them were Escherichia coli isolates belonging to sequence types ST131 and ST410. We found remarkably high rates of intestinal colonisation with high-level FQ-R ESBL-EN in hospitalised patients with antibiotic-associated diarrhoea, especially among C. difficile-infected patients. These data underscore the need for stringent infection control to contain this potentially

  2. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. A Review on Antibiotic Resistance: Alarm Bells are Ringing

    OpenAIRE

    Zaman, Sojib Bin; Hussain, Muhammed Awlad; Nye, Rachel; Mehta, Varshil; Mamun, Kazi Taib; Hossain, Naznin

    2017-01-01

    Antibiotics are the ‘wonder drugs’ to combat microbes. For decades, multiple varieties of antibiotics have not only been used for therapeutic purposes but practiced prophylactically across other industries such as agriculture and animal husbandry. Uncertainty has arisen, as microbes have become resistant to common antibiotics while the host remains unaware that antibiotic resistance has emerged. The aim of this review is to explore the origin, development, and the current state of antibiotic ...

  4. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  5. A Report on Antibiotic Management of Neonatal Sepsis Caused by ...

    African Journals Online (AJOL)

    This is a report on a case of neonatal sepsis and clinical management with multiple antibiotic therapy in a neonatal intensive care ... resistance which obviously impacts clinical outcomes. .... causal and urges for a change in general antibiotic ...

  6. Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil and fresh vegetables.

    Science.gov (United States)

    Poma, Violeta; Mamani, Nataniel; Iñiguez, Volga

    2016-01-01

    La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli-EHEC, Enteroinvasive E. coli or Shigella-EIEC/Shigella, Enteroaggregative E. coli-EAEC, Enteropathogenic E. coli-EPEC Enterotoxigenic E. coli-ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2-4). River water (sites 1-4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April-September) and rainy seasons (October-March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline commonly

  7. 大肠埃希菌产质粒介导AmpC酶基因在中国分布的Meta分析%Distribution of plasmid mediated AmpC genes of β-lactamase-producing Escherichia coli in China: A meta analysis

    Institute of Scientific and Technical Information of China (English)

    茅国峰; 徐儿

    2016-01-01

    AmpC酶基因的阳性率差异具有统计学意义(P<0.05).%Objective To analyze the distribution of plasmid-mediated AmpC genes of beta-lactamase producing Escherichia coli in China.Methods Retrieving four Chinese database,EMbase,PubMed and foreign periodicals database,retrieval time for the database until May 2015,by two independent researchers strictly according to the inclusion and exclusion criteria selected studies and extracted relevant data of screening of the ESBLs genes in E.coli,the research literature by Stata 12.1 single group rate of meta analysis,analysis includes the detection rate of all kinds of plasmid mediated AmpC enzyme gene of E.coli and the distribution of different regions.Results A total of 35 Chinese and 4 foreign literatures were included,and the data were analyzed by random effects model,merge result display:(1) the E.coli plasmid mediated by the positive rate of AmpC enzyme gene was 5.0% (95%CI:4.0%-7.0%).The positive rate of plasmid mediated AmpC enzyme gene in E.coli was 5.0% in 2005-2008 (95%CI:3.0%-7.0%).The positive rate of plasmid mediated AmpC enzyme gene in E.coli was 6.0% in 2009-2013 (95%CI:4.0%-8.0%),the differences in two time periods of AmpC enzyme gene positive rate had statistical significance (P<0.05);(2) The detection rate of DHA primer amplification gene was 43.0% (95%CI:28.0%-59.0%).The detection rate of CIT primer amplification gene was 52.0% (95%CI:37.0%-66.0%).The detection rate of EBC primer amplification gene was 23.0% (95%CI:10.0%-37.0%);(3) The positive rate of plasmid mediated AmpC enzyme gene of E.coli was 8.0% (95%CI:5.0%-11.0%) in the north of China.The positive rate of plasmid mediated AmpC enzyme gene in E.coli was 5.0% (95%CI:1.0%-9.0%) in the southeast of China.The positive rate of plasmid mediated AmpC enzyme gene in E.coli was 6.0% (95%CI:2.0%-10.0%) in the central and western regions.The positive rate of plasmid mediated Amp

  8. Beyond Antibiotics?

    Directory of Open Access Journals (Sweden)

    LE Nicolle

    2006-01-01

    Full Text Available The AMMI Canada meeting in March 2006 hosted a symposium exploring the potential alternatives to antibiotics for the prevention and treatment of infection. Four papers summarizing talks from that session are published in this issue of the Journal (1-4. These reviews address the scientific underpinnings for a number of proposed concepts, and summarize the current status of clinical use. The approaches - probiotics, bacteriophage therapy, and manipulation of innate immunity - are all intriguing but are still removed from immediate practical applications.

  9. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    Science.gov (United States)

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  10. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Cost References Español: Datos breves Facts about Antibiotic Resistance Antibiotic resistance is one of the world’s most pressing public ... antibiotic use is a key strategy to control antibiotic resistance. Antibiotic resistance in children and older adults are ...

  11. Polyene antibiotic that inhibits membrane transport proteins

    NARCIS (Netherlands)

    Te Welscher, Y.M.; van Leeuwen, M.R.; de Kruijff, B.; Dijksterhuis, J.; Breukink, E.

    2012-01-01

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific inter

  12. Surveillance of antibiotic resistance

    National Research Council Canada - National Science Library

    Johnson, Alan P

    2015-01-01

    .... Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation...

  13. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms

    Directory of Open Access Journals (Sweden)

    Wenguang eXiong

    2015-03-01

    Full Text Available The aim of this study was to investigate selective pressure of antibiotics on antibiotic resistance genes (ARGs and bacterial communities in manure-polluted aquatic environment. Three treatment groups were set up in freshwater-sediment microcosms: tetracyclines group, sulfonamides group and fluoroquinolones group. Sediment and water samples were collected on day 14 after treatment. Antibiotic concentrations, ARGs abundances and bacterial community composition were analyzed. Antibiotic concentrations were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. ARGs abundances were quantified by real time quantitative PCR. Bacterial community composition was analyzed based on amplicon sequencing. Of the three classes of antibiotics analyzed in the treatment groups, accumulation amounts were tetracyclines> fluoroquinolone> sulfonamides in the sediment samples, while they were sulfonamides> fluoroquinolone> tetracyclines in the water samples. In the treatment groups, the relative abundances of some tet resistance genes (tet(W and tet(X and plasmid-mediated quinolone resistance (PMQR genes (oqx(B and aac(6’-Ib in sediment samples were significantly higher than those in the paired water samples. Tetracyclines significantly selected the bacterial classes including Gammaproteobacteria, Clostridia, and the genera including Salmonella, Escherichia/Shigella, Clostridium, Stenotrophomonas in sediment samples. The significant selection on bacterial communities posed by sulfonamides and fluoroquinolones was also observed. The results indicated that sediment may supply an ideal setting for maintenance and persistence of tet resistance genes (tet(W and tet(X and PMQR genes (oqx(B and aac(6’-Ib under antibiotic pollution. The results also highlighted that antibiotics significantly selected specific bacterial communities including the taxa associated with opportunistic pathogens.

  14. Resistance diagnosis and the changing epidemiology of antibiotic resistance.

    Science.gov (United States)

    McAdams, David

    2017-01-01

    Widespread adoption of point-of-care resistance diagnostics (POCRD) reduces ineffective antibiotic use but could increase overall antibiotic use. Indeed, in the context of a standard susceptible-infected epidemiological model with a single antibiotic, POCRD accelerates the rise of resistance in the disease-causing bacterial population. When multiple antibiotics are available, however, POCRD may slow the rise of resistance even as more patients receive antibiotic treatment, belying the conventional wisdom that antibiotics are "exhaustible resources" whose increased use necessarily promotes the rise of resistance. © 2017 New York Academy of Sciences.

  15. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes.

    Science.gov (United States)

    Subirats, Jéssica; Sànchez-Melsió, Alexandre; Borrego, Carles M; Balcázar, José Luis; Simonet, Pascal

    2016-08-01

    A metagenomics approach was applied to explore the presence of antibiotic resistance genes (ARGs) in bacteriophages from hospital wastewater. Metagenomic analysis showed that most phage sequences affiliated to the order Caudovirales, comprising the tailed phage families Podoviridae, Siphoviridae and Myoviridae. Moreover, the relative abundance of ARGs in the phage DNA fraction (0.26%) was higher than in the bacterial DNA fraction (0.18%). These differences were particularly evident for genes encoding ATP-binding cassette (ABC) and resistance-nodulation-cell division (RND) proteins, phosphotransferases, β-lactamases and plasmid-mediated quinolone resistance. Analysis of assembled contigs also revealed that blaOXA-10, blaOXA-58 and blaOXA-24 genes belonging to class D β-lactamases as well as a novel blaTEM (98.9% sequence similarity to the blaTEM-1 gene) belonging to class A β-lactamases were detected in a higher proportion in phage DNA. Although preliminary, these findings corroborate the role of bacteriophages as reservoirs of resistance genes and thus highlight the necessity to include them in future studies on the emergence and spread of antibiotic resistance in the environment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds.

    Science.gov (United States)

    Baggesen, D L; Aarestrup, F M

    1998-07-25

    A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S enterica serovar typhimurium (S typhimurium) isolates resistant to ampicillin, streptomycin and tetracycline and three isolates of S typhimurium DT104, two from 1994 and one from 1995, were further tested for resistance against chloramphenicol and sulphonamide and analysed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme Xba I. Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance patterns. Seven different multiresistant clones were identified. The most common clones were four isolates of DT104 and three isolates of DT193. Two of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant to spectinomycin, streptomycin and sulphonamides. All three isolates showed PFGF profiles identical to the four multiresistant DT104 isolates. Compared with most other countries antimicrobial resistance among S enterica isolated from Danish pig herds is uncommon. However, several different multiresistant clones were found.

  17. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential

    OpenAIRE

    Landers, Timothy F; Cohen, Bevin; Wittum, Thomas E.; Larson, Elaine L.

    2012-01-01

    Antibiotic use plays a major role in the emerging public health crisis of antibiotic resistance. Although the majority of antibiotic use occurs in agricultural settings, relatively little attention has been paid to how antibiotic use in farm animals contributes to the overall problem of antibiotic resistance. The aim of this review is to summarize literature on the role of antibiotics in the development of resistance and its risk to human health. We searched multiple databases to identify maj...

  18. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Kollerova, Silvia; Jouvet, Lionel; Steiner, Ulrich

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  19. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    Full Text Available BACKGROUND: Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired. METHODOLOGY/PRINCIPAL FINDINGS: To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance. CONCLUSIONS/SIGNIFICANCE: Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  20. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    Science.gov (United States)

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  1. First characterisation of plasmid-mediated quinolone resistance-qnrS1 co-expressed bla CTX-M-15 and bla DHA-1 genes in clinical strain of Morganella morganii recovered from a Tunisian Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    S Mahrouki

    2012-01-01

    Full Text Available Purpose: Aim of this study was to show the emergence of the qnr genes among fluoroquinolone-resistant, AMPC and ESBL (extended-spectrum-beta-lactamase co-producing Morganella morganii isolate. Materials and Methods: A multi resistant Morganella morganii SM12012 isolate was recovered from pus from a patient hospitalized in the intensive care unit at the Military hospital, Tunisia. Antibiotic susceptibility was tested with the agar disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. ESBLs were detected using a standard double-disk synergy test. The characterization of beta-lactamases and associated resistance genes were performed by isoelectric focusing, polymerase chain reaction and nucleotide sequencing. Results: The antimicrobial susceptibility testing showed the high resistance to penicillins, cephalosporins (MICs: 64-512 μg/ml and fluoroquinolones (MICs: 32-512 μg/ml. But M. morganii SM12012 isolate remained susceptible to carbapenems (MICs: 4-<0.25 μg/ml. The double-disk synergy test confirmed the phenotype of extended-spectrum β-lactamases (ESBLs. Three identical β-lactamases with pI values of 6.5, 7.8 and superior to 8.6 were detected after isoelectric focusing analysis. These β-lactamases genes can be successfully transferred by the conjugative plasmid. Molecular analysis demonstrated the co-production of bla DHA-1, bla CTX-M-15 and qnrS1 genes on the same plasmid. The detection of an associated chromosomal quinolone resistance revealed the presence of a parC mutation at codon 80 (Ser80-lle80. Conclusion: This is the first report in Tunisia of nosocomial infection due to the production of CTX-M-15 and DHA-1 β-lactamases in M. morganii isolate with the association of quinolone plasmid resistance. The incidence of these strains invites continuous monitoring of such multidrug-resistant strains and the further study of their epidemiologic evolution.

  2. 中药饮片对多重抗生素耐药细菌的抑菌作用%The bacteriostasis of Chinese medicine in multiple antibiotic-resistant bacteria

    Institute of Scientific and Technical Information of China (English)

    李君华

    2014-01-01

    Objective To analyze and detect the antibacterial effect of Chinese medicine on multiple antibiotic resistant bacteria .Methods Agar dilution method was used to analysis the antimicrobial effect of water decoction of 24 Chinese medicines on multiple antibiotic escherichia coli resistant bacteria and sensitive strain .Results To the most Chinese medicine,there was no significant difference in the inhibitory effect between sensitive strain and resistant bacteria ,except forsythia,cassia seed and licorice.Conclusion Only a little of Chinese medicine was difference in the bacteriostasis as to the sensitive bacteria and drug resistance bacteria .While drug resistance bacteria was more sensitivity than the sensitive bacteria to the traditional Chinese medicine .The Chinese medicine treatment may have a more advantages in the treatment of bacterial infections.%目的:分析检测中药饮片对多重抗生素耐药细菌的抑菌作用。方法选用稀释法,分析检测24种常用中药饮片的水煎液对大肠杆菌的多重抗生素耐药菌种和敏感菌种的抑菌效果。结果大多数中药对敏感菌和耐药菌的抑菌效果没有明显差别,其中只有连翘、决明子和甘草表现出明显的抑菌差别。并且,耐药菌相对于敏感菌来说对中药更为敏感。结论只有少数中药对敏感菌和耐药菌的抑菌效果存在差别,同时耐药菌比敏感菌对中药的敏感度更高,提示中药治疗细菌感染疾病可能会更具优越性。

  3. 摩根摩根菌中质粒介导KPC-2型碳青霉烯酶的检测%Detection of plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in Morganella morganii

    Institute of Scientific and Technical Information of China (English)

    杨玮; 蔡加昌; 胡燕燕; 周宏伟; 张嵘; 陈功祥

    2011-01-01

    Objective To investigate the molecular epidemiology and mechanisms of carbapenem resistance of Morganella morganii.Methods Seven carbapenem-non-susceptible M.morganii were isolated from Hangzhou Traditional Chinese Medicine Hospital from October 2010 to February 2011.Pulsed-field gel electrophoresis (PFGE) was performed to analysis the molecular epidemiology of isolates.Antibiotic susceptibilities were determined by agar dilution method.Conjugation experiments were carried out in mixed broth cultures.Plasmid DNA was obtained by an alkalinelysis technique and examined by electrophoresis.Specific PCRs and DNA sequencing were preformed to confirm the genotype of β-lactamases.Results PFGE indicated that 6 M.morganii isolates from emergency care unit were indistinguishable or closely related and 1 isolate from intensive care unit was distinguishable.Seven M.morganii showed similar antibiotic susceptibility patterns.M.morganii isolates were resistant to imipenem,were susceptible to meropenem,and were susceptible or intermediate resistant to ertapenem,with MICs of 8 μg/ml,1 μg/ml,and 0.25-0.50 μg/ml,respectively.M.morganii isolates were resistant to penicillins,aztreonam,and ciprofloxacin,were resistant or susceptible to cephalosporins,and were susceptible to amikacin.E.coli (EC600) acquired an approximately 60 kb plasmid from M.morganii by conjugation studies and resistant or intermediate resistant to carbapenems and other β-lactams.PCRs and DNA sequence analysis confirmed that all M.morganii isolates and their E. coli transconjugants produced the KPC-2 carbapenemase and carried the qnrS1 gene.Conclusion It is the first detection of KPC-2 in M.morganii isolates.Production of KPC-2 mainly contributed to the carbapenem resistance in M.morganii.%目的 研究碳青霉烯耐药摩根摩根菌的分子流行病学及其耐药机制.方法 2010年10月-2011年2月从杭州市中医院分离到7株碳青霉烯不敏感的摩根摩根菌.脉冲场凝胶电泳(PFGE)分析

  4. Antibiotics in the environment

    OpenAIRE

    Larsson, D. G. Joakim

    2014-01-01

    Molecules with antibiotic properties, produced by various microbes, have been around long before mankind recognized their usefulness in preventing and treating bacterial infections. Bacteria have therefore been exposed to selection pressures from antibiotics for very long times, however, generally only on a micro-scale within the immediate vicinity of the antibiotic-producing organisms. In the twentieth century we began mass-producing antibiotics, mainly synthetic derivatives of naturally pro...

  5. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  6. Strengthening Control of Antibiotics

    Institute of Scientific and Technical Information of China (English)

    EthelLu

    2005-01-01

    IT is a well-known fact that buy-ng guns is much easier than purchasing antibiotics in the United States. In China, however, the situation is different. According to a recent WHO survey,about 80 percent of Chinese inpatients take antibiotic medicines, and 58 percent of them are prescribed multifunctional antibiotics,

  7. Antibiotic Resistance Questions and Answers

    Science.gov (United States)

    ... on the Farm Get Smart About Antibiotics Week Antibiotic Resistance Questions and Answers Language: English (US) Español ( ... Many ear infections Top of Page Questions about Antibiotic Resistance Examples of How Antibiotic Resistance Spreads Click for ...

  8. 枸橼酸杆菌中质粒介导喹诺酮耐药基因的检测%Study of plasmid-mediated quinolone resistance determinants in Citrobacter freundii

    Institute of Scientific and Technical Information of China (English)

    邵宜波; 李旭; 胡立芬; 谢琴秀

    2013-01-01

    determine whether the qnr-carrying plasmids were self-transferable.The susceptibility of the positive isolates and transconjugants were tested by agar dilution method according to Clinical and Laboratory Standards Institute (CLSI) guidelines.The minimum inhibitory concentrations (MIC) of ciprofloxacin and levofloxacin were determined by E-test strips.Results Among the 31 Citrobacter strains,the qnr genes were detected in 8 isolates (25.8%),among which,6 carried qnrB.Aac-(6′)-Ib-cr and qepA were not identified in these isolates.The qnr genes were transferred from four clinical isolates to their transconjugants.Sequence analysis identified one novel qnrB variant (qnrB24).The resistant rate of qnr-positive clinical isolates to quinolone was 87.5 %.Most of them were also resistant to various other antibiotics,including cefotaxime (75.0 %),amikacin (7.5 %),ceftazidime (62.5 %),cefapime (37.5 %),and gentamycin (87.5 %).All qnr positive strains were susceptible to imipenem.MIC of all transconjugants showed reduced susceptibility to fluoroquinolones,with MIC increased by 10-23 folds.Conclusions Our study shows that qnr gene has occurred in Citrobacter freundii isolates from Anhui Province,China.QnrB is most prevalent in these isolates.Most qnr positive isolates are resistant to commonly used antimicrobial agents.

  9. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina;

    2014-01-01

    with highest consumption) were responsible for 21% of the total DDD consumed and received ≥6 packages per year. Elderly adults (≥60 years) and small children (0-9 years) were those exposed to the highest volume of antibiotics and with the most frequent exposure, respectively. Heavy users received a high...... proportion of antibiotics not recommended as first choice in primary health care. In conclusion, heavy antibiotic users consisted mainly of children and old adults. Inappropriate overuse of antibiotics (high quantity, high frequency, and inappropriate antibiotic choice) leads to a substantial risk...

  10. Systemic antibiotics in periodontics.

    Science.gov (United States)

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  11. Antibiotic resistance in Chlamydiae.

    Science.gov (United States)

    Sandoz, Kelsi M; Rockey, Daniel D

    2010-09-01

    There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.

  12. First survey on antibiotic resistance markers in Enterobacteriaceae in Cochabamba, Bolivia.

    Science.gov (United States)

    Saba Villarroel, Paola M; Gutkind, Gabriel O; Di Conza, José A; Radice, Marcela A

    A molecular survey was conducted in Cochabamba, Bolivia, to characterize the mechanism involved in the resistance to clinically relevant antibiotics. Extended Spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) markers were investigated in a total of 101 oxyimino-cephalosporin-resistant enterobacteria recovered from different health centers during four months (2012-2013). CTX-M enzymes were detected in all isolates, being the CTX-M-1 group the most prevalent (88.1%). The presence of blaOXA-1 was detected in 76.4% of these isolates. A high quinolone resistance rate was observed among the included isolates. The aac(6')-Ib-cr gene was the most frequent PMQR identified (83.0%). Furthermore, 6 isolates harbored the qnrB gene. Interestingly, qepA1 (6) and oqxAB (1), were detected in 7 Escherichia coli, being the latter the first to be reported in Bolivia. This study constitutes the first molecular survey on resistance markers in clinical enterobacterial isolates in Cochabamba, Bolivia, contributing to the regional knowledge of the epidemiological situation. The molecular epidemiology observed herein resembles the scene reported in South America. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Identification of plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in Enterobacteriaceae%肠杆菌科细菌中质粒介导的KPC-2型碳青霉烯酶的检测

    Institute of Scientific and Technical Information of China (English)

    张嵘; 蔡加昌; 周宏伟; 陈功祥

    2008-01-01

    属的细菌之间传播.%Objective To investigate the molecular epidemiology and mechanism of earbapenem resistance of Serratia marcescens,Klebsiella pneumoniae and Escherichia coli isolates from intensive care units(ICUs).Methods Twenty-one S.marcescens,ten K.pneumoniae and one E.coli isolates with carbapenem resistance or reduced carbapenem susceptibility were recovered from two ICUs in our hospital from April 2006 to Febmary 2007.Pulsed-field gel electrophoresis(PFGE)and enterobacterial repetitive intergenic consensus-PCR(ERIC-PCR)were performed to analyze the molecular epidemiology of isolates.Antibiotic susceptibilities were determined bv agar dilution method.Conjugation experiments were carried out in mixed broth cultures.Plasmid DNA was obtained bv using an alkalinelysis technique and was digested by various endonucleases.Elimination of plasmid from S.marcesceus isolates were performed by repeated SDS treatment.The crude β-lactamase extracts of original isolates and E.coli transconjugants were subjected to isoelectric focusing(IEF);Specific PCRs and DNA sequencing were preformed to confirm the genotype of β-lactamases.Results ERIC-PCR indicated that all S.marcescens isolates belonged to a clonal strain.PFGE indicated that ten K. pneumoniae isolates were indistinguishable or closely related to each other.The MICs of imipenem and meropenero for all isolates were 2 to 8 μg/ml except K.pneumoniae K10(128 and 256 μg/ml).Conjugation studies with E.coli(EC600)resulted in the transfer of reduced carbapenem susceptibility from original isolates(MICs:from≤0.125 μg/ml to 1-2μg/ml).IEF,PCR and DNA sequence analysis confirmed that S.marcescens isolates produced KPC-2(pI of 6.7)and a β-lactamase(pI 6.5).k pneumoniae isolates produced TEM-1(pI 5.4),KPC-2,CTX-M-14(pI 7.9),and a β-lactamase(pI 7.3).E.coli El produced KPC-2,CTX-M-15(pI 9.0),and a β-laetamase(pI 7.3).Only a KPC-2 was detected in E.coli transeonjugants.Plasmid restricfion analysis using EcoR Ⅰ,Hind Ⅲ,and Bcu Ⅰ showed identical

  14. Genome Sequence of Klebsiella pneumoniae KpQ3, a DHA-1 β-Lactamase-Producing Nosocomial Isolate

    Science.gov (United States)

    Tobes, Raquel; Codoñer, Francisco M.; López-Camacho, Elena; Salanueva, Iñigo J.; Manrique, Marina; Brozynska, Marta; Gómez-Gil, Rosa; Martínez-Blanch, Juan F.; Álvarez-Tejado, Miguel; Pareja, Eduardo

    2013-01-01

    Klebsiella pneumoniae KpQ3 is a multidrug-resistant isolate obtained from a blood culture of a patient in a burn unit in the Hospital Universitario La Paz (Madrid, Spain) in 2008. The genome contains multiple antibiotic resistance genes, including a plasmid-mediated DHA-1 cephalosporinase gene. PMID:23469341

  15. Multiple foreign body granulomas

    Directory of Open Access Journals (Sweden)

    Panvelkar V

    1991-01-01

    Full Text Available A case of multiple foreign body granulomas occurring after mine-blast injury in a soldier is reported. Systemic steroids with antibiotics given essentially for eczematoid dermatitis produced good clinical improvement with marked resolution of granulomas.

  16. A brief history of the antibiotic era: lessons learned and challenges for the future

    Directory of Open Access Journals (Sweden)

    Rustam I Aminov

    2010-12-01

    Full Text Available This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance and chemotherapy is also discussed.

  17. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Directory of Open Access Journals (Sweden)

    Richard William Meek

    2015-10-01

    Full Text Available The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.

  18. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Science.gov (United States)

    Meek, Richard William; Vyas, Hrushi; Piddock, Laura Jane Violet

    2015-10-01

    The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.

  19. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  20. Antibiotics in the environment.

    Science.gov (United States)

    Larsson, D G Joakim

    2014-05-01

    Molecules with antibiotic properties, produced by various microbes, have been around long before mankind recognized their usefulness in preventing and treating bacterial infections. Bacteria have therefore been exposed to selection pressures from antibiotics for very long times, however, generally only on a micro-scale within the immediate vicinity of the antibiotic-producing organisms. In the twentieth century we began mass-producing antibiotics, mainly synthetic derivatives of naturally produced antibiotic molecules, but also a few entirely synthetic compounds. As a consequence, entire bacterial communities became exposed to unprecedented antibiotic selection pressures, which in turn led to the rapid resistance development we are facing today among many pathogens. We are, rightly, concerned about the direct selection pressures of antibiotics on the microbial communities that reside in or on our bodies. However, other environments, outside of our bodies, may also be exposed to antibiotics through different routes, most often unintentionally. There are concerns that increased selection pressures from antibiotics in the environment can contribute to the recruitment of resistance factors from the environmental resistome to human pathogens. This paper attempts to 1) provide a brief overview of environmental exposure routes of antibiotics, 2) provide some thoughts about our current knowledge of the associated risks for humans as well as ecosystems, and 3) indicate management options to reduce risks.

  1. Pharmacokinetics of antibiotics in pregnancy and labour.

    Science.gov (United States)

    Philipson, A

    1979-01-01

    Few of the articles published on antibiotics and pregnancy are concerned with pharmacokinetics. It is particularly difficult to evaluate possible alterations in pharmacokinetic parameters that may be due to pregnancy. Most data available have been obtained in connection with abortion or delivery. Such data may not be representative for pregnancy as such. Marked changes in most organ systems, particularly in renal function, but in composition and amounts of body fluids as well, make it likely that several pharmacokinetic parameters change, possibly gradually as pregnancy progresses. Accumulated data for several beta-lactam antibiotics, and also for aminoglycosides indicate that antibiotics eliminated mainly by renal excretion will produce lower levels in serum or plasma in pregnant women than in other individuals. Also, the half-life of certain antibiotics in serum is shorter during pregnancy. Transplacental passage occurs for all antibiotics according to the physicochemical properties of the drug. Bolus injections to a pregnant woman are more efficient than continuous infusion in producing high levels of antibiotic in fetal serum and amniotic fluid. Fetal tissue levels are higher following multiple doses than after a single dose. Lower serum levels of antibiotics in pregnant women than in other individuals following the same dosage will be unsatisfactory as micr-organisms are less likely to be affected.

  2. Antibiotics and Breastfeeding.

    Science.gov (United States)

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant.

  3. [Rational use of antibiotics].

    Science.gov (United States)

    Walger, P

    2016-06-01

    International and national campaigns draw attention worldwide to the rational use of the available antibiotics. This has been stimulated by the high prevalence rates of drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), a threatening spread of development of resistance in Gram-negative rod-shaped bacteria and the selection of Clostridium difficile with a simultaneous clear reduction in the development of new antibiotics. The implementation of antibiotic stewardship programs aims to maintain their effectiveness by a rational use of the available antibiotics. The essential target of therapy with antibiotics is successful treatment of individual patients with bacterial infections. The optimal clinical treatment results can only be achieved when the toxicity, selection of pathogens and development of resistance are minimized. This article presents the principles of a rational antibiotic therapy.

  4. Platforms for antibiotic discovery.

    Science.gov (United States)

    Lewis, Kim

    2013-05-01

    The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

  5. Resistance to antibiotics

    OpenAIRE

    1999-01-01

    The antibiotics represent the most important therapeutic arsenal in the fight against pathogen microorganisms. Even in the beginning of their use, there was registered bacterial resistance, phenomenon thatbecame an alarming subject in the last decades. There are some types of resistance to antibiotics that are influenced by many factors. The resistance term can be used as microbiological resistance and clinical resistance. The resistance to antibiotics can be a natural phenomenon or a gained ...

  6. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Steiner, Ulrich; Kollerova, Silvia; Jouvet, Lionel

    2016-01-01

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... cultures, rather than the individual level. Here, we used individual level bacteria data to confirm previous studies in how fast cells switch into a persistence stage, but our results challenge the fundamental idea that persistence comes with major costs of reduced growth (cell elongation) and division due...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  7. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  8. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods, antibi

  9. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc|info:eu-repo/dai/nl/123144337

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  10. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    ARL

    2012-06-12

    GenBank accession number J02442) and inserted 3′ end of the .... The expressions of these two interest proteins were driven by the same promoter of hEF1α. .... expression at the posttranscriptional level in neural cells: implications.

  11. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  12. Non-Phenotypic Tests to Detect and Characterize Antibiotic Resistance Mechanisms in Enterobacteriaceae

    Science.gov (United States)

    Lupo, Agnese; Papp-Wallace, Krisztina M.; Sendi, Parham; Bonomo, Robert A.; Endimiani, Andrea

    2014-01-01

    In the past two decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDITOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed. PMID:24091103

  13. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    Science.gov (United States)

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  14. Resistance to colistin: what is the fate for this antibiotic in pig production?

    Science.gov (United States)

    Rhouma, Mohamed; Beaudry, Francis; Letellier, Ann

    2016-08-01

    Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  15. Infection, antibiotics, and preterm delivery.

    Science.gov (United States)

    Locksmith, G; Duff, P

    2001-10-01

    , antibiotics should be used only for protecting the neonate from group B streptococci sepsis. They should not be used for the purpose of prolonging pregnancy. Multiple investigations have shown that, in patients with preterm premature rupture of the membranes, prophylactic antibiotics are of value in prolonging the latent period between rupture of the membranes and onset of labor and in reducing the incidence of maternal and neonatal infection. The most extensively tested effective antibiotic regimen for prophylaxis involves erythromycin alone or in combination with ampicilln. Controversy still exists regarding the appropriate length and route of antibiotic prophylaxis.

  16. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  17. Replacement for antibiotics: Lysozyme

    Science.gov (United States)

    Antibiotics have been fed at subtherapeutic levels to swine as growth promoters for more than 60 years, and the majority of swine produced in the U.S. receive antibiotics in their feed at some point in their production cycle. These compounds benefit the producers by minimizing production losses by ...

  18. The future of antibiotics

    Science.gov (United States)

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on ‘push’ incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  19. History of Antibiotics Research.

    Science.gov (United States)

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  20. Metagenomics and antibiotics.

    Science.gov (United States)

    Garmendia, L; Hernandez, A; Sanchez, M B; Martinez, J L

    2012-07-01

    Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.

  1. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance

    Science.gov (United States)

    2014-01-01

    Background Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substantially less than from hospitalized patients on whom guidelines are often based. We therefore chose to assess the relationship between the antibiotic resistance pattern of bacteria circulating in the community and the consumption of antibiotics in the community. Methods Both gray literature and published scientific literature in English and other European languages was examined. Multiple regression analysis was used to analyse whether studies found a positive relationship between antibiotic consumption and resistance. A subsequent meta-analysis and meta-regression was conducted for studies for which a common effect size measure (odds ratio) could be calculated. Results Electronic searches identified 974 studies but only 243 studies were considered eligible for inclusion by the two independent reviewers who extracted the data. A binomial test revealed a positive relationship between antibiotic consumption and resistance (p resistance than other regions. Conclusions Using a large set of studies we found that antibiotic consumption is associated with the development of antibiotic resistance. A subsequent meta-analysis, with a subsample of the studies, generated several significant predictors. Countries in southern Europe produced a stronger link between consumption and resistance than other regions so efforts at reducing antibiotic consumption may need to be strengthened in this area. Increased consumption of antibiotics may not only produce greater resistance at the individual patient level but may also produce greater resistance at the community, country, and regional levels, which can harm individual patients. PMID:24405683

  2. Antibiotic prophylaxis in otolaryngologic surgery

    Directory of Open Access Journals (Sweden)

    Ottoline, Ana Carolina Xavier

    2013-01-01

    Full Text Available Aim: Antibiotic prophylaxis aims to prevent infection of surgical sites before contamination or infection occurs. Prolonged antibiotic prophylaxis does not enhance the prevention of surgical infection and is associated with higher rates of antibiotic-resistant microorganisms. This review of the literature concerning antibiotic prophylaxis, with an emphasis on otolaryngologic surgery, aims to develop a guide for the use of antibiotic prophylaxis in otolaryngologic surgery in order to reduce the numbers of complications stemming from the indiscriminate use of antibiotics.

  3. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    Science.gov (United States)

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations.

  4. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology

    Science.gov (United States)

    Orlek, Alex; Stoesser, Nicole; Anjum, Muna F.; Doumith, Michel; Ellington, Matthew J.; Peto, Tim; Crook, Derrick; Woodford, Neil; Walker, A. Sarah; Phan, Hang; Sheppard, Anna E.

    2017-01-01

    Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes,’ such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made. PMID:28232822

  5. Effect of long-term tetracycline exposure (drinking water additive) on antibiotic-resistance of aerobic gram-negative intestinal flora of rats.

    Science.gov (United States)

    Beaucage, C M; Fox, J G; Whitney, K M

    1979-10-01

    A study was undertaken to determine the effect of 2 years of intermittent administration of tetracycline in drinking water on antibiotic resistance in the aerobic gram-negative enterobacteria of rats in a closed colony. The bacterial isolates examined were resistant to tetracycline and streptomycin. Minimal inhibitory concentrations of tetracycline and streptomycin for intestinal organisms were similar in all of the animals, regardless of whether the animals were sampled while they were given drinking water with added tetracycline or at intervals of 3, 8, and 9 months after the antibiotic was no longer added to the drinking water. Biochemical examination of the isolates from each principal showed that Escherichia coli was the predominant enteric organism. In conjugation experiments, all E coli and Klebsiella pneumoniae isolated transferred tetracycline and streptomycin resistance to an E coli K-12 recipient. Four different strains of rats that had not been treated with tetracycline (controls) were examined for tetracycline resistance. Tetracycline-resistant Proteus mirabilis was isolated from the intestines of these animals. Plasmid-mediated resistance could not be demonstrated. The E coli and P vulgaris isolates from these control animals were susceptible to tetracycline.

  6. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  7. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  8. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  9. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    OpenAIRE

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really ...

  10. Antibiotic Precautions in Athletes

    OpenAIRE

    Fayock, Kristopher; Voltz, Matthew; Sandella, Bradley; Close, Jeremy; Lunser, Matthew; Okon, Joshua

    2014-01-01

    Context: Antibiotics are the mainstay of treatment for bacterial infections in patients of all ages. Athletes who maximally train are at risk for illness and various infections. Routinely used antibiotics have been linked to tendon injuries, cardiac arrhythmias, diarrhea, photosensitivity, cartilage issues, and decreased performance. Evidence Acquisition: Relevant articles published from 1989 to 2012 obtained through searching MEDLINE and OVID. Also, the Food and Drug Administration website w...

  11. Antibiotic Resistance in Acne Treatment.

    Science.gov (United States)

    Adler, Brandon L; Kornmehl, Heather; Armstrong, April W

    2017-08-01

    What is the evidence for antibiotic resistance in acne, and how does resistance affect treatment? Use of topical and systemic antibiotics for acne is associated with formation of resistance in Propionibacterium acnes and other bacteria, with clinical consequences. Guidelines recommend resistance reduction strategies including avoidance of antibiotic monotherapy, combination treatment with topical modalities, and limiting the duration of oral antibiotic use.

  12. [The history of antibiotics].

    Science.gov (United States)

    Yazdankhah, Siamak; Lassen, Jørgen; Midtvedt, Tore; Solberg, Claus Ola

    2013-12-10

    The development of chemical compounds for the treatment of infectious diseases may be divided into three phases: a) the discovery in the 1600s in South America of alkaloid extracts from the bark of the cinchona tree and from the dried root of the ipecacuanha bush, which proved effective against, respectively, malaria (quinine) and amoebic dysentery (emetine); b) the development of synthetic drugs, which mostly took place in Germany, starting with Paul Ehrlich's (1854-1915) discovery of salvarsan (1909), and crowned with Gerhard Domagk's (1895-1964) discovery of the sulfonamides (1930s); and c) the discovery of antibiotics. The prime example of the latter is the development of penicillin in the late 1920s following a discovery by a solitary research scientist who never worked in a team and never as part of a research programme. It took another ten years or so before drug-quality penicillin was produced, with research now dependent on being conducted in large collaborative teams, frequently between universities and wealthy industrial companies. The search for new antibiotics began in earnest in the latter half of the 1940s and was mostly based on soil microorganisms. Many new antibiotics were discovered in this period, which may be termed «the golden age of antibiotics». Over the past three decades, the development of new antibiotics has largely stalled, while antibiotic resistance has increased. This situation may require new strategies for the treatment of infectious diseases.

  13. Antibiotic dose optimization in critically ill patients.

    Science.gov (United States)

    Cotta, M O; Roberts, J A; Lipman, J

    2015-12-01

    The judicious use of existing antibiotics is essential for preserving their activity against infections. In the era of multi-drug resistance, this is of particular importance in clinical areas characterized by high antibiotic use, such as the ICU. Antibiotic dose optimization in critically ill patients requires sound knowledge not only of the altered physiology in serious infections - including severe sepsis, septic shock and ventilator-associated pneumonia - but also of the pathogen-drug exposure relationship (i.e. pharmacokinetic/pharmacodynamic index). An important consideration is the fact that extreme shifts in organ function, such as those seen in hyperdynamic patients or those with multiple organ dysfunction syndrome, can have an impact upon drug exposure, and constant vigilance is required when reviewing antibiotic dosing regimens in the critically ill. The use of continuous renal replacement therapy and extracorporeal membrane oxygenation remain important interventions in these patients; however, both of these treatments can have a profound effect on antibiotic exposure. We suggest placing emphasis on the use of therapeutic drug monitoring and dose individualization when optimizing therapy in these settings. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  14. The relationship between pneumococcal serotypes and antibiotic resistance.

    Science.gov (United States)

    Song, Jae-Hoon; Dagan, Ron; Klugman, Keith P; Fritzell, Bernard

    2012-04-05

    Streptococcus pneumoniae (SP) causes significant burden of disease, including invasive pneumococcal disease and noninvasive diseases such as pneumonia and acute otitis media. SP has at least 93 different capsular serotypes, with the various serotypes having different propensities for producing disease or developing antibiotic resistance. An increase in the prevalence of antibiotic-resistant SP serotypes has been observed globally. The objective of this paper was to examine the relationship between antibiotic resistance and SP serotypes, with a primary focus on studies published in the past 10 years. Changing trends in antibiotic resistance and serotype distribution during this time, including those before and after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7), were analyzed. Factors that influence the prevalence of antibiotic-resistant serotypes include antibiotic selection pressure, the use of PCV7, and the emergence and spread of antibiotic-resistant clones. The emergence of multidrug resistant serotype 19A is of particular concern. Antibiotic-resistant SP is a global problem that must be addressed through multiple strategies, including national vaccination programs, antibiotic control programs, and ongoing surveillance.

  15. Antibiotics for acute bronchitis.

    Science.gov (United States)

    Smith, Susan M; Fahey, Tom; Smucny, John; Becker, Lorne A

    2017-06-19

    The benefits and risks of antibiotics for acute bronchitis remain unclear despite it being one of the most common illnesses seen in primary care. To assess the effects of antibiotics in improving outcomes and to assess adverse effects of antibiotic therapy for people with a clinical diagnosis of acute bronchitis. We searched CENTRAL 2016, Issue 11 (accessed 13 January 2017), MEDLINE (1966 to January week 1, 2017), Embase (1974 to 13 January 2017), and LILACS (1982 to 13 January 2017). We searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 5 April 2017. Randomised controlled trials comparing any antibiotic therapy with placebo or no treatment in acute bronchitis or acute productive cough, in people without underlying pulmonary disease. At least two review authors extracted data and assessed trial quality. We did not identify any new trials for inclusion in this 2017 update. We included 17 trials with 5099 participants in the primary analysis. The quality of trials was generally good. At follow-up there was no difference in participants described as being clinically improved between the antibiotic and placebo groups (11 studies with 3841 participants, risk ratio (RR) 1.07, 95% confidence interval (CI) 0.99 to 1.15). Participants given antibiotics were less likely to have a cough (4 studies with 275 participants, RR 0.64, 95% CI 0.49 to 0.85; number needed to treat for an additional beneficial outcome (NNTB) 6) and a night cough (4 studies with 538 participants, RR 0.67, 95% CI 0.54 to 0.83; NNTB 7). Participants given antibiotics had a shorter mean cough duration (7 studies with 2776 participants, mean difference (MD) -0.46 days, 95% CI -0.87 to -0.04). The differences in presence of a productive cough at follow-up and MD of productive cough did not reach statistical significance.Antibiotic-treated participants were more likely to be improved according to clinician's global assessment (6 studies

  16. Antibiotics after rattlesnake envenomation.

    Science.gov (United States)

    LoVecchio, Frank; Klemens, Jane; Welch, Sharon; Rodriguez, Ron

    2002-11-01

    To record the outcome, with regard to infection rate, of patients with rattlesnake bites (RSBs) who do not receive prophylactic antibiotics, a prospective observational study was performed of patients with RSBs treated at our institution during a consecutive 18-month period. The inclusion criteria were RSBs envenomation. Fifty-six consecutive patients (Median age: 32.8 years [range 4-67 years]) were enrolled. One patient was excluded because of presentation 38 h after envenomation and two patients failed to complete the required follow-up. One patient received a dose of antibiotics before transfer. Antibiotics were discontinued upon arrival. Of the total 56 RSB patients, 34 (61%) RSBs involved the upper extremity and 22 (39%) involved the lower extremity. Six patients (11%) applied ice and two (4%) used a tourniquet before evaluation. The mean arrival time was 2.7 h (Range antibiotics from their primary care physicians at 7-10 day follow-up, with no cases (0%) of documented infection. Prophylactic antibiotics are not indicated in patients with rattlesnake bites.

  17. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  18. Tetracycline Antibiotics and Resistance.

    Science.gov (United States)

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.

  19. 质粒shRNA体内干扰Klotho基因对窦房结通道基因的影响%Study on the Effect of Klotho Gene Interferred by Plasmid-mediated Short Hairpin RNA (shRNA) on Sinoatrial Node Pacing Channel Gene

    Institute of Scientific and Technical Information of China (English)

    蔡盈盈; 汪汉; 侯言彬; 房晨鹂; 田鹏; 王贵华; 李璐; 邓珏琳

    2013-01-01

    通过质粒shRNA体内干扰,研究Klotho基因与窦房结起搏通道相关基因HCN4及HCN2之间的关系,为病窦综合征的研究提供新思路.取C57BL/6J小鼠20只,分为4组,每组5只,分别为:质粒shRNA 24 h组、质粒shRNA 12 h组、生理盐水24 h组、生理盐水12h组.质粒shRNA组经尾静脉注射质粒shRNA 50 μL(1 μg质粒/μL),生理盐水组经尾静脉注射生理盐水50 μL.分别于注射12h及24 h后取窦房结周围组织,行RT-PCR检测各组小鼠的Klotho、HCN2、HCN4基因的mRNA水平.RT-PCR结果显示:与生理盐水12h组比较,shRNA 12 h组的klotho、HCN4和HCN2的mRNA表达量明显降低,均有统计学差异(P<0.05).以上结果提示,小鼠Klotho基因和窦房结起搏基因可能存在一定关系.%The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4and HCN2) for studying sick sinus syndrome,with Klotho gene under the interference of Plasmid-mediated short hairpin RNA.Twenty-five C57BL/6J mice were divided into four groups,i.e,plasmid shRNA 24h group,plasmid shRNA 12h group,sodium chloride 24h group and sodium chloride 12h group.Plasmid shRNA 50μL (1μg/μL) and sodium chloride 50μl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group.After 12h or 24h respectively,all mice were executed and their sinoatrial node tissues were cut.The mRNA of Klotho,HCN4 and HCN2 gene were detected by RT-PCR.The results of RT-PCR showed that Klotho,HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval.The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  20. Antibiotics in Animal Products

    Science.gov (United States)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  1. Overdosing on Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Du, a Beijing resident in her 60s, believes that an antibiotic is a panacea for the maladies of her now 6-year-old grand- daughter Guoguo. Du began to take care of her granddaugh- ter since the child was merely 2 months old, for the gid's parents were busy. She is comfortable with her caretaker duties except when the girl runs high fevers. Then, the anxious grandma will feed the girl antibiotics or take her to a private child clinic nearby for intravenous infusion.

  2. Antibiotics and preterm labor.

    Science.gov (United States)

    Mertz, H L; Ernest, J M

    2001-08-01

    Prematurity is a profound obstetric problem and to date no effective treatment or prevention strategies have been found. Many animal and clinical data exist to link infection and preterm labor, yet clinical trials examining the effect of antibiotic treatment in patients with patterns labor and intact membranes have been conflicting and disappointing. Beyond treatment to reduce neonatal group B streptococcal infection, sexually transmitted infections, symptomatic bacterial vaginosis, and bacteriuria, no clinical data exist at this time to support the routine use of antibiotics in patients with preterm labor and intact membranes.

  3. Gonorrhoea among Sex Workers in China: Prevalence,Risk Factors, and Resistance to Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study gonorrhoea among sex workers in China as to prevalence, riskfactors, and resistance to antibioticsSubjects & Methods From March 1998 to October 1999, 966 sex workers fromGuangzhou were recruited into a sexually transmitted diseases (STD) care and pre-vention programme through various outreach activities. Data collection was standard-ized. Cervical samples were tested for the presence of Neisseria (N. ) gonorrhoea byculture. The agar dilution method was performed to determine susceptibilities of 85isolates to penicillin, ciprofloxacin , spectinomycin and ceftriaxone. The production ofB-lactamase was determined by paper acidometric testing.Results The prevalence of gonorrhoea was 9%. Independent predictors for thedisease were inconsistent condom use, lack of regular salary, absence of a previousSTD check-up in the preceding 12 months, and a concurrent trichomoniasis or chlamy-dial infection. Dysuria, vaginal malodour, and the presence of (muco) purulent dis-charge at genital examination were also independently associated with gonorrhoea. Ofthe 85 N. gonorrhoea isolates, 3. 5% was penicillinase producing (PPNG) and 7%plasmid-mediated tetracycline resistant (TRNG). Of the non-PPNG strains 74% wasinsensitive to penicillin, while 52% and 47% were resistant or less susceptible tociprofloxacin, respectively. One strain exhibited decreased susceptibility to ceftriax-one. All strains were susceptible to spectinomycin.Conclusion A high level of resistance to penicillin and ciprofloxacin was seen, butstrains were sensitive to ceftriaxone and spectinomycin. Several personal or medicalcharacteristics were independently associated with the presence of gonorrhoea. Womendiagnosed with gonorrhoea should receive concurrent treatment for chlamydialinfection.

  4. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Science.gov (United States)

    This review article proposes a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal ...

  5. The mechanism of ROS regulation of antibiotic resistance and antimicrobial lethality.

    Science.gov (United States)

    Lina, Ma; Hongfei, Mi; Yunxin, Xue; Dai, Wang; Xilin, Zhao

    2016-10-20

    Misuse and overuse of antibiotics have led to serious resistance problems that pose a grave threat to human health. How to solve the increasing antibiotic resistance problem is a huge challenge. Besides the traditional strategy of developing novel antimicrobial agents, exploring ways to enhance the lethal activity of antibiotics currently available is another feasible approach to fight against resistance. Recent studies showed that ROS plays an important role in regulating both antibiotic resistance and antimicrobial lethality. ROS produced by sublethal levels of antibiotic induces antibiotic resistance through activating drug efflux pumps via MarR(Multiple antibiotic resistance repressor)-MarA(Multiple antibiotic resistance activator), triggers the protective function against stress via SoxR (Superoxide response transcriptional regulator)-SoxS (Superoxide response transcription factor), and promotes mutagenesis by induction of SOS system. On the contrary, ROS triggered by lethal levels of antibiotic promotes bacterial killing and suppresses resistance. In addition to the concentration of antibiotic, the role of ROS in mediating antimicrobial resistance and bacterial killing is also regulated by a series of genetic regulators (e.g. MazEF, Cpx, SoxR, MarRAB). Thus, how ROS contribute to antimicrobial resistance and bacterial killing is complex. In this review, we summarized the mechanism of ROS in regulating antibiotic resistance and antimicrobial lethality, which may provide references and guidance for finding new ways to enhance antimicrobial lethality of currently available antimicrobials and battling antibiotic resistance.

  6. A review of antibiotic use in food animals: perspective, policy, and potential.

    Science.gov (United States)

    Landers, Timothy F; Cohen, Bevin; Wittum, Thomas E; Larson, Elaine L

    2012-01-01

    Antibiotic use plays a major role in the emerging public health crisis of antibiotic resistance. Although the majority of antibiotic use occurs in agricultural settings, relatively little attention has been paid to how antibiotic use in farm animals contributes to the overall problem of antibiotic resistance. The aim of this review is to summarize literature on the role of antibiotics in the development of resistance and its risk to human health. We searched multiple databases to identify major lines of argument supporting the role of agricultural antibiotic use in the development of resistance and to summarize existing regulatory and policy documents. Several lines of reasoning support the conclusion that agricultural antibiotics are associated with resistance, yet most public policy is based on expert opinion and consensus. Finally, we propose strategies to address current gaps in knowledge.

  7. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants....... In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  8. The multifaceted roles of antibiotics and antibiotic resistance in nature

    OpenAIRE

    Saswati eSengupta; Madhab Kumar Chattopadhyay; Hans-Peter eGrossart

    2013-01-01

    Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observe...

  9. Suppression of antibiotic resistance acquisition by combined use of antibiotics.

    Science.gov (United States)

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2015-10-01

    We analyzed the effect of combinatorial use of antibiotics with a trade-off relationship of resistance, i.e., resistance acquisition to one drug causes susceptibility to the other drug, and vice versa, on the evolution of antibiotic resistance. We demonstrated that this combinatorial use of antibiotics significantly suppressed the acquisition of resistance.

  10. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Science.gov (United States)

    Kathleen, M. M.; Felecia, C.; Reagan, E. L.; Kasing, A.; Lesley, M.; Toh, S. C.

    2016-01-01

    The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture's surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp) in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n = 20), while the lowest resistance was towards gentamicin (1.1%, n = 90). The multiple antibiotic resistant (MAR) index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n = 94) which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  11. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the i

  12. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the

  13. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... please visit this page: About CDC.gov . Gonorrhea Antibiotic Resistance Basic Information Laboratory Information Resources & References Combating the ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to resist ...

  14. Mission Critical: Preventing Antibiotic Resistance

    Science.gov (United States)

    ... file Error processing SSI file Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can you ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare facility ...

  15. Antibiotics and Pregnancy: What's Safe?

    Science.gov (United States)

    Healthy Lifestyle Pregnancy week by week Is it safe to take antibiotics during pregnancy? Answers from Roger W. Harms, M. ... 2014 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/expert-answers/antibiotics-and-pregnancy/ ...

  16. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    Science.gov (United States)

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-06-01

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to Streptococcus pneumoniae.

    Science.gov (United States)

    Blanquart, François; Lehtinen, Sonja; Fraser, Christophe

    2017-05-31

    The frequency of resistance to antibiotics in Streptococcus pneumoniae has been stable over recent decades. For example, penicillin non-susceptibility in Europe has fluctuated between 12% and 16% without any major time trend. In spite of long-term stability, resistance fluctuates over short time scales, presumably in part due to seasonal fluctuations in antibiotic prescriptions. Here, we develop a model that describes the evolution of antibiotic resistance under selection by multiple antibiotics prescribed at seasonally changing rates. This model was inspired by, and fitted to, published data on monthly antibiotics prescriptions and frequency of resistance in two communities in Israel over 5 years. Seasonal fluctuations in antibiotic usage translate into small fluctuations of the frequency of resistance around the average value. We describe these dynamics using a perturbation approach that encapsulates all ecological and evolutionary forces into a generic model, whose parameters quantify a force stabilizing the frequency of resistance around the equilibrium and the sensitivity of the population to antibiotic selection. Fitting the model to the data revealed a strong stabilizing force, typically two to five times stronger than direct selection due to antibiotics. The strong stabilizing force explains that resistance fluctuates in phase with usage, as antibiotic selection alone would result in resistance fluctuating behind usage with a lag of three months when antibiotic use is seasonal. While most antibiotics selected for increased resistance, intriguingly, cephalosporins selected for decreased resistance to penicillins and macrolides, an effect consistent in the two communities. One extra monthly prescription of cephalosporins per 1000 children decreased the frequency of penicillin-resistant strains by 1.7%. This model emerges under minimal assumptions, quantifies the forces acting on resistance and explains up to 43% of the temporal variation in resistance.

  18. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  19. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies....... This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should...... controlled trials or systematic reviews....

  20. When and How to Take Antibiotics

    Science.gov (United States)

    ... Contact Us General Background: When & How to take Antibiotics When should you take antibiotics? What is the proper dosage? How safe are antibiotics? How does a physician decide which antibiotic to ...

  1. Danger of Antibiotic Overuse (For Parents)

    Science.gov (United States)

    ... Be Smart About Social Media The Danger of Antibiotic Overuse KidsHealth > For Parents > The Danger of Antibiotic ... by not reaching for the prescription pad. How Antibiotics Work Antibiotics, first used in the 1940s, are ...

  2. Diverse antibiotic resistance genes in dairy cow manure.

    Science.gov (United States)

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-04-22

    Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected

  3. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  4. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  5. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes.

    Science.gov (United States)

    Dang, Bingjun; Mao, Daqing; Xu, Yan; Luo, Yi

    2017-03-15

    In this study, five classes of antibiotic resistance genes (ARGs) were quantified in sediment samples of Haihe River, China, with abundance ranging from 1.39 × 10(4) to 1.58 × 10(10) copies/g dry weight. Meanwhile, antibiotic resistant conjugative plasmids were also isolated from these samples through filter mating assays. In total, 202 transconjugants were isolated and tested for their antibiotic resistance phenotypes, among which 26 different types of conjugative plasmids were observed. The majority of these plasmids showed a multi-resistant phenotype and the most prevalent resistance was tetracycline resistance and sulfonamide resistance. Furthermore, we tested the transfer frequencies of these plasmids, determined their genotypes and then compared the plasmid-borne ARGs with their corresponding abundance in Haihe River. Most of the isolated plasmids exhibited high transfer frequencies to the recipient strain Escherichia coli J53. Plasmids isolated from the urban areas of Haihe River have higher transfer frequencies than the rural areas. Results from comprehensive analysis of plasmid genotypes, ARG abundance and plasmid sequencing confirmed that most of the plasmid-borne ARGs were the dominant genes in the Haihe River. Therefore, conjugative plasmids isolated from the Haihe River plays a crucial role in the dissemination, abundance and spatial distribution of ARGs in Haihe River, especially some unfrequent ARGs like blaGES-1. This study will help to increase the knowledge on the conjugative plasmid-mediated ARG propagation in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments.

    Science.gov (United States)

    Kim, Jeongjin; Jo, Ara; Chukeatirote, Ekachai; Ahn, Juhee

    2016-12-09

    -CIP. Compared to the absence of phenylalanine-arginine-β-naphthylamide (PAβN), the fluorescence intensity of EtBr was increased in K. pneumoniae cells treated at the CON, CON-CIP, and CON-MER in the presence of PAβN. However, the efflux pump activity remained in K. pneumoniae cells treated at the 1/CIP, 1/CIP-CIP, and 1/CIP-MER in the presence of PAβN. The results suggest that the pre-exposed antibiotic history, treatment order, and concentrations influenced the development of multiple antibiotic resistant associated with β-lactamase and efflux pump activities. This study highlights the importance of antibiotic treatment conditions, which would be taken into consideration when new antibiotic strategy is designed to prevent antibiotic resistance.

  7. Molecular mechanisms of antibiotic resistance.

    Science.gov (United States)

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.

  8. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.

    Science.gov (United States)

    Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam

    2015-10-01

    Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Prescribing antibiotics in general practice:

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Pedersen, Line Bjørnskov; Plejdrup Hansen, Malene

    Objectives The majority of antibiotics are prescribed from general practice. The use of broad-spectrum antibiotics increases the risk of development of bacteria resistant to antibiotic treatment. In spite of guidelines aiming to minimize the use of broad-spectrum antibiotics we see an increase...... in the use of these agents. The overall aim of the project is to explore factors influencing the decision process and the prescribing behaviour of the GPs when prescribing antibiotics. We will study the impact of microbiological testing on the choice of antibiotic. Furthermore the project will explore how...... the GPs’ prescribing behaviour is influenced by selected factors. Method The study consists of a register-based study and a questionnaire study. The register-based study is based on data from the Register of Medicinal Product Statistics (prescribed antibiotics), Statistics Denmark (socio-demographic data...

  10. Reviving old antibiotics.

    Science.gov (United States)

    Theuretzbacher, Ursula; Van Bambeke, Françoise; Cantón, Rafael; Giske, Christian G; Mouton, Johan W; Nation, Roger L; Paul, Mical; Turnidge, John D; Kahlmeter, Gunnar

    2015-08-01

    In the face of increasing antimicrobial resistance and the paucity of new antimicrobial agents it has become clear that new antimicrobial strategies are urgently needed. One of these is to revisit old antibiotics to ensure that they are used correctly and to their full potential, as well as to determine whether one or several of them can help alleviate the pressure on more recent agents. Strategies are urgently needed to 're-develop' these drugs using modern standards, integrating new knowledge into regulatory frameworks and communicating the knowledge from the research bench to the bedside. Without a systematic approach to re-developing these old drugs and rigorously testing them according to today's standards, there is a significant risk of doing harm to patients and further increasing multidrug resistance. This paper describes factors to be considered and outlines steps and actions needed to re-develop old antibiotics so that they can be used effectively for the treatment of infections.

  11. Antibiotic drug discovery.

    Science.gov (United States)

    Wohlleben, Wolfgang; Mast, Yvonne; Stegmann, Evi; Ziemert, Nadine

    2016-09-01

    Due to the threat posed by the increase of highly resistant pathogenic bacteria, there is an urgent need for new antibiotics; all the more so since in the last 20 years, the approval for new antibacterial agents had decreased. The field of natural product discovery has undergone a tremendous development over the past few years. This has been the consequence of several new and revolutionizing drug discovery and development techniques, which is initiating a 'New Age of Antibiotic Discovery'. In this review, we concentrate on the most significant discovery approaches during the last and present years and comment on the challenges facing the community in the coming years. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. ANTIBIOTIC PROPHYLAXIS ON ESTOMATOLOGY

    OpenAIRE

    Rodríguez Alfaro, Miguel; Responsable de la cátedra de Farmacología de la Facultad de Odontología UNMSM.; Burga Sánchez, Jonny; Catedrático de Farmacología de la Facultad de Odontología UNMSM.; Chumpitaz Cerrate, Víctor; Catedrático de Farmacología de la Facultad de Odontología UNMSM.; Varas Hilario, Roberto; Catedrático de Farmacología de la Facultad de Odontología UNMSM.; Guerra Sanguinetti, Jaime; Cirujano Dentista de la Facultad de Odontología UNMSM.; López Bellido, Roger; Bachiller de la Facultad de Odontología UNMSM.; Zegarra Cuya, Juan; Interno de la Facultad de OdontoIogia UNMSM.

    2014-01-01

    Surgical antibiotic prophylaxis consists in the use of an antimicrobial drug in a preventive way, that must be active against microorganisms that in high frequency causes posterior infections of our surgical wounds and maintain effective tissue concentrations along the surgery procedure and the posterior time when appears the bacteremia. To reach a successful treatment is necessary to have the knowledge of the resident bactemial flora and the pathogenous flora that infects our surgical wounds...

  13. 养殖动物及人分离大肠埃希菌染色体和质粒介导氟喹诺酮耐药机制的研究%Chromosome-and plasmid-mediated fluoroquinolones-resistance in Escherichia coli strains isolated from food animals and healthy people around farm

    Institute of Scientific and Technical Information of China (English)

    李景云; 崔生辉; 王云鹏; 胡昌勤; 金少鸿; 马越

    2008-01-01

    目的 探讨从养殖动物及周围人群分离的大肠埃希菌染色体和质粒介导氟喹诺酮耐药机制. 方法 纸片扩散法和肉汤稀释法检测氟喹诺酮抗菌药物及其他抗生素的耐药性表型.PCR扩增DNA解旋酶(gyrA和gyrB)和拓扑异构酶IV(parC和parE)基因的喹诺酮耐药决定区、导致喹诺酮类抗生素耐药质粒的部分基因(qnr)以及氨基糖苷类抗生素乙酰转移酶Ib亚型cr变异体编码基因[aac(6')-I b-or],PCR产物进行直接测序.接合试验确定aac(6')-I b-cr酶的可转移性以及在氟喹诺酮耐药中的作用. 结果 鸡来源的大肠埃希菌对常用抗生素的耐药率明显高于猪和周围人群来源菌株.在PCR检测的64株大肠埃希菌中,环丙沙星MIC值大于1μg/ml以上的53株均存在gyrA和/或/parC基因上出现两个位点突变和氨基酸替代,环丙沙星的MIC>16μg/ml的菌株parE基因也发生了点突变及相应氨基酸替代.未发现gyrB亚单位有氨基酸替代.鸡来源28株菌和猪来源9株菌中分别有7株(25.O%)和1株(11.1%)携带有aac(6')-I b-cr基因;aac(6')-I b-cr基因可使环丙沙星、诺氟沙星乙酰化而降低药物抗菌活性. 结论 gyrA、parC和parE碱基突变导致氨基酸置换的数量与菌株对氟喹诺酮类耐药水平呈正相关,携带aac(6')-I b-cr基因的质粒在细菌氟喹诺酮耐药上也具有一定作用.%Objective To study on chromosome-and plasmid-mediated fluoroquinolones-resistant in Escherichia coli isolated from fecal samples of chicken,swine and people around the farm.Methods Anti-microbial susceptibility testing was carried out by disk diffusion testing and bmth microdilution testing.gyrA,gyrB,parC,pareE,qnr and aac(6')-I b-cr were examined by PCR,and the products were sequenced.Ex-presion of aac(6')-I b-cr by conjunction was tested too.Results The resistance to antimicmbial agents was much higher in strains isolated from chicken than that from swine and human.Among the E coli strains

  14. A Survey and Analysis of the American Public's Perceptions and Knowledge About Antibiotic Resistance.

    Science.gov (United States)

    Carter, Rebecca R; Sun, Jiayang; Jump, Robin L P

    2016-09-01

    Background.  Little is known about the American public's perceptions or knowledge about antibiotic-resistant bacteria or antibiotic misuse. We hypothesized that although many people recognize antibiotic resistance as a problem, they may not understand the relationship between antibiotic consumption and selection of resistant bacteria. Methods.  We developed and tested a survey asking respondents about their perceptions and knowledge regarding appropriate antibiotic use. Respondents were recruited with the Amazon Mechanical Turk crowdsourcing platform. The survey, carefully designed to assess a crowd-sourced population, asked respondents to explain "antibiotic resistance" in their own words. Subsequent questions were multiple choice. Results.  Of 215 respondents, the vast majority agreed that inappropriate antibiotic use contributes to antibiotic resistance (92%), whereas a notable proportion (70%) responded neutrally or disagreed with the statement that antibiotic resistance is a problem. Over 40% of respondents indicated that antibiotics were the best choice to treat a fever or a runny nose and sore throat. Major themes from the free-text responses included that antibiotic resistance develops by bacteria, or by the infection, or the body (ie, an immune response). Minor themes included antibiotic overuse and antibiotic resistance caused by bacterial adaptation or an immune response. Conclusions.  Our findings indicate that the public is aware that antibiotic misuse contributes to antibiotic resistance, but many do not consider it to be an important problem. The free-text responses suggest specific educational targets, including the difference between an immune response and bacterial adaptation, to increase awareness and understanding of antibiotic resistance.

  15. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews.

  16. Antibiotic Therapy for Very Low Birth Weigh Newborns in NICU

    Directory of Open Access Journals (Sweden)

    Seyyed-Abolfazl Afjeh

    2016-03-01

    Full Text Available Background Prolonged empiric antibiotics therapy in neonates results in several adverse consequences including widespread antibiotic resistance, late onset sepsis (LOS, necrotizing enterocolitis (NEC, prolonged hospital course (HC and increase in mortality rates. Objectives To assess the risk factors and the outcome of prolonged empiric antibiotic therapy in very low birth weight (VLBW newborns. Materials and Methods Prospective study in VLBW neonates admitted to NICU and survived > 2 W, from July 2011 - June 2012. All relevant perinatal and postnatal data including duration of antibiotics therapy (Group I 2W and outcome up to the time of discharge or death were documented and compared. Results Out of 145 newborns included in the study, 62 were in group I, and 83 in Group II. Average duration of antibiotic therapy was 14 days (range 3 - 62 days; duration in Group I and Group II was 10 ± 2.3 vs 25.5 ± 10.5 days. Hospital stay was 22.3 ± 11.5 vs 44.3 ± 14.7 days, respectively. Multiple regression analysis revealed following risk factors as significant for prolonged empiric antibiotic therapy: VLBW especially stage II, 12 (8.3% newborns died. Infant mortality alone and with LOS/NEC was higher in group II as compared to group I (P < 0.002 and < 0.001 respectively. Conclusions Prolonged empiric antibiotic therapy caused increasing rates of LOS, NEC, HC and infant mortality.

  17. Rationalizing antibiotic use to limit antibiotic resistance in India+

    OpenAIRE

    ,

    2011-01-01

    Antibiotic resistance, a global concern, is particularly pressing in developing nations, including India, where the burden of infectious disease is high and healthcare spending is low. The Global Antibiotic Resistance Partnership (GARP) was established to develop actionable policy recommendations specifically relevant to low- and middle-income countries where suboptimal access to antibiotics - not a major concern in high-income countries - is possibly as severe a problem as is the spread of r...

  18. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  19. Targets for Combating the Evolution of Acquired Antibiotic Resistance.

    Science.gov (United States)

    Culyba, Matthew J; Mo, Charlie Y; Kohli, Rahul M

    2015-06-16

    Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal.

  20. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.

    Directory of Open Access Journals (Sweden)

    Adrien Michon

    Full Text Available The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322, or harbored on a large conjugative native plasmid, pHe96(qnrA3 found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation or to enhance fitness (tetA deletion in pBR322. E. coli CFT073 transformed with pBRAM(PBR322-qnrA3 had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001. In contrast, when pHe96(qnrA3 was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001. In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug

  1. Antibiotics in late clinical development.

    Science.gov (United States)

    Fernandes, Prabhavathi; Martens, Evan

    2017-06-01

    Most pharmaceutical companies have stopped or have severely limited investments to discover and develop new antibiotics to treat the increasing prevalence of infections caused by multi-drug resistant bacteria, because the return on investment has been mostly negative for antibiotics that received marketing approved in the last few decades. In contrast, a few small companies have taken on this challenge and are developing new antibiotics. This review describes those antibiotics in late-stage clinical development. Most of them belong to existing antibiotic classes and a few with a narrow spectrum of activity are novel compounds directed against novel targets. The reasons for some of the past failures to find new molecules and a path forward to help attract investments to fund discovery of new antibiotics are described. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens

    2015-01-01

    Endophthalmitis is one of the most feared complications after cataract surgery. The aim of this systematic review was to evaluate the effect of intracameral and topical antibiotics on the prevention of endophthalmitis after cataract surgery. A systematic literature review in the MEDLINE, CINAHL......, Cochrane Library and EMBASE databases revealed one randomized trial and 17 observational studies concerning the prophylactic effect of intracameral antibiotic administration on the rate of endophthalmitis after cataract surgery. The effect of topical antibiotics on endophthalmitis rate was reported by one...... with the use of intracameral antibiotic administration of cefazolin, cefuroxime and moxifloxacin, whereas no effect was found with the use of topical antibiotics or intracameral vancomycin. Endophthalmitis occurred on average in one of 2855 surgeries when intracameral antibiotics were used compared to one...

  3. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina;

    2008-01-01

    BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes...... or antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted...... with a pooled RR of 0.74 (95% CI 0.65 to 0.84) at 7 to 15 days follow up. None of the antibiotic preparations was superior to each other. AUTHORS' CONCLUSIONS: Antibiotics have a small treatment effect in patients with uncomplicated acute sinusitis in a primary care setting with symptoms for more than seven...

  4. The macrolide antibiotic renaissance.

    Science.gov (United States)

    Dinos, George P

    2017-09-01

    Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, 'Ketek effects', has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases. © 2017 The British Pharmacological Society.

  5. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  6. Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium Bacterial sensitivity...

  7. [Usage of antibiotics in hospitals].

    Science.gov (United States)

    Ternák, G; Almási, I

    1996-12-29

    The authors publish the results of a survey conducted among hospital records of patients discharged from eight inpatient's institutes between 1-31st of January 1995 to gather information on the indications and usage of antibiotics. The institutes were selected from different part of the country to represent the hospital structure as much as possible. Data from the 13,719 documents were recorded and analysed by computer program. It was found that 27.6% of the patients (3749 cases) received antibiotic treatment. 407 different diagnosis and 365 different surgical procedures (as profilaxis) were considered as indications of antibiotic treatment (total: 4450 indications for 5849 antibiotic treatment). The largest group of patients receiving antibiotics was of antibiotic profilaxis (24.56%, 1093 cases), followed by lower respiratory tract infections (19.89%, 849 cases), uroinfections (10.53%, 469 cases) and upper respiratory tract infections. Relatively large group of patients belonged to those who had fever or subfebrility without known reason (7.35%, 327 cases) and to those who did not have any proof in their document indicating the reasons of antibiotic treatment (6.4%, 285 cases). We can not consider the antibiotic indications well founded in those groups of patients (every sixth or every fifth cases). The most frequently used antibiotics were of [2-nd] generation cefalosporins. The rate of nosocomial infections were found as 6.78% average. The results are demonstrated on diagrams and table.

  8. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Edward Geisinger

    2015-02-01

    Full Text Available Acinetobacter baumannii is an opportunistic pathogen of increasing importance due to its propensity for intractable multidrug-resistant infections in hospitals. All clinical isolates examined contain a conserved gene cluster, the K locus, which determines the production of complex polysaccharides, including an exopolysaccharide capsule known to protect against killing by host serum and to increase virulence in animal models of infection. Whether the polysaccharides determined by the K locus contribute to intrinsic defenses against antibiotics is unknown. We demonstrate here that mutants deficient in the exopolysaccharide capsule have lowered intrinsic resistance to peptide antibiotics, while a mutation affecting sugar precursors involved in both capsule and lipopolysaccharide synthesis sensitizes the bacterium to multiple antibiotic classes. We observed that, when grown in the presence of certain antibiotics below their MIC, including the translation inhibitors chloramphenicol and erythromycin, A. baumannii increases production of the K locus exopolysaccharide. Hyperproduction of capsular exopolysaccharide is reversible and non-mutational, and occurs concomitantly with increased resistance to the inducing antibiotic that is independent of the presence of the K locus. Strikingly, antibiotic-enhanced capsular exopolysaccharide production confers increased resistance to killing by host complement and increases virulence in a mouse model of systemic infection. Finally, we show that augmented capsule production upon antibiotic exposure is facilitated by transcriptional increases in K locus gene expression that are dependent on a two-component regulatory system, bfmRS. These studies reveal that the synthesis of capsule, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our data are consistent with a model in which gene expression changes triggered by ineffectual antibiotic treatment cause A. baumannii to transition

  9. Antibiotic prescription behaviours in Lao People's Democratic Republic: a knowledge, attitude and practice survey.

    Science.gov (United States)

    Quet, Fabrice; Vlieghe, Erika; Leyer, Caroline; Buisson, Yves; Newton, Paul N; Naphayvong, Philaysak; Keoluangkhot, Valy; Chomarat, Monique; Longuet, Christophe; Steenkeste, Nicolas; Jacobs, Jan

    2015-04-01

    To assess the antibiotic prescribing practices of doctors working in the Lao People's Democratic Republic and their knowledge of local antibiotic resistance patterns. Doctors attending morning meetings in 25 public hospitals in four provinces were asked to complete a knowledge, attitude and practice survey. The questionnaire contained 43 multiple choice questions that the doctor answered at the time of the meeting. The response rate was 83.4% (386/463). Two hundred and seventy doctors (59.8%) declared that they had insufficient information about antibiotics. Only 14.0% (54/386) recognized the possibility of cephalosporin cross-resistance in methicillin-resistant Staphylococcus aureus. Most participants had no information about local antibiotic resistance for Salmonella Typhi (211/385, 54.8%) and hospital-acquired pneumonia (253/384, 65.9%). Unnecessary antibiotic prescriptions were considered as harmless by 115 participants and 148 considered locally-available generic antibiotics to be of poor quality. Nearly three-quarters (280/386) of participants agreed that it was difficult to select the correct antibiotics. Most participants (373/386) welcomed educational programmes on antibiotic prescribing and 65.0% (249/383) preferred local over international antibiotic guidelines. Doctors in the Lao People's Democratic Republic seem to favour antibiotic prescribing interventions. Health authorities should consider a capacity building programme that incorporates antibiotic prescribing and hospital infection control.

  10. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    Science.gov (United States)

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.

  11. Assessment of physicochemical parameters and prevalence of virulent and multiple-antibiotic-resistant Escherichia coli in treated effluent of two wastewater treatment plants and receiving aquatic milieu in Durban, South Africa.

    Science.gov (United States)

    Pillay, Leanne; Olaniran, Ademola O

    2016-05-01

    The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2 × 10(3) CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.

  12. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  13. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M|info:eu-repo/dai/nl/123144337

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to cl

  14. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M|info:eu-repo/dai/nl/123144337

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  15. Potential Confounding in Evaluating Infection-Control Interventions in Hospital Settings : Changing Antibiotic Prescription

    NARCIS (Netherlands)

    Nijssen, S.; Bootsma, M.C.; Bonten, M.

    2006-01-01

    The colonization dynamics of antibiotic-resistant pathogens in hospital settings are complex, with multiple and continuously interacting variables (e.g., introduction of resistance, infection-control practices, antibiotic use). Quantification of these variables is indispensable in the evaluation of

  16. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  17. Antibiotic resistant Salmonella and Vibrio associated with farmed Litopenaeus vannamei.

    Science.gov (United States)

    Banerjee, Sanjoy; Ooi, Mei Chen; Shariff, Mohamed; Khatoon, Helena

    2012-01-01

    Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  18. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  19. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?

    Science.gov (United States)

    Beardmore, Robert Eric; Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan

    2017-04-01

    Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. : antibiotic cycling, antibiotic mixing, optimal control, stochastic models.

  20. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  1. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (≧4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  2. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    Science.gov (United States)

    Comeau, André M; Tétart, Françoise; Trojet, Sabrina N; Prère, Marie-Françoise; Krisch, H M

    2007-08-29

    Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS). A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  3. Phage-Antibiotic Synergy (PAS: beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    Directory of Open Access Journals (Sweden)

    André M Comeau

    Full Text Available Although the multiplication of bacteriophages (phages has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS. A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  4. INTEGRATIVE SAMPLING OF ANTIBIOTICS AND OTHER ...

    Science.gov (United States)

    Pharmaceuticals from human and veterinary use continually enter the environment through municipal wastewater treatment plants (WWTPs), surface runoff from animal waste, and direct disposal of unused medications. The presence of these chemicals, albeit often at subtherapeutic trace levels, may be partly responsible for development of antibiotic-resistant bacteria and sublethal effects in aquatic organisms. Conventional sampling techniques (i.e., grab sampling) often are insufficient for detecting these trace levels. A new sampling technique, the Polar Organic Chemical Integrative Sampler (POCIS), developed by scientists at the USGS's Columbia Environmental Research Center, can provide the time-weighted average concentrations of these complex mixtures. A pilot study targeting the antibiotic azithromycin involved deploying the POCIS for 30 days in the effluents of three WWTPs in Nevada, Utah, and South Carolina. Azithromycin was detected at each WWTP at 19 to 66 ng/L. This translates to a yearly loading, into each of the three receiving waters, of 0.4 to 4 kg/year. In a separate study investigating potential impacts of confined animal feeding operations on national wildlife refuges in the Delmarva peninsula, the antibiotic tetracycline and the natural hormone 17B-estradiol were detected at multiple sites. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and

  5. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  6. The Antibiotic Resistance Problem Revisited

    Science.gov (United States)

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  7. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  8. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  9. Genotypic diversity and rhizosphere competence of antibiotic-producing Pseudomonas species

    NARCIS (Netherlands)

    Bergsma-Vlami, M.

    2008-01-01

    The phenolic antibiotic 2,4-diacetylphloroglucinol (DAPG) has been implicated in biological control of multiple plant pathogens by fluorescent Pseudomonas species. DAPG-producing Pseudomonas strains are effective biocontrol agents, however, their ecological performance is often highly variable resul

  10. Selective Advantage of Resistant Strains at Trace Levels of Antibiotics: a Simple and Ultrasensitive Color Test for Detection of Antibiotics and Genotoxic Agents▿

    Science.gov (United States)

    Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P.; Yang, Hanjing; Hoffman, Robert M.; Salih, Anya; Miller, Jeffrey H.

    2011-01-01

    Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC. PMID:21199928

  11. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes blaTEM, blaSHV, ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. The association between antibiotic use in the community and nasopharyngeal carriage of antibiotic-resistant Streptococcus pneumoniae in Bedouin children.

    Science.gov (United States)

    Greenberg, David; Givon-Lavi, Noga; Sharf, Amir Z; Vardy, Daniel; Dagan, Ron

    2008-09-01

    The objective of the study was to evaluate whether the increase in antibiotic-resistant Streptococcus pneumoniae carriage was associated with antibiotic use in the community in children in Southern Israel. All the prescriptions given to Bedouin children or = 1.0 microg/mL increased from 8% to 21% (P < 0.01); resistance to clindamycin from 9% to 22%; resistance to erythromycin from 13% to 30%; resistance to tetracycline from 13% to 31%; and multidrug resistance from 16% to 30%. The total annual antibiotic prescription rates decreased by 19%, from 3867 to 3191 prescriptions per 1000 children (P < 0.001). This was mainly the result of a reduction in amoxicillin +/- clavulanate prescriptions (from 3046 to 2582; P < 0.001). Oral cephalosporin, erythromycin and penicillin prescription rates decreased significantly as well (P < 0.001) whereas azithromycin prescription rates increased significantly (P < 0.001). We suggest that the increased carriage of S. pneumoniae resistant to multiple antibiotics is possibly associated to the increased azithromycin consumption. Reduction of total antibiotic use may not be sufficient as long as antibiotics with high potential to promote multidrug resistance, given their pharmacokinetics and pharmacodynamics characteristics, are widely used.

  13. A survey of antibiotic resistance among E. coli strains isolated from poultry in Karachi.

    Science.gov (United States)

    Ansari, F A; Khatoon, H

    1999-01-01

    Studies were carried out to investigate the incidence of multiple antibiotic resistance among E .coli (total 152) isolated from poultry in Karachi to eight commonly used antibiotics: ampicillin (A), chloramphenicol (C), gentamycin (G), anamycin (K), neomycin (N), polymyxin B (P), streptomycin (S) and tetracycline (T) at the levels of 50 microg/ml, 100 microg/ml and 500 microg/ml. Tables of the results are given, showing the number of resistant strains of different patterns of antibiotic resistance at different levels. A comparison of antibiotic resistance to different number of antibiotics and the frequency of resistance to individual antibiotic at different levels is also reported. The highest frequency of resistance was against tetracycline whereas the lowest frequency of resistance was against gentamycin. Thirty R plasmids were isolated from the resistant strains and will be reported elsewhere.

  14. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes.

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  15. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  16. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  17. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  18. Antibiotic resistance: A current epilogue.

    Science.gov (United States)

    Dodds, David R

    2017-06-15

    The history of the first commercial antibiotics is briefly reviewed, together with data from the US and WHO, showing the decrease in death due to infectious diseases over the 20th century, from just under half of all deaths, to less than 10%. The second half of the 20th century saw the new use of antibiotics as growth promoters for food animals in the human diet, and the end of the 20th century and beginning of the 21st saw the beginning and rapid rise of advanced microbial resistance to antibiotics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  20. Systemic antibiotic therapy in periodontics.

    Science.gov (United States)

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-09-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  1. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  2. The Artistry of Bacterial Colonies and the Antibiotic Crisis

    Science.gov (United States)

    Golding, Ido; Ben-Jacob, Eshel

    Since the beginning of massive usage of antibiotics during World War II we have witnessed a dramatic evolutionary event - the emergence of multiple drug resistant bacteria. The bacteria are capable of developing antibiotic resistance at a higher rate than scientists develop new drugs [1, and references therein. See also the UN's World Health Report 1996]. We seem to be loosing a crucial battle on our health. To reverse this course of events, we have to "outsmart" the bacteria by taking new avenues of study which will lead to the development of novel strategies to fight them.

  3. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.

    Science.gov (United States)

    Golkar, Zhabiz; Bagasra, Omar; Pace, Donald Gene

    2014-02-13

    The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.

  4. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    Directory of Open Access Journals (Sweden)

    Junaid Iqbal

    2013-01-01

    Full Text Available Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30% in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics.

  5. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  6. Addressing antibiotic resistance.

    Science.gov (United States)

    Gupta, Kalpana

    2003-02-01

    Management of uncomplicated urinary tract infections (UTIs) has traditionally been based on 2 important principles: the spectrum of organisms causing acute UTI is highly predictable (Escherichia coli accounts for 75% to 90% and Staphylococcus saprophyticus accounts for 5% to 15% of isolates), and the susceptibility patterns of these organisms have also been relatively predictable. As a result, empiric therapy with short-course trimethoprim-sulfamethoxazole (TMP-SMX) has been a standard management approach for uncomplicated cystitis.However, antibiotic resistance is now becoming a major factor not only in nosocomial complicated UTIs, but also in uncomplicated community-acquired UTIs. Resistance to TMP-SMX now approaches 18% to 22% in some regions of the United States, and nearly 1 in 3 bacterial strains causing cystitis or pyelonephritis demonstrate resistance to amoxicillin. Fortunately, resistance to other agents, such as nitrofurantoin and the fluoroquinolones, has remained low, at approximately 2%. Preliminary data suggest that the increase in TMP-SMX resistance is associated with poorer bacteriologic and clinical outcomes when TMP-SMX is used for therapy. As a result, these trends have necessitated a change in the management approach to community-acquired UTI. The use of TMP-SMX as a first-line agent for empiric therapy of uncomplicated cystitis is only appropriate in areas where TMP-SMX resistance prevalence is resistance to TMP-SMX exceeds this rate, alternative agents need to be considered.

  7. Antibiotic resistance: An ethical challenge.

    Science.gov (United States)

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  8. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.;

    2012-01-01

    Background. Globally, general practitioners (GPs) write more than 90% of all antibiotic prescriptions. This study examines the experiences of Lithuanian and Russian GPs in antibiotic prescription for upper respiratory tract infections, including their perceptions of when it is not indicated...... clinically or pharmacologically. Methods. 22 Lithuanian and 29 Russian GPs participated in five focus group discussions. Thematic analysis was used to analyse the data. Results. We identified four main thematic categories: patients' faith in antibiotics as medication for upper respiratory tract infections...... for upper respiratory tract infections. Conclusions. Understanding the nature of physician-patient interaction is critical to the effective pursuit of clinically grounded antibiotic use as this study undertaken in Lithuania and the Russian Federation has shown. Both physicians and patients must be targeted...

  9. Antibiotic managment in renal failure.

    Science.gov (United States)

    Winter, R E

    1976-06-01

    This is a brief compilation of the work of many investigators. It includes facts about toxicity and recommendations about antibiotic management in patients with renal failure. As new data are accrued, changes in these recommendations will be necessary.

  10. Use of Antibiotics in Children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, Anne; Aabenhus, Rune

    2015-01-01

    Background: We aimed to describe the use of systemic antibiotics among children in Denmark. Methods: National data on drug use in Denmark were extracted from the Danish National Prescription Database. We used prescription data for all children in Denmark aged 0 to 11 years from January 1, 2000...... to December 31, 2012. Results: We obtained data on 5,884,301 prescriptions for systemic antibiotics issued to 1,206,107 children. The most used single substances were phenoxymethylpenicillin (45%), amoxicillin (34%) and erythromycin (6%). The highest incidence rate of antibiotic treatment episodes......–1. There was little evidence of heavy users. Conclusion: Prescribing rate of antibiotics to children in Denmark remained stable at a high level from 2000 to 2012. An increase in the use of broad-spectrum beta-lactam penicillin was noted, but otherwise the prescribing pattern adhered well to National guidelines...

  11. Antibiotic prophylaxis for abdominal hysterectomy.

    Science.gov (United States)

    Mele, G; Loizzi, P; Greco, P; Gargano, G; Varcaccio Garofalo, G; Belsanti, A

    1988-01-01

    Three different regimens of antibiotic treatment have been employed in order to evaluate their efficacy as a profilaxis for abdominal hysterectomy. Two short term administrations (Cephtriaxone and Cephamandole plus Tobramycine) and a conventional full dose treatment (Cephazoline) have been compared over a group of homogeneous patients. No significant differences, except a reduction in postoperative time spent in hospital, have been found among the groups. A reduction in urinary tract infection has also been reported with a single-dose antibiotic prophylaxis.

  12. Prophylactic antibiotics in orthopaedic surgery.

    Science.gov (United States)

    Prokuski, Laura; Clyburn, Terry A; Evans, Richard P; Moucha, Calin S

    2011-01-01

    The use of prophylactic antibiotics in orthopaedic surgery has been proven effective in reducing surgical site infections after hip and knee arthroplasty, spine procedures, and open reduction and internal fixation of fractures. To maximize the beneficial effect of prophylactic antibiotics, while minimizing any adverse effects, the correct antimicrobial agent must be selected, the drug must be administered just before incision, and the duration of administration should not exceed 24 hours.

  13. Antibiotics, the pill, and pregnancy.

    OpenAIRE

    Mastrantonio, M; Minhas, H; Gammon, A.

    1999-01-01

    OBJECTIVES: To establish if advice concerning risks of pregnancy when taking oral contraceptive pill and antibiotics is being offered. METHOD: A retrospective audit of notes of 100 female patients aged 15-39 who were prescribed antibiotics. RESULTS: Documentation of use of contraception was noted in 3% of patients. Advice concerning risks and further precautions was noted in this 3% but not in any other records. CONCLUSION: The audit identified a gap in documentation and/or clinical practice ...

  14. Antibiotic utilisation for hospitalised paediatric patients

    NARCIS (Netherlands)

    Luinge, K; Kimpen, JLL; van Houten, M.A.

    1998-01-01

    Antibiotics are among the most commonly prescribed drugs in paediatrics. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies a

  15. [Self-medication with antibiotics in Poland

    NARCIS (Netherlands)

    Olczak, A.; Grzesiowski, P.; Hryniewicz, W.; Haaijer-Ruskamp, F.M.

    2006-01-01

    Antibiotic resistance, the important public health threat, depends on antibiotic overuse/misuse. Self-medication with antibiotics is of serious medical concern. The aim of the study, as a part of SAR project (Self-medication with antibiotic in Europe) was to survey the incidence of this phenomenon.

  16. Core Elements of Outpatient Antibiotic Stewardship.

    Science.gov (United States)

    Sanchez, Guillermo V; Fleming-Dutra, Katherine E; Roberts, Rebecca M; Hicks, Lauri A

    2016-11-11

    The Core Elements of Outpatient Antibiotic Stewardship provides a framework for antibiotic stewardship for outpatient clinicians and facilities that routinely provide antibiotic treatment. This report augments existing guidance for other clinical settings. In 2014 and 2015, respectively, CDC released the Core Elements of Hospital Antibiotic Stewardship Programs and the Core Elements of Antibiotic Stewardship for Nursing Homes. Antibiotic stewardship is the effort to measure and improve how antibiotics are prescribed by clinicians and used by patients. Improving antibiotic prescribing involves implementing effective strategies to modify prescribing practices to align them with evidence-based recommendations for diagnosis and management. The four core elements of outpatient antibiotic stewardship are commitment, action for policy and practice, tracking and reporting, and education and expertise. Outpatient clinicians and facility leaders can commit to improving antibiotic prescribing and take action by implementing at least one policy or practice aimed at improving antibiotic prescribing practices. Clinicians and leaders of outpatient clinics and health care systems can track antibiotic prescribing practices and regularly report these data back to clinicians. Clinicians can provide educational resources to patients and families on appropriate antibiotic use. Finally, leaders of outpatient clinics and health systems can provide clinicians with education aimed at improving antibiotic prescribing and with access to persons with expertise in antibiotic stewardship. Establishing effective antibiotic stewardship interventions can protect patients and improve clinical outcomes in outpatient health care settings.

  17. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  18. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  19. Dielectrophoretic assay of bacterial resistance to antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Juliana [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Huebner, Yvonne [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hull, Judith C [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom)

    2003-07-21

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  20. Study on Antibiotic compounds from Pseudomonas aeruginosa NO4 Strain

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2011-05-15

    As important human and veterinary medicines, antibiotics are being produced and consumed in large quantities around the world. For example, more than 50 million pounds (22,000 tons) of antibiotics are produced in the U.S. each year and annual production in Germany is about 2,000 tons. Antibiotics are low molecular weight microbial metabolites that at low concentrations inhibit the growth of other microorganisms. Resistant bacteria may also spread and become broader infection-control problems, not only within health care institutions, but in communities as well. Clinically important bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a common cause of infection among hospitalized patients. Pseudomonas aeruginosa is a major cause of opportunistic infections among immunocompromised individuals. The spread of this organism in health care settings is often difficult to control due to the presence of multiple intrinsic and acquired mechanisms of antimicrobial resistance. In this study, we isolated novel bacterium which had strong antagonistic activity and separated antibiotic compounds from Pseudomonas sp., and analyzed characteristics and molecular weight of the antibiotic compound

  1. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2017-03-15

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  2. Determinants of prescribing of second-choice antibiotics for upper and lower respiratory tract in Dutch general practice.

    OpenAIRE

    Duijn, H.J. van; Kuyvenhoven, M M; Schellevis, F.; Verheij, T.J.M.

    2005-01-01

    Objectives: The aim of this study was to assess the association between general practitioners' (GPs') characteristics and the volume of second-choice antibiotics for acute respiratory tract (RT) episodes by GPs. Methods: Morbidity and antibiotic prescription data originated from the Second Dutch National Survey of General Practice (DNSGP-2). GPs' characteristics, including professional activities and views on RT symptoms and antibiotics, were measured by a written questionnaire. Multiple regr...

  3. Delayed antibiotic prescriptions for respiratory infections.

    Science.gov (United States)

    Spurling, Geoffrey Kp; Del Mar, Chris B; Dooley, Liz; Foxlee, Ruth; Farley, Rebecca

    2017-09-07

    Concerns exist regarding antibiotic prescribing for respiratory tract infections (RTIs) owing to adverse reactions, cost, and antibacterial resistance. One proposed strategy to reduce antibiotic prescribing is to provide prescriptions, but to advise delay in antibiotic use with the expectation that symptoms will resolve first. This is an update of a Cochrane Review originally published in 2007, and updated in 2010 and 2013. To evaluate the effects on clinical outcomes, antibiotic use, antibiotic resistance, and patient satisfaction of advising a delayed prescription of antibiotics in respiratory tract infections. For this 2017 update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 4, 2017), which includes the Cochrane Acute Respiratory Infection Group's Specialised Register; Ovid MEDLINE (2013 to 25 May 2017); Ovid Embase (2013 to 2017 Week 21); EBSCO CINAHL Plus (1984 to 25 May 2017); Web of Science (2013 to 25 May 2017); WHO International Clinical Trials Registry Platform (1 September 2017); and ClinicalTrials.gov (1 September 2017). Randomised controlled trials involving participants of all ages defined as having an RTI, where delayed antibiotics were compared to immediate antibiotics or no antibiotics. We defined a delayed antibiotic as advice to delay the filling of an antibiotic prescription by at least 48 hours. We considered all RTIs regardless of whether antibiotics were recommended or not. We used standard Cochrane methodological procedures. Three review authors independently extracted and collated data. We assessed the risk of bias of all included trials. We contacted trial authors to obtain missing information. For this 2017 update we added one new trial involving 405 participants with uncomplicated acute respiratory infection. Overall, this review included 11 studies with a total of 3555 participants. These 11 studies involved acute respiratory infections including acute otitis media (three studies

  4. Determinants of between-country differences in ambulatory antibiotic use and antibiotic resistance in Europe: a longitudinal observational study.

    Science.gov (United States)

    Blommaert, A; Marais, C; Hens, N; Coenen, S; Muller, A; Goossens, H; Beutels, P

    2014-02-01

    To identify key determinants explaining country-year variations in antibiotic use and resistance. Ambulatory antibiotic use data [in defined daily doses per 1000 inhabitants per day (DIDs)] for 19 European countries from 1999 to 2007 were collected, along with 181 variables describing countries in terms of their agriculture, culture, demography, disease burden, education, healthcare organization and socioeconomics. After assessing data availability, overlap and relevance, multiple imputation generalized estimating equations were applied with a stepwise selection procedure to select significant determinants of global antibiotic use (expressed in DIDs), relative use of subgroups (amoxicillin and co-amoxiclav) and resistance of Escherichia coli and Streptococcus pneumoniae. Relative humidity, healthcare expenditure proportional to gross domestic product, feelings of distrust, proportion of population aged >65 years and availability of treatment guidelines were associated with higher total antibiotic use expressed in DIDs. Restrictions on marketing activities towards prescribers, population density, number of antibiotics, educational attainment and degree of atheism were associated with a lower number of total DIDs used. Relative prescribing of amoxicillin and co-amoxiclav was mainly determined by healthcare system choices [e.g. general practitioner (GP) registration and restricted marketing]. Specific antibiotic use was found to be a significant determinant of resistance for some but not all drug/organism combinations. Incentives to stimulate GP gatekeeping were associated with lower levels of resistance, and life expectancy at age 65+ and atheism were associated with more resistance. Myriad factors influence antibiotic use and resistance at the country level and an important part of these can be modified by policy choices.

  5. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  6. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  7. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Science.gov (United States)

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  8. Periconceptional and Gestational Exposure to Antibiotics and Childhood Asthma.

    Directory of Open Access Journals (Sweden)

    Shuyuan Chu

    Full Text Available Previous studies suggest that maternal antibiotics exposure during pregnancy may increase the risk of childhood asthma, but the results were inconsistent. Furthermore, most studies did not examine periconception period as an exposure window. We aim to assess the associations between maternal exposure to specific antibiotics before and during pregnancy and the risk of asthma in early childhood.Data from the Collaborative Perinatal Project were used. Maternal exposure to antibiotics before and during pregnancy was recorded at each prenatal visit. A total of 39,907 singleton children were followed up to 7 years of age. Multilevel multiple logistic regression models were used to control for potential confounders and account for multiple pregnancies per woman.Maternal use of penicillin or chloramphenicol was associated with an increased risk of asthma in the offspring (adjusted odds ratio = 1.21, 95% confidence interval 1.08-1.36 for penicillin; 1.72 [1.14-2.59] for chloramphenicol. The risk was significantly increased if penicillin or chloramphenicol was used in the 1st trimester (1.09 [1.04-1.13] for penicillin and 1.23 [1.01-1.51] for chloramphenicol.Maternal exposure to certain antibiotics is associated with childhood asthma by 7 years of age. Early pregnancy may be a sensitive window.

  9. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  10. Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: A potential public health risk

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo A; Fulke, A; Mulani, N.; Sukumaran, S.; Ram, A

    Globally, coastal waters have emerged into a pool of antibiotic resistance genes and multiple antibiotic resistant microorganisms, and pathogenicity of these resistant microorganisms in terms of serotypes and virulence genes has made the environment...

  11. Detection of plasmid-mediated Carbapenem-hydrolyzing β-lactamaseKPC-2 in a strain of Carbapenem-resistant C.freundii%碳青酶烯类抗生素耐药弗劳地枸橼JH酸杆菌KPC-2基因的检测

    Institute of Scientific and Technical Information of China (English)

    汪安勇; 王中新; 沈继录

    2012-01-01

    Objective To investigate the mechanism of Carbapenem resistance in C. Freudii. Methods Antibiotic susceptibilities were determined by agar dilution method. Conjugation experiments were carried out in mixed broth cultures. Plasmid DNA preparations were obtained by using an alkalinelysis technique and were digested by various endonucleases; The crude β-lactamase extracts of C. Freudii and E. Coli transconjugant were subjected to analytical isoelectric focusing( IEF )Specific PCR amplification and DNA sequence analysis were performed to confirm the β-lactamse type. Results The C. Freundii isolate showed resistance against Carbapenemes. The MICs of imipen-em and meropenem were both 64 mg · L-1 . The isolate was also resistant against penicillins, cephalosorins, cefoxitins, aztreonam, quinolo-nes,and aminoglycosides. The conjugant results showed the antibiotics can transfer by plasmid. Isoelectric focusing demonstrated two β-lactamases with the isoelectric points of 5. 0 and 7. 5 in conjugant. Specific PCR amplification and DNA sequence analysis show ed that the C. Freudii produce the gene of KPC-2. Coclusion the product of KPC-2 Carbapenem was the first and foremost dues of Carbapenem-risitance and it can transfer by plasmid.%目的 研究弗劳地枸橼酸杆菌对碳青霉烯类抗生素的耐药机制.方法 采用琼脂对倍稀释法检测弗劳地枸橼酸杆菌对亚胺培南和美罗培南以及其他常见药物的最低抑菌浓度(MIC).等电聚集电泳分析其β-内酰胺酶类型,聚合酶链反应(PCR)和DNA序列分析检测β-内酰胺酶基因型,接合试验分析其耐药质粒传递情况.结果 弗劳地枸橼酸杆菌对亚胺培南和美罗培南的MIC均为64 mg·L-1,对青霉素类、头孢菌素类、头孢西丁、氨曲南和氨基糖苷类均耐药.转移接合结果显示对亚胺培南和美罗培南的耐药性可以通过质粒转移.等电聚焦电泳结果显示转移接合子具有等电点(PI)约为5.0、7.5的2种β-内酰

  12. [Antibiotic resistance: A global crisis].

    Science.gov (United States)

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. Detection of antibiotic residues in poultry meat.

    Science.gov (United States)

    Sajid, Abdul; Kashif, Natasha; Kifayat, Nasira; Ahmad, Shabeer

    2016-09-01

    The antibiotic residues in poultry meat can pose certain hazards to human health among them are sensitivity to antibiotics, allergic reactions, mutation in cells, imbalance of intestinal micro biota and bacterial resistance to antibiotics. The purpose of the present paper was to detect antibiotic residue in poultry meat. During the present study a total of 80 poultry kidney and liver samples were collected and tested for detection of different antibiotic residues at different pH levels Eschericha coli at pH 6, 7 and Staphyloccocus aureus at pH 8 & 9. Out of 80 samples only 4 samples were positive for antibiotic residues. The highest concentrations of antibiotic residue found in these tissues were tetracycline (8%) followed by ampicilin (4%), streptomycine (2%) and aminoglycosides (1%) as compared to other antibiotics like sulfonamides, neomycine and gentamycine. It was concluded that these microorganism at these pH levels could be effectively used for detection of antibiotic residues in poultry meat.

  14. Monitoring bacterial resistance to chloramphenicol and other antibiotics by liquid chromatography electrospray ionization tandem mass spectrometry using selected reaction monitoring.

    Science.gov (United States)

    Haag, Anthony M; Medina, Audrie M; Royall, Ariel E; Herzog, Norbert K; Niesel, David W

    2013-06-01

    Antibiotic resistance is a growing problem worldwide. For this reason, clinical laboratories often determine the susceptibility of the bacterial isolate to a number of different antibiotics in order to establish the most effective antibiotic for treatment. Unfortunately, current susceptibility assays are time consuming. Antibiotic resistance often involves the chemical modification of an antibiotic to an inactive form by an enzyme expressed by the bacterium. Selected reaction monitoring (SRM) has the ability to quickly monitor and identify these chemical changes in an unprecedented time scale. In this work, we used SRM as a technique to determine the susceptibility of several different antibiotics to the chemically modifying enzymes β-lactamase and chloramphenicol acetyltransferase, enzymes used by bacteria to confer resistance to major classes of commonly used antibiotics. We also used this technique to directly monitor the effects of resistant bacteria grown in a broth containing a specific antibiotic. Because SRM is highly selective and can also identify chemical changes in a multitude of antibiotics in a single assay, SRM has the ability to detect organisms that are resistant to multiple antibiotics in a single assay. For these reasons, the use of SRM greatly reduces the time it takes to determine the susceptibility or resistance of an organism to a multitude of antibiotics by eliminating the time-consuming process found in other currently used methods.

  15. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...... is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... and toxicity by utilizing of the fruit fly Drosophila melanogaster as a whole animal model. This was carried out by testing of antimicrobial peptides targeting Gram-positive bacteria exemplified by the important human pathogen methicillin resistant S. aureus (MRSA). The peptide BP214 was developed from...

  16. Antibiotic drugs targeting bacterial RNAs

    Directory of Open Access Journals (Sweden)

    Weiling Hong

    2014-08-01

    Full Text Available RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.

  17. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure.

    Science.gov (United States)

    Kubicek-Sutherland, Jessica Z; Heithoff, Douglas M; Ersoy, Selvi C; Shimp, William R; House, John K; Marth, Jamey D; Smith, Jeffrey W; Mahan, Michael J

    2015-09-01

    Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host-pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  18. Bacteriocins and their position in the next wave of conventional antibiotics.

    Science.gov (United States)

    Cavera, Veronica L; Arthur, Timothy D; Kashtanov, Dimitri; Chikindas, Michael L

    2015-11-01

    Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.

  19. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    David M. Patrick

    2013-03-01

    Full Text Available Among the class of pollutants considered as ‘emerging contaminants’, antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.

  20. Multiple Pregnancy

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Multiple Pregnancy Home For Patients Search FAQs Multiple Pregnancy Page ... Multiple Pregnancy FAQ188, July 2015 PDF Format Multiple Pregnancy Pregnancy How does multiple pregnancy occur? What are ...

  1. Antibiotic-Resistant Vibrios in Farmed Shrimp

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    2015-01-01

    Full Text Available Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75% was observed, with the following phenotypic profiles: monoresistance (n=42, cross-resistance to β-lactams (n=20 and multiple resistance (n=13. Plasmid resistance was characterized for penicillin (n=11, penicillin + ampicillin (n = 1, penicillin + aztreonam (n = 1, and ampicillin (n = 1. Resistance to antimicrobial drugs by the other strains (n=86 was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to β-lactam and tetracycline.

  2. Present and future of antibiotic therapy

    Directory of Open Access Journals (Sweden)

    Moisés Morejón García

    2013-11-01

    Full Text Available In the race between microorganisms and antimicrobial agents, the latter are lagging behind. Thus, our ability to cope with infectious diseases is impaired. In general, new antimicrobials arise from existing classes against which microorganisms have developed multiple mechanisms of resistance. It is also possible that through cross-resistance old pathogens may quickly inactivate new compounds. The article analyzes the literature on the new antibiotics and provides an overview of the results of these compounds at the onset of the XXI century. We conclude that the increase in bacterial multidrug resistance is a growing concern and the development of new antimicrobials is uncertain. Consequently, the main weapon to curb this phenomenon is the proper use of existing antimicrobials.

  3. Antibiotic Policies in the Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Nese Saltoglu

    2003-08-01

    Full Text Available The antimicrobial management of patients in the Intensive Care Units are complex. Antimicrobial resistance is an increasing problem. Effective strategies for the prevention of antimicrobial resistance in ICUs have focused on limiting the unnecessary use of antibiotics and increasing compliance with infection control practices. Antibiotic policies have been implemented to modify antibiotic use, including national or regional formulary manipulations, antibiotic restriction forms, care plans, antibiotic cycling and computer assigned antimicrobial therapy. Moreover, infectious diseases consultation is a simple way to limit antibiotic use in ICU units. To improve rational antimicrobial using a multidisiplinary approach is suggested. [Archives Medical Review Journal 2003; 12(4.000: 299-309

  4. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.

  5. Mathematical analysis of multi-antibiotic resistance.

    Science.gov (United States)

    Zhao, Bin; Zhang, Xiaoying

    2016-09-15

    Multi-antibiotic resistance in bacterial infections is a growing threat to public health. Some experiments were carried out to study the multi-antibiotic resistance. The changes of the multi-antibiotic resistance with time were achieved by numerical simulations and the mathematical models, with the calculated temperature field, velocity field, and the antibiotic concentration field. The computed results and experimental results are compared. Both numerical simulations and the analytic models suggest that minor low concentrations of antibiotics could induce antibiotic resistance in bacteria. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...

  7. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...

  8. Multiple sclerosis; Multiple Sklerose

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P. [Universitaet des Saarlandes, Abteilung fuer Diagnostische und Interventionelle Neuroradiologie, Radiologische Klinik, Homburg/Saar (Germany); Shariat, K. [Universitaet des Saarlandes, Klinik fuer Neurochirurgie, Homburg/Saar (Germany); Kostopoulos, P. [Universitaet des Saarlandes, Klinik fuer Neurologie, Homburg/Saar (Germany)

    2008-06-15

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [German] Die Multiple Sklerose (MS) ist die haeufigste chronisch-entzuendliche Erkrankung des Myelins mit eingesprengten Laesionen im Bereich der weissen Substanz des zentralen Nervensystems. Die Magnetresonanztomographie (MRT) hat bei der Diagnosestellung und Verlaufskontrolle eine Schluesselrolle. Dieser Artikel befasst sich mit Hauptcharakteristika der MR-Bildbebung. (orig.)

  9. 儿童呼吸道感染肺炎克雷伯菌质粒介导产AmpC酶的耐药性及基因型研究%Detection of drug resistance due to the plasmid-mediated AmpC β-lactamase and genotype analysis in Klebsiella pneumoniae resulting in respiratory infectious in children

    Institute of Scientific and Technical Information of China (English)

    林平

    2011-01-01

    目的 探讨小儿呼吸道感染肺炎克雷伯菌AmpC酶的产生、AmpC酶的耐药基因型及对常用抗菌药物的耐药特征,为临床治疗提供选药参考.方法 采用VITEK-60型全自动细菌鉴定仪鉴定细菌,按CLSI推荐的确证试验检测ESBLs和K-B纸片法测定药敏结果;采用头孢西丁纸片扩散法筛选疑产AmpC酶阳性菌株,并通过酶粗提物头孢西丁三维试验、接合试验、PCR测序等实验分析该菌株的基因型.结果 135株肺炎克雷伯菌ESBLs和AmpC酶总检出率分别为30.37%和15.56%,其中,单产AmpC酶、同产AmpC酶+ESBLs、单产ESBLs检出率分别为8.15%、7.41%和22.96%;AmpC酶阳性菌株的耐药基因型:19株为DHA-1型,2株为ACT-1型.产酶株的耐药性明显高于非产酶株,耐药现象在同产AmpC酶和ESBLs菌株中更为严重,产与非产AmpC酶(和)ESBLs菌株对亚胺培南的敏感率几乎达100%.结论 台州地区小儿呼吸道感染肺炎克雷伯菌产AmpC酶和ESBLs菌株检出率较高,AmpC酶以DHA-1基因型为主.产AmpC酶和ESBLs的菌株呈高度耐药,限制β内酰胺类抗菌药物的应用是减少产酶株流行的重要措施.%Objective To investigate the production and AmpC β-lactamase in Klebsiella (K.)pneumoniae resulting in respiratory infections in children,AmpC β-Lactamase genotypic resistance and typical resistance to common antibiotics so as to provide some references for selecting drugs in clinical treatment.Method Microbiological identification was performed with the VITEK 60 System,extended spectrum β lactamases (ESBLs) were detected in accordance with the confirmatory test recommended by Clinical and Laboratory Standards Institute (CLSI) and drug sensitivity was determined with Kirby-Bauer method.Suspected positive strains of AmpC β-lactamase were screened with cefoxitin disk diffusion.The genotypes were analyzed by cefoxitin three-dimensional test,conjugation test and PCR sequencing.Result Of the 135 isolates,30

  10. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  11. Intergenic and intragenic conjugal transfer of multiple antibiotic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... resistant gene among bacteria in the surface water of Bangladesh. Our observation ... resistant bacteria, scientists are trying to realize how so many different ..... genetic changes in transconjugant associated with the tetracycline ... The prospect of using GEMs in environmental manage- ment raises the issue ...

  12. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  13. Association between clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic fibrosis lung

    Science.gov (United States)

    Jansen, Gunther; Mahrt, Niels; Tueffers, Leif; Barbosa, Camilo; Harjes, Malte; Adolph, Gernot; Friedrichs, Anette; Krenz-Weinreich, Annegret; Rosenstiel, Philip; Schulenburg, Hinrich

    2016-01-01

    Background and objectives: Cystic fibrosis patients suffer from chronic lung infections that require long-term antibiotic therapy. Pseudomonas readily evolve resistance, rendering antibiotics ineffective. In vitro experiments suggest that resistant bacteria may be treated by exploiting their collateral sensitivity to other antibiotics. Here, we investigate correlations of sensitivity and resistance profiles of Pseudomonas aeruginosa that naturally adapted to antibiotics in the cystic fibrosis lung. Methodology: Resistance profiles for 13 antibiotics were obtained using broth dilution, E-test and VITEK mass spectroscopy. Genetic variants were determined from whole-genome sequences and interrelationships among isolates were analyzed using 13 MLST loci. Result: Our study focused on 45 isolates from 13 patients under documented treatment with antibiotics. Forty percent of these were clinically resistant and 15% multi-drug resistant. Colistin resistance was found once, despite continuous colistin treatment and even though colistin resistance can readily evolve experimentally in the laboratory. Patients typically harbored multiple genetically and phenotypically distinct clones. However, genetically similar clones often had dissimilar resistance profiles. Isolates showed mutations in genes encoding cell wall synthesis, alginate production, efflux pumps and antibiotic modifying enzymes. Cross-resistance was commonly observed within antibiotic classes and between aminoglycosides and β-lactam antibiotics. No evidence was found for consistent phenotypic resistance to one antibiotic and sensitivity to another within one genotype. Conclusions and implications: Evidence supporting potential collateral sensitivity in clinical P. aeruginosa isolates remains equivocal. However, cross-resistance within antibiotic classes is common. Colistin therapy is promising since resistance to it was rare despite its intensive use in the studied patients. PMID:27193199

  14. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance.

    Science.gov (United States)

    Kuster, Stefan P; Rudnick, Wallis; Shigayeva, Altynay; Green, Karen; Baqi, Mahin; Gold, Wayne L; Lovinsky, Reena; Muller, Matthew P; Powis, Jeff E; Rau, Neil; Simor, Andrew E; Walmsley, Sharon L; Low, Donald E; McGeer, Allison

    2014-10-01

    Estimating the risk of antibiotic resistance is important in selecting empiric antibiotics. We asked how the timing, number of courses, and duration of antibiotic therapy in the previous 3 months affected antibiotic resistance in isolates causing invasive pneumococcal disease (IPD). We conducted prospective surveillance for IPD in Toronto, Canada, from 2002 to 2011. Antimicrobial susceptibility was measured by broth microdilution. Clinical information, including prior antibiotic use, was collected by chart review and interview with patients and prescribers. Clinical information and antimicrobial susceptibility were available for 4062 (90%) episodes; 1193 (29%) of episodes were associated with receipt of 1782 antibiotic courses in the prior 3 months. Selection for antibiotic resistance was class specific. Time elapsed since most recent antibiotic was inversely associated with resistance (cephalosporins: adjusted odds ratio [OR] per day, 0.98; 95% confidence interval [CI], .96-1.00; P = .02; macrolides: OR, 0.98; 95% CI, .96-.99; P = .005; penicillins: OR [log(days)], 0.62; 95% CI, .44-.89; P = .009; fluoroquinolones: profile penalized-likelihood OR [log(days)], 0.62; 95% CI, .39-1.04; P = .07). Risk of resistance after exposure declined most rapidly for fluoroquinolones and penicillins and reached baseline in 2-3 months. The decline in resistance was slowest for macrolides, and in particular for azithromycin. There was no significant association between duration of therapy and resistance for any antibiotic class. Too few patients received multiple courses of the same antibiotic class to assess the significance of repeat courses. Time elapsed since last exposure to a class of antibiotics is the most important factor predicting antimicrobial resistance in pneumococci. The duration of effect is longer for macrolides than other classes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved

  15. Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin.

    Science.gov (United States)

    Slane, Joshua; Gietman, Bradley; Squire, Matthew

    2017-09-06

    Two-stage revision treatment of prosthetic joint infection (PJI) frequently employs the use of a temporary bone cement spacer loaded with multiple antibiotic types. Tobramycin and vancomycin are commonly used antibiotics in cement spacers, however, there is no consensus on the relative concentrations and combinations that should be used. Therefore, the purpose of this study was to investigate the influence of dual antibiotic loading on the total antibiotic elution and compressive mechanical properties of acrylic bone cement. Varying concentrations of tobramycin (0-3 g) and vancomycin (0-3 g) were added either alone or in combination to acrylic cement (Palacos R), resulting in 12 experimental groups. Samples were submerged in 37°C saline for 28 d and sampled at specific time points. The collected eluent was analyzed to determine the cumulative antibiotic release. In addition, the cement's compressive mechanical properties and porosity were characterized. Interestingly, the cement with the highest concentration of antibiotics did not possess the best elution properties. Cement samples containing both 3 g of tobramycin and 2 g vancomycin demonstrated the highest cumulative antibiotic release after 28 d, which was coupled with a significant decrease in the mechanical properties and an increased porosity. The collected data also suggests that tobramycin elutes more effectively than vancomycin from cement. In conclusion, this study demonstrates that high antibiotic loading in cement does not necessarily lead to enhanced antibiotic elution. Clinically this information may be used to optimize cement spacer antibiotic loading so that both duration and amount of antibiotics eluted are optimized. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Antibiotic prescribing for acute bronchitis

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2016-01-01

    INTRODUCTION: Acute bronchitis is a self-limiting infectious disease characterized by acute cough with or without sputum but without signs of pneumonia. About 90% of cases are caused by viruses. AREAS COVERED: Antibiotics for acute bronchitis have been associated with an approximately half...

  17. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  18. Antibiotic associated diarrhoea: Infectious causes

    Directory of Open Access Journals (Sweden)

    Ayyagari A

    2003-01-01

    Full Text Available Nearly 25% of antibiotic associated diarrhoeas (AAD is caused by Clostridium difficile, making it the commonest identified and treatable pathogen. Other pathogens implicated infrequently include Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp. and Salmonella spp. Most mild cases of AAD are due to non-infectious causes which include reduced break down of primary bile acids and decrease metabolism of carbohydrates, allergic or toxic effects of antibiotic on intestinal mucosa and pharmacological effect on gut motility. The antibiotics most frequently associated with C. difficile associated diarrhoea are clindamycin, cephalosporin, ampicillin and amoxicillin. Clinical presentation may vary from mild diarrhoea to severe colitis and pseudomembranous colitis associated with high morbidity and mortality. The most sensitive and specific diagnostic test for C. difficile infection is tissue culture assay for cytotoxicity of toxin B. Commercial ELISA kits are available. Though less sensitive, they are easy to perform and are rapid. Withdrawal of precipitating antibiotic is all that is needed for control of mild to moderate cases. For severe cases of AAD, oral metronidazole is the first line of treatment, and oral vancomycin is the second choice. Probiotics have been used for recurrent cases.

  19. Abiotic degradation of antibiotic ionophores

    DEFF Research Database (Denmark)

    Bohn, Pernille; Bak, Søren A; Björklund, Erland

    2013-01-01

    Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C f...... because they absorb light of environmentally irrelevant wavelengths....

  20. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. Copyright © 2009 Elsevier Ltd and ISBI. All rights reserved.

  1. The effect of antibiotics on diatom communities

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99...

  2. Antibiotic Prescription in Danish General Practice

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Plejdrup Hansen, Malene; Pedersen, Line Bjørnskov

    2016-01-01

    will explore how the GPs prescription behaviour is influenced by selected factors. Antibiotics are essential when treating potentially lethal infections. An increasing development of resistant bacteria is considered one of the primary threats to public health. The majority of antibiotics (90%) are prescribed...... from general practice. The prescription of broad-spectrum antibiotics can cause unnecessary side effects for the individual and increases the risk of development of bacteria resistant to antibiotic treatment. Both the prescription of broad-spectrum antibiotics and the level of resistant bacteria......1. Background & Aim The overall aim of the project is to describe antibiotic consumption in Danish general practice with emphasis on specific types of antibiotics. The project will shed light on the impact of microbiological diagnostic methods (MDM) on the choice of antibiotic and the project...

  3. Antibiotics Improve Treatment of Skin Abscesses

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166919.html Antibiotics Improve Treatment of Skin Abscesses Drainage alone resulted ... children and adults, medical experts say. Giving an antibiotic when draining the infection significantly improves recovery, a ...

  4. Antibiotic 'Report Card' Drills Guidelines into Dentists

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160702.html Antibiotic 'Report Card' Drills Guidelines Into Dentists Seeing their ... HealthDay News) -- Dentists are less likely to prescribe antibiotics for patients after seeing a "report card" on ...

  5. Evolving medicinal chemistry strategies in antibiotic discovery.

    Science.gov (United States)

    Pawlowski, Andrew C; Johnson, Jarrod W; Wright, Gerard D

    2016-12-01

    Chemical modification of synthetic or natural product antibiotic scaffolds to expand potency and spectrum and to bypass mechanisms of resistance has dominated antibiotic drug discovery and proven immensely successful. However, the inexorable evolution of drug resistance coupled with a drought in innovation in antibiotic discovery contribute to a dearth of new drugs entering to market. Better understanding of the physicochemical properties of antibiotic chemical space is required to inform new antibiotic discovery. Innovations such as the development of antibiotic adjuvants to preserve efficacy of existing drugs together with expanding antibiotic chemical diversity through synthetic biology or new techniques to mine antibiotic producing organisms, are required to bridge the growing gap between the need for new drugs and their discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Detection and analysis of plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 in carbapenem-resistant Escherichia coli%大肠埃希菌质粒型碳青霉烯酶KPC-2检测和分析

    Institute of Scientific and Technical Information of China (English)

    蒯守刚; 邵海枫; 王卫萍; 史利宁; 张小卫; 范明

    2009-01-01

    Objective To study molecular epidemiology and carbapenem-resistance mechanism of four Escherichia coli strains isolated from general surgery wards. Methods Antibiotic susceptibility was carried out by K-B gar diffusion and agar dilution methods. Carbapenemases were screened by three dimensional test and EDTA-Na_2-disk synergy test. Pulsed-field gel electropboresis (PFGE) was performed to analyze molecular epidemiology of isolates. Plasmid was extracted by using an alkalinelysis technique. Conjunction experiment, transformation assay, specific PCR and DNA sequencing were performed to confirm carbapenemase genotype and its transmission mechanism Results Four Escherichia coli isolates were resistant to most antimicrobials including carbapenem. PFGE showed that the four isolates belong to four different clonal strains. Specific PCR and DNA sequence analysis identified that carbapenem resistance in four clinical isolates was mediated by KPC-2 encoded on an approximately 56 000 bp plasmid, and this plasmid did not harbor aminoglycosides and fluorquinolones resistant genes. Conclusion Four Escherichia coli isolates with carbapenem resistance are obtained from our hospital, and KPC-2 plasmid is main cause of carbapenem resistance in these isolates.%目的 研究普外科病区出现的4株碳青霉烯类药物耐药大肠埃希菌的分子流行病学特征及耐药机制.方法 用K-B纸片法和琼脂稀释法进行药物敏感试验,三维酶抑制试验和EDTA-Na_2协同试验分析酶的性质,通过脉冲场琼脂糖凝胶电泳(PFGE)分析耐药株的分子流行病学特征,特异性PCR及序列分析、接合试验、碱裂解法提取质粒和质粒转化试验研究碳青霉烯耐药的分子机制.结果 4株大肠埃希菌对包括碳青霉烯在内的多种抗菌药物广泛耐药,PFGE显示4株分离株属于不同的克隆型,对碳青霉烯类药物的耐药主要由相对分子质量约56 000的质粒携带的KPC-2基因介导,转化试验显示对氨基

  7. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance

    Science.gov (United States)

    Obolski, Uri; Stein, Gideon Y.; Hadany, Lilach

    2015-01-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used—mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists. PMID:26110266

  8. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    Science.gov (United States)

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  9. Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Lv, Lu; Jiang, Tao; Zhang, Shenghua; Yu, Xin

    2014-07-15

    Bacterial antibiotic resistance (BAR) in drinking water has become a global issue because of its risks on the public health. Usually, the antibiotic concentrations in drinking water are too low to select antibiotic resistant strains effectively, suggesting that factors other than antibiotics would contribute to the emergence of BAR. In the current study, the impacts of mutagenic disinfection byproducts (DBPs) on BAR were explored, using four typical DBPs: dibromoacetic acid, dichloroacetonitrile, potassium bromate, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). After exposure to DBPs, resistances to 10 individual antibiotics and multiple antibiotics were both raised by various levels, norfloxacin and polymycin B resistances were enhanced even greater than 10-fold compared with control. MX increased the resistance most observably in the selected DBPs, which was consistent with its mutagenic activity. The resistant mutants showed hereditary stability during 5-day culturing. The increase of BAR was caused by the mutagenic activities of DBPs, since mutation frequency declined by adding ROS scavenger. Mutagenesis was further confirmed by sequencing of the related genes. Our study indicated that mutagenic activities of the selected DBPs could induce antibiotic resistance, even multidrug resistance, which may partially explain the lack of agreement between BAR and antibiotic levels in drinking water.

  10. Potential Confounding in Evaluating Infection-Control Interventions in Hospital Settings : Changing Antibiotic Prescription

    OpenAIRE

    Nijssen, S; Bootsma, M.C.; Bonten, M

    2006-01-01

    The colonization dynamics of antibiotic-resistant pathogens in hospital settings are complex, with multiple and continuously interacting variables (e.g., introduction of resistance, infection-control practices, antibiotic use). Quantification of these variables is indispensable in the evaluation of intervention studies, because these variables represent potential confounders. In this article, the complexity of colonization dynamics is described. Through a systematic review, we identified stud...

  11. The antibiotics relo in bacteria resistance

    OpenAIRE

    Santana, Vinicius Canato; CESUMAR

    2007-01-01

    The paper explains how antibiotics help us to combat bacteriosis, and also presents a brief historical report about the emergence of the antibiotic era with the discovery of penicillin. It introduces the problem of bacteria resistance, and brings the concept of antibiotics and its that produce these substance, and brings the concept of antibiotics and its main function. It questions about the self-defense of the organisms that produce these substances. relates the bacteria structures attacked...

  12. Acquired antibiotic resistance genes: an overview.

    Directory of Open Access Journals (Sweden)

    Angela H.A.M. van Hoek

    2011-09-01

    Full Text Available In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of antimicrobial determinants between different bacteria.

  13. Acquired antibiotic resistance genes: an overview.

    OpenAIRE

    Hoek, Angela H.A.M. van; Dik eMevius; Beatriz eGuerra; Peter eMullany; Adam Paul Roberts; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of anti...

  14. Squalamine: an aminosterol antibiotic from the shark.

    OpenAIRE

    1993-01-01

    In recent years, a variety of low molecular weight antibiotics have been isolated from diverse animal species. These agents, which include peptides, lipids, and alkaloids, exhibit antibiotic activity against environmental microbes and are thought to play a role in innate immunity. We report here the discovery of a broad-spectrum steroidal antibiotic isolated from tissues of the dogfish shark Squalus acanthias. This water-soluble antibiotic, which we have named squalamine, exhibits potent bact...

  15. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  16. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    1998-01-01

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  17. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  18. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    1998-01-01

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  19. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, E.; Rurenga, P.; Singadji, Z.; Wekema-Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  20. New business models for antibiotic innovation.

    Science.gov (United States)

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  1. Pipeline of Known Chemical Classes of Antibiotics

    Directory of Open Access Journals (Sweden)

    Cristina d'Urso de Souza Mendes

    2013-12-01

    Full Text Available Many approaches are used to discover new antibiotic compounds, one of the most widespread being the chemical modification of known antibiotics. This type of discovery has been so important in the development of new antibiotics that most antibiotics used today belong to the same chemical classes as antibiotics discovered in the 1950s and 1960s. Even though the discovery of new classes of antibiotics is urgently needed, the chemical modification of antibiotics in known classes is still widely used to discover new antibiotics, resulting in a great number of compounds in the discovery and clinical pipeline that belong to existing classes. In this scenario, the present article presents an overview of the R&D pipeline of new antibiotics in known classes of antibiotics, from discovery to clinical trial, in order to map out the technological trends in this type of antibiotic R&D, aiming to identify the chemical classes attracting most interest, their spectrum of activity, and the new subclasses under development. The result of the study shows that the new antibiotics in the pipeline belong to the following chemical classes: quinolones, aminoglycosides, macrolides, oxazolidinones, tetracyclines, pleuromutilins, beta-lactams, lipoglycopeptides, polymyxins and cyclic lipopeptides.

  2. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... in hospitals and in the community, and reducing antibiotic use in animal farming and agriculture. Experts agree that a global ... causing bacteria. In addition, non-therapeutic uses of antibiotics in farm animals and agriculture should be eliminated. Can new antibiotics ...

  3. Antibiotics: MedlinePlus Health Topic

    Science.gov (United States)

    ... not using them properly, can add to antibiotic resistance . This happens when bacteria change and become able to resist the effects of ... Pseudomembranous colitis Sensitivity analysis Related Health Topics Antibiotic ... The primary NIH organization for research on Antibiotics is the National Institute ...

  4. Antibiotic use: how to improve it?

    NARCIS (Netherlands)

    Hulscher, M.E.J.L.; Meer, J.W.M. van der; Grol, R.P.T.M.

    2010-01-01

    Antibiotics are an extremely important weapon in the fight against infections. However, antimicrobial resistance is a growing problem. That is why the appropriate use of antibiotics is of great importance. A proper analysis of factors influencing appropriate antibiotic use is at the heart of an

  5. Delivery of antibiotics with polymeric particles.

    Science.gov (United States)

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  6. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    2003-01-01

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption w

  7. Response to "Antibiotic Use and Resistance"

    DEFF Research Database (Denmark)

    Malo, Sara; Rabanaque, María José; Feja, Christina;

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption ...

  8. Influence of population density on antibiotic resistance

    NARCIS (Netherlands)

    Bruinsma, N; Hutchinson, JM; van den Bogaard, AE; Giamarellou, H; Degener, J; Stobberingh, EE

    Antibiotic consumption and population density as a measure of crowding in the community were related to the prevalence of antibiotic resistance of three cities in three different countries: St Johns in Newfoundland (Canada), Athens in Greece and Groningen in The Netherlands. Antibiotic consumption

  9. How can we improve antibiotic prescribing in primary care?

    NARCIS (Netherlands)

    Dyar, Oliver J.; Beović, Bojana; Vlahović-Palčevski, Vera; Verheij, Theo; Pulcini, Céline

    2016-01-01

    Antibiotic stewardship is a necessity given the worldwide antimicrobial resistance crisis. Outpatient antibiotic use represents around 90% of total antibiotic use, with more than half of these prescriptions being either unnecessary or inappropriate. Efforts to improve antibiotic prescribing need to

  10. Trends in Antibiotic Prescribing in Adults in Dutch General Practice

    NARCIS (Netherlands)

    M.B. Haeseker (Michiel); N.H.T.M. Dukers-Muijrers (Nicole); C.J.P.A. Hoebe (Christian); C.A. Bruggeman (Cathrien); J.W.L. Cals (Jochen); A. Verbon (Annelies)

    2012-01-01

    textabstractBackground: Antibiotic consumption is associated with adverse drug events (ADE) and increasing antibiotic resistance. Detailed information of antibiotic prescribing in different age categories is scarce, but necessary to develop strategies for prudent antibiotic use. The aim of this

  11. How can we improve antibiotic prescribing in primary care?

    NARCIS (Netherlands)

    Dyar, Oliver J.; Beović, Bojana; Vlahović-Palčevski, Vera; Verheij, Theo; Pulcini, Céline

    2016-01-01

    Antibiotic stewardship is a necessity given the worldwide antimicrobial resistance crisis. Outpatient antibiotic use represents around 90% of total antibiotic use, with more than half of these prescriptions being either unnecessary or inappropriate. Efforts to improve antibiotic prescribing need to

  12. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void?

    Science.gov (United States)

    Brown, David

    2015-12-01

    Concern over antibiotic resistance is growing, and new classes of antibiotics, particularly against Gram-negative bacteria, are needed. However, even if the scientific hurdles can be overcome, it could take decades for sufficient numbers of such antibiotics to become available. As an interim solution, antibiotic resistance could be 'broken' by co-administering appropriate non-antibiotic drugs with failing antibiotics. Several marketed drugs that do not currently have antibacterial indications can either directly kill bacteria, reduce the antibiotic minimum inhibitory concentration when used in combination with existing antibiotics and/or modulate host defence through effects on host innate immunity, in particular by altering inflammation and autophagy. This article discusses how such 'antibiotic resistance breakers' could contribute to reducing the antibiotic resistance problem, and analyses a priority list of candidates for further investigation.

  13. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics.

    Science.gov (United States)

    Wong, Weng Ruh; Oliver, Allen G; Linington, Roger G

    2012-11-21

    Despite recognition of the looming antibiotic crisis by healthcare professionals, the number of new antibiotics reaching the clinic continues to decline sharply. This study aimed to establish an antibiotic profiling strategy using a panel of clinically relevant bacterial strains to create unique biological fingerprints for all major classes of antibiotics. Antibiotic mode of action profile (BioMAP) screening has been shown to effectively cluster antibiotics by structural class based on these fingerprints. Using this approach, we have accurately predicted the presence of known antibiotics in natural product extracts and have discovered a naphthoquinone-based antibiotic from our marine natural product library that possesses a unique carbon skeleton. We have demonstrated that bioactivity fingerprinting is a successful strategy for profiling antibiotic lead compounds and that BioMAP can be applied to the discovery of new natural product antibiotics leads. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Failure of antibiotic therapy in acute otitis media.

    Science.gov (United States)

    Babin, Emmanuel; Lemarchand, Vincent; Moreau, Sylvain; Goullet de Rugy, Marc; Valdazo, André; Bequignon, Arnaud

    2003-03-01

    The aim of this retrospective study was to determine the possible causes of failure of antibiotic therapy in children with acute otitis media (AOM). Thirty-nine samples of middle-ear fluid were obtained by myringotomy from 31 children suffering from AOM, unrelieved by antibiotic therapy administered for over 48 hours. The samples were analysed by the usual microbiological techniques, including cultures, tests for beta-lactamase producing strains and the determination of the minimal inhibitory concentration of penicillin for Streptococcus pneumoniae. In 14 samples, no bacterial strains were detected in the cultures of middle-ear fluid; and in two samples the cultures revealed two strains of bacteria. The bacteria most frequently identified were Haemophilus influenzae, found in 11 samples, and Streptococcus pneumoniae, found in seven samples, of which four produced strains with reduced susceptibility to penicillin. The failure of antibiotic therapy in AOM appears to be related to the increased resistance of Haemophilus influenzae and to the reduced susceptibility of Streptococcus pneumoniae to penicillin. Other factors contributing to the failure of antibiotic therapy in AOM may be the viruses or the bacteria that produce multiple pathogens in the middle ear.

  15. Intratubular disinfection with tri-antibiotic and calcium hydroxide pastes.

    Science.gov (United States)

    Pereira, Thais Cristina; Vasconcelos, Layla Reginna Silva Munhoz De; Graeff, Marcia Sirlene Zardin; Duarte, Marco Antonio Hungaro; Bramante, Clóvis Monteiro; Andrade, Flaviana Bombarda De

    2017-03-01

    The aim of this study was to compare the in vitro intradentinal antimicrobial ability of the calcium hydroxide and tri-antibiotic pastes. Standard bovine dentin tubes were sterilized and then infected with Enterococcus faecalis by a new contamination protocol of great depths of dentin. The specimens were filled with the medications, divided into two test-groups: calcium hydroxide (Group 1) and tri-antibiotic (Group 2) pastes. After 15 days, the teeth were evaluated by microbiological culture and confocal laser scanning microscopy (CLSM) with viability dye assay LIVE/DEAD inside dentinal tubules. In experiment of culture, the bacterial collection of the dentin fragments was done for counting the colony-forming units. The tri-antibiotic paste had a slightly greater antimicrobial effect; however, there was no statistical difference between the groups. It was concluded that the tri-antibiotic paste and the calcium hydroxide paste exercise the same effect on intra-tubular decontamination against E. faecalis. So, due the multiples advantages, the calcium hydroxide paste can be the choice for dentinal decontamination in regenerative procedures.

  16. Helicobacter pylori and Antibiotic Resistance, A Continuing and Intractable Problem.

    Science.gov (United States)

    Hu, Yue; Zhang, Meng; Lu, Bin; Dai, Jinfeng

    2016-10-01

    Helicobacter pylori, a human pathogen with a high global prevalence, is the causative pathogen for multiple gastrointestinal diseases, especially chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric malignancies. Antibiotic therapies remain the mainstay for H. pylori eradication; however, this strategy is hampered by the emergence and spread of H. pylori antibiotic resistance. Exploring the mechanistic basis of this resistance is becoming one of the major research questions in contemporary biomedical research, as such knowledge could be exploited to devise novel rational avenues for counteracting the existing resistance and devising strategies to avoid the development of a novel anti-H. pylori medication. Encouragingly, important progress in this field has been made recently. Here, we attempt to review the current state and progress with respect to the molecular mechanism of antibiotic resistance for H. pylori. A picture is emerging in which mutations of various genes in H. pylori, resulting in decreased membrane permeability, altered oxidation-reduction potential, and a more efficient efflux pump system. The increased knowledge on these mechanisms produces hope that antibiotic resistance in H. pylori can ultimately be countered. © 2016 John Wiley & Sons Ltd.

  17. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance

    OpenAIRE

    Nishant A. Dafale; Uttam P. Semwal; Rupak K. Rajput; Singh, G. N.

    2016-01-01

    Antibiotics are the chemotherapeutic agents that kill or inhibit the pathogenic microorganisms. Resistance of microorganism to antibiotics is a growing problem around the world due to indiscriminate and irrational use of antibiotics. In order to overcome the resistance problem and to safely use antibiotics, the correct measurement of potency and bioactivity of antibiotics is essential. Microbiological assay and high performance liquid chromatography (HPLC) method are used to quantify the pote...

  18. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery

    Science.gov (United States)

    Gower, Emily W; Lindsley, Kristina; Nanji, Afshan A; Leyngold, Ilya; McDonnell, Peter J

    2014-01-01

    review authors independently reviewed abstracts and full-text articles for eligibility, assessed the risk of bias for each included study, and abstracted data. Main results Four studies met the inclusion criteria for this review, including 100,876 adults and 131 endophthalmitis cases. While the sample size is very large, the heterogeneity of the study designs and modes of antibiotic delivery made it impossible to conduct a formal meta-analysis. Interventions investigated in the studies included the utility of adding vancomycin and gentamycin to the irrigating solution compared with standard balanced saline solution irrigation alone, use of intracameral cefuroxime and/or topical levofloxacin perioperatively, periocular penicillin injections and topical chloramphenicol-sulphadimidine drops compared with topical antibiotics alone, and mode of antibiotic delivery (subconjunctival versus retrobulbar injections). Two studies with adequate sample sizes to evaluate a rare outcome found reduced risk of endophthalmitis with antibiotic injections during surgery compared with topical antibiotics alone: risk ratio (RR) 0.33, 95% confidence interval (CI) 0.12 to 0.92 (periocular penicillin versus topical chloramphenicol-sulphadimidine) and RR 0.21, 95% CI 0.06 to 0.74 (intracameral cefuroxime versus topical levofloxacin). Another study found no significant difference in endophthalmitis when comparing subconjunctival versus retrobulbar antibiotic injections (RR 0.85, 95% CI 0.55 to 1.32). The fourth study which compared irrigation with balanced salt solution (BSS) alone versus BSS with antibiotics was not sufficiently powered to detect differences in endophthalmitis between groups. The risk of bias among studies was low to unclear due to information not being reported. Authors' conclusions Multiple measures for preventing endophthalmitis following cataract surgery have been studied. One of the included studies, the ESCRS (European Society of Cataract and Refractive Surgeons) study, was

  19. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  20. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  1. [Action of antibiotics as signalling molecules].

    Science.gov (United States)

    Bulgakova, V G; Vinogradova, K A; Orlova, T I; Kozhevin, P A; Polin, A N

    2014-01-01

    It was thought that antibiotics should be produced by soil microorganisms to inhibit the growth of competitors in natural habitats. Yet it has been shown that antibiotics at subinhibitory concentrations may have a role as signalling molecules providing cell-to-cell communication in bacteria in the environment. Antibiotics modulate gene transcription and regulate gene expression in microbial populations. Subinhibitory concentrations of antibiotics may cause a number of phenotypic and genotypic changes in microorganisms. These transcription changes are dependent on the interaction of antibiotics with macromolecular receptors such as ribosome or RNA-polymerase. Antibiotic signalling and quorum-sensing system are important regulatory mechanisms in bacteria. It was demonstrated that antibiotics interfered with quorum-sensing system.

  2. Antibiotic resistance in cancer patients.

    Science.gov (United States)

    Gudiol, Carlota; Carratalà, Jordi

    2014-08-01

    Bacterial infection is one of the most frequent complications in cancer patients and hematopoietic stem cell transplant recipients. In recent years, the emergence of antimicrobial resistance has become a significant problem worldwide, and cancer patients are among those affected. Treatment of infections due to multidrug-resistant (MDR) bacteria represents a clinical challenge, especially in the case of Gram-negative bacilli, since the therapeutic options are often very limited. As the antibiotics active against MDR bacteria present several disadvantages (limited clinical experience, higher incidence of adverse effects, and less knowledge of the pharmacokinetics of the drug), a thorough acquaintance with the main characteristics of these drugs is mandatory in order to provide safe treatment to cancer patients with MDR bacterial infections. Nevertheless, the implementation of antibiotic stewardship programs and infection control measures is the cornerstone for controlling the development and spread of these MDR pathogens.

  3. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years......Since the discovery and clinical application of antibiotics, pathogens and the human microbiota have faced a near continuous exposure to these selective agents. A well-established consequence of this exposure is the evolution of multidrug-resistant pathogens, which can become virtually untreatable....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...

  4. Concomitant Antibiotic and Mercury Resistance Among Gastrointestinal Microflora of Feral Brook Trout, Salvelinus fontinalis

    Science.gov (United States)

    Meredith, Matthew M.; Parry, Erin M.; Guay, Justin A.; Markham, Nicholas O.; Danner, G. Russell; Johnson, Keith A.; Barkay, Tamar; Fekete, Frank A.

    2013-01-01

    Twenty-nine bacterial isolates representing eight genera from the gastrointestinal tracts of feral brook trout Salvelinus fontinalis (Mitchell) demonstrated multiple maximal antibiotic resistances and concomitant broad-spectrum mercury (Hg) resistance. Equivalent viable plate counts on tryptic soy agar supplemented with either 0 or 25 μM HgCl2 verified the ubiquity of mercury resistance in this microbial environment. Mercury levels in lake water samples measured 1.5 ng L−1; mercury concentrations in fish filets ranged from 81.8 to 1,080 ng g−1 and correlated with fish length. The presence of similar antibiotic and Hg resistance patterns in multiple genera of gastrointestinal microflora supports a growing body of research that multiple selective genes can be transferred horizontally in the presence of an unrelated individual selective pressure. We present data that bioaccumulation of non-point source Hg pollution could be a selective pressure to accumulate both antibiotic and Hg resistant bacteria. PMID:22850694

  5. Bacterial vaccines and antibiotic resistance

    OpenAIRE

    Henriques-Normark, Birgitta; Normark, Staffan

    2014-01-01

    Spread of antibiotic resistance is mediated by clonal lineages of bacteria that besides being resistant also possess other properties promoting their success. Some vaccines already in use, such as the pneumococcal conjugate vaccines, have had an effect on these successful clones, but at the same time have allowed for the expansion and resistance evolution of previously minor clones not covered by the vaccine. Since resistance frequently is horizontally transferred it will be difficult to gene...

  6. Computational Analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics

    Science.gov (United States)

    Sarkar, Aurijit; Anderson, Kelcey C.; Kellogg, Glen E.

    2012-01-01

    AcrA-AcrB-TolC efflux pumps extrude drugs of multiple classes from bacterial cells and are a leading cause for antimicrobial resistance. Thus, they are of paramount interest to those engaged in antibiotic discovery. Accurate prediction of antibiotic efflux has been elusive, despite several studies aimed at this purpose. Minimum inhibitory concentration (MIC) ratios of 32 β-lactam antibiotics were collected from literature. 3-Dimensional Quantitative Structure Activity Relationship on the β-lactam antibiotic structures revealed seemingly predictive models (q2 = 0.53), but the lack of a general superposition rule does not allow its use on antibiotics that lack the β-lactam moiety. Since MIC ratios must depend on interactions of antibiotics with lipid membranes and transport proteins during influx, capture and extrusion of antibiotics from the bacterial cell, descriptors representing these factors were calculated and used in building mathematical models that quantitatively classify antibiotics as having high/low efflux (>93% accuracy). Our models provide preliminary evidence that it is possible to predict the effects of antibiotic efflux if the passage of antibiotics into, and out of, bacterial cells is taken into account – something descriptor and field-based QSAR models cannot do. While the paucity of data in the public domain remains the limiting factor in such studies, these models show significant improvements in predictions over simple LogP-based regression models and should pave the path towards further work in this field. This method should also be extensible to other pharmacologically and biologically relevant transport proteins. PMID:22483632

  7. Sources of antibiotics: Hot springs.

    Science.gov (United States)

    Mahajan, Girish B; Balachandran, Lakshmi

    2017-06-15

    The discovery of antibiotics heralded an era of improved health care. However, the over-prescription and misuse of antibiotics resulted in the development of resistant strains of various pathogens. Since then, there has been an incessant search for discovering novel compounds from bacteria at various locations with extreme conditions. The soil is one of the most explored locations for bioprospecting. In recent times, hypersaline environments and symbiotic associations have been investigated for novel antimicrobial compounds. Among the extreme environments, hot springs are comparatively less explored. Many researchers have reported the presence of microbial life and secretion of antimicrobial compounds by microorganisms in hot springs. A pioneering research in the corresponding author's laboratory resulted in the identification of the antibiotic Fusaricidin B isolated from a hot spring derived eubacteria, Paenibacillus polymyxa, which has been assigned a new application for its anti-tubercular properties. The corresponding author has also reported anti-MRSA and anti-VRE activity of 73 bacterial isolates from hot springs in India. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Desensitization to antibiotics in children.

    Science.gov (United States)

    Cernadas, Josefina R

    2013-02-01

    Drug hypersensitivity reactions can occur to almost all drugs and antibiotics are among the most common cause for this kind of reactions. Drug hypersensitivity may affect any organ or system, and manifestations range widely in clinical severity from mild pruritus to anaphylaxis. In most cases, the suspected drug is avoided in the future. In case of infection, there is usually a safe antibiotic alternative. Nonetheless, in some cases, no alternative treatment exists for optimal therapy. Under these circumstances, desensitization may be performed. Drug desensitization is defined as the induction of a temporary state of tolerance to a drug which can only be maintained by continuous administration of the medication responsible for the hypersensitivity reaction. Desensitization is mainly performed in IgE-mediated reactions. Increasing doses of the implicated drug are administered over a short period of time, until the therapeutic dose is achieved and tolerated. Very few studies confined to children are found in literature. Most of them are case reports. In general, the proposed desensitization schemes are similar to those used in adults differing only in the final dose administered. The purpose of this study is to review desensitization to antibiotics in children presenting and discussing three clinical practical cases of desensitization in this age group. © 2012 John Wiley & Sons A/S.

  9. Relationship Between Multiple Point Sequence Typing of Acinetobacter Bauman and the Phenotype of Antibiotic Resistance%鲍曼不动杆菌多位点序列分型与抗生素耐药表型的关系分析

    Institute of Scientific and Technical Information of China (English)

    金瓯

    2015-01-01

    Objective To analyze the relationship between the multiple point sequence typing of acinetobacter bauman and the phenotype of antibiotic resistance. Methods The molecular epidemiological analysis of 101 strains of non repetitive bauman was colected from November 2013 to October 2014 in our hospital.Results 101 strains of acinetobacter baumannii were divided into 10 types of ST,to CC92 for maximum clonal complex,polymyxin B susceptibility rate reached 100%. The proportion of CC92 and non XDR CC92 was significantly higher than that of MDR(P0.05).Conclusion This may be related to the high adaptability of the hospital environment,but there is no significant difference between and non CC92 strains.%目的:分析鲍曼不动杆菌多位点序列分型及其与抗生素耐药表型之间的关系。方法选取我院2013年11月~到2014年10月收集到的非重复性鲍曼不动杆菌101株进行分子流行病学分型分析。结果101株鲍曼不动杆菌共分为10个ST型,以CC92为最大的克隆复合体,多黏菌素B的敏感率达到100.0%。优势克隆CC92与非CC92的XDR菌株比例均高于MDR菌株(P<0.05),但CC92与非CC92各自的MDR菌株、XDR菌株比例比较无差异(P>0.05)。结论鲍曼不动杆菌中,这可能与其对医院环境的高度适应性有关;但在耐药性上,其与非CC92菌株并无差异,医院环境的适应性等与CC92的流行可能存在密切的关系。

  10. [New aspects of antibiotic resistance and possibilities of its prevention].

    Science.gov (United States)

    Blahová, J; Králiková, K; Krcméry, V

    2001-08-01

    New phenomena of the antibiotic resistance in bacteria have recently appeared. The may hold present explosive development of resistance and prevent its transferability from multiple drug resistant bacteria to still sensitive ones. They may prevent the production of so-called extended-spectrum beta-lactamases (ESBLs) among Enterobacteriaceae producing resistance virtually to all penicillins and cephalosporins with exception of those antibiotics potentiated by clavulanic acid or sulbactam, the resistance to vancomycin in enterococci and staphylococce, and the resistance of Stenotrophomonas maltophilia. Factors participating on the development of resistance include: a) transferability of resistance genes among bacteria which explosively change susceptible strains to resistant ones, b) dosage and types of antibiotics which cause the selection pressure to certain species of bacteria, c) level of organization and strict adherence to hygienic and anti-epidemic regimen starting with the entry of patients into the hospital. Analyses are necessary to check whether the patient brings resistant bacteria with a transferable resistance (with ESBLs) into the hospital. Preventive measures would be strictly applied to stop the clonal spread of resistant strains among the patients and/or hospital environment, which occurs if these strains have such opportunity. Last, but not least to be considered is the dosage, composition and rationality of administration of antibacterials, mainly in post-operative prophylaxis in intensive care units, in so-called empirical usage, etc. At the same time, it would be highly unethical to hesitate with application of antibacterials to patients when it is justified, necessary and rational. Hospital antibiotics policy should rationally decide between these alternatives in each application of antibiotics or their combinations.

  11. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.

    Science.gov (United States)

    Huh, Ae Jung; Kwon, Young Jik

    2011-12-10

    Despite the fact that we live in an era of advanced and innovative technologies for elucidating underlying mechanisms of diseases and molecularly designing new drugs, infectious diseases continue to be one of the greatest health challenges worldwide. The main drawbacks for conventional antimicrobial agents are the development of multiple drug resistance and adverse side effects. Drug resistance enforces high dose administration of antibiotics, often generating intolerable toxicity, development of new antibiotics, and requests for significant economic, labor, and time investments. Recently, nontraditional antibiotic agents have been of tremendous interest in overcoming resistance that is developed by several pathogenic microorganisms against most of the commonly used antibiotics. Especially, several classes of antimicrobial nanoparticles (NPs) and nanosized carriers for antibiotics delivery have proven their effectiveness for treating infectious diseases, including antibiotics resistant ones, in vitro as well as in animal models. This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

  12. Antibiotics Resistance in Rhizobium: Type, Process, Mechanism and Benefit for Agriculture.

    Science.gov (United States)

    Naamala, Judith; Jaiswal, Sanjay K; Dakora, Felix D

    2016-06-01

    The use of high-quality rhizobial inoculants on agricultural legumes has contributed substantially to the N economy of farming systems through inputs from biological nitrogen fixation (BNF). Large populations of symbiotically effective rhizobia should be available in the rhizosphere for symbiotic BNF with host plants. The rhizobial populations should also be able to compete and infect host plants. However, the rhizosphere comprises large populations of different microorganisms. Some of these microorganisms naturally produce antibiotics which are lethal to susceptible rhizobial populations in the soil. Therefore, intrinsic resistance to antibiotics is a desirable trait for the rhizobial population. It increases the rhizobia's chances of growth, multiplication and persistence in the soil. With a large population of rhizobia in the soil, infectivity of host plants and the subsequent BNF efficiency can be guaranteed. This review, therefore, puts together findings by various researchers on antibiotic resistance in bacteria with the main emphasis on rhizobia. It describes the different modes of action of different antibiotics, the types of antibiotic resistance exhibited by rhizobia, the mechanisms of acquisition of antibiotic resistance in rhizobia and the levels of tolerance of different rhizobial species to different antibiotics.

  13. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  14. Antibiotic resistance differentiates Echinacea purpurea endophytic bacterial communities with respect to plant organs.

    Science.gov (United States)

    Mengoni, Alessio; Maida, Isabel; Chiellini, Carolina; Emiliani, Giovanni; Mocali, Stefano; Fabiani, Arturo; Fondi, Marco; Firenzuoli, Fabio; Fani, Renato

    2014-10-01

    Recent findings have shown that antibiotic resistance is widespread in multiple environments and multicellular organisms, as plants, harboring rich and complex bacterial communities, could be hot spot for emergence of antibiotic resistances as a response to bioactive molecules production by members of the same community. Here, we investigated a panel of 137 bacterial isolates present in different organs of the medicinal plant Echinacea purpurea, aiming to evaluate if different plant organs harbor strains with different antibiotic resistance profiles, implying then the presence of different biological interactions in the communities inhabiting different plant organs. Data obtained showed a large antibiotic resistance variability among strains, which was strongly related to the different plant organs (26% of total variance, P < 0.0001). Interestingly this uneven antibiotic resistance pattern was present also when a single genus (Pseudomonas), ubiquitous in all organs, was analyzed and no correlation of antibiotic resistance pattern with genomic relatedness among strains was found. In conclusion, we speculate that antibiotic resistance patterns are tightly linked to the type of plant organ under investigation, suggesting the presence of differential forms of biological interaction in stem/leaves, roots and rhizosphere. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Skin testing and drug challenge outcomes in antibiotic-allergic patients with immediate-type hypersensitivity.

    Science.gov (United States)

    Mawhirt, Stephanie L; Fonacier, Luz S; Calixte, Rose; Davis-Lorton, Mark; Aquino, Marcella R

    2017-01-01

    The evaluation of antibiotic immediate-type hypersensitivity is intricate because of nonstandardized skin testing and challenge method variability. To determine the safety outcomes and risk factors for antibiotic challenge reactions in patients reporting a history of antibiotic immediate-type hypersensitivity. A 5-year retrospective review of patients evaluated for immediate-type antibiotic allergy was conducted. Data analyzed included patient demographics, index reaction details, and outcomes of skin testing and challenges, classified as single-step or multistep. Antibiotic hypersensitivity history was identified in 211 patients: 78% to penicillins, 10% to fluoroquinolones, 7.6% to cephalosporins, and 3.8% to carbapenems. In total, 179 patients completed the challenges (median age 67 years, range 50-76 years, 56% women), and compared with nonchallenged patients, they reported nonanaphylactic (P antibiotic allergies (P = .005). No correlation was detected between the reported index and observed challenge reaction severities (κ = -0.05, 95% confidence interval -0.34 to 0.24). Anaphylactic rates were similar during single-step and multistep challenges (3.6% vs 3.3%). In the present population, younger women with multiple reported antibiotic allergies were at greatest risk for challenge reactions. Negative skin testing results did not exclude reactions, and index severity was not predictive of challenge outcome. The multistep and full-dose methods demonstrated a comparable reaction risk for anaphylaxis. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in Natal, Brazil

    Directory of Open Access Journals (Sweden)

    Ligia Maria Rodrigues de Melo

    2011-12-01

    Full Text Available Ten out of fifty fresh and refrigerated samples of shrimp (Litopenaeus vannamei collected from retailers in Natal (Rio Grande do Norte, Northeastern Brazil tested positive for Vibrio parahaemolyticus. The Kanagawa test and multiplex PCR assays were used to detect TDH and TRH hemolysins and the tdh, trh and tlh genes, respectively. All strains were Kanagawa-negative and tlh-positive. Antibiotic susceptibility testing was done for seven antibiotics by the agar diffusion technique. Five strains (50% presented multiple antibiotic resistance to ampicillin (90% and amikacin (60%, while two strains (20% displayed intermediate-level resistance to amikacin. All strains were sensitive to chloramphenicol. Intermediate-level susceptibility and/or resistance to other antibiotics ranged from 10 to 90%, with emphasis on the observed growing intermediate-level resistance to ciprofloxacin. Half our isolates yielded a multiple antibiotic resistance index above 0.2 (range: 0.14-0.29, indicating a considerable risk of propagation of antibiotic resistance throughout the food chain.

  17. Pneumonia due to Pseudomonas aeruginosa: part II: antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy.

    Science.gov (United States)

    Sun, Hsin-Yun; Fujitani, Shigeki; Quintiliani, Richard; Yu, Victor L

    2011-05-01

    Pseudomonas aeruginosa carries a notably higher mortality rate than other pneumonia pathogens. Because of its multiple mechanisms of antibiotic resistance, therapy has always been challenging. This problem has been magnified in recent years with the emergence of multidrug-resistant (MDR) pathogens often unharmed by almost all classes of antimicrobials. The objective of this article is to assess optimal antimicrobial therapy based on in vitro activity, animal studies, and pharmacokinetic/pharmacodynamic (PK/PD) observations so that evidence-based recommendations can be developed to maximize favorable clinical outcomes. Mechanisms of antimicrobial resistance of P aeruginosa are reviewed. A selective literature review of laboratory studies, PK/PD concepts, and controlled clinical trials of antibiotic therapy directed at P aeruginosa pneumonia was performed. P aeruginosa possesses multiple mechanisms for inducing antibiotic resistance to antimicrobial agents. Continuous infusion of antipseudomonal β-lactam antibiotics enhances bacterial killing. Although the advantages of combination therapy remain contentious, in vitro and animal model studies plus selected meta-analyses of clinical trials support its use, especially in the era of MDR. Colistin use and the role of antibiotic aerosolization are reviewed. An evidence-based algorithmic approach based on severity of illness, Clinical Pulmonary Infection Score, and combination antibiotic therapy is presented; clinical outcomes may be improved, and the emergence of MDR pathogens should be minimized with this approach.

  18. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review.

    Science.gov (United States)

    Elmahdi, Sara; DaSilva, Ligia V; Parveen, Salina

    2016-08-01

    Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood associated infections and mortality in the United States. The main syndromes caused by these pathogens are gastroenteritis, wound infections, and septicemia. This article reviewed the antibiotic resistance profile of V. parahaemolyticus and V. vulnificus in the United States and other countries including Italy, Brazil, Philippines, Malaysia, Thailand, China, India, Iran, South Africa and Australia. The awareness of antimicrobial resistance of these two pathogens is not as well documented as other foodborne bacterial pathogens. Vibrio spp. are usually susceptible to most antimicrobials of veterinary and human significance. However, many studies reported that V. vulnificus and V. parahaemolyticus showed multiple-antibiotic resistance due to misuse of antibiotics to control infections in aquaculture production. In addition, both environmental and clinical isolates showed similar antibiotic resistance profiles. Most frequently observed antibiotic resistance profiles involved ampicillin, penicillin and tetracycline regardless of the countries. The presence of multiple-antibiotic resistant bacteria in seafood and aquatic environments is a major concern in fish and shellfish farming and human health. Copyright © 2016. Published by Elsevier Ltd.

  19. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  20. Senescence and antibiotic resistance in an age-structured population model.

    Science.gov (United States)

    De Leenheer, Patrick; Dockery, Jack; Gedeon, Tomás; Pilyugin, Sergei S

    2010-10-01

    Different theories have been proposed to understand the growing problem of antibiotic resistance of microbial populations. Here we investigate a model that is based on the hypothesis that senescence is a possible explanation for the existence of so-called persister cells which are resistant to antibiotic treatment. We study a chemostat model with a microbial population which is age-structured and show that if the growth rates of cells in different age classes are sufficiently close to a scalar multiple of a common growth rate, then the population will globally stabilize at a coexistence steady state. This steady state persists under an antibiotic treatment if the level of antibiotics is below a certain threshold; if the level exceeds this threshold, the washout state becomes a globally attracting equilibrium.