WorldWideScience

Sample records for plasmid maintenance genes

  1. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme.

    Science.gov (United States)

    Hancock, Steven J; Phan, Minh-Duy; Peters, Kate M; Forde, Brian M; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Paterson, David L; Walsh, Timothy R; Beatson, Scott A; Schembri, Mark A

    2017-02-01

    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including bla CMY and bla NDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a bla NDM-1 -positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of bla NDM -positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this bla NDM -containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies. Copyright © 2017 American Society for Microbiology.

  2. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene

    NARCIS (Netherlands)

    Heidekamp, F.; Dirkse, W.G.; Hille, J.; Ormondt, H. van

    1983-01-01

    The nucleotide sequence of the tmr gene, encoded by the octopine Ti plasmid from Agrobacterium tumefaciens (pTiAch5), was determined. The T-DNA, which encompasses this gene, is involved in tumor formation and maintenance, and probably mediates the cytokinin-independent growth of transformed plant

  3. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  4. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium-Copy Number Plasmids in Escherichia coli.

    Science.gov (United States)

    Ali, Syed A; Chew, Yik Wei

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium-copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium-copy number plasmid vectors in E. coli.

  5. Origin and Evolution of Rickettsial Plasmids.

    Directory of Open Access Journals (Sweden)

    Khalid El Karkouri

    Full Text Available Rickettsia species are strictly intracellular bacteria that have undergone a reductive genomic evolution. Despite their allopatric lifestyle, almost half of the 26 currently validated Rickettsia species have plasmids. In order to study the origin, evolutionary history and putative roles of rickettsial plasmids, we investigated the evolutionary processes that have shaped 20 plasmids belonging to 11 species, using comparative genomics and phylogenetic analysis between rickettsial, microbial and non-microbial genomes.Plasmids were differentially present among Rickettsia species. The 11 species had 1 to 4 plasmid (s with a size ranging from 12 kb to 83 kb. We reconstructed pRICO, the last common ancestor of the current rickettsial plasmids. pRICO was vertically inherited mainly from Rickettsia/Orientia chromosomes and diverged vertically into a single or multiple plasmid(s in each species. These plasmids also underwent a reductive evolution by progressive gene loss, similar to that observed in rickettsial chromosomes, possibly leading to cryptic plasmids or complete plasmid loss. Moreover, rickettsial plasmids exhibited ORFans, recent gene duplications and evidence of horizontal gene transfer events with rickettsial and non-rickettsial genomes mainly from the α/γ-proteobacteria lineages. Genes related to maintenance and plasticity of plasmids, and to adaptation and resistance to stress mostly evolved under vertical and/or horizontal processes. Those involved in nucleotide/carbohydrate transport and metabolism were under the influence of vertical evolution only, whereas genes involved in cell wall/membrane/envelope biogenesis, cycle control, amino acid/lipid/coenzyme and secondary metabolites biosynthesis, transport and metabolism underwent mainly horizontal transfer events.Rickettsial plasmids had a complex evolution, starting with a vertical inheritance followed by a reductive evolution associated with increased complexity via horizontal gene

  6. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  7. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans.

    Science.gov (United States)

    Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik

    2015-09-01

    The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. ADA1 and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho- mutagenesis

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Gerasimova, A.S.; Chekhuta, I.A.; Devin, A.B.

    2002-01-01

    An increase in the mitochondrial (mt) rho - mutagenesis is a well-known response of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho - mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho - mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well on cell sensitivity to ionizing radiation are also described. (author)

  9. Investigation of diversity of plasmids carrying the blaTEM-52 gene

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria; Bergenholtz, Rikke D.; Jørgensen, Mikael Skaanning

    2011-01-01

    OBJECTIVES: To investigate the diversity of plasmids that carry blaTEM-52 genes among Escherichia coli and Salmonella enterica originating from animals, meat products and humans. METHODS: A collection of 22 blaTEM-52-encoding plasmids was characterized by restriction fragment length polymorphism...... of self-transfer to a plasmid-free E. coli recipient. CONCLUSIONS: The blaTEM-52 gene found in humans could have been transmitted on transferable plasmids originating from animal sources. Some of the blaTEM-52 plasmids carry replicons that differ from the classical ones. Two novel replicons were detected...

  10. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr.

    Science.gov (United States)

    Zhang, Wan-Jiang; Xu, Xing-Ran; Schwarz, Stefan; Wang, Xiu-Mei; Dai, Lei; Zheng, Hua-Jun; Liu, Siguo

    2014-02-01

    To determine the complete nucleotide sequence of the multidrug resistance plasmid pSCEC2, isolated from a porcine Escherichia coli strain, and to analyse it with particular reference to the cfr gene region. Plasmid pSCEC2 was purified from its E. coli J53 transconjugant and then sequenced using the 454 GS-FLX System. After draft assembly, predicted gaps were closed by PCR with subsequent sequencing of the amplicons. Plasmid pSCEC2 is 135 615 bp in size and contains 200 open reading frames for proteins of ≥100 amino acids. Analysis of the sequence of pSCEC2 revealed two resistance gene segments. The 4.4 kb cfr-containing segment is flanked by two IS256 elements in the same orientation, which are believed to be involved in the dissemination of the rRNA methylase gene cfr. The other segment harbours the resistance genes floR, tet(A)-tetR, strA/strB and sul2, which have previously been found on other IncA/C plasmids. Except for these two resistance gene regions, the pSCEC2 backbone displayed >99% nucleotide sequence identity to that of other IncA/C family plasmids isolated in France, Chile and the USA. The cfr gene was identified on an IncA/C plasmid, which is well known for its broad host range and transfer and maintenance properties. The location on such a plasmid will further accelerate the dissemination of cfr and co-located resistance genes among different Gram-negative bacteria. The genetic context of cfr on plasmid pSCEC2 underlines the complexity of cfr transfer events and confirms the role that insertion sequences play in the spread of cfr.

  11. a positive control plasmid for reporter gene assay

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... qualification as a positive control for luciferase reporter gene assays. Key words: Reporter gene plasmid, luciferase assay, cytomegalovirus promoter/enhancer, human melanoma cell line. INTRODUCTION. Reporter genes, often called reporters, have become a precious tool in studies of gene expression ...

  12. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family.

    Science.gov (United States)

    Li, Xiaobin; Top, Eva M; Wang, Yafei; Brown, Celeste J; Yao, Fei; Yang, Shan; Jiang, Yong; Li, Hui

    2014-01-01

    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent "essential" plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  13. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    Directory of Open Access Journals (Sweden)

    Xiaobin eLi

    2015-01-01

    Full Text Available A self-transmissible broad-host-range (BHR plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs, 28 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102 and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331, based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T and pTer331, suggesting these hypothetical orfs may represent ‘‘essential’’ plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  14. Plasmids in Gram negatives: molecular typing of resistance plasmids.

    Science.gov (United States)

    Carattoli, Alessandra

    2011-12-01

    A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. The qacC gene has recently spread between rolling circle plasmids of Staphylococcus, indicative of a novel gene transfer mechanism

    Directory of Open Access Journals (Sweden)

    Trudy M. Wassenaar

    2016-09-01

    Full Text Available Resistance of Staphylococcus species to quaternary ammonium compounds, frequently used as disinfectants and biocides, can be attributed to qac genes. These qac gene products belong to the Small Multidrug Resistant (SMR protein family, and are often encoded by rolling-circle (RC replicating plasmids. Four classes of SMR-type qac gene families have been described in Staphylococcus species: qacC, qacG, qacJ and qacH. Within their class, these genes are highly conserved, but qacC genes are extremely conserved, although they are found in variable plasmid backgrounds. The lower degree of sequence identity of these plasmids compared to the strict nucleotide conservation of their qacC means that this gene has recently spread. In the absence of insertion sequences or other genetic elements explaining the mobility, we sought for an explanation of mobilization by sequence comparison. Publically available sequences of qac genes, their flanking genes and the replication gene that is invariably present in RC-plasmids were compared to reconstruct the evolutionary history of these plasmids and to explain the recent spread of qacC. Here we propose a new model that explains how qacC is mobilized and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO and the Single-Strand replication Origin (SSO. The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance. The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations.

  16. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing.

    Science.gov (United States)

    Naito, Y; Naito, T; Kobayashi, I

    1998-01-01

    Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.

  17. Plasmid fingerprinting and virulence gene detection among indigenous strains of salmonella enterica serovar enteritidis

    International Nuclear Information System (INIS)

    Sajid, S.U.; Schwarz, S.

    2009-01-01

    Salmonella enterica serovar Enteritidis is an important frequently reported zoonotic pathogen and a common cause of human gastroenteritis worldwide. The highly conserved Serospecific plasmids (SSPs) and Salmonella plasmid virulence (Spv) genes have been shown to mediate extra-intestinal colonization and systemic infection. The objective of current study was to document the presence of SSPs and SpvB/SpvC genes prevailing in the indigenous population of serovar Enteritidis. A total of 48 epidemiologically unrelated strains of Salmonella enteritidis were included in the study. Preparation of plasmids DNA suitable for endonuclease digestion and separation of respective fragments by agarose gel electrophoresis followed previously described protocols. The plasmids of Escherichia coli V517, 1-kbp ladder, and lambda DNA HindIII fragments served as DNA size standards. Transfer of DNA fragments from agarose gels to nitrocellulose membranes was achieved by capillary blot procedure. An ECL labeled 3.6 kbp HindIII fragment of plasmid PRQ 51 was used as probe for SpvB/SpvC gene detection. Plasmid DNA fingerprinting revealed the presence of two different profiles of approximately 55 kbp and 90 kbp and were identified as virulence plasmids by DNA hybridization. The SpvB/SpvC genes were located on HindIII fragments of 3.6 kbp in each of the two types of virulence plasmids. The study confirms the presence of SSPs and SpvB/SpvC genes in indigenous strains of S. enteritidis isolated from Northern Punjab area of Pakistan and substantiate the previous data on such findings from other parts of the world. (author)

  18. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    Science.gov (United States)

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  19. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michelle D. Rodriguez

    2017-12-01

    Full Text Available Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources.

  20. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.

    Science.gov (United States)

    Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W

    2017-01-01

    Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.

  1. Conjugative plasmids: Vessels of the communal gene pool

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important...... mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes'....

  2. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human.

    Science.gov (United States)

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-07-30

    Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated

  3. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    Directory of Open Access Journals (Sweden)

    Hammerum Anette M

    2010-07-01

    Full Text Available Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3 in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%, while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively. Multireplicons were found associated with all three sul genes

  4. Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids.

    Science.gov (United States)

    Wailan, Alexander M; Sidjabat, Hanna E; Yam, Wan Keat; Alikhan, Nabil-Fareed; Petty, Nicola K; Sartor, Anna L; Williamson, Deborah A; Forde, Brian M; Schembri, Mark A; Beatson, Scott A; Paterson, David L; Walsh, Timothy R; Partridge, Sally R

    2016-07-01

    blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    Science.gov (United States)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  6. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China.

    Directory of Open Access Journals (Sweden)

    Yanping Wen

    Full Text Available Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4% were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2 and 32 isolates (17.0% were positive for aac(6'-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6'-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05. In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05. All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6'-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.

  7. Studies on the expression of plasmid-borne genes in the endosymbiotic state of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Krol, A.J.M.

    1982-01-01

    The subject matter of the research reported in this thesis is the role of plasmid-borne genes of Rhizobium in symbiosis and nitrogen fixation. Plasmid DNA was isolated from Rhizobium leguminosarum strain PRE and the expression of plasmid DNA in nitrogen

  8. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene.

    Directory of Open Access Journals (Sweden)

    Kazuaki Miyamoto

    Full Text Available Clostridium perfringens enterotoxin (CPE is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ∼65 kb. Complete sequence analysis of the ∼65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ∼65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.

  9. Construction of pTM series plasmids for gene expression in Brucella species.

    Science.gov (United States)

    Tian, Mingxing; Qu, Jing; Bao, Yanqing; Gao, Jianpeng; Liu, Jiameng; Wang, Shaohui; Sun, Yingjie; Ding, Chan; Yu, Shengqing

    2016-04-01

    Brucellosis, the most common widespread zoonotic disease, is caused by Brucella spp., which are facultative, intracellular, Gram-negative bacteria. With the development of molecular biology techniques, more and more virulence-associated factors have been identified in Brucella spp. A suitable plasmid system is an important tool to study virulence genes in Brucella. In this study, we constructed three constitutive replication plasmids (pTM1-Cm, pTM2-Amp, and pTM3-Km) using the replication origin (rep) region derived from the pBBR1-MCS vector. Also, a DNA fragment containing multiple cloning sites (MCSs) and a terminator sequence derived from the pCold vector were produced for complementation of the deleted genes. Besides pGH-6×His, a plasmid containing the groE promoter of Brucella spp. was constructed to express exogenous proteins in Brucella with high efficiency. Furthermore, we constructed the inducible expression plasmid pZT-6×His, containing the tetracycline-inducible promoter pzt1, which can induce expression by the addition of tetracycline in the Brucella culture medium. The constructed pTM series plasmids will play an important role in the functional investigation of Brucella spp. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  11. Evolution of IncA/C blaCMY-₂-carrying plasmids by acquisition of the blaNDM-₁ carbapenemase gene.

    Science.gov (United States)

    Carattoli, Alessandra; Villa, Laura; Poirel, Laurent; Bonnin, Rémy A; Nordmann, Patrice

    2012-02-01

    The bla(NDM-1) gene has been reported to be often located on broad-host-range plasmids of the IncA/C type in clinical but also environmental bacteria recovered from the New Delhi, India, area. IncA/C-type plasmids are the main vehicles for the spread of the cephalosporinase gene bla(CMY-2), frequently identified in the United States, Canada, and Europe. In this study, we completed the sequence of IncA/C plasmid pNDM-KN carrying the bla(NDM-1) gene, recovered from a Klebsiella pneumoniae isolate from Kenya. This sequence was compared with those of three IncA/C-type reference plasmids from Escherichia coli, Yersinia ruckeri, and Photobacterium damselae. Comparative analysis showed that the bla(NDM-1) gene was located on a widely diffused plasmid scaffold known to be responsible for the spread of bla(CMY-2)-like genes and consequently for resistance to broad-spectrum cephalosporins. Considering that IncA/C plasmids possess a broad host range, this scaffold might support a large-scale diffusion of the bla(NDM-1) gene among Gram-negative rods.

  12. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  13. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown...... in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying....

  14. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    Science.gov (United States)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  15. Comparative genomics of the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Fricke, W Florian; Welch, Timothy J; McDermott, Patrick F; Mammel, Mark K; LeClerc, J Eugene; White, David G; Cebula, Thomas A; Ravel, Jacques

    2009-08-01

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.

  16. Genes from plasmid pKM101 in Haemophilus influenzae: separation of functions of mucA and mucB

    International Nuclear Information System (INIS)

    Balganesh, M.; Setlow, J.K.

    1985-01-01

    Haemophilus influenzae, normally not mutable by UV, became UV mutable with a recombinant plasmid insertion. A 7.8-kilobase-pair (kbp) fragment of the plasmid pKM101 containing the mucA and mucB genes was ligated to the shuttle vector pDM2, and a Rec- strain of H. influenzae was transformed with the ligated mixture. All of the transformants, unlike the parent Rec- strain, were resistant to UV, could carry out postreplication repair and Weigle reactivation, showed greatly increased spontaneous mutation, and contained a plasmid carrying an insert of only 1.2 rather than 7.8 kbp. This plasmid in a umuC mutant strain of Escherichia coli complemented a pKM101 derivative lacking mucA function but with an intact mucB gene, although there was no complementation with a mucA+ mucB- plasmid, suggesting that the newly constructed plasmid coded for the mucA protein; this is in accord with the restriction analysis and hybridization between the plasmid and a probe containing all of the mucA gene but only a small fraction of mucB. When one of the H. influenzae Rec- transformants lost the plasmid, the resistance to UV was retained but the high spontaneous mutation and UV mutability were not. The fact that there was hybridization between the chromosome of the cured strain and a probe containing both muc genes but none when almost no mucB was present suggested that at least part of the mucB gene had been integrated into the Rec- chromosome. Five different postreplication repair-proficient strains became UV mutable and had high spontaneous mutation rates caused by the putative mucA plasmid, indicating that these strains already possessed a chromosomal equivalent of the mucB gene

  17. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella

    NARCIS (Netherlands)

    Garcia-Fernandez, A.; Fortini, D.; Veldman, K.T.; Mevius, D.J.; Carattoli, A.

    2009-01-01

    The aim of this study was to identify and characterize plasmids carrying qnrS1, qnrB2 and qnrB19 genes identified in Salmonella strains from The Netherlands. The identification of plasmids may help to follow the dissemination of these resistance genes in different countries and environments.

  18. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Mette Burmølle

    Full Text Available Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids into a laboratory strain (Escherichia coli Genehogs® for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54 and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33 were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  19. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Science.gov (United States)

    Burmølle, Mette; Norman, Anders; Sørensen, Søren J; Hansen, Lars Hestbjerg

    2012-01-01

    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  20. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    International Nuclear Information System (INIS)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-01-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures

  1. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  2. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    Lambertsen, L.M.; Molin, Søren; Kroer, N.

    2004-01-01

    The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the...

  3. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    Science.gov (United States)

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-07-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to three plasmids. The old and new isolates of classical V. cholerae had two HindIII chromosomal digest fragments containing cholera toxin subunit A genes, whereas the eltor strains from Eastern countries had one fragment. The eltor strains from areas surrounding the Gulf of Mexico also had two subunit A gene fragments, which were smaller and easily distinguished from the classical pattern. All classical strains had 8 to 10 HindIII fragments containing the defective VcA1 prophage genome; none of the Eastern eltor strains had these genes, and the Gulf Coast eltor strains contained a different array of weakly hybridizing genes. These data suggest that the recent isolates of classical cholera in Bangladesh are closely related to the bacterial strain(s) which caused classical cholera during the sixth pandemic. These data do not support hypotheses that either the eltor or the nontoxigenic O1 strains are precursors of the new classical strains.

  5. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance.

    Science.gov (United States)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-07-05

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.

  6. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance

    International Nuclear Information System (INIS)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-01-01

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable

  7. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    Science.gov (United States)

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  8. Molecular characterization of a 21.4 kilobase antibiotic resistance plasmid from an α-hemolytic Escherichia coli O108:H- human clinical isolate.

    Directory of Open Access Journals (Sweden)

    Fay E Dawes

    Full Text Available This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-. DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes.

  9. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    OpenAIRE

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-01-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to thr...

  10. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker.

    Science.gov (United States)

    Fu, X; Xu, J G

    2000-01-01

    A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.

  11. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  12. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network

    Directory of Open Access Journals (Sweden)

    Bazzicalupo Marco

    2008-12-01

    Full Text Available Abstract Background Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple horizontal gene transfer (HGT events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses. Results To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N, allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps. Conclusion The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins. The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.

  13. Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Shi, Lei

    2016-01-01

    A multi-drug resistant (MDR) Listeria monocytogenes isolate (serotype 1/2c) was recovered from a quick-frozen rice flour product collected from Langfang city in northern China. PCR screening identified the presence of cat, ermB and tetS genes. The plasmid profile of the strain showed the presence...... of an approximately 22.4-kb plasmid. Curing of this plasmid resulted in the loss of cat, ermB and tetS genes and increased susceptibility to several antibiotics, suggesting the involvement of the plasmid in multiple antibiotic resistances. Moreover, the plasmid was able to be uptaken by human oral pathogen...

  14. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    Science.gov (United States)

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  15. Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Maglennon, Gareth A; Cook, Beth S; Matthews, Dominic; Deeney, Alannah S; Bossé, Janine T; Langford, Paul R; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N

    2013-07-29

    Mycoplasma hyopneumoniae is a prevalent swine respiratory pathogen that is a major cause of economic loss to pig producers. Control is achieved by a combination of antimicrobials, vaccination and management practices, but current vaccines offer only partial control and there is a need for improved preventative strategies. A major barrier to advances in understanding the pathogenesis of M. hyopneumoniae and in developing new vaccines is the lack of tools to genetically manipulate the organism. We describe the development and optimisation of the first successful plasmid-based system for the genetic manipulation of M. hyopneumoniae. Our artificial plasmids contain the origin of replication (oriC) of M. hyopneumoniae along with tetM, conferring resistance to tetracycline. With these plasmids, we have successfully transformed M. hyopneumoniae strain 232 by electroporation, generating tetracycline resistant organisms. The persistence of extrachromosomal plasmid and maintenance of plasmid DNA over serial passages shows that these artificial plasmids are capable of self-replication in M. hyopneumoniae. In addition to demonstrating the amenability of M. hyopneumoniae to genetic manipulation and in optimising the conditions necessary for successful transformation, we have used this system to determine the minimum functional oriC of M. hyopneumoniae. In doing so, we have developed a plasmid with a small oriC that is stably maintained over multiple passages that may be useful in generating targeted gene disruptions. In conclusion, we have generated a set of plasmids that will be valuable in studies of M. hyopneumoniae pathogenesis and provide a major step forward in the study of this important swine pathogen.

  16. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  17. The complete sequence and comparative analysis of a multidrug- resistance and virulence multireplicon IncFII plasmid pEC302/04 from an extraintestinal pathogenic Escherichia coli EC302/04 indicate extensive diversity of IncFII plasmids

    Directory of Open Access Journals (Sweden)

    Wing Sze eHo

    2016-01-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA and FIB with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok and a plasmid partitioning system, ParAB and PsiAB, which are important for plasmid maintenance were also found.Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of

  18. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids.

    Science.gov (United States)

    Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin

    2015-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical

  19. Identification and characterization of two novel bla(KLUC resistance genes through large-scale resistance plasmids sequencing.

    Directory of Open Access Journals (Sweden)

    Teng Xu

    Full Text Available Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of bla(KLUC, whose close relatives, bla(KLUC-1 and bla(KLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named bla(KLUC-4. It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas bla(KLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection.

  20. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  1. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana

    Directory of Open Access Journals (Sweden)

    Egle Kudirkiene

    2018-05-01

    Full Text Available In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52−B or blaCTX−M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S/IncFIB(S/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  2. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  3. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  4. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David W; Ingmer, Hanne

    2016-01-01

    and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO) and the Single-Strand replication Origin (SSO). The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization...

  5. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper.

    Science.gov (United States)

    Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik

    2018-02-01

    Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms

    Directory of Open Access Journals (Sweden)

    Manuel Ares-Arroyo

    2018-03-01

    Full Text Available ColE1 plasmids are important vehicles for the spread of antibiotic resistance in the Enterobacteriaceae and Pasteurellaceae families of bacteria. Their monitoring is essential, as they harbor important resistant determinants in humans, animals and the environment. In this work, we have analyzed ColE1 replicons using bioinformatic and experimental approaches. First, we carried out a computational study examining the structure of different ColE1 plasmids deposited in databases. Bioinformatic analysis of these ColE1 replicons revealed a mosaic genetic structure consisting of a host-adapted conserved region responsible for the housekeeping functions of the plasmid, and a variable region encoding a wide variety of genes, including multiple antibiotic resistance determinants. From this exhaustive computational analysis we developed a new PCR-based technique, targeting a specific sequence in the conserved region, for the screening, capture and sequencing of these small plasmids, either specific for Enterobacteriaceae or specific for Pasteurellaceae. To validate this PCR-based system, we tested various collections of isolates from both bacterial families, finding that ColE1 replicons were not only highly prevalent in antibiotic-resistant isolates, but also present in susceptible bacteria. In Pasteurellaceae, ColE1 plasmids carried almost exclusively antibiotic resistance genes. In Enterobacteriaceae, these plasmids encoded a large range of traits, including not only antibiotic resistance determinants, but also a wide variety of genes, showing the huge genetic plasticity of these small replicons. Finally, we also used a metagenomic approach in order to validate this technique, performing this PCR system using total DNA extractions from fecal samples from poultry, turkeys, pigs and humans. Using Illumina sequencing of the PCR products we identified a great diversity of genes encoded by ColE1 replicons, including different antibiotic resistance

  7. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    OpenAIRE

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-01-01

    Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multip...

  8. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  9. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    Science.gov (United States)

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  10. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; She, Qunxin

    2008-01-01

    . The plasmid was also classified as IncX1 with incompatibility testing. The conjugal transfer and plasmid maintenance regions of pOLA52 therefore seem to represent IncX1 orthologues of the well-characterized IncX2 plasmid R6K. Sequence homology searches in GenBank also suggested a considerably higher...... of type 3 fimbriae (mrkABCDF). The plasmid was found to be 51,602 bp long with 68 putative genes. About half of the plasmid constituted a conserved IncX1-type backbone with predicted regions for conjugation, replication and partitioning, as well as a toxin/antitoxin (TA) plasmid addiction system...... prevalence of IncX1 group plasmids than IncX2. The 21 kb 'genetic load' region of pOLA52 was shown to consist of a mosaic, among other things a fragmented Tn3 transposon encoding ampicillin resistance. Most notably the oqxAB and mrkABCDF cassettes were contained within two composite transposons (Tn6010...

  11. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  12. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  13. The construction and identification of hypoxia-regulated recombinant plasmid with reporter gene hNIS

    International Nuclear Information System (INIS)

    Hu Qunchao; Wu Jinchang; Zhou Jundong; Gu Ke

    2011-01-01

    Objective: To construct pShuttle-5 × HRE-CMV-NIS recombinant plasmid regulated by hypoxia-responsive element, which can possibly by used to detect the expression of hypoxia induced factor-α (HIF-1α) gene under hypoxia condition. Methods: Artificially synthesize the nucleotide sequences of five copies of hypoxia response elements (HREs) were cloned into pGL3-promoter vector to construct pGL3-promoter-5 × HRE vector. Human sodium/iodide symporter (hNIS) gene cDNA was amplified from human genome by RT-PCR, and subcloned into pGL3-promoter-5 × HRE vector then was sequenced. After treated with CoCl 2 as hypoxia mimic, HEK293 cells were transfected with recombinant plasmid with hNIS gene, while cells treated with DMSO as the control. Meanwhile, pcDNA3.1-HIF-1α and recombinant hNIS gene vectors were transfected into HEK293 cells at the ratio of 3 to 1, while co-transfection with pcDNA3.1 and pShuttle-NIS vectors cells were taken as the control. NIS mRNA expression was analyzed by qRT-PCR while function of NIS protein was tested by 99m TcO 4 - -uptake. Results: The sequence data of hNIS gene in recombinant plasmid were in accordance with those reported in the literatures. Compared with control groups, HEK293 cells co-transfected with both pShuttle-5 × HRE-CMV-NIS and HIF-1α gene vectors and CoCl 2 -treated after pShuttle-NIS transfecting presented higher mRNA expressions of NIS and 99m TcO 4 - uptake (P<0.01). Conclusion: HIF-1α can be bound to and activate pShuttle-5 × HRE-CMV-NIS in cells to accumulate radioactive nuclide 99m TcO 4 - and this technique is potential for detection of expression and activity of HIF-1α, the indicator of cell hypoxia. (authors)

  14. Plasmids and rickettsial evolution: insight from Rickettsia felis.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    2007-03-01

    Full Text Available The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG or spotted fever group (SFG rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria.Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives also occur in AG (but not SFG rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly.Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the

  15. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  16. Evolution of Regions Containing Antibiotic Resistance Genes in FII-2-FIB-1 ColV-Colla Virulence Plasmids.

    Science.gov (United States)

    Moran, Robert A; Hall, Ruth M

    2018-05-01

    Three ColV virulence plasmids carrying antibiotic resistance genes were assembled from draft genome sequences of commensal ST95, ST131, and ST2705 Escherichia coli isolates from healthy Australians. Plasmids pCERC4, pCERC5, and pCERC9 include almost identical backbones containing FII-2 and FIB-1 replicons and the conserved ColV virulence region with an additional ColIa determinant. Only pCERC5 includes a complete, uninterrupted F-like transfer region and was able to conjugate. pCERC5 and pCERC9 contain Tn1721, carrying the tet(A) tetracycline resistance determinant in the same location, with Tn2 (bla TEM ; ampicillin resistance) interrupting the Tn1721 in pCERC5. pCERC4 has a Tn1721/Tn21 hybrid transposon carrying dfrA5 (trimethoprim resistance) and sul1 (sulfamethoxazole resistance) in a class 1 integron. Four FII-2:FIB-1 ColV-ColIa plasmids in the GenBank nucleotide database have a related transposon in the same position, but an IS26 has reshaped the resistance gene region, deleting 2,069 bp of the integron 3'-CS, including sul1, and serving as a target for IS26 translocatable units containing bla TEM , sul2 and strAB (streptomycin resistance), or aphA1 (kanamycin/neomycin resistance). Another ColV-ColIa plasmid containing a related resistance gene region has lost the FII replicon and acquired a unique transfer region via recombination within the resistance region and at oriT. Eighteen further complete ColV plasmid sequences in GenBank contained FIB-1, but the FII replicons were of three types, FII-24, FII-18, and a variant of FII-36.

  17. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.

    Directory of Open Access Journals (Sweden)

    Wenyan Jiang

    Full Text Available The immune systems that protect organisms from infectious agents invariably have a cost for the host. In bacteria and archaea CRISPR-Cas loci can serve as adaptive immune systems that protect these microbes from infectiously transmitted DNAs. When those DNAs are borne by lytic viruses (phages, this protection can provide a considerable advantage. CRISPR-Cas immunity can also prevent cells from acquiring plasmids and free DNA bearing genes that increase their fitness. Here, we use a combination of experiments and mathematical-computer simulation models to explore this downside of CRISPR-Cas immunity and its implications for the maintenance of CRISPR-Cas loci in microbial populations. We analyzed the conjugational transfer of the staphylococcal plasmid pG0400 into Staphylococcus epidermidis RP62a recipients that bear a CRISPR-Cas locus targeting this plasmid. Contrary to what is anticipated for lytic phages, which evade CRISPR by mutations in the target region, the evasion of CRISPR immunity by plasmids occurs at the level of the host through loss of functional CRISPR-Cas immunity. The results of our experiments and models indicate that more than 10(-4 of the cells in CRISPR-Cas positive populations are defective or deleted for the CRISPR-Cas region and thereby able to receive and carry the plasmid. Most intriguingly, the loss of CRISPR function even by large deletions can have little or no fitness cost in vitro. These theoretical and experimental results can account for the considerable variation in the existence, number and function of CRISPR-Cas loci within and between bacterial species. We postulate that as a consequence of the opposing positive and negative selection for immunity, CRISPR-Cas systems are in a continuous state of flux. They are lost when they bear immunity to laterally transferred beneficial genes, re-acquired by horizontal gene transfer, and ascend in environments where phage are a major source of mortality.

  18. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  19. Broad-Host-Range IncP-1 plasmids and their resistance potential

    Directory of Open Access Journals (Sweden)

    Magdalena ePopowska

    2013-03-01

    Full Text Available The plasmids of the incompatibility group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad host range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.

  20. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China

    OpenAIRE

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei; Hu, Guang

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-p...

  1. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, A.; Hammerum, A. M.

    2010-01-01

    isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids...... and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids...

  2. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  3. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    Science.gov (United States)

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  4. Application of methylation in improving plasmid transformation into Helicobacter pylori.

    Science.gov (United States)

    Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei

    2018-05-23

    Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.

  5. Characterization of a Large Antibiotic Resistance Plasmid Found in Enteropathogenic Escherichia coli Strain B171 and Its Relatedness to Plasmids of Diverse E. coli and Shigella Strains.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A

    2017-09-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline ( tetA ), sulfonamides ( sulI ), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor ( csi ). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 ( csi and traI ) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli . Copyright © 2017 American Society for Microbiology.

  6. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    Science.gov (United States)

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  7. Plasmid-Mediated Quinolone Resistance in Shigella flexneri Isolated From Macaques

    Directory of Open Access Journals (Sweden)

    Anthony J. Mannion

    2018-03-01

    Full Text Available Non-human primates (NHPs for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants

  8. Impact of co-carriage of IncA/C plasmids with additional plasmids on the transfer of antimicrobial resistance in Salmonella enterica isolates.

    Science.gov (United States)

    Han, Jing; Pendleton, Sean J; Deck, Joanna; Singh, Ruby; Gilbert, Jeffrey; Johnson, Timothy J; Sanad, Yasser M; Nayak, Rajesh; Foley, Steven L

    2018-04-20

    Antimicrobial resistance in Salmonella enterica is often plasmid encoded. A key resistance plasmid group is the incompatibility group (Inc) A/C plasmids that often carry multiple resistance determinants. Previous studies showed that IncA/C plasmids were often co-located with other plasmids. The current study was undertaken to evaluate the impact of plasmid co-carriage on antimicrobial resistance and plasmid transfer. A total of 1267 Salmonella isolates, representing multiple serotypes and sources were previously subjected to susceptibility testing and 251 isolates with resistance to at least 5 antimicrobial agents were identified for further study. Each isolate was subjected to PCR-based replicon typing, and those with IncA/C plasmids were selected for plasmid isolation, PCR-based mapping of IncA/C plasmid backbone genes, and conjugation assays to evaluate resistance plasmid transferability. Of the 87 identified IncA/C positive isolates, approximately 75% carried a plasmid with another identified replicon type, with the most common being I1 (39%), FIA, FIIA, FIB and HI2 (each 15%). PCR-based mapping indicated significant diversity in IncA/C backbone content, especially in regions encoding transfer-associated and hypothetical proteins. Conjugation experiments showed that nearly 68% of the isolates transferred resistance plasmids, with 90% containing additional identified plasmids or larger (>50 kb) non-typeable plasmids. The majority of IncA/C-positive strains were able to conjugally transfer antimicrobial resistance to the recipient, encoded by IncA/C and/or co-carried plasmids. These findings highlight the importance of co-located plasmids for resistance dissemination either by directly transferring resistance genes or by potentially providing the needed conjugation machinery for IncA/C plasmid transfer. Copyright © 2018. Published by Elsevier B.V.

  9. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    Science.gov (United States)

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  10. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET, a new method for plasmid reconstruction from whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Val F Lanza

    2014-12-01

    Full Text Available Bacterial whole genome sequence (WGS methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage, comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC, comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  11. Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids.

    Science.gov (United States)

    Carraro, Nicolas; Sauvé, Maxime; Matteau, Dominick; Lauzon, Guillaume; Rodrigue, Sébastien; Burrus, Vincent

    2014-01-01

    Antibiotic resistance has grown steadily in Vibrio cholerae over the last few decades to become a major threat in countries affected by cholera. Multi-drug resistance (MDR) spreads among clinical and environmental V. cholerae strains by lateral gene transfer often mediated by integrative and conjugative elements (ICEs) of the SXT/R391 family. However, in a few reported but seemingly isolated cases, MDR in V. cholerae was shown to be associated with other self-transmissible genetic elements such as conjugative plasmids. IncA/C conjugative plasmids are often found associated with MDR in isolates of Enterobacteriaceae. To date, IncA/C plasmids have not been commonly found in V. cholerae or other species of Vibrio. Here we present a detailed analysis of pVCR94ΔX derived from pVCR94, a novel IncA/C conjugative plasmid identified in a V. cholerae clinical strain isolated during the 1994 Rwandan cholera outbreak. pVCR94 was found to confer resistance to sulfamethoxazole, trimethoprim, ampicillin, streptomycin, tetracycline, and chloramphenicol and to transfer at very high frequency. Sequence analysis revealed its mosaic nature as well as high similarity of the core genes responsible for transfer and maintenance with other IncA/C plasmids and ICEs of the SXT/R391 family. Although IncA/C plasmids are considered a major threat in antibiotics resistance, their basic biology has received little attention, mostly because of the difficulty to genetically manipulate these MDR conferring elements. Therefore, we developed a convenient derivative from pVCR94, pVCR94Δ X, a 120.5-kb conjugative plasmid which only codes for sulfamethoxazole resistance. Using pVCR94Δ X, we identified the origin of transfer (oriT) and discovered an essential gene for transfer, both located within the shared backbone, allowing for an annotation update of all IncA/C plasmids. pVCR94Δ X may be a useful model that will provide new insights on the basic biology of IncA/C conjugative plasmids.

  12. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids

    Directory of Open Access Journals (Sweden)

    Rajagopalan Saranathan

    2014-01-01

    Full Text Available Background & objectives: The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR, consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids among the clinical isolates of A. baumannii. In addition, the study was performed to check the presence of common β-lactamases encoding genes on these plasmids. Methods: A total of 55 clinical isolates of A. baumannii were included in the study and all were subjected to plasmid DNA isolation, followed by PCR to check the presence of resistance gene determinants such as blaOXA-23 , blaOXA-51, blaOXA-58 and blaIMP-1 on these plasmids that encode for oxacillinase (OXA and metallo-β-lactamase (MBL type of carbapenemases. Plasmid curing experiments were carried out on selected isolates using ethidium bromide and acridine orange as curing agents and the antibiotic resistance profiles were evaluated before and after curing. Results: All the isolates were identified as A. baumannii by 16SrDNA amplification and sequencing. Plasmid DNA isolated from these isolates showed the occurrence of multiple plasmids with size ranging from 500bp to ≥ 25 kb. The percentage of blaOXA-51 and blaOXA-23 on plasmids were found to be 78 and 42 per cent, respectively and 20 isolates (36% carried blaIMP-1 gene on plasmids. Significant difference was observed in the antibiograms of plasmid cured isolates when compared to their parental ones. The clinical isolates became susceptible to more than two antibiotic classes after curing of plasmids indicating plasmid borne resistance. Interpretation & conclusions: Our study determined the plasmid mediated resistance mechanisms and occurrence of different resistance genes on various plasmids isolated from MDR A. baumannii. The present findings showed the evidence for antibiotic resistance mediated through multiple plasmids in

  13. High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy

    DEFF Research Database (Denmark)

    Niero, Giulia; Bortolaia, Valeria; Vanni, Michele

    2018-01-01

    = 98) and layers (n = 22) between 2008 and 2012. 3GC-resistant isolates were screened for extended-spectrum and AmpC β-lactamase (ESBL/AmpC), while all isolates were tested for plasmid-mediated quinolone resistance (PMQR) genes. ESBL/AmpC- and PMQR-positive isolates were typed by pulsed-field gel......% of isolates from turkeys, broilers and layers, respectively. We identified seven ESBL/AmpC-encoding plasmid types, usually conjugative (78%), with a marked prevalence of IncI1/pST3 plasmids carrying blaCTX-M-1. PMQR occurred less frequently among isolates from turkeys (0.9%) compared to those from broilers (5......%) and layers (4%). The PMQR genes qnrS, qnrB19 and oqxA/B were located on three plasmid types and two non-typeable plasmids, mostly (85%) conjugative. ESBL/AmpC- and PMQR-positive isolates were genetically unrelated and 64% of them were additionally resistant to aminoglycosides, sulfonamides and tetracyclines...

  14. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination

    Directory of Open Access Journals (Sweden)

    Mickaël Poidevin

    2018-02-01

    Full Text Available Conjugative plasmids are one of the main driving force of wide-spreading of multidrug resistance (MDR bacteria. They are self-transmittable via conjugation as carrying the required set of genes and cis-acting DNA locus for direct cell-to-cell transfer. IncI incompatibility plasmids are nowadays often associated with extended-spectrum beta-lactamases producing Enterobacteria in clinic and environment. pESBL-EA11 was isolated from Escherichia coli O104:H4 outbreak strain in Germany in 2011. During the previous study identifying transfer genes of pESBL-EA11, it was shown that transposon insertion at certain DNA region of the plasmid, referred to as Hft, resulted in great enhancement of transfer ability. This suggested that genetic modifications can enhance dissemination of MDR plasmids. Such ‘superspreader’ mutations have attracted little attention so far despite their high potential to worsen MDR spreading. Present study aimed to gain our understanding on regulatory elements that involved pESBL transfer. While previous studies of IncI plasmids indicated that immediate downstream gene of Hft, traA, is not essential for conjugative transfer, here we showed that overexpression of TraA in host cell elevated transfer rate of pESBL-EA11. Transposon insertion or certain nucleotide substitutions in Hft led strong TraA overexpression which resulted in activation of essential regulator TraB and likely overexpression of conjugative pili. Atmospheric Scanning Electron Microscopy observation suggested that IncI pili are distinct from other types of conjugative pili (such as long filamentous F-type pili and rather expressed throughout the cell surface. High transfer efficiency in the mutant pESBL-EA11 was involved with hyperpiliation which facilitates cell-to-cell adhesion, including autoagglutination. The capability of plasmids to evolve to highly transmissible mutant is alarming, particularly it might also have adverse effect on host pathogenicity.

  15. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I.

    1990-01-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  16. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.

    Directory of Open Access Journals (Sweden)

    Yo Sugawara

    Full Text Available The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1, IncX3 plasmids harboring blaNDM-4 (n = 2 or blaNDM-7 (n = 1, IncFII plasmids harboring blaNDM-4 (n = 1 or blaNDM-5 (n = 3, and a multireplicon F plasmid harboring blaNDM-5 (n = 1. Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.

  18. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon.

    Science.gov (United States)

    Teather, R M; Bramhall, J; Riede, I; Wright, J K; Fürst, M; Aichele, G; Wilhelm, U; Overath, P

    1980-01-01

    The previously described hybrid plasmid pC7 which carries lacI+O+delta(Z)Y+A+ on a 12.3 X 10(6)-Mr DNA fragment [Teather et al. (1978) Mol. Gen. Genet. 159, 239-248] was partially digested with the restriction endonuclease EcoRI under conditions reducing the recognition sequence to d(A-A-T-T) and ligated to the vector pB322. lac Y-carrying inserts of various sized (Mr 1.5-4.7 X 10(6)) were obtained. Hybrid plasmid pTE18 (2300-base-pair insert) carries part of the I (repressor) gene, the promotor-operator region, part of the Z (beta-galactosidase) gene, the Y (lactose carrier) gene and part of the A (transacetylase) gene. Upon induction of pTE18-harbouring strains the Y-gene product is expressed at a nearly constant rate for several generations and accumulates to a level of 12-16% of the total cytoplasmic membrane protein. Integration into the membrane leads to active carrier as judged by binding and transport measurements.

  19. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Science.gov (United States)

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  20. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    Full Text Available Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  1. Identification of pOENI-1 and Related Plasmids in Oenococcus oeni Strains Performing the Malolactic Fermentation in Wine

    Science.gov (United States)

    Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M.

    2012-01-01

    Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly

  2. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells.

    Science.gov (United States)

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-10-01

    The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.

  3. Plasmid DNA Delivery: Nanotopography Matters.

    Science.gov (United States)

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  4. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.

    Science.gov (United States)

    Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O

    2011-07-01

    Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.

  5. Transformation of Cowpea Vigna unguiculata Cells with an Antibiotic Resistance Gene Using a Ti-Plasmid-Derived Vector

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1986-01-01

    A chimaeric antibiotic resistance gene was transferred to cowpea (Vigna unguiculata), a member of the legume family. This transfer was established by inoculating cowpea leaf discs with an Agrobacterium tumefaciens strain harboring a Ti-plasmid-derived vector that contained two copies of a chimaeric

  6. Quorum-Dependent Mannopine-Inducible Conjugative Transfer of an Agrobacterium Opine-Catabolic Plasmid

    Science.gov (United States)

    Wetzel, Margaret E.; Kim, Kun-Soo; Miller, Marilyn; Olsen, Gary J.

    2014-01-01

    The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved. PMID:24363349

  7. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  8. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  9. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  10. Agrobacterium tumefaciens-MEDIATED IN-PLANTA TRANSFORMATION OF INDONESIAN MAIZE USING pIG121Hm-Cs PLASMID CONTAINING nptII AND hpt GENES

    Directory of Open Access Journals (Sweden)

    Edy Listanto

    2017-05-01

    Full Text Available Maize (Zea mays L. productivity in Indonesia is challenged to be increased using genetic engineering. Recent advances in Agrobacterium tumefaciens-mediated in-planta transforma-tion makes it possible to transform maize with low cost, and simple method. This study aimed to confirm pIG121Hm-Cs plasmid in A. tumefaciens, and to estimate the efficiency level of  A. tumefaciens-mediated in-planta transformation of Indonesian maize by using pIG121Hm-Cs plasmid containing nptII and hpt genes. A series of studies were conducted including confirmation of gene construct of pIG121Hm-Cs plasmid in A. tumefaciens, transformation of four maize lines through A. tumefaciens-mediated in-planta technique, acclimatization of transformant plants and molecular analysis of selected plants using polymerase chain reaction (PCR. The pIG121Hm-Cs plasmid was confirmed via PCR analysis using specific primers of nptII and hpt genes and resulted 700 bp and 500 bp for fragments of nptII and hpt, respectively. After selection, acclimatization and molecular analysis steps, the efficiency levels of transformation of four maize lines were low, ranging from 3.8% to 12.8%. The level of transformation efficiency of ST-27 line was the highest accounting for 12.8% of 45 planted embryos on selection medium based on PCR analysis using specific primer for nptII gene. Overall, A. tumefaciens-mediated in planta transformation on maize floral pistil in this study proved to be successful and rapid. Therefore, this enhanced transformation method will be beneficial for Indonesian maize genetic engineering.

  11. Size effect on transfection and cytotoxicity of nanoscale plasmid DNA/polyethyleneimine complexes for aerosol gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Byeon, Jeong, E-mail: jbyeon@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, Jang-Woo, E-mail: jwkim@hoseo.edu [Department of Digital Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of)

    2014-02-03

    Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.

  12. Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids.

    Science.gov (United States)

    Asteri, Ioanna-Areti; Papadimitriou, Konstantinos; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E; Tsakalidou, Effie

    2010-07-15

    The pLAC1 plasmid of Lactobacillus acidipiscis ACA-DC 1533, a strain isolated from traditional Kopanisti cheese, was characterised. Nucleotide sequence analysis revealed a circular molecule of 3478bp with a G+C content of 37.2%. Ab initio annotation indicated four putative open reading frames (orfs). orf1 and orf4 were found to encode a replication initiation protein (Rep) and a mobilization protein (Mob), respectively. The deduced products of orf2 and orf3 revealed no significant homology to other known proteins. However, in silico examination of the plasmid sequence supported the existence of a novel operon that includes rep, orf2 and orf3 in pLAC1 and that this operon is highly conserved also in plasmids pLB925A02, pSMA23, pLC88 and pC7. RT-PCR experiments allowed us to verify that these three genes are co-transcribed as a single polycistronic mRNA species. Furthermore, phylogenetic analysis of pLAC1 Rep and Mob proteins demonstrated that they may have derived from different plasmid origins, suggesting that pLAC1 is a product of a modular evolution process. Comparative analysis of full length nucleotide sequences of pLAC1 and related Lactobacillus plasmids showed that pLAC1 shares a very similar replication backbone with pLB925A02, pSMA23 and pLC88. In contrast, mob of pLAC1 was almost identical with the respective gene of plasmids pLAB1000, pLB4 and pPB1. These findings lead to the conclusion that pLAC1 acquired mob probably via an ancestral recombination event. Our overall work highlights the importance of characterizing plasmids deriving from non-starter 'wild' isolates in order to better appreciate plasmid divergence and evolution of lactic acid bacteria. 2010 Elsevier B.V. All rights reserved.

  13. Adding to Yersinia enterocolitica Gene Pool Diversity: Two Cryptic Plasmids from a Biotype 1A Isolate

    Directory of Open Access Journals (Sweden)

    Daniela Lepka

    2009-01-01

    Full Text Available We report the nucleotide sequence of two novel cryptic plasmids (4357 and 14 662 base pairs carried by a Yersinia enterocolitica biotype 1A strain isolated from pork. As distinguished from most biotype 1A strains, this isolate, designated 07-04449, exhibited adherence to eukaryotic cells. The smaller plasmid pYe4449-1 carries five attributable open reading frames (ORFs encoding the first CcdA/CcdB-like antitoxin/toxin system described for a Yersinia plasmid, a RepA-like replication initiation protein, and mobilizing factors MobA and MobC. The deduced amino acid sequences showed highest similarity to proteins described in Salmonella (CcdA/B, Klebsiella (RepA, and Plesiomonas (MobA/C indicating genomic fluidity among members of the Enterobacteriaceae. One additional ORF with unknown function, termed ORF5, was identified with an ancestry distinct from the rest of the plasmid. While the C+G content of ORF5 is 38.3%, the rest of pYe4449-1 shows a C+G content of 55.7%. The C+G content of the larger plasmid pYe4449-2 (54.9% was similar to that of pYe4449-1 (53.7% and differed from that of the Y. enterocolitica genome (47.3%. Of the 14 ORFs identified on pYe4449-2, only six ORFs showed significant similarity to database entries. For three of these ORFs likely functions could be ascribed: a TnpR-like resolvase and a phage replication protein, localized each on a low C+G island, and DNA primase TraC. Two ORFs of pYe4449-2, ORF3 and ORF7, seem to encode secretable proteins. Epitope-tagging of ORF3 revealed protein expression at 4°C but not at or above 27°C suggesting adaptation to a habitat outside swine. The hypothetical protein encoded by ORF7 is the member of a novel repeat protein family sharing the DxxGN(xnDxxGN motif. Our findings illustrate the exceptional gene pool diversity within the species Y. enterocolitica driven by horizontal gene transfer events.

  14. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  15. Presence and analysis of plasmids in human and animal associated arcobacter species.

    Directory of Open Access Journals (Sweden)

    Laid Douidah

    Full Text Available In this study, we report the screening of four Arcobacter species for the presence of small and large plasmids. Plasmids were present in 9.9% of the 273 examined strains. One Arcobacter cryaerophilus and four Arcobacter butzleri plasmids were selected for further sequencing. The size of three small plasmids isolated from A. butzleri and the one from A. cryaerophilus strains ranged between 4.8 and 5.1 kb, and the size of the large plasmid, isolated from A. butzleri, was 27.4 kbp. The G+C content of all plasmids ranged between 25.4% and 26.2%. A total of 95% of the large plasmid sequence represents coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried 35 coding sequences, including seven genes in a contiguous region of 11.6 kbp that encodes an orthologous type IV secretion system found in the Wolinella succinogenes genome, Helicobacter pylori and Campylobacter jejuni plasmids, which makes this plasmid interesting for further exploration.

  16. The involvement of tetA and tetE tetracycline resistance genes in plasmid and chromosomal resistance of Aeromonas in Brazilian strains

    Directory of Open Access Journals (Sweden)

    Ilana Teruszkin Balassiano

    2007-11-01

    Full Text Available This study analyzed the involvement of tetA and tetE genes in the tetracycline resistance of 16 strains of genus Aeromonas, isolated from clinical and food sources. Polymerase chain reactions revealed that 37.5% of the samples were positive for tetA, and also 37.5% were tetE positive. One isolate was positive for both genes. Only the isolate A. caviae 5.2 had its resistance associated to the presence of a plasmid, pSS2. The molecular characterization of pSS2 involved the construction of its restriction map and the determination of its size. The digestion of pSS2 with HindIII originated two fragments (A and B that were cloned separately into the pUC18 vector. The tetA gene was shown to be located on the HindIII-A fragment by PCR. After transforming a tetracycline-sensitive strain with pSS2, the transformants expressed the resistance phenotype and harbored a plasmid whose size was identical to that of pSS2. The results confirmed the association between pSS2 and the tetracycline resistance phenotype, and suggest a feasible dissemination of tetA and tetE among strains of Aeromonas. This study suggests the spreading tetA and tetE genes in Aeromonas in Brazil and describes a resistance plasmid that probably contributes to the dissemination of the resistance.

  17. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    Directory of Open Access Journals (Sweden)

    Sandro Roselli

    Full Text Available Chloromethane (CH3Cl is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD, as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2. In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex, conversion of

  18. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution

    DEFF Research Database (Denmark)

    Dolejska, Monika; Villa, Laura; Minoia, Marco

    2014-01-01

    OBJECTIVES: To determine the structure of two multidrug-resistant IncHI1 plasmids carrying blaCTX-M-1 in Escherichia coli isolates disseminated in an equine clinic in the Czech Republic. METHODS: A complete nucleotide sequencing of 239 kb IncHI1 (pEQ1) and 287 kb IncHI1/X1 (pEQ2) plasmids was per...... highlight the structure and evolution of IncHI1 from equine E. coli. A plasmid-mediated sugar metabolic element could play a key role in strain fitness, contributing to the successful dissemination and maintenance of these plasmids in the intestinal microflora of horses....

  19. Characterization of plasmids in a human clinical strain of Lactococcus garvieae.

    Directory of Open Access Journals (Sweden)

    Mónica Aguado-Urda

    Full Text Available The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25 encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.

  20. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  1. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Science.gov (United States)

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  2. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans

    DEFF Research Database (Denmark)

    Dolejska, Monika; Villa, Laura; Hasman, Henrik

    2013-01-01

    were compared using restriction fragment length polymorphism (RFLP), plasmid multilocus sequence typing (pMLST) and hybridization with repN, qnrS1, qnrB19 or blaCTX-M-1 probes. Plasmids pKT58A and pHHA45 were sequenced using the 454-Genome Sequencer FLX platform on a library constructed from plasmid...... DNA purified from the respective E. coli transformants.Results Three types of IncN plasmids carrying blaCTX-M-1, qnrS1 and qnrB19 genes were identified in strains isolated from the Czech Republic, Poland, Slovakia, Denmark, Italy and the Netherlands, corresponding to pMLST sequence type (ST) 1, ST3...

  3. Functional analysis of three plasmids from Lactobacillus plantarum

    NARCIS (Netherlands)

    Kranenburg, R. van; Golic, N.; Bongers, R.; Leer, R.J.; Vos, W.M. de; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism.

  4. Complete Sequence of p07-406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States.

    Science.gov (United States)

    Li, Hongyang; Toleman, Mark A; Bennett, Peter M; Jones, Ronald N; Walsh, Timothy R

    2008-09-01

    An outbreak involving a Pseudomonas aeruginosa strain that was resistant to all tested antimicrobials except polymyxin B occurred in a hospital in Houston, TX. Previous studies on this strain showed that it possesses a novel mobile metallo-beta-lactamase (MBL) gene, designated bla(VIM-7), located on a plasmid (p07-406). Here, we report the complete sequence, annotation, and functional characterization of this plasmid. p07-406 is 24,179 bp in length, and 29 open reading frames were identified related to known or putatively recognized proteins. Analysis of this plasmid showed it to be comprised of four distinct regions: (i) a region of 5,200 bp having a Tn501-like mercuric resistance (mer) transposon upstream of the replication region; (ii) a Tn3-like transposon carrying a truncated integron with a bla(VIM-7) gene and an insertion sequence inserted at the other end of this transposon; (iii) a region of four genes, upstream of the Tn3-like transposon, possessing very high similarity to plasmid pXcB from Xanthomonas campestris pv. citri commonly associated with plants; (iv) a backbone sequence similar to the backbone structure of the IncP group plasmid Rms149, pB10, and R751. This is the first plasmid to be sequenced carrying an MBL gene and highlights the amelioration of DNA segments from disparate origins, most noticeably from plant pathogens.

  5. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    Science.gov (United States)

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  6. Fast and efficient three-step target-specific curing of a virulence plasmid in Salmonella enterica.

    Science.gov (United States)

    de Moraes, Marcos H; Teplitski, Max

    2015-12-01

    Virulence plasmids borne by serovars of Salmonella enterica carry genes involved in its pathogenicity, as well as other functions. Characterization of phenotypes associated with virulence plasmids requires a system for efficiently curing strains of their virulence plasmids. Here, we developed a 3-step protocol for targeted curing of virulence plasmids. The protocol involves insertion of an I-SecI restriction site linked to an antibiotic resistance gene into the target plasmid using λ-Red mutagenesis, followed by the transformation with a temperature-sensitive auxiliary plasmid which carries I-SecI nuclease expressed from a tetracycline-inducible promoter. Finally, the auxiliary plasmid is removed by incubation at 42 °C and the plasmid-less strains are verified on antibiotic-containing media. This method is fast and very efficient: over 90 % of recovered colonies lacked their virulence plasmid.

  7. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Directory of Open Access Journals (Sweden)

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  8. Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival

    DEFF Research Database (Denmark)

    Peng, Xu

    2008-01-01

    of the integrase gene occurs in the viral attachment site (attP), which corresponds to the anticodon region of the targeted tRNA gene in the host chromosome. This point mutation confers on pXZ1 the ability to integrate into the tRNA(Glu)[CUC] gene, which differs from the integration site of SSV4, t......RNA(Glu)[UUC]. SSV4 and pXZ1 were also shown experimentally to integrate into separate sites on the host chromosome. This is believed to be the first report of a pRN plasmid sharing its natural host with a fusellovirus and carrying a highly similar integrase gene....

  9. Plasmids which make their host bacteria mutable as well as resistant to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Arai, Toshihiko; Ando, Takao

    1980-01-01

    Some of the naturally occurring Iα, I zeta, M, N, O and T group plasmids increase both the mutability and UV resistance of their host bacteria, while group H and S plasmids only increase mutability. This suggests that these two plasmid-mediated repair functions are separable. The two functions have no direct relation to their restriction-modification systems and nitrofuran resistant functions. In addition, the close linking between the restriction-modification genes and these repair function genes was suggested in group N plasmids. (author)

  10. Genetic characterization of plasmid pRJ5 of Staphylococcus aureus compared to plasmid pE194

    International Nuclear Information System (INIS)

    Oliveira, S.S. de; Freire Bastos, M.C. de

    1993-01-01

    The pRJ5, a naturally occurring constitutive macrolide, lincosamide and streptogramin B (MLS) resistance plasmid of Staphylococcus aureus, was compared to pE194, a plasmid that confers the inducible phenotype. pRJ5 was stable in all strains of S. aureus tested, even under growth at 43 O C, which distinguished it from pE194 which was shown to be thermo-sensitive for replication. pRJ5, like pE194, was highly unstable in Bacillus subtilis when the cells were grown in nonselective conditions. Multimeric forms of pRJ5 DNA were detected in the few cells of B. subtilis that retained this plasmid. pE194 was transduced by phages φ 11 and φ 443 at frequencies 400 and 20-fold higher, respectively, than pRJ5. Both plasmids were co-transduced with the plasmid pRJ4. pRJ5 was shown to be compatible with pE194. Therefore they belong to distinct Inc groups. Hybridization studies revealed that pRJ5 shares a 1.35 kb region of homology to pE194, which is limited to the erm gene, conferring MLS resistance. (author)

  11. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    Science.gov (United States)

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  12. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    . Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...... of microbial communities may be directly interconnected through transfer of BHR plasmids at a so far unrecognized level. The developed method furthermore enabled me to explore how agronomic practices may affect gene transfer in soil microbial communities. I compared bacterial communities extracted from plots...

  13. Virus-sized self-assembling lamellar complexes between plasmid DNA and cationic micelles promote gene transfer

    Science.gov (United States)

    Pitard, Bruno; Aguerre, Olivier; Airiau, Marc; Lachagès, Anne-Marie; Boukhnikachvili, Tsiala; Byk, Gérardo; Dubertret, Catherine; Herviou, Christian; Scherman, Daniel; Mayaux, Jean-François; Crouzet, Joël

    1997-01-01

    Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains. PMID:9405626

  14. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  15. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Goto, Shingo; Kasai, Kouji; Seki, Hikaru; Suzuki, Masashi; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-05-01

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.

  16. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    Science.gov (United States)

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  17. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2018; 17 (1): 1-10 ... Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) ..... Intramuscular delivery of DNA ... copolymeric system for gene delivery in complete.

  18. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Oshota, Olusegun; Holden, Matt T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2015-08-01

    The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  19. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.; Abdallah, A. M.; Kuiper, V.; Aajoud, A.; Sparrius, M.; Naeem, R.; Spaink, H. P.; van Soolingen, D.; Pain, Arnab; Bitter, W.

    2014-01-01

    Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.

  20. Plasmid transfer by conjugation in Xylella fastidiosa.

    Science.gov (United States)

    Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...

  1. Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family).

    Science.gov (United States)

    Kulinska, Anna; Godziszewska, Jolanta; Wojciechowska, Anna; Ludwiczak, Marta; Jagura-Burdzy, Grazyna

    2016-04-01

    The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in transnegatively interferes with mini-RA3 replication and stable maintenance of RA3. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. A novel pAA virulence plasmid encoding toxins and two distinct variants of the fimbriae of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Jønsson, Rie; Struve, Carsten; Boll, Erik J.

    2017-01-01

    phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including...... some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity....

  3. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Svobodová, Karla; Pantůček, Roman; Petráš, Petr; Čejková, Darina; Doškař, Jiří

    2017-09-01

    Exfoliative toxin B (ETB) encoded by some large plasmids plays a crucial role in epidermolytic diseases caused by Staphylococcus aureus. We have found as yet unknown types of etb gene-positive plasmids isolated from a set of impetigo strains implicated in outbreaks of pemphigus neonatorum in Czech maternity hospitals. Plasmids from the strains of clonal complex CC121 were related to archetypal plasmid pETB TY4 . Sharing a 33-kb core sequence including virulence genes for ETB, EDIN C, and lantibiotics, they were assigned to a stand-alone lineage, named pETB TY4 -based plasmids. Differing from each other in the content of variable DNA regions, they formed four sequence types. In addition to them, a novel unique plasmid pETB608 isolated from a strain of ST130 was described. Carrying conjugative cluster genes, as well as new variants of etb and edinA genes, pETB608 could be regarded as a source of a new lineage of ETB plasmids. We have designed a helpful detection assay, which facilitates the precise identification of the all described types of ETB plasmids. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Chopin, M.C.; Chopin, A.; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  5. Cloning of regions required for contact hemolysis and entry into LLC-MK2 cells from Shigella sonnei form I plasmid: virF is a positive regulator gene for these phenotypes.

    OpenAIRE

    Kato, J; Ito, K; Nakamura, A; Watanabe, H

    1989-01-01

    Two distinct regions required for both contact hemolysis and entry into LLC-MK2 cells were cloned into Escherichia coli from the Shigella sonnei form I plasmid, pSS120. The first region was cloned into an E. coli HB101 strain containing noninvasive Tn1 insertion mutants of the form I plasmid, and expression of ipa (invasion plasmid antigen) gene products was restored. The plasmid carrying the first region was then transformed into E. coli lacking the form I plasmid, and additional DNA fragmen...

  6. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky.

    Directory of Open Access Journals (Sweden)

    Timothy J Johnson

    Full Text Available Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%, Typhimurium (15.0% and Heidelberg (1.7%. We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.

  7. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  8. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.

    2014-09-23

    Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, including Mycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria. IMPORTANCE: Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of

  9. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    Science.gov (United States)

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, PhHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury.

  10. Frequency and diversity of small cryptic plasmids in the genus Rahnella

    Directory of Open Access Journals (Sweden)

    Summers David K

    2010-02-01

    Full Text Available Abstract Background Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. Results In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. Conclusions For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to diffent groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the

  11. [Isolation and characterization of petroleum catabolic broad-host-range plasmids from Shen-Fu wastewater irrigation zone].

    Science.gov (United States)

    Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin

    2013-11-01

    Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.

  12. The characteristics of micrococcus (deinococcus) radiodurans sark plasmids

    International Nuclear Information System (INIS)

    Sjarief, Sri Hariani; Kikuchi, Masahiro; Watanabe, Hiroshi.

    1994-01-01

    The characterization of micrococcus (deinococcus) radiodurans sark plasmids. This bacterium has been classified as a new genus deinococcus radiodurans which is resistant to gamma-rays. It can repair itself completely almost all of DNA damages including double strand breaks induced by gamma-rays up to about 5 KGy. To reveal the repair mechanism, several investigations had been done to develop a cloning vector available for the genetic analysis. For this purpose D. radiodurans Sark are to be prepared as a vector by studying the characteristics of its plasmid. Plasmids were isolated by electrophoresis using 0.6% low-melting-temperature agarose in TAE and run for 5.5 hours, followed by the identification. An antibiotic marker was also carried out in this experiment to identify its location in the genetic materials of the cell, beside making a restriction map of the plasmid. Results have shown that D. radiodurans Sark has 4 plasmids (P1, P2, P3, and P4) and the refampicin resistant genes were not found in the plasmid. (authors). 14 refs; 4 figs

  13. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  14. High-level fluoroquinolone resistant Salmonella enterica serovar Kentucky ST198 epidemic clone with IncA/C conjugative plasmid carrying bla(CTX-M-25) gene.

    Science.gov (United States)

    Wasyl, Dariusz; Kern-Zdanowicz, Izabela; Domańska-Blicharz, Katarzyna; Zając, Magdalena; Hoszowski, Andrzej

    2015-01-30

    Multidrug resistant Salmonella Kentucky strains have been isolated from turkeys in Poland since 2009. Multiple mutations within chromosomal genes gyrA and parC were responsible for high-level ciprofloxacin resistance. One of the isolates was extended spectrum β-lactamase- (ESBL) positive: the strain 1643/2010 carried a conjugative 167,779 bps plasmid of IncA/C family. The sequence analysis revealed that it carried a blaCTX-M-25 gene and an integron with another β-lactamase encoding gene-blaOXA-21. This is the first known report of a CTX-M-25 encoding gene both in Poland and in Salmonella Kentucky world-wide, as well as in the IncA/C plasmid. Analysis of the integron showed a novel arrangement of gene cassettes-aacA4, aacC-A1 and blaOXA-21 where the latter might result from an intergeneric gene transfer. The study confirmed Salmonella Kentucky population isolated in Poland belongs to global epidemics of high level fluoroquinolone resistant clone ST198 that can carry rare β-lactamase genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae.

    Science.gov (United States)

    Wang, Ruibai; Liu, Haican; Zhao, Xiuqin; Li, Jie; Wan, Kanglin

    2018-01-01

    Azithromycin (AZM) is a clinically important antibiotic against Vibrio cholerae, especially for inhibiting V. cholerae colonisation of the intestine and for the treatment of severe cholera in children and pregnant women. An IncA/C plasmid was isolated from two high minimum inhibitory concentration (MIC) AZM-resistant V. cholerae strains of the two mainly pathogenic serogroups (O1 and O139) isolated in China. In the 172 predicted open reading frames (ORFs), 16 genes were related to antibiotic resistance, of which 5 were well-defined genes associated with macrolide resistance. The five macrolide resistance genes distributed in two clusters, mphR-mrx-mph(K) and mel-mph2, flanked by insertion sequence elements and involving two kinds of resistance mechanism. Deletion of the complete region of the two clusters deceased the AZM MIC from ≥64 µg/mL to ≤0.5 µg/mL. This IncA/C plasmid shows great ability to accumulate antibiotic resistance genes. In addition to 11 resistance genes to other antibiotics, 5 macrolide resistance genes with different function were gathered repeatedly through transposition on one plasmid. This genotype could not be simply explained by antibiotic stress applied on the host from the environment or treatment. These phosphorylases and transmembrane transporters might be involved in the transport and metabolism of other non-antibiotic substances, enabling this kind of plasmid to propagate better in the host. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities

    DEFF Research Database (Denmark)

    Klümper, Uli; Droumpali, Ariadni; Dechesne, Arnaud

    2014-01-01

    Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial...... community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We...... of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial communities....

  17. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  18. Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids.

    Science.gov (United States)

    Park, Miseon; Deck, Joanna; Foley, Steven L; Nayak, Rajesh; Songer, J Glenn; Seibel, Janice R; Khan, Saeed A; Rooney, Alejandro P; Hecht, David W; Rafii, Fatemeh

    2016-04-01

    Clostridium perfringens is an important pathogen, causing food poisoning and other mild to severe infections in humans and animals. Some strains of C. perfringens contain conjugative plasmids, which may carry antimicrobial resistance and toxin genes. We studied genomic and plasmid diversity of 145 C. perfringens type A strains isolated from soils, foods, chickens, clinical samples, and domestic animals (porcine, bovine and canine), from different geographic areas in the United States between 1994 and 2006, using multiple-locus variable-number tandem repeat analysis (MLVA) and/or pulsed-field gel electrophoresis (PFGE). MLVA detected the genetic diversity in a majority of the isolates. PFGE, using SmaI and KspI, confirmed the MLVA results but also detected differences among the strains that could not be differentiated by MLVA. All of the PFGE profiles of the strains were different, except for a few of the epidemiologically related strains, which were identical. The PFGE profiles of strains isolated from the same domestic animal species were clustered more closely with each other than with other strains. However, a variety of C. perfringens strains with distinct genetic backgrounds were found among the clinical isolates. Variation was also observed in the size and number of plasmids in the strains. Primers for the internal fragment of a conjugative tcpH gene of C. perfringens plasmid pCPF4969 amplified identical size fragments from a majority of strains tested; and this gene hybridized to the various-sized plasmids of these strains. The sequences of the PCR-amplified tcpH genes from 12 strains showed diversity among the tcpH genes. Regardless of the sources of the isolates, the genetic diversity of C. perfringens extended to the plasmids carrying conjugative genes. Published by Elsevier Ltd.

  19. Evolutionary maintenance of filovirus-like genes in bat genomes

    Directory of Open Access Journals (Sweden)

    Taylor Derek J

    2011-11-01

    Full Text Available Abstract Background Little is known of the biological significance and evolutionary maintenance of integrated non-retroviral RNA virus genes in eukaryotic host genomes. Here, we isolated novel filovirus-like genes from bat genomes and tested for evolutionary maintenance. We also estimated the age of filovirus VP35-like gene integrations and tested the phylogenetic hypotheses that there is a eutherian mammal clade and a marsupial/ebolavirus/Marburgvirus dichotomy for filoviruses. Results We detected homologous copies of VP35-like and NP-like gene integrations in both Old World and New World species of Myotis (bats. We also detected previously unknown VP35-like genes in rodents that are positionally homologous. Comprehensive phylogenetic estimates for filovirus NP-like and VP35-like loci support two main clades with a marsupial and a rodent grouping within the ebolavirus/Lloviu virus/Marburgvirus clade. The concordance of VP35-like, NP-like and mitochondrial gene trees with the expected species tree supports the notion that the copies we examined are orthologs that predate the global spread and radiation of the genus Myotis. Parametric simulations were consistent with selective maintenance for the open reading frame (ORF of VP35-like genes in Myotis. The ORF of the filovirus-like VP35 gene has been maintained in bat genomes for an estimated 13. 4 MY. ORFs were disrupted for the NP-like genes in Myotis. Likelihood ratio tests revealed that a model that accommodates positive selection is a significantly better fit to the data than a model that does not allow for positive selection for VP35-like sequences. Moreover, site-by-site analysis of selection using two methods indicated at least 25 sites in the VP35-like alignment are under positive selection in Myotis. Conclusions Our results indicate that filovirus-like elements have significance beyond genomic imprints of prior infection. That is, there appears to be, or have been, functionally maintained

  20. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  1. Plasmids foster diversification and adaptation of bacterial populations in soil.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. A Histone-Like Protein Induces Plasmid DNA to Form Liquid Crystals in Vitro and Gene Compaction in Vivo

    Directory of Open Access Journals (Sweden)

    Shiyong Sun

    2013-12-01

    Full Text Available The liquid crystalline state is a universal phenomenon involving the formation of an ordered structure via a self-assembly process that has attracted attention from numerous scientists. In this study, the dinoflagellate histone-like protein HCcp3 is shown to induce super-coiled pUC18 plasmid DNA to enter a liquid crystalline state in vitro, and the role of HCcp3 in gene condensation in vivo is also presented. The plasmid DNA (pDNA-HCcp3 complex formed birefringent spherical particles with a semi-crystalline selected area electronic diffraction (SAED pattern. Circular dichroism (CD titrations of pDNA and HCcp3 were performed. Without HCcp3, pUC18 showed the characteristic B conformation. As the HCcp3 concentration increased, the 273 nm band sharply shifted to 282 nm. When the HCcp3 concentration became high, the base pair (bp/dimer ratio fell below 42/1, and the CD spectra of the pDNA-HCcp3 complexes became similar to that of dehydrated A-form DNA. Microscopy results showed that HCcp3 compacted the super-coiled gene into a condensed state and that inclusion bodies were formed. Our results indicated that HCcp3 has significant roles in gene condensation both in vitro and in histone-less eukaryotes in vivo. The present study indicates that HCcp3 has great potential for applications in non-viral gene delivery systems, where HCcp3 may compact genetic material to form liquid crystals.

  3. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  4. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  5. The sudden dominance of blaCTX-M harbouring plasmids in Shigella spp. Circulating in Southern Vietnam.

    Directory of Open Access Journals (Sweden)

    Nhu Thi Khanh Nguyen

    2010-06-01

    Full Text Available Plasmid mediated antimicrobial resistance in the Enterobacteriaceae is a global problem. The rise of CTX-M class extended spectrum beta lactamases (ESBLs has been well documented in industrialized countries. Vietnam is representative of a typical transitional middle income country where the spectrum of infectious diseases combined with the spread of drug resistance is shifting and bringing new healthcare challenges.We collected hospital admission data from the pediatric population attending the hospital for tropical diseases in Ho Chi Minh City with Shigella infections. Organisms were cultured from all enrolled patients and subjected to antimicrobial susceptibility testing. Those that were ESBL positive were subjected to further investigation. These investigations included PCR amplification for common ESBL genes, plasmid investigation, conjugation, microarray hybridization and DNA sequencing of a bla(CTX-M encoding plasmid.We show that two different bla(CTX-M genes are circulating in this bacterial population in this location. Sequence of one of the ESBL plasmids shows that rather than the gene being integrated into a preexisting MDR plasmid, the bla(CTX-M gene is located on relatively simple conjugative plasmid. The sequenced plasmid (pEG356 carried the bla(CTX-M-24 gene on an ISEcp1 element and demonstrated considerable sequence homology with other IncFI plasmids.The rapid dissemination, spread of antimicrobial resistance and changing population of Shigella spp. concurrent with economic growth are pertinent to many other countries undergoing similar development. Third generation cephalosporins are commonly used empiric antibiotics in Ho Chi Minh City. We recommend that these agents should not be considered for therapy of dysentery in this setting.

  6. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins

    DEFF Research Database (Denmark)

    Lozano, C.; Garcia-Migura, L.; Aspiroz, C.

    2012-01-01

    An expansion of a previously described plasmid classification was performed and used to reveal the plasmid content of a collection of 92 Staphylococcus aureus strains of different origins. rep genes of other genera were detected in Staphylococcus. S1 pulsed-field gel electrophoresis (PFGE) hybrid...

  7. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible.

    Science.gov (United States)

    Ambrose, Stephanie J; Harmer, Christopher J; Hall, Ruth M

    2018-02-24

    In an early study, IncA and IncC plasmids that were reported to be compatible were grouped as the "A-C complex" based on similarities and on strong entry exclusion. However, recently, the term IncA/C has been used frequently to describe plasmids belonging to both of these two groups. Granted that the supporting data was not included in the original reports and that the consensus iteron sequences have since been shown to be essentially identical, we have addressed the question again. The original IncA plasmid, RA1, and the IncC plasmid pRMH760, were introduced into the same cell by transformation, and were found to be maintained stably for over 100 generations in the absence of selection for either plasmid, i.e. they were compatible. We conclude that use of the term IncA/C for this important plasmid group is indeed incorrect and it causes unnecessary confusion. Granted the importance of IncC plasmids in the spread of antibiotic resistance genes, we recommend that use of the misleading terms IncA/C, IncA/C 1 and IncA/C 2 should cease. In addition, RA1 and pRMH760 were shown to each completely prevent entry of the other via conjugative transfer into the cell they reside in. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  9. THE ENDOGENOUS BACILLUS-SUBTILIS (NATTO) PLASMIDS PTA1015 AND PTA1040 CONTAIN SIGNAL PEPTIDASE-ENCODING GENES - IDENTIFICATION OF A NEW STRUCTURAL MODULE ON CRYPTIC PLASMIDS

    NARCIS (Netherlands)

    MEIJER, WJJ; DEJONG, A; BEA, G; WISMAN, A; TJALSMA, H; VENEMA, G; BRON, S; MAARTEN, J; VANDIJL, JM

    Various strains of Bacillus subtilis (natto) contain small cryptic plasmids that replicate via the rolling-circle mechanism. Like plasmids from other Gram-positive bacteria, these plasmids are composed of several distinct structural modules. A new structural module was identified on the B. subtilis

  10. Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq.

    Directory of Open Access Journals (Sweden)

    Xiao-Zhe Huang

    Full Text Available BACKGROUND: Gram-negative multidrug-resistant (MDR bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38 and randomly selected non-MDR counterparts (n = 41 isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3 plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01. Various large plasmids (~52 to 100 kb from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA, β-lactam (bla(TEM1, bla(AMPC, bla(CTX-M-15, bla(OXA-1, bla(VIM-2 and bla(SHV, sulfamethoxazole/trimethoprim (sul/dfr, tetracycline (tet and chloramphenicol (cat resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary

  11. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    Science.gov (United States)

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  12. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure.

    Science.gov (United States)

    Okee, Moses; Bayiyana, Alice; Musubika, Carol; Joloba, Moses L; Ashaba-Katabazi, Fred; Bagaya, Bernard; Wayengera, Misaki

    2018-01-01

    Efficiency of artificial restriction enzymes toward curing HIV has only been separately examined, using differing delivery vehicles. We compared the in vitro transduction and target-mutagenesis efficiency of consortium plasmid and adenoviral vector delivered HIV-1 pol gene targeting zinc finger nuclease (ZFN) with CRISPR/Cas, Custom-ZFN, CRISPR-Cas-9, and plasmids and vectors (murCTSD_pZFN, pGS-U-gRNA, pCMV-Cas-D01A, Ad5-RGD); cell lines (TZM-bl and ACH-2/J-Lat cells); and the latency reversing agents prostratin, suberoylanilide hydroxamic acid, and phorbol myristate acetate. Cell lines were grown in either Dulbecco's modified Eagle's medium or Roswell Park Memorial Institute with the antibiotics kanamycin, zeocin, and efavirenz. Efficiency was assayed by GFP/luciferase activity and/or validated by yeast MEL1 reporter assay, CEL1 restriction fragment assay, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Ad5-RGD vectors had better transduction efficiency than murCTSD and pGS-U-gRNA/pCMV-Cas-D01A plasmids. CRISPR/Cas9 exhibited better target-mutagenesis efficiency relative to ZFN (delivered by either plasmid or Ad5 vector) based on gel electrophoresis of pol gene amplicons within ACH-2 and J-Lat cells. Ad-5-RGD vectors enhanced target mutagenesis of ZFN, relative to murCTSD_pZFN plasmids, to levels of CRISPR/Cas9 plasmids. Similar reduction of luciferase activity among TZM-bl treated with Ad5-ZFN vectors relative to CRISPR/Cas-9 and murCTSD_pZFN plasmids was observed on challenge with HIV-1. qRT-PCR of HIV-1 pol gene transcripts affirmed that Ad5 (RGD) vectors enhanced target mutagenesis of ZFN. Whereas CRISPR/Cas-9 may possess inherent superior target-mutagenesis efficiency; the efficiency of ZFN (off-target toxicity withstanding) can be enhanced by altering delivery vehicle from plasmid to Ad5 (RGD) vectors.

  13. A procedure for maintenance of the virulence plasmid (pYV) in Yersinia pestis under culture conditions

    Science.gov (United States)

    The pathogenicity of Yersinia pestis depends on the presence of a virulence plasmid (pYV). The unstable nature of pYV in Y. pestis leads to the eventual outgrowth of pYV less cells due to its higher growth rate. Thus, it was necessary to develop procedures to monitor the presence of the plasmid du...

  14. The presence of plasmid-mediated resistance genes among uropathogenes isolated from diabetic and non-diabetic patients with chronic pyelonephritis

    Directory of Open Access Journals (Sweden)

    O.I. Chub

    2014-10-01

    Full Text Available Increased multidrug resistance of extended-spectrum beta-lactamases (ESBLs compromises the efficacy of treatment of urinary tract infections. The objective of this study is to determine the prevalence of ESBL-producing uropathogens from patients with chronic pyelonephritis (CP and to evaluate the risk factors of these types of infections. Screening for the presence of plasmid-mediated ESBL was performed by polymerase chain reaction. Out of 105 patients, 22 (20.9% revealed strains with resistance genes: 11 (36.7%, 11 (36.7% and 8 (26.7% were identified to carry bla(TEM, bla(SHV and bla(CTX-M beta-lactamase genes, respectively. We have demonstrated that prevalence of the resistance among patients with CP combined with type 2 DM was 31.3%, while among patients with CP without type 2 DM was 27.4%; however the difference between these groups was not significant. The main factors related with appearance of plasmid-mediated resistance genes were age range above 55 years, Chronic Kidney Disease stage ІІІ and ІV, in-patient treatment history, history of using antibiotics last year. Isolation and detection of ESBL-producing strains are essential fоr the sеlection оf the mоst effеctive antibiоtic for the empiric trеatment.

  15. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids.

    Science.gov (United States)

    He, Susu; Chandler, Michael; Varani, Alessandro M; Hickman, Alison B; Dekker, John P; Dyda, Fred

    2016-12-06

    The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as

  16. IncA/C plasmids: An emerging threat to human and animal health?

    Science.gov (United States)

    Johnson, Timothy J; Lang, Kevin S

    2012-01-01

    Incompatibility group IncA/C plasmids are large, low copy, theta-replicating plasmids that have been described in the literature for over 40 years. However, they have only recently been intensively studied on the genomic level because of their associations with the emergence of multidrug resistance in enteric pathogens of humans and animals. These plasmids are unique among other enterobacterial plasmids in many aspects, including their modular structure and gene content. While the IncA/C plasmid genome structure has now been well defined, many questions remain pertaining to their basic biological mechanisms of dissemination and regulation. Here, we discuss the history of IncA/C plasmids in light of our recent understanding of their population distribution, genomics, and effects on host bacteria.

  17. Characterization and plasmid elimination of NDM-1-producing Acinetobacter calcoaceticus from China.

    Directory of Open Access Journals (Sweden)

    Yang Sun

    Full Text Available The presence of multidrug-resistant bacterial pathogens in the environment poses a serious threat to public health. The opportunistic Acinetobacter spp. are among the most prevalent causes of nosocomial infections. Here, we performed complete genome sequencing of the Acinetobacter calcoaceticus strain XM1570, which was originally cultivated from the sputum of a patient diagnosed with pneumonia in Xiamen in 2010. We identified carbapenem resistance associated gene bla(NDM-1 located on a 47.3-kb plasmid. Three methods--natural reproduction, sodium dodecyl sulfate treatment and nalidixic acid treatment--were used to eliminate the bla(NDM-1-encoding plasmid, which achieved elimination rates of 3.32% (10/301, 83.78% (278/332, and 84.17% (298/354, respectively. Plasmid elimination dramatically increased antibiotic sensitivity, reducing the minimum bacteriostatic concentration of meropenem from 256 µg/ml in the clinical strain to 0.125 µg/ml in the plasmid-eliminated strain. Conjugation transfer assays showed that the bla(NDM-1-containing plasmid could be transferred into Escherichia coli DH5α:pBR322 in vitro as well as in vivo in mice. The bla(NDM-1 genetic environment was in accordance with that of other bla(NDM-1 genes identified from India, Japan, and Hong-Kong. The multilocus sequence type of the isolate was identified as ST-70. Two novel genes encoding intrinsic OXA and ADC were identified and named as OXA-417 and ADC-72. The finding of bla(NDM-1 in species like A. calcoaceticus demonstrates the wide spread of this gene in gram-negative bacteria which is possible by conjugative plasmid transfer. The results of this study may help in the development of a treatment strategy for controlling NDM-1 bacterial infection and transmission.

  18. Dynamics in copy numbers of five plasmids of a dairy Lactococcus lactis in dairy-related conditions including near-zero growth rates.

    Science.gov (United States)

    van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J

    2018-03-23

    Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L

  19. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    Science.gov (United States)

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  20. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    Directory of Open Access Journals (Sweden)

    TC Leal-Balbino

    2004-11-01

    Full Text Available Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.

  1. Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin.

    Science.gov (United States)

    Papagiannitsis, Costas C; Dolejska, Monika; Izdebski, Radosław; Giakkoupi, Panagiota; Skálová, Anna; Chudějová, Kateřina; Dobiasova, Hana; Vatopoulos, Alkiviadis C; Derde, Lennie P G; Bonten, Marc J M; Gniadkowski, Marek; Hrabák, Jaroslav

    2016-02-01

    The complete nucleotide sequences of three multidrug resistance (MDR) IncA/C-like plasmids from Enterobacteriaceae isolates carrying the VIM-type carbapenemase-encoding integrons In4863 (blaVIM-19-aacA7-dfrA1-ΔaadA1-smr2) or In4873 (blaVIM-1-aacA7-dfrA1-ΔaadA1-smr2) were determined, which are the first In416-like elements identified in Greece. Plasmids pKP-Gr642 and pKP-Gr8143 were from Klebsiella pneumoniae ST383 isolates, whereas plasmid pEcl-Gr4873 was from an Enterobacter cloacae ST88 isolate. Sequencing showed that pKP-Gr642 (162787bp) and pKP-Gr8143 (154395bp) consisted of the type 1 IncA/C2 conserved backbone, the blaCMY-2-like gene-containing region, and the ARI-B (with the sul2 gene) and ARI-A (with a class 1 integron) resistance islands, like the plasmid pUMNK88_161 from the USA. The third plasmid, pEcl-Gr4873 (153958bp), exhibited extensive similarity with the type 2 IncA/C2 plasmid pR55 from France. pEcl-Gr4873 carried only one resistance island of a hybrid transposon structure inserted in a different location to ARI-A in type 1 A/C2 plasmids. In all three plasmids, the In416-like integrons In4863 or In4873 were identified within non-identical class II transposon structures. All three In416-like-carrying regions presented significant similarities with the MDR region of the IncA/C2 plasmid pCC416 from Italy, carrying the prototype In416 integron (blaVIM-4-aacA7-dfrA1-ΔaadA1-smr2). These findings provided the basis for speculations regarding the evolution of IncA/C2 plasmids with In416-like integrons, and confirmed the rapid evolution of some IncA/C2 plasmid lineages. Considering the broad host range of IncA/C2 molecules, it seems that pKP-Gr642, pKP-Gr8143 and pEcl-Gr4873 plasmids might support the diffusion of In416-like integrons among Enterobacteriaceae. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  2. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenlokke; Riber, Leise; Kot, Witold

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements...... of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded...... on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed...

  3. [Construction and identification of eukaryotic plasmid pGC-silencer-U6/Neo/GFP/ABCG2].

    Science.gov (United States)

    Yu, Yanping; Zhang, Song; Kong, Weijia

    2010-09-01

    To construct three short hairpin RNA (shRNA) interference expression plasmid vectors of human ABCG2 gene, to assay the expression of ABCG2 in a human nasopharyngeal carcinoma (NPC) cell line, CEN-2 cell line, and to detect the RNAi effect of shRNA. Targeting ABCG2 gene sequence, three plasmid expression vectors coding for shRNA and a control vector containing random DNA fragment were constructed. The recombinant plasmids were amplified in Ecoli. DH5 and then identified by restriction digestion, PCR and sequencing. The recombinant plasmids were transfected into CEN-2 cells. ABCG2 expression was assayed by real-time quantitative PCR and Western blot. The construction of pGC-silencer-U6/Neo/GFP/ABCG2 was succeed. The shRNA plasmids significantly down-regulated the ABCG2 expression in CEN-2 cells, at both mRNA level and protein level. Recombinant plasmid 1 had the strongest effect compared with plasmids 2 and 3 (P < 0.05), with an inhibition ratio of 75% at the mRNA level and 68% at the protein level. pGC-silencer-U6/Neo/GFP/ABCG2 has been successfully constructed and it can down-regulate ABCG2 expression after transfected into CEN-2 cells, which could help further studies of ABCG2 functions CEN-2 cell line and contribute to the NPC gene therapy.

  4. Genomic insights into a new Citrobacter koseri strain revealed gene exchanges with the virulence-associated Yersinia pestis pPCP1 plasmid

    Directory of Open Access Journals (Sweden)

    Fabrice eArmougom

    2016-03-01

    Full Text Available The history of infectious diseases raised the plague as one of the most devastating for human beings. Far too often considered an ancient disease, the frequent resurgence of the plague has led to consider it as a reemerging disease in Madagascar, Algeria, Libya and Congo. The genetic factors associated with the pathogenicity of Yersinia pestis, the causative agent of the plague, involve the acquisition of the pPCP1 plasmid that promotes host invasion through the expression of the virulence factor Pla. The surveillance of plague foci after the 2003 outbreak in Algeria resulted in a positive detection of the specific pla gene of Y. pestis in rodents. However, the phenotypic characterization of the isolate identified a Citrobacter koseri. The comparative genomics of our sequenced C. koseri URMITE genome revealed a mosaic gene structure resulting from the lifestyle of our isolate and provided evidence for gene exchanges with different enteric bacteria. The most striking was the acquisition of a continuous 2 kb genomic fragment containing the virulence factor Pla of the Y. pestis pPCP1 plasmid; however, the subcutaneous injection of the CKU strain in mice did not produce any pathogenic effect. Our findings demonstrate that fast molecular detection of plague using solely the pla gene is unsuitable and should rather require Y. pestis gene marker combinations. We also suggest that the evolutionary force that might govern the expression of pathogenicity can occur through the acquisition of virulence genes but could also require the loss or the inactivation of resident genes such as antivirulence genes.

  5. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    International Nuclear Information System (INIS)

    Strike, P.; Roberts, R.J.

    1982-01-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA + and uvrB + gene products, but not the host recA + gene product. The requirement for both homologous DNA and the uvrA + gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered

  6. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  7. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site

    Science.gov (United States)

    Munro, Jacob E.; Liew, Elissa F.; Ly, Mai-Anh

    2016-01-01

    ABSTRACT 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1. Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more

  8. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.

    Directory of Open Access Journals (Sweden)

    Patrick Kiefer

    2009-11-01

    Full Text Available The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases.We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import.This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.

  9. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Carattoli, Alessandra; Zankari, Ea; García-Fernández, Aurora

    2014-01-01

    In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft...... genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration...... sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection...

  10. Role of the RS1 sequence of the cholera vibrio in amplification of the segment of plasmid DNA carrying the gene of resistance to tetracycline and the genes of cholera toxin

    International Nuclear Information System (INIS)

    Fil'kova, S.L.; Il'ina, T.S.; Gintsburg, A.L.; Yanishevskii, N.V.; Smirnov, G.B.

    1988-01-01

    The hybrid plasmid pCO107, representing cointegrate 14(2)-5(2) of two plasmids, an F-derivative (pOX38) and a PBR322-derivative (pCT105) with an RS1 sequence of the cholera vibrio cloned in its makeup, contains two copes of RS1 at the sites of union of the two plasmids. Using a tetracycline resistance marker (Tc R ) of the plasmid pCT105, clones were isolated which have an elevated level of resistance to tetracycline (an increase of from 4- to 30-fold). Using restriction analysis and the Southern blot method of hybridization it was shown that the increase in the level of resistance of tetracycline is associated with the amplification of pCT105 portion of the cointegrate, and that the process of amplification is governed by the presence of direct repeats of the RS1 sequence at its ends. The increase in the number of copies of the pCT105 segment, which contains in its composition the genes of cholera toxin (vct), is accompanied by an increase in toxin production

  11. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host.

    Science.gov (United States)

    Heuer, Holger; Fox, Randal E; Top, Eva M

    2007-03-01

    IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.

  12. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  13. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp

    Science.gov (United States)

    Han, Jee Eun; Tang, Kathy F. J.; Tran, Loc H.; Lightner, Donald V.

    2016-01-01

    The 69 kb plasmid pVPA3-1 was identified in Vibrio parahaemolyticus strain 13-028/A3 that can cause acute hepatopancreatic necrosis disease (AHPND). This disease is responsible for mass mortalities in farmed penaeid shrimp and is referred to as early mortality syndrome (EMS). The plasmid has a GC content of 45.9% with a copy number of 37 per bacterial cell as determined by comparative quantitative PCR analyses. It consists of 92 open reading frames that encode mobilization proteins, replication enzymes, transposases, virulence-associated proteins, and proteins similar to Photorhabdus insect-related (Pir) toxins. In V. parahaemolyticus, these Pir toxin-like proteins are encoded by 2 genes ( pirA- and pirB-like) located within a 3.5 kb fragment flanked with inverted repeats of a transposase-coding sequence (1 kb). The GC content of these 2 genes is only 38.2%, substantially lower than that of the rest of the plasmid, which suggests that these genes were recently acquired. Based on a proteomic analysis, the pirA-like (336 bp) and pirB-like (1317 bp) genes encode for 13 and 50 kDa proteins, respectively. In laboratory cultures of V. parahaemolyticus 13-028/A3, both proteins were secreted into the culture medium. We developed a duplex PCR diagnostic method, with a detection limit of 105 CFU ml−1 and targeting pirA- and pirB-like genes in this strain of V. parahaemolyticus. This PCR protocol can reliably detect AHPND-causing strains of V. parahaemolyticus and does not cross react with non-pathogenic strains or with other species of Vibrio isolated from shrimp ponds. PMID:25667334

  14. Fitness Advantage of mcr-1–Bearing IncI2 and IncX4 Plasmids in Vitro

    Directory of Open Access Journals (Sweden)

    Renjie Wu

    2018-02-01

    Full Text Available The objective of this study was to assess the impact of diverse plasmids bearing colistin resistance gene mcr-1 on host fitness. Forty-seven commensal E. coli isolates recovered from the pig farm where mcr-1 was first identified were screened for mcr-1. mcr-1-bearing plasmids were characterized by sequencing. The fitness impact of mcr-1-bearing plasmids was evaluated by in vitro competition assays. Twenty-seven (57.5% E. coli isolates were positive for mcr-1. The mcr-1 genes were mainly located on plasmids belonging to IncI2 (n = 5, IncX4 (n = 11, IncHI2/ST3 (n = 8, IncFII (n = 2, and IncY (n = 2. InHI2 plasmids also carried other resistance genes (floR, blaCTX−M, and fosA3 and were only detected in isolates from nursery pigs. Sequences of the representative mcr-1–bearing plasmids were almost identical to those of the corresponding plasmid types reported previously. An increase in the fitness of IncI2- and IncX4-carrying strains was observed, while the presence of IncHI2, IncFII and IncY plasmids showed a fitness cost although an insignificant fitness increase was initially observed in IncFII or IncY plasmids-containing strains. Acquisition of IncI2-type plasmid was more beneficial for host E. coli DH5α than either IncHI2 or IncX4 plasmid, while transformants with IncHI2-type plasmid presented a competitive disadvantage against IncI2 or IncX4 plasmid containing strains. In conclusion, IncI2, IncX4, and IncHI2 were the major plasmid types driving the dissemination of mcr-1 in this farm. Increased fitness or co-selection by other antimicrobials might contribute to the further dissemination of the three epidemic mcr-1–positive plasmids (IncI2, IncX4, and IncHI2 in this farm and worldwide.

  15. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates.

    Science.gov (United States)

    Bergsveinson, Jordyn; Ziola, Barry

    2017-12-01

    Beer-spoilage-related lactic acid bacteria (BSR LAB) belong to multiple genera and species; however, beer-spoilage capacity is isolate-specific and partially acquired via horizontal gene transfer within the brewing environment. Thus, the extent to which genus-, species-, or environment- (i.e., brewery-) level genetic variability influences beer-spoilage phenotype is unknown. Publicly available Lactobacillus brevis genomes were analyzed via BlAst Diagnostic Gene findEr (BADGE) for BSR genes and assessed for pangenomic relationships. Also analyzed were functional coding capacities of plasmids of LAB inhabiting extreme niche environments. Considerable genetic variation was observed in L. brevis isolated from clinical samples, whereas 16 candidate genes distinguish BSR and non-BSR L. brevis genomes. These genes are related to nutrient scavenging of gluconate or pentoses, mannose, and metabolism of pectin. BSR L. brevis isolates also have higher average nucleotide identity and stronger pangenome association with one another, though isolation source (i.e., specific brewery) also appears to influence the plasmid coding capacity of BSR LAB. Finally, it is shown that niche-specific adaptation and phenotype are plasmid-encoded for both BSR and non-BSR LAB. The ultimate combination of plasmid-encoded genes dictates the ability of L. brevis to survive in the most extreme beer environment, namely, gassed (i.e., pressurized) beer.

  16. Rolling-circle plasmids from Bacillus subtilis : complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from Gram-positive bacteria

    NARCIS (Netherlands)

    Meijer, W.J.; Schuurs-Wisman, Bea; Terpstra, P; Thorsted, P.; Thomas, C.M.; Holsappel, S; Venema, G; Bron, S

    Most small plasmids of Gram-positive bacteria use the rolling-circle mechanism of replication and several of these have been studied in considerable detail at the DNA level and for the function of their genes. Although most of the common laboratory Bacillus subtilis 168 strains do not contain

  17. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Snoj, Marko; Cavalcanti, Andrea

    2013-01-01

    ). In each patient, two cutaneous lesions were identified (one treated and one control). At day 1 and day 8, plasmid AMEP was injected intratumorally followed by electrotransfer. Patients were monitored weekly until day 29, and at day 64. Local efficacy was assessed at day 29 by direct measurement...... lesions increased more than 20%. No response occurred in distant lesions. This first-in-man study on electrotransfer of plasmid AMEP into cutaneous melanoma shows that the procedure and drug are safe and that local transfection was obtained....

  18. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a Chinese teaching hospital

    Directory of Open Access Journals (Sweden)

    Zhang Xue-qing

    2010-06-01

    Full Text Available Abstract Background Recently, production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations. Therefore, the spread of high-level aminoglycoside resistance determinants has become a great concern. Methods Between January 2006 and July 2008, 680 distinct Escherichia coli clinical isolates were collected from a teaching hospital in Wenzhou, China. PCR and DNA sequencing were used to identify 16S rRNA methylase and extended-spectrum β-lactamase (ESBL genes, including armA and rmtB, and in situ hybridization was performed to determine the location of 16S rRNA methylase genes. Conjugation experiments were subsequently performed to determine whether aminoglycoside resistance was transferable from the E. coli isolates via 16S rRNA methylase-bearing plasmids. Homology of the isolates harboring 16S rRNA methylase genes was determined using pulse-field gel electrophoresis (PFGE. Results Among the 680 E. coli isolates, 357 (52.5%, 346 (50.9% and 44 (6.5% isolates were resistant to gentamicin, tobramycin and amikacin, respectively. Thirty-seven of 44 amikacin-resistant isolates harbored 16S rRNA methylase genes, with 36 of 37 harboring the rmtB gene and only one harboring armA. The positive rates of 16S rRNA methylase genes among all isolates and amikacin-resistant isolates were 5.4% (37/680 and 84.1% (37/44, respectively. Thirty-one isolates harboring 16S rRNA methylase genes also produced ESBLs. In addition, high-level aminoglycoside resistance could be transferred by conjugation from four rmtB-positive donors. The plasmids of incompatibility groups IncF, IncK and IncN were detected in 34, 3 and 3 isolates, respectively. Upstream regions of the armA gene contained ISCR1 and tnpU, the latter a putative transposase gene,. Another putative transposase gene, tnpD, was located within a region downstream of armA. Moreover, a

  19. Presence and analysis of plasmids in human and animal associated Arcobacter species

    DEFF Research Database (Denmark)

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip

    2014-01-01

    coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried...

  20. Dissemination of NDM-1-Producing Enterobacteriaceae Mediated by the IncX3-Type Plasmid

    Science.gov (United States)

    Fu, Ying; Du, Xiaoxing; Shen, Yuqin; Yu, Yunsong

    2015-01-01

    The emergence and spread of NDM-1-producing Enterobacteriaceae have resulted in a worldwide public health risk that has affected some provinces of China. China is an exceptionally large country, and there is a crucial need to investigate the epidemic of bla NDM-1-positive Enterobacteriaceae in our province. A total of 186 carbapenem-resistant Enterobacteriaceae isolates (CRE) were collected in a grade-3 hospital in Zhejiang province. Carbapenem-resistant genes, including bla KPC, bla IMP, bla VIM, bla OXA-48 and bla NDM-1 were screened and sequenced. Ninety isolates were identified as harboring the bla KPC-2 genes, and five bla NDM-1-positive isolates were uncovered. XbaI-PFGE revealed that three bla NDM-1-positive K. pneumoniae isolates belonged to two different clones. S1-PFGE and southern blot suggested that the bla NDM-1 genes were located on IncX3-type plasmids with two different sizes ranging from 33.3 to 54.7 kb (n=4) and 104.5 to 138.9 kb (n=1), respectively, all of which could easily transfer to Escherichia coli by conjugation and electrotransformation. The high-throughput sequencing of two plasmids was performed leading to the identification of a smaller 54-kb plasmid, which had high sequence similarity with a previously reported pCFNDM-CN, and a larger plasmid in which only a 7.8-kb sequence of a common gene environment around bla NDM-1 (bla NDM-1-trpF- dsbC-cutA1-groEL-ΔInsE,) was detected. PCR mapping and sequencing demonstrated that four smaller bla NDM-1 plasmids contained a common gene environment around bla NDM-1 (IS5-bla NDM-1-trpF- dsbC-cutA1-groEL). We monitored the CRE epidemic in our hospital and determined that KPC-2 carbapenemase was a major risk to patient health and the IncX3-type plasmid played a vital role in the spread of the bla NDM-1 gene among the CRE. PMID:26047502

  1. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo

    International Nuclear Information System (INIS)

    Jussila, Minna M.; Zhao, Ji; Suominen, Leena; Lindstroem, Kristina

    2007-01-01

    Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids. - Horizontal transfer of degradation plasmids in the oil-contaminated rhizosphere reveals the dynamic nature of the intrinsic biodegradation potential

  2. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    OpenAIRE

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK h...

  3. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    Science.gov (United States)

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  4. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    Science.gov (United States)

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  5. Transmissible Plasmids and Integrons Shift Escherichia coli Population Toward Larger Multiple Drug Resistance Numbers.

    Science.gov (United States)

    Suhartono, Suhartono; Savin, Mary C; Gbur, Edward E

    2018-04-01

    Transmissible plasmids and integrons may play important roles in the persistence and spread of antibiotic-resistant bacteria throughout aquatic environment by accumulating antibiotic resistance genes (ARG). Class 1 and class 2 integron (intI), mobilization (mob), sulfamethoxazole resistance (sul), and trimethoprim resistance (dfr) genes were PCR-amplified and confirmed through DNA sequencing following plasmid extraction from 139 antibiotic-resistant Escherichia coli. E. coli had previously been recovered from wastewater treatment plant effluent and receiving stream water in Northwest Arkansas and isolates had expressed resistance to one to six antibiotics. Almost half of the total isolates (47%) carried putatively transmissible plasmids with mob F12 gene as the most frequently detected mobilization gene. When two or three mob genes were detected per isolate, there was a significant shift in the population toward larger multiple drug resistance (MDR) number. Class 1 and/or 2 integrons were prevalent (46%), and the presence of integron significantly shifted the isolate population toward larger MDR number. More isolates carried single or coexistence of two or three sul genes (99.3%), and single or a combination up to five dfr genes (89.3%) than had exhibited in vitro resistance to the respective antibiotics. These findings indicate not only the role of the wastewater treatment effluent and the stream environment in coaccumulation of ARG with transmissible plasmids and integrons in multiple antibiotic-resistant E. coli populations but also suggest that density of sul and dfr resistance genes within an isolate may serve as a biomarker for mobile MDR in general.

  6. Transcriptome mapping of pAR060302, a blaCMY-2-positive broad-host-range IncA/C plasmid.

    Science.gov (United States)

    Lang, Kevin S; Danzeisen, Jessica L; Xu, Wayne; Johnson, Timothy J

    2012-05-01

    The multidrug resistance-encoding plasmids belonging to the IncA/C incompatibility group have recently emerged among Escherichia coli and Salmonella enterica strains in the United States. These plasmids have a unique genetic structure compared to other enterobacterial plasmid types, a broad host range, and a propensity to acquire large numbers of antimicrobial resistance genes via their accessory regions. Using E. coli strain DH5α harboring the prototype IncA/C plasmid pAR060302, we sought to define the baseline transcriptome of IncA/C plasmids under laboratory growth and in the face of selective pressure. The effects of ampicillin, florfenicol, or streptomycin exposure were compared to those on cells left untreated at logarithmic phase using Illumina platform-based RNA sequencing (RNA-Seq). Under growth in Luria-Bertani broth lacking antibiotics, much of the backbone of pAR060302 was transcriptionally inactive, including its putative transfer regions. A few plasmid backbone genes of interest were highly transcribed, including genes of a putative toxin-antitoxin system and an H-NS-like transcriptional regulator. In contrast, numerous genes within the accessory regions of pAR060302 were highly transcribed, including the resistance genes floR, bla(CMY-2), aadA, and aacA. Treatment with ampicillin or streptomycin resulted in no genes being differentially expressed compared to controls lacking antibiotics, suggesting that many of the resistance-associated genes are not differentially expressed due to exposure to these antibiotics. In contrast, florfenicol treatment resulted in the upregulation of floR and numerous chromosomal genes. Overall, the transcriptome mapping of pAR060302 suggests that it mitigates the fitness costs of carrying resistance-associated genes through global regulation with its transcriptional regulators.

  7. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    Science.gov (United States)

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of

  8. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination.

    Science.gov (United States)

    Carraro, Nicolas; Matteau, Dominick; Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-10-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands.

  9. Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance

    International Nuclear Information System (INIS)

    Lacey, R.W.

    1975-01-01

    A variety of plasmids were isolated physically, and most antibiotic resistance is thought to be plasmid mediated. A number of characters (e.g., resistance to erythromycin or methicillin, and production of pigment) are determined by genes that do not give clear indications of either plasmid or chromosomal location. Although the formation of a particular plasmid is probably, even in bacterial terms, a very rare event, once formed such an element can spread rapidly among the bacterial population. The spectacular increase in the incidence of penicillinase-producing hospital strains in the late 1940's could have been due in part to this process. Evidence is stronger, however, for the intercell transfer of recently isolated plasmids coding for resistance to fusidic acid (and penicillinase production), or for neomycin, or for tetracycline resistance. Study of bacterial plasmids can resolve fundamental biochemical problems, and give some insight into the life of the cell at the molecular level. But the immediate application of the study of staphylococcal plasmids may be directed towards improving the effectiveness of antibiotic therapy. The most important aspect of future anti-staphylococcal chemotherapy should thus be the limitation of the use of antibiotics, particularly for application to the skin and nose. (U.S.)

  10. The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer.

    Science.gov (United States)

    Kiss, János; Papp, Péter Pál; Szabó, Mónika; Farkas, Tibor; Murányi, Gábor; Szakállas, Erik; Olasz, Ferenc

    2015-10-15

    The genomic island SGI1 and its variants, the important vehicles of multi-resistance in Salmonella strains, are integrative elements mobilized exclusively by the conjugative IncA/C plasmids. Integration and excision of the island are carried out by the SGI1-encoded site-specific recombinase Int and the recombination directionality factor Xis. Chromosomal integration ensures the stable maintenance and vertical transmission of SGI1, while excision is the initial step of horizontal transfer, followed by conjugation and integration into the recipient. We report here that SGI1 not only exploits the conjugal apparatus of the IncA/C plasmids but also utilizes the regulatory mechanisms of the conjugation system for the exact timing and activation of excision to ensure efficient horizontal transfer. This study demonstrates that the FlhDC-family activator AcaCD, which regulates the conjugation machinery of the IncA/C plasmids, serves as a signal of helper entry through binding to SGI1 xis promoter and activating SGI1 excision. Promoters of int and xis genes have been identified and the binding site of the activator has been located by footprinting and deletion analyses. We prove that expression of xis is activator-dependent while int is constitutively expressed, and this regulatory mechanism is presumably responsible for the efficient transfer and stable maintenance of SGI1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong

    2018-04-05

    Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome

  12. Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1

    DEFF Research Database (Denmark)

    Gerdes, K; Helin, K; Christensen, O W

    1988-01-01

    The parB locus of plasmid R1, which mediates plasmid stability via postsegregational killing of plasmid-free cells, encodes two genes, hok and sok. The hok gene product is a potent cell-killing protein. The hok gene is regulated at the translational level by the sok gene-encoded repressor, a small...

  13. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids

    Directory of Open Access Journals (Sweden)

    Susu He

    2016-12-01

    Full Text Available The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.

  14. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, G.; Gerdes, Kenn

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments...... that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating...... filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement...

  15. A degenerate primer MOB typing (DPMT method to classify gamma-proteobacterial plasmids in clinical and environmental settings.

    Directory of Open Access Journals (Sweden)

    Andrés Alvarado

    Full Text Available Transmissible plasmids are responsible for the spread of genetic determinants, such as antibiotic resistance or virulence traits, causing a large ecological and epidemiological impact. Transmissible plasmids, either conjugative or mobilizable, have in common the presence of a relaxase gene. Relaxases were previously classified in six protein families according to their phylogeny. Degenerate primers hybridizing to coding sequences of conserved amino acid motifs were designed to amplify related relaxase genes from γ-Proteobacterial plasmids. Specificity and sensitivity of a selected set of 19 primer pairs were first tested using a collection of 33 reference relaxases, representing the diversity of γ-Proteobacterial plasmids. The validated set was then applied to the analysis of two plasmid collections obtained from clinical isolates. The relaxase screening method, which we call "Degenerate Primer MOB Typing" or DPMT, detected not only most known Inc/Rep groups, but also a plethora of plasmids not previously assigned to any Inc group or Rep-type.

  16. Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters.

    Science.gov (United States)

    Kinashi, Haruyasu

    2011-01-01

    Many giant linear plasmids have been isolated from Streptomyces by using pulsed-field gel electrophoresis and some of them were found to carry an antibiotic biosynthetic cluster(s); SCP1 carries biosynthetic genes for methylenomycin, pSLA2-L for lankacidin and lankamycin, and pKSL for lasalocid and echinomycin. Accumulated data suggest that giant linear plasmids have played critical roles in genome evolution and horizontal transfer of secondary metabolism. In this review, I summarize typical examples of giant linear plasmids whose involvement in antibiotic production has been studied in some detail, emphasizing their finding processes and interaction with the host chromosomes. A hypothesis on horizontal transfer of secondary metabolism involving giant linear plasmids is proposed at the end.

  17. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light

    International Nuclear Information System (INIS)

    McBeth, D.L.

    1989-01-01

    The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded

  18. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  19. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions.

    Science.gov (United States)

    Burbank, Lindsey P; Van Horn, Christopher R

    2017-11-01

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa , but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb , putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 ( X. fastidiosa subsp. fastidiosa ) or Dixon ( X. fastidiosa subsp. multiplex ) as the donor strain and Temecula ( X. fastidiosa subsp. fastidiosa ) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa , possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa , or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence

  20. Characterization of Plasmid DNA Location within Chitosan/PLGA/pDNA Nanoparticle Complexes Designed for Gene Delivery

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    2011-01-01

    Full Text Available Poly(D,L-lactide-co-glycolide- (PLGA-chitosan nanoparticles are becoming an increasingly common choice for the delivery of nucleic acids to cells for various genetic manipulation techniques. These particles are biocompatible, with tunable size and surface properties, possessing an overall positive charge that promotes complex formation with negatively charged nucleic acids. This study examines properties of the PLGA-chitosan nanoparticle/plasmid DNA complex after formation. Specifically, the study aims to determine the optimal ratio of plasmid DNA:nanoparticles for nucleic acid delivery purposes and to elucidate the location of the pDNA within these complexes. Such characterization will be necessary for the adoption of these formulations in a clinical setting. The ability of PLGA-chitosan nanoparticles to form complexes with pDNA was evaluated by using the fluorescent intercalating due OliGreen to label free plasmid DNA. By monitoring the fluorescence at different plasmid: nanoparticle ratios, the ideal plasmid:nanoparticle ration for complete complexation of plasmid was determined to be 1:50. Surface-Enhanced Raman Spectroscopy and gel digest studies suggested that even at these optimal complexation ratios, a portion of the plasmid DNA was located on the outer complex surface. This knowledge will facilitate future investigations into the functionality of the system in vitro and in vivo.

  1. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Science.gov (United States)

    Fernández-Alarcón, Claudia; Singer, Randall S; Johnson, Timothy J

    2011-01-01

    Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  2. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Directory of Open Access Journals (Sweden)

    Claudia Fernández-Alarcón

    Full Text Available Incompatibility group A/C (IncA/C plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2 gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2 plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  3. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.

  4. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358

    International Nuclear Information System (INIS)

    Griffin, H.G.; Foster, T.J.; Silver, S.; Misra, T.K.

    1987-01-01

    The broad-spectrum mercurial-resistance plasmid pDU1358 was analyzed by cloning the resistance determinants and preparing a physical and genetic map of a 45-kilobase (kb) region of the plasmid that contains two separate mercurial-resistance operons that mapped about 20 kb apart. One encoded narrow-spectrum mercurial resistance to Hg 2+ and a few organomercurials; the other specified broad-spectrum resistance to phenylmercury and additional organomercurials. Each determinant governed mercurial transport functions. Southern DNA x DNA hybridization experiments using gene-specific probes from the plasmid R100 mer operon indicated close homology with the R100 deteminant. The 2153 base pairs of the promoter-distal part of the broad-spectrum Hg 2+ -resistance operon of pDU1358 were sequenced. This region included the 3'-terminal part of the merA gene, merD, unidentified reading frame URF1, and a part of URF2 homologous to previously sequenced determinants of plasmid R100. Between the merA and merD genes, an open reading frame encoding a 212 amino acid polypeptide was identified as the merB gene that determines the enzyme organomercurial lyase that cleaves the C-Hg bond of phenylmercury

  5. Development and application of a general plasmid reference material for GMO screening.

    Science.gov (United States)

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences.

    Directory of Open Access Journals (Sweden)

    Annemieke Smet

    Full Text Available BACKGROUND: CTX-M-producing Escherichia coli strains are regarded as major global pathogens. METHODOLOGY/PRINCIPAL FINDINGS: The nucleotide sequence of three plasmids (pEC_B24: 73801-bp; pEC_L8: 118525-bp and pEC_L46: 144871-bp from Escherichia coli isolates obtained from patients with urinary tract infections and one plasmid (pEC_Bactec: 92970-bp from an Escherichia coli strain isolated from the joint of a horse with arthritis were determined. Plasmid pEC_Bactec belongs to the IncI1 group and carries two resistance genes: bla(TEM-1 and bla(CTX-M-15. It shares more than 90% homology with a previously published bla(CTX-M-plasmid from E. coli of human origin. Plasmid pEC_B24 belongs to the IncFII group whereas plasmids pEC_L8 and pEC_L46 represent a fusion of two replicons of type FII and FIA. On the pEC_B24 backbone, two resistance genes, bla(TEM-1 and bla(CTX-M-15, were found. Six resistance genes, bla(TEM-1, bla(CTX-M-15, bla(OXA-1, aac6'-lb-cr, tetA and catB4, were detected on the pEC_L8 backbone. The same antimicrobial drug resistance genes, with the exception of tetA, were also identified on the pEC_L46 backbone. Genome analysis of all 4 plasmids studied provides evidence of a seemingly frequent transposition event of the bla(CTX-M-15-ISEcp1 element. This element seems to have a preferred insertion site at the tnpA gene of a bla(TEM-carrying Tn3-like transposon, the latter itself being inserted by a transposition event. The IS26-composite transposon, which contains the bla(OXA-1, aac6'-lb-cr and catB4 genes, was inserted into plasmids pEC_L8 and pEC_L46 by homologous recombination rather than a transposition event. Results obtained for pEC_L46 indicated that IS26 also plays an important role in structural rearrangements of the plasmid backbone and seems to facilitate the mobilisation of fragments from other plasmids. CONCLUSIONS: Collectively, these data suggests that IS26 together with ISEcp1 could play a critical role in the evolution of

  7. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    Science.gov (United States)

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  8. A replicating plasmid-based vector for GFP expression in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Ishag, H Z A; Liu, M J; Yang, R S; Xiong, Q Y; Feng, Z X; Shao, G Q

    2016-04-28

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes porcine enzootic pneumonia (PEP) that significantly affects the pig industry worldwide. Despite the availability of the whole genome sequence, studies on the pathogenesis of this organism have been limited due to the lack of a genetic manipulation system. Therefore, the aim of the current study was to generate a general GFP reporter vector based on a replicating plasmid. Here, we describe the feasibility of GFP reporter expression in M. hyopneumoniae (strain 168L) controlled by the p97 gene promoter of this mycoplasma. An expression plasmid (pMD18-TOgfp) containing the p97 gene promoter, and origin of replication (oriC) of M. hyopneumoniae, tetracycline resistant marker (tetM), and GFP was constructed and used to transform competent M. hyopneumoniae cells. We observed green fluorescence in M. hyopneumoniae transformants under fluorescence microscopy, which indicates that there was expression of the GFP reporter that was driven by the p97 gene promoter. Additionally, an electroporation method for M. hyopneumoniae with an efficiency of approximately 1 x 10(-6) transformants/μg plasmid DNA was optimized and is described herein. In conclusion, our data demonstrate the susceptibility of M. hyopneumoniae to genetic manipulation whereby foreign genes are expressed. This work may encourage the development of genetic tools to manipulate the genome of M. hyopneumoniae for functional genomic analyses.

  9. Cefotaxime resistant Escherichia coli collected from a healthy volunteer; characterisation and the effect of plasmid loss.

    Directory of Open Access Journals (Sweden)

    Miranda Kirchner

    Full Text Available In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying bla CTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour bla CTX-M-14 E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment.

  10. A cryptic promoter in potato virus X vector interrupted plasmid construction

    Directory of Open Access Journals (Sweden)

    Schultz Ronald D

    2007-03-01

    Full Text Available Abstract Background Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage, the foreign genes are not expressed. However, if the foreign gene is expressed, the construction work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-2 VP1 could not be sub-cloned into the vector and amplified without mutation (frame shift mutation. Results A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter activity was studied with Northern blots and Real-time RT-PCR. Conclusion It is important to recognize the homologous promoter sequences in the vector when a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected expression of the CPV-2 VP1 gene (not in the target plants, but in E. coli can interrupt the downstream work.

  11. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) encapsulated within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with that adsorbed on PLGA nanoparticles. Methods: PLGA nanoparticles were prepared using solvent-evaporation method. To encapsulate pDNA within the particles, ...

  12. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    Tin Tin Myaing; Saleha, A.A.; Arifah, A.K.; Raha, A.R.

    2005-01-01

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  13. High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model

    International Nuclear Information System (INIS)

    Yin Jiangmei; Dai Anlan; Laddy, Dominick J.; Yan Jian; Arango, Tatiana; Khan, Amir S.; Lewis, Mark G.; Andersen, Hanne; Kutzler, Michele A.; Draghia-Akli, Ruxandra; Weiner, David B.; Boyer, Jean D.

    2009-01-01

    Interleukin (IL)-15, is a cytokine that is important for the maintenance of long-lasting, high-avidity T cell response to invading pathogens and has, therefore, been used in vaccine and therapeutic platforms as an adjuvant. In addition to pure protein delivery, plasmids encoding the IL-15 gene have been utilized. However, it is critical to determine the appropriate dose to maximize the adjuvanting effects. We immunized rhesus macaques with different doses of IL-15 expressing plasmid in an influenza non-human primate immunogenicity model. We found that co-immunization of rhesus macaques with a Flu DNA-based vaccine and low doses of plasmid encoding macaque IL-15 enhanced the production of IFN-γ (0.5 mg) and the proliferation of CD4 + and CD8 + T cells, as well as T CM levels in proliferating CD8 + T cells (0.25 mg). Whereas, high doses of IL-15 (4 mg) decrease the production of IFN-γ and the proliferation of CD4 + and CD8 + T cells and T CM levels in the proliferating CD4 + and CD8 + T cells. In addition, the data of hemagglutination inhibition (HI) antibody titer suggest that although not significantly different, there appears to be a slight increase in antibodies at lower doses of IL-15. Importantly, however, the higher doses of IL-15 decrease the antibody levels significantly. This study demonstrates the importance of optimizing DNA-based cytokine adjuvants.

  14. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    Science.gov (United States)

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  15. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  16. IncA/C plasmids harboured in serious multidrug-resistant Vibrio cholerae serogroup O139 strains in China.

    Science.gov (United States)

    Wang, Ruibai; Yu, Dong; Zhu, Lianhui; Li, Jie; Yue, Junjie; Kan, Biao

    2015-03-01

    Vibrio cholerae serogroup O139 emerged in 1992 and is one of two major serogroups to have caused cholera epidemics. After 1998, serious multidrug-resistant (MDR) O139 strains quickly became common in China, showing a multidrug resistance profile to eight antibiotics. It is a great threat to public health, and elucidation of its mechanisms of resistance will provide a helpful guide for the clinical treatment and prevention of cholera. In this study, mega-plasmids from MDR V. cholerae O139 strains were identified by pulsed-field gel electrophoresis (PFGE) without enzyme digestion. One plasmid was isolated and sequenced, belonging to the IncA/C family. Ten antibiotic resistance genes were found in the MDR regions, including a blaTEM-20 gene, and these genes endowed the host with resistance to seven antibiotics. This kind of plasmid was positive in 71.2% (198/278) of toxigenic O139 strains, and the rate of plasmid positivity was consistent with the yearly change in MDR rates of these strains. This study reveals an important role of the IncA/C family plasmid in the spread of multiple antibiotic resistance of epidemic V. cholerae serogroup O139 strains, which has recombined with plasmids from different bacterial species and transferred among V. cholerae strains. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Characterization of a Staphylococcal Plasmid Related to pUB110 and Carrying Two Novel Genes, vatC and vgbB, Encoding Resistance to Streptogramins A and B and Similar Antibiotics

    Science.gov (United States)

    Allignet, Jeanine; Liassine, Nadia; El Solh, Névine

    1998-01-01

    We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation. PMID:9661023

  18. Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics.

    Science.gov (United States)

    Allignet, J; Liassine, N; el Solh, N

    1998-07-01

    We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation.

  19. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  20. A Rapid Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Single-Plasmid Tracking in an Outbreak of Carbapenem-Resistant Enterobacteriaceae

    Science.gov (United States)

    Lau, Anna F.; Wang, Honghui; Weingarten, Rebecca A.; Drake, Steven K.; Suffredini, Anthony F.; Garfield, Mark K.; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J.; Frank, Karen M.

    2014-01-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the blaKPC carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼11,109-Da MS peak corresponding to a gene product of the blaKPC pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of blaKPC-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the blaKPC Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other blaKPC Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. PMID:24850353

  1. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1.

    Science.gov (United States)

    Huguet, Kevin T; Gonnet, Mathieu; Doublet, Benoît; Cloeckaert, Axel

    2016-08-31

    The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.

  2. Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids.

    Science.gov (United States)

    Boyd, David A; Mataseje, Laura F; Davidson, Ross; Delport, Johannes A; Fuller, Jeff; Hoang, Linda; Lefebvre, Brigitte; Levett, Paul N; Roscoe, Diane L; Willey, Barbara M; Mulvey, Michael R

    2017-05-01

    Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A bla NMC-A or bla IMI -type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, bla NMC-A was highly associated with Enterobacter ludwigii Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A ( n = 10), IMI-1 ( n = 5), and IMI-9 ( n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, bla IMI-5 and bla IMI-6 , were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring bla NMC-A/IMI -type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential. © Crown copyright 2017.

  3. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm.

    Directory of Open Access Journals (Sweden)

    Peter Norberg

    Full Text Available The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp and pMCBF6 (66 729 bp have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are "res-site hunters" that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA and the vegetative replication origin (oriV. One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.

  4. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, E.H., E-mail: md.ezharul.hoque@med.monash.edu.my [Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan (Malaysia)

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  5. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    International Nuclear Information System (INIS)

    Chowdhury, E.H.

    2011-01-01

    Highlights: → Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. → Fluoridated carbonate apatite promotes a robust increase in transgene expression. → Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  6. Effect of the Plasmid-DNA Vaccination on Macroscopic and Microscopic Damage Caused by the Experimental Chronic Trypanosoma cruzi Infection in the Canine Model

    Directory of Open Access Journals (Sweden)

    Olivia Rodríguez-Morales

    2013-01-01

    Full Text Available The dog is considered the main domestic reservoir for Trypanosoma cruzi infection and a suitable experimental animal model to study the pathological changes during the course of Chagas disease (CD. Vaccine development is one of CD prevention methods to protect people at risk. Two plasmids containing genes encoding a trans-sialidase protein (TcSP and an amastigote-specific glycoprotein (TcSSP4 were used as DNA vaccines in a canine model. Splenomegaly was not found in either of the recombinant plasmid-immunized groups; however, cardiomegaly was absent in animals immunized only with the plasmid containing the TcSSP4 gene. The inflammation of subendocardial and myocardial tissues was prevented only with the immunization with TcSSP4 gene. In conclusion, the vaccination with these genes has a partial protective effect on the enlargement of splenic and cardiac tissues during the chronic CD and on microscopic hearth damage, since both plasmids prevented splenomegaly but only one avoided cardiomegaly, and the lesions in heart tissue of dog immunized with plasmid containing the TcSSP4 gene covered only subepicardial tissue.

  7. Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969.

    Science.gov (United States)

    Doublet, Benoît; Boyd, David; Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Mulvey, Michael R

    2012-10-01

    To determine the complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from a clinical Klebsiella pneumoniae strain that was isolated from a urinary tract infection in 1969 in a French hospital and compare it with those of contemporary emerging IncA/C plasmids. The plasmid was purified and sequenced using a 454 sequencing approach. After draft assembly, additional PCRs and walking reads were performed for gap closure. Sequence comparisons and multiple alignments with other IncA/C plasmids were done using the BLAST algorithm and CLUSTAL W, respectively. Plasmid pR55 (170 810 bp) revealed a shared plasmid backbone (>99% nucleotide identity) with current members of the IncA/C(2) multidrug resistance plasmid family that are widely disseminating antibiotic resistance genes. Nevertheless, two specific multidrug resistance gene arrays probably acquired from other genetic elements were identified inserted at conserved hotspot insertion sites in the IncA/C backbone. A novel transposon named Tn6187 showed an atypical mixed transposon configuration composed of two mercury resistance operons and two transposition modules that are related to Tn21 and Tn1696, respectively, and an In0-type integron. IncA/C(2) multidrug resistance plasmids have a broad host range and have been implicated in the dissemination of antibiotic resistance among Enterobacteriaceae from humans and animals. This typical IncA/C(2) genetic scaffold appears to carry various multidrug resistance gene arrays and is now also a successful vehicle for spreading AmpC-like cephalosporinase and metallo-β-lactamase genes, such as bla(CMY) and bla(NDM), respectively.

  8. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    Science.gov (United States)

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  9. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  10. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P

    2014-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. An Enterobacter plasmid as a new genetic background for the transposon Tn1331

    Directory of Open Access Journals (Sweden)

    Alavi MR

    2011-11-01

    Full Text Available Mohammad R Alavi1,2, Vlado Antonic2, Adrien Ravizee1, Peter J Weina3, Mina Izadjoo1,2, Alexander Stojadinovic21Division of Wound Biology and Translational Research, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC, 2Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington DC, 3The Walter Reed Army Institute of Research, Silver Spring, MD, USABackground: Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids.Methods: The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dye-terminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database.Results: Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid.Conclusion: Transposition of Tn1331 into

  12. Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli.

    Science.gov (United States)

    van Boxtel, Ria; Wattel, Agnes A; Arenas, Jesús; Goessens, Wil H F; Tommassen, Jan

    2017-01-01

    Although AmpC β-lactamases can barely degrade carbapenems, if at all, they can sequester them and prevent them from reaching their targets. Thus, carbapenem resistance in Escherichia coli and other Enterobacteriaceae can result from AmpC production and simultaneous reduction of antibiotic influx into the periplasm by mutations in the porin genes. Here we investigated the route and genetic mechanisms of acquisition of carbapenem resistance in a clinical E. coli isolate carrying bla CMY-2 on a plasmid by selecting for mutants that are resistant to increasing concentrations of meropenem. In the first step, the expression of OmpC, the only porin produced in the strain under laboratory conditions, was lost, leading to reduced susceptibility to meropenem. In the second step, the expression of the CMY-2 β-lactamase was upregulated, leading to resistance to meropenem. The loss of OmpC was due to the insertion of an IS1 element into the ompC gene or to frameshift mutations and premature stop codons in this gene. The bla CMY-2 gene was found to be located on an IncIγ plasmid, and overproduction of the CMY-2 enzyme resulted from an increased plasmid copy number due to a nucleotide substitution in the inc gene. The clinical relevance of these genetic mechanisms became evident from the analysis of previously isolated carbapenem-resistant clinical isolates, which appeared to carry similar mutations. Copyright © 2016 American Society for Microbiology.

  13. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    Science.gov (United States)

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  14. Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery

    International Nuclear Information System (INIS)

    Nie Leng; Gao Lizeng; Yan Xiyun; Wang Taihong

    2007-01-01

    Functionalized tetrapodal ZnO nanostructures are tested in plasmid DNA experiments (1) as a solid-phase adsorbent for plasmid DNA purification (2) as improving reagents in a polymerase chain reaction (PCR) and (3) as novel carriers for gene delivery. The amino-modification, the tetrapod-like shape of the nanostructure and its high biocompatibility all contribute to measurements showing promise for applications. A sol-gel method is used for silica coating and amino-modification. Plasmid DNA is purified through reversible conjugations of amino-modified ZnO tetrapods with DNA. Also, as additional reagents, functionalized tetrapods are shown to improve the amount of PCR product. For transfection, ZnO tetrapods provide some protection against deoxyribonuclease cleavage of plasmid DNA and deliver plasmid DNA into cells with little cytotoxicity

  15. [Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].

    Science.gov (United States)

    Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I

    1985-11-01

    The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.

  16. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  17. Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA

    Science.gov (United States)

    Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.

    1974-01-01

    DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576

  18. Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    may encode catabolic pathways, virulence factors, and antibiotic or metal resistances, it is of environmental, evolutionary, and medical relevance to track and monitor the fate of plasmids in mixed microbial community. When assessing the short-term and long-term implications of conjugal plasmid...... a gfp-tagged plasmid in a mCherry red fluorescently tagged donor strain repressing gfp expression. We take advantage of fluorescent marker genes to microscopically detect plasmid transfer events and use subsequent high-throughput fluorescence-activated cell sorting (FACS) to isolate...

  19. Two-step method for curing Escherichia coli of ColE1-derived plasmids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2008-01-01

    To cure Escherichia coli for plasmids derived from the ColE1 replicon advantage is taken of the fact that maintenance of this replicon requires a wild-type allele of polA, encoding DNA polymerase I. Curing is achieved by cotransduction of a mutant polA allele with metE::Tn10, fadAB::Tn10 or other...

  20. Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.

    Science.gov (United States)

    Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z

    2015-12-28

    Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.

  1. Development and Host Compatibility of Plasmids for Two Important Ruminant Pathogens, Mycoplasma bovis and Mycoplasma agalactiae

    Science.gov (United States)

    Sharma, Shukriti; Citti, Chistine; Sagné, Eveline; Marenda, Marc S.

    2015-01-01

    Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae. PMID:25746296

  2. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae.

    Directory of Open Access Journals (Sweden)

    Shukriti Sharma

    Full Text Available Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.

  3. Analysis of plasmid profiling as a method for rapid differentiation of food-associated Clostridium perfringens strains.

    Science.gov (United States)

    Jones, M K; Iwanejko, L A; Longden, M S

    1989-09-01

    Plasmid analysis of over 120 strains of Clostridium perfringens, isolated during food-poisoning incidents and from animal carcasses and food constituents with no association with food poisoning, showed the potential of plasmid profiling as a means of differentiating epidemiologically related strains. On average 65% of freshly isolated strains contained one or more plasmids which could be used in the analysis. Comparison of profiles of strains from unrelated sources or unrelated strains from the same source showed a particularly wide variety of plasmid profiles. Thus the possibility that epidemiologically-unrelated strains might possess similar profiles appears to be very low in this organism. Analysis of serologically-related strains from the same source revealed similar plasmid profiles in all the plasmid-bearing strains examined. A high proportion (71%) of fresh and well-characterized food-poisoning strains possessed plasmids of 6.2 kb in size (compared with 19% of non-food-poisoning strains). The possible role of these plasmids is discussed, since the structural gene encoding the enterotoxin type A was not present on any of the plasmids in the food-poisoning strains tested.

  4. Horizontol dissemination of TEM- and SHV-typr beta-lactamase genes-carrying resistance plasmids amongst clonical isolates of Enterobacteriaceae Disseminação horizontal de plasmídios de resistência contendo genes de beta-lactamase dos tipos TEM e SHV entre isolados clínicos de Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Osman Birol Ozgumus

    2008-12-01

    Full Text Available The extended-spectrum β-lactamase (ESBL-producing bacteria have been isolated at increasing frequency worldwide. Expression of ESBL is often associated with multidrug resistance and dissemination by resistance plasmids. During a two-month period in 2000, 133 clinical isolates of enterobacterial strains were randomly collected from outpatients and inpatients at a university hospital in Turkey. The ESBL producing strains were determined by double-disk synergy (DDS testing. Twenty ESBL producing strains (15% including Escherichia coli (n = 9, Klebsiella pneumoniae (n = 7, Klebsiella oxytoca (n = 2 and Enterobacter aerogenes (n = 2 were detected and further analyzed for their resistance transfer features, plasmid profile and nature of the resistance genes. Plasmid transfer assays were performed using broth mating techniques. TEM- and SHV- genes were analyzed by polymerase chain reaction (PCR and hybridization using specific probes. EcoRI restriction enzyme analyses of R plasmids were used in the detection of epidemic plasmids. Fourteen plasmid profiles (A, B1, B2, C1, and C2 to L were obtained with EcoRI restriction enzyme analysis. Most of these plasmids were detected to carry both TEM- and SHV-derived genes by PCR, and confirmed by localizing each gene by hybridization assay. Epidemiological evidence indicated that there was an apparent horizontal dissemination of conjugative R plasmids among multidrug-resistant enterobacterial genera and species in this hospitalO isolamento de bactérias produtoras de beta-lactamases de espectro expandido (ESBL está aumentando no mundo todo. Freqüentemente, a expressão de ESBL está associada com resistência a múltiplas drogas e disseminação por plasmídios de resistência. Durante um período de dois meses em 2000, 133 isolados clínicos de cepas de enterobactérias foram obtidos aleatoriamente de pacientes internos e externos de um hospital universitário na Turquia. As cepas produtoras de ESBL foram

  5. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Science.gov (United States)

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  6. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Directory of Open Access Journals (Sweden)

    Dominic ePoulin-Laprade

    2015-08-01

    Full Text Available Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs of the SXT/R391 family (SRIs and IncA/C conjugative plasmids (ACPs are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e. SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  7. Association and Expression of Virulence from Plasmids of the Group B Strain in Pseudomonas syringae pv. eriobotryae

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-04-01

    Full Text Available Pseudomonas syringae pv. eriobotryae causes serious stem canker in loquat (Eriobotrya japonica trees. This study was conducted to determine whether plasmids are involved with its virulence. The strain NAE89, which belonged to the B group, harbored two plasmids at approximately 6.2 and 50 Mdal that caused stem canker and halo leaf spots on loquat plants. Following digestion with BamHI and ligation into the BamHI cloning site of the broad range host cosmid pLAFR3, four DNA fragments at 3.8, 6.6, 12.3, and 22.8 kb were generated. Although the plasmid-encoded virulence gene psvA was undigested with the BamHI, the halo leaf spot gene may be adjacent to the psvA gene was digested. A pLAFR3 cosmid clone was introduced into the non-pathogenic PE0 and NAE89-1 strains by triparental matings and the pathogenicity was recovered. As a result, the pLAFR3 cosmid clone was introduced into the largest size DNA fragment of 22.8 kb and determined to be the causal agent of canker on the stem of the loquat. This study revealed that the psvA gene, previously found in the 50 Mdal plasmid, was also observed in the 22.8 kb DNA fragment.

  8. Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2.

    Science.gov (United States)

    Su, W-Q; Zhu, Y-Q; Deng, N-M; Li, L

    2017-04-01

    Imipenem is a broad-spectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant Serratia marcescens in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance. We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains. His resistance can be transferred to E. coli in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two products consistent with KPC-2 of 583 and 1050 bp that were also present in E. coli after co-culture. The restriction pattern for both plasmids was identical, supporting the transfer from the S. marcescens isolate to E. coli. Finally, gene sequencing confirmed KPC-2 in the plasmid. Due to the presence of KPC-2 in the imipenem-resistant S. marcescens, we propose that KPC-2 mediates antibiotic resistance in the S. marcescens isolate.

  9. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the 'swim-or-stick' lifestyle in roseobacters.

    Science.gov (United States)

    Michael, Victoria; Frank, Oliver; Bartling, Pascal; Scheuner, Carmen; Göker, Markus; Brinkmann, Henner; Petersen, Jörn

    2016-10-01

    Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.

  10. Proposed model for the high rate of rearrangement and rapid migration observed in some IncA/C plasmid lineages.

    Science.gov (United States)

    Meinersmann, R J; Lindsey, R L; Bono, J L; Smith, T P; Oakley, B B

    2013-08-01

    IncA/C plasmids are a class of plasmids from the Enterobacteriaceae that are relatively large (49 to >180 kbp), that are readily transferred by conjugation, and that carry multiple antimicrobial resistance genes. Reconstruction of the phylogeny of these plasmids has been difficult because of the high rate of remodeling by recombination-mediated horizontal gene transfer (HGT). We hypothesized that evaluation of nucleotide polymorphisms relative to the rate of HGT would help to develop a clock to show whether anthropic practices have had significant influences on the lineages of the plasmid. A system was developed to rapidly sequence up to 191 known open reading frames from each of 39 recently isolated IncA/C plasmids from a diverse panel of Salmonella enterica and Escherichia coli strains. With these data plus sequences from GenBank, we were able to distinguish six distinct lineages that had extremely low numbers of polymorphisms within each lineage, especially among the largest group designated as group 1. Two regions, each about half the plasmid in size, could be distinguished with a separate lineal pattern. The distribution of group 1 showed that it has migrated extremely rapidly with fewer polymorphisms than can be expected in 2,000 years. Remodeling by frequent HGT was evident, with a pattern that appeared to have the highest rate just upstream of the putative conjugation origin of transfer (oriT). It seems likely that when an IncA/C plasmid is transferred by conjugation there is an opportunity for plasmid remodeling adjacent to the oriT, which was also adjacent to a multiple antimicrobial resistance gene cassette.

  11. Anchoring of self-assembled plasmid DNA/ anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery

    Directory of Open Access Journals (Sweden)

    Ma G

    2013-03-01

    Full Text Available Guilei Ma,1,# Yong Wang,1,# Ilia Fishbein,2 Mei Yu,1 Linhua Zhang,1 Ivan S Alferiev,2 Jing Yang,1 Cunxian Song,1 Robert J Levy2 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Children's Hospital of Philadelphia, Abramson Research Building, Philadelphia, PA, USA #These authors contributed equally to this work Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP, thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol-propionate (SPDP as a crosslinker. Rhodamine-labeled DNA was used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate binding capacity and stability. DAC micelles (encoding green fluorescent protein were tethered onto the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects. Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was 17-fold higher than that of the physical adsorbed control stents and its retention time was also significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene delivery. Conclusion: The DAC micelle

  12. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers

    DEFF Research Database (Denmark)

    Guðbergsdóttir, Sóley Ruth; Deng, Ling; Chen, Zhengjun

    2011-01-01

    The adaptive immune CRISPR/Cas and CRISPR/Cmr systems of the crenarchaeal thermoacidophile Sulfolobus were challenged by a variety of viral and plasmid genes, and protospacers preceded by different dinucleotide motifs. The genes and protospacers were constructed to carry sequences matching...... individual spacers of CRISPR loci, and a range of mismatches were introduced. Constructs were cloned into vectors carrying pyrE/pyrF genes and transformed into uracil auxotrophic hosts derived from Sulfolobus solfataricus P2 or Sulfolobus islandicus REY15A. Most constructs, including those carrying different...... protospacer mismatches, yielded few viable transformants. These were shown to carry either partial deletions of CRISPR loci, covering a broad spectrum of sizes and including the matching spacer, or deletions of whole CRISPR/Cas modules. The deletions occurred independently of whether genes or protospacers...

  13. Construction of adiponectin-encoding plasmid DNA and gene therapy of non-obese type 2 diabetes mellitus.

    Science.gov (United States)

    Nan, Mei Hua; Park, Jeong-Sook; Myung, Chang-Seon

    2010-01-01

    Adiponectin (ADN), an insulin-sensitizing adipokine, stimulates glucose uptake, inhibits gluconeogenesis, and plays an important role in improving insulin sensitivity. Since blood levels of ADN are low in type 2 diabetes mellitus (DM), this study was designed to investigate the therapeutic effectiveness of increasing the ADN level through injection of plasmid DNA encoding ADN in type 2 DM. A non-obese type 2 DM mouse model was established via combined administration of streptozotocin with nicotinamide and exhibited significantly higher plasma glucose concentration and insulin resistance compared with normal controls according to oral glucose tolerance and insulin challenge tests. Plasmid DNA encoding mouse ADN from differentiated NIH3T3 adipocytes was constructed in pVAX1 (pVAX/ADN). Transfection of pVAX/ADN into various cell lines including HeLa, HT22, HEK293, HepG2, and SK-Hep1 cells, increased ADN mRNA expression levels in a dose-dependent manner. The administration of pVAX/ADN into non-obese type 2 DM mice via tail vein significantly increased the blood level of ADN and decreased the plasma glucose concentration. Moreover, the parameters related to insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) were significantly improved. These results suggest that ADN gene therapy could be a clinically effective tool for the treatment of type 2 DM.

  14. Analysis of the cbhE' plasmid gene from acute disease-causing isolates of Coxiella burnetii.

    Science.gov (United States)

    Minnick, M F; Small, C L; Frazier, M E; Mallavia, L P

    1991-07-15

    A gene termed cbhE' was cloned from the QpH1 plasmid of Coxiella burnetii. Expression of recombinants containing cbhE' in vitro and in Escherichia coli maxicells, produced an insert-encoded polypeptide of approx. 42 kDa. The CbhE protein was not cleaved when intact maxicells were treated with trypsin. Hybridizations of total DNA isolated from the six strains of C. burnetii indicate that this gene is unique to C. burnetii strains associated with acute disease, i.e., Hamilton[I], Vacca[II], and Rasche[III]. The cbhE' gene was not detected in strains associated with chronic disease (Biotzere[IV] and Corazon[V]) or the Dod[VI] strain. The cbhE' open reading frame (ORF) is 1022 bp in length and is preceded by a predicted promoter/Shine-Dalgarno (SD) region of TCAACT(-35)-N16-TAAAAT(-10)-N14-AGAAGGA (SD) located 10 nucleotides (nt) before the presumed AUG start codon. The ORF ends with a single UAA stop codon and has no apparent Rho-factor-independent terminator following it. The cbhE' gene codes for the CbhE protein of 341 amino acid (aa) residues with a deduced Mr of 39,442. CbhE is predominantly hydrophilic with a predicted pI of 4.43. The function of CbhE is unknown. No nt or aa sequences with homology to cbhE' or CbhE, respectively, were found in searches of a number of data bases.

  15. Physical structure and genetic expression of the sulfonamide-resistance plasmid pLS80 and its derivatives in Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P.; Espinosa, M.; Lacks, S.A.

    1984-01-01

    The 10-kb chromosomal fragment of Streptococcus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. A spontaneous deletion beginning approx. 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (approx. 10/sup -3/) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed. Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanilamide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene. Transfer of the plasmids to B. subtilis gave rise to large deletions to the left of the sul-d marker, but these deletions did not interfere with the sul-d gene function. Restriction maps of pLS80 and its variously deleted derivatives are presented.

  16. Elimination of indigenous linear plasmids in Streptomyces hygroscopicus var. jinggangensis and Streptomyces sp. FR008 to increase validamycin A and candicidin productivities.

    Science.gov (United States)

    Lu, Chenyang; Wu, Hang; Su, Xiurong; Bai, Linquan

    2017-05-01

    Giant linear plasmids, which replicate independently of the chromosomes, widely exist in actinobacteria. Previous studies mostly focused on the replication and evolution of the linear plasmids or the secondary metabolite gene clusters and the resistance gene clusters therein. However, the relationships of the linear plasmids to the productivities of secondary metabolites have not been studied. In this work, we developed a method to eliminate the indigenous linear plasmid pSHJG1 in Streptomyces hygroscopicus var. jinggangensis, and validamycin A titer increased by 12.5% (from 19.16 ± 1.93 to 21.56 ± 2.25 g/L) in the high-yielding strain TL01 and 43.7% (from 4.67 ± 0.05 to 6.71 ± 0.21 g/L) in the wild-type strain 5008, whereas the cellular growth of the plasmid-cured mutant was reduced. Subsequently, the plasmid-cured mutant was complemented with three structure genes involved in cellular growth in pSHJG1 under the control of a strong PvalA promoter. Among them, the complementation of genes pSHJG1.069 and pSHJG1.072, encoding a putative hydrolase and putative P-loop ATPase, respectively, resulted in the restoration of cellular growth and validamycin A titer. Furthermore, the elimination of indigenous linear plasmid pHZ228 in the candicidin producer Streptomyces sp. FR008 also led to enhanced candicidin production and reduced cellular growth. Because of the wide distribution of indigenous linear plasmids in actinobacteria, the engineering strategy described here could be implemented in a variety of strains for the overproduction of various natural products.

  17. Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Yamagata, A; Kato, J; Hirota, R; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    1999-06-01

    Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.

  18. A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes

    Science.gov (United States)

    Although several plasmids have been used in Listeria monocytogenes for generating mutants by allelic exchange, construction of L. monocytogenes mutants has been inefficient due to lack of effective selection markers for first and second recombination events. To address this problem, we have develope...

  19. Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enterica serovar typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice.

    Science.gov (United States)

    Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M; Branger, Christine G; Tinge, Steven A; Curtiss, Roy

    2010-06-01

    A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.

  20. Fine-Tuning Synthesis of Yersinia pestis LcrV from Runaway-Like Replication Balanced-Lethal Plasmid in a Salmonella enterica Serovar Typhimurium Vaccine Induces Protection against a Lethal Y. pestis Challenge in Mice▿

    Science.gov (United States)

    Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M.; Branger, Christine G.; Tinge, Steven A.; Curtiss, Roy

    2010-01-01

    A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route. PMID:20308296

  1. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  2. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

    DEFF Research Database (Denmark)

    Li, Lili; Ye, Lei; Kromann, Sofie

    2017-01-01

    There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone...... resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE...... isolates from RTE meat products. The E. coli isolates with multiple antimicrobial resistance genes may transmit to humans through food chain and thus require further investigation and increased awareness....

  3. Construction of recombinant plasmid pIRESEgr-IFN γ and its expression in Lewis lung carcinoma induced by irradiation

    International Nuclear Information System (INIS)

    Yang Wei; Li Xiuyi; Gong Shouliang; Sun Ting; Gong Pingsheng

    2007-01-01

    Objective: To construct the recombinant plasmid pIRESEgr-IFN γ and detect its expression in Lewis lung carcinoma induced by irradiation in vitro. Methods: The recombinant plasmid pIRESEgr-IFN γ containing Egr-1 promoter and IFN γ gene was constructed with gene recombinant technique. The plasmid was transferred into Lewis lung carcinoma by liposome in vitro. The correlations of dose- and time-effects in the expression of IFN γ gene induced by X-ray were detected by ELISA. Results: The identification with enzymes proved that Egr-1 promoter and IFN γ gene were inserted into vector pIRESlneo correctly. After X-ray irradiation with different doses, the expression of IFN γ in the supernatant of Lewis lung carcinoma transfected by pIRESEgr-IFN γ was significantly higher than that in 0 Gy group (P<0.001). After 5 Gy X-ray irradiation, the expression of IFN γ was the highest, being 4.39 times as much as that in 0 Gy group. The expression of IFN γ in the supernatant increased after 5 Gy X-ray irradiation, being 6.27 times as much as that in 0 h group 36 h after irradiation. Conclusion: The recombinant plasmid pIRESEgr-IFN γ is constructed successfully, and it has the property of enhancing the expression of IFN γ gene induced by irradiation. (authors)

  4. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids.

    Science.gov (United States)

    Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole

    2017-05-01

    Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes ('typeability') have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Energy Technology Data Exchange (ETDEWEB)

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  6. [Nah-plasmids of IncP-9 group from natural strains of Pseudomonas].

    Science.gov (United States)

    Levchuk, A A; Bulyga, I M; Izmalkova, T Iu; Sevast'ianovich, Ia R; Kosheleva, I A; Thomas, C M; Titok, M A

    2006-01-01

    Use of polymerase chain reaction helped to establish that the most frequent among naphthalene utilizing bacteria, isolated on the territory of Belarus, are Nah-plasmids of IncP-9 incompatibility group and those with indefinite systematic belonging. With the help of classical test of incompatibility, restriction and sequence analyses three new subgroups within the IncP-9 group were discovered (zeta, eta and IncP-9-like replicons). Conducting of restriction analysis for amplification products of nahG and nahAc genes allowed us to reveal, in addition to known sequences of stated determinants, two new types of nahG gene. Restriction analysis performed on amplification products of 16S RNA genes (ARDRA method) showed that native hosts of Nah-plasmids of IncP-9 group are not only fluorescent bacteria from genus Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. species), but also non-fluorescent bacteria with indefinite specific belonging.

  7. Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate.

    Science.gov (United States)

    Nonaka, Lisa; Yamamoto, Tatsuya; Maruyama, Fumito; Hirose, Yuu; Onishi, Yuki; Kobayashi, Takeshi; Suzuki, Satoru; Nomura, Nobuhiko; Masuda, Michiaki; Yano, Hirokazu

    2018-01-01

    The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.

  8. Stress responses in pathogenic Yersinia enterocolitica with reference to the stability of the virulence plasmid in food

    Science.gov (United States)

    Yersinia enterocolitica has been associated with food-borne illness, most often due the ingestion of pork products. The pathogenic effects induced by a Y. enterocolitica infection are caused by the interplay of chromosomal genes and a virulence plasmid, pYV. Generally, the plasmid is lost during g...

  9. Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids.

    Science.gov (United States)

    Morton, Elise R; Platt, Thomas G; Fuqua, Clay; Bever, James D

    2014-03-22

    Plasmids play an important role in shaping bacterial evolution and adaptation to heterogeneous environments. As modular genetic elements that are often conjugative, the selective pressures that act on plasmid-borne genes are distinct from those that act on the chromosome. Many bacteria are co-infected by multiple plasmids that impart niche-specific phenotypes. Thus, in addition to host-plasmid dynamics, interactions between co-infecting plasmids are likely to be important drivers of plasmid population dynamics, evolution and ecology. Agrobacterium tumefaciens is a facultative plant pathogen that commonly harbours two distinct megaplasmids. Virulence depends on the presence of the tumour-inducing (Ti) plasmid, with benefits that are primarily restricted to the disease environment. Here, we demonstrate that a second megaplasmid, the At plasmid, confers a competitive advantage in the rhizosphere. To assess the individual and interactive costs of these plasmids, we generated four isogenic derivatives: plasmidless, pAt only, pTi only and pAtpTi, and performed pairwise competitions under carbon-limiting conditions. These studies reveal a low cost to the virulence plasmid when outside of the disease environment, and a strikingly high cost to the At plasmid. In addition, the costs of pAt and pTi in the same host were significantly lower than predicted based on single plasmid costs, signifying the first demonstration of non-additivity between naturally occurring co-resident plasmids. Based on these empirically demonstrated costs and benefits, we developed a resource-consumer model to generate predictions about the frequencies of these genotypes in relevant environments, showing that non-additivity between co-residing plasmids allows for their stable coexistence across environments.

  10. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease

    NARCIS (Netherlands)

    Versteeg, Bart; Bruisten, Sylvia M.; Pannekoek, Yvonne; Jolley, Keith A.; Maiden, Martin C. J.; van der Ende, Arie; Harrison, Odile B.

    2018-01-01

    Background: Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. Results: WGS data

  11. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    Science.gov (United States)

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  12. Detection of the IncX3 plasmid carrying blaKPC-3 in a Serratia marcescens strain isolated from a kidney-liver transplanted patient.

    Science.gov (United States)

    Gona, Floriana; Caio, Carla; Iannolo, Gioacchin; Monaco, Francesco; Di Mento, Giuseppina; Cuscino, Nicola; Fontana, Ignazio; Panarello, Giovanna; Maugeri, Gaetano; Mezzatesta, Maria Lina; Stefani, Stefania; Conaldi, Pier Giulio

    2017-10-01

    Dissemination of resistance to carbapenems among Enterobacteriaceae through plasmids is an increasingly important concern in health care worldwide. Here we report the first description of an IncX3 plasmid carrying the blaKPC-3 gene in a strain of Serratia marcescens isolated from a kidney-liver transplanted patient at the transplantation centre ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy). To localize the transposable element containing the resistance-associated gene Next-Generation Sequencing of the bacterial DNA was performed. S. marcescens was positive for blaKPC-3 and blaSHV-11 genes. The molecular analysis demonstrated that the blaKPC-3 gene of this bacterial strain was located in one copy of the Tn-3-like element Tn4401-a carried in a plasmid that is 53 392 bp in size and showed the typical IncX3 scaffold. Our data demonstrated the presence of a new blaKPC-3 harbouring the IncX3 plasmid in S. marcescens. The possible dissemination among Enterobacteriaceae of this type of plasmid should be monitored and evaluated in terms of clinical risk.

  13. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    Science.gov (United States)

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  14. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid.

    Science.gov (United States)

    Aboklaish, Ali F; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I; Spiller, O Brad

    2014-11-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Construction of recombinant ZNF230/GFP fused plasmids and their expression and cellular localization

    DEFF Research Database (Denmark)

    Xu, Wen-Ming; Zhang, Si-Zhong; Qiu, Wei-Min

    2004-01-01

    To use green fluorescent protein as a marker to study the localization of the fusion protein, the mutant full length cDNAs of human ZNF230 and mouse znf230 with their stop codon TGA changed to TGG were obtained by PCR amplification, and then cloned into pGEM-Teasy vector. After the double enzyme...... cutting, the mutated human and mouse ZNF230(znf230) were inserted into mammalian expression plasmid pEGFP-N1. Thus we constructed the plasmid with fusion gene of ZNF230 and green fluorescent protein(GFP). Then the Cos cell was transfected with the fused gene by liposome. Fluorescence microscopy showed...

  16. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

    DEFF Research Database (Denmark)

    Feld, Louise; Schjorring, S.; Hammer, Karin

    2008-01-01

    Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different gastrointes......Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different...

  17. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  18. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  19. Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli chi7122 (O78:K80:H9.

    Directory of Open Access Journals (Sweden)

    Melha Mellata

    Full Text Available Extra-intestinal pathogenic E. coli (ExPEC, including Avian Pathogenic E. coli (APEC, are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy.We fully sequenced and analyzed the large plasmid pAPEC-1 (103,275-bp associated with the APEC strain chi7122, from worldwide serogroup O78ratioK80ratioH9. A putative virulence region spanning an 80-kb region of pAPEC-1 possesses four iron acquisition systems (iutA iucABCD, sitABCD, iroBCDN, and temperature-sensitive hemagglutinin tsh, a colicin V operon, increasing serum sensitivity iss, ompT, hlyF, and etsABC. Thirty three ORFs in pAPEC-1 are identified as insertion sequences (ISs that belong to nine families with diverse origins. The full length of the transfer region in pAPEC-1 (11 kb is shorter compared to the tra region of other sequenced F plasmids; the absence of some tra genes in pAPEC-1 affects its self-transferability, and the conjugative function of the plasmid was effective only in the presence of other plasmids. Two-replicon systems, repFIIA-repFIC and repFIB, and two post-segregational systems, srnB and hok/sok, are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function.

  20. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  1. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    National Research Council Canada - National Science Library

    Batchelor, Roger A; Pearson, Bruce M; Friis, Lorna M; Guerry, Patricia; Wells, Jerry M

    2004-01-01

    .... Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence...

  2. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive Chlamydia trachomatis Biovars

    Directory of Open Access Journals (Sweden)

    Michael John Patton

    2018-01-01

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease. C. trachomatis isolates are classified into 2 biovars—lymphogranuloma venereum (LGV and trachoma—which are distinguished biologically by their natural host cell infection tropism. LGV biovars infect macrophages and are invasive, whereas trachoma biovars infect oculo-urogenital epithelial cells and are noninvasive. The C. trachomatis plasmid is an important virulence factor in the pathogenesis of these infections. Central to its pathogenic role is the transcriptional regulatory function of the plasmid protein Pgp4, which regulates the expression of plasmid and chromosomal virulence genes. As many gene regulatory functions are post-transcriptional, we employed a comparative proteomic study of cells infected with plasmid-cured C. trachomatis serovars A and D (trachoma biovar, a L2 serovar (LGV biovar, and the L2 serovar transformed with a plasmid containing a nonsense mutation in pgp4 to more completely elucidate the effects of the plasmid on chlamydial infection biology. Our results show that the Pgp4-dependent elevations in the levels of Pgp3 and a conserved core set of chromosomally encoded proteins are remarkably similar for serovars within both C. trachomatis biovars. Conversely, we found a plasmid-dependent, Pgp4-independent, negative regulation in the expression of the chlamydial protease-like activity factor (CPAF for the L2 serovar but not the A and D serovars. The molecular mechanism of plasmid-dependent negative regulation of CPAF expression in the LGV serovar is not understood but is likely important to understanding its macrophage infection tropism and invasive infection nature.

  3. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens.

    Science.gov (United States)

    Baek, Chang-Ho; Farrand, Stephen K; Lee, Ko-Eun; Park, Dae-Kyun; Lee, Jeong Kug; Kim, Kun-Soo

    2003-01-01

    Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their

  4. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    Science.gov (United States)

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sequence Analysis of the Cryptic Plasmid pMG101 from Rhodopseudomonas palustris and Construction of Stable Cloning Vectors

    Science.gov (United States)

    Inui, Masayuki; Roh, Jung Hyeob; Zahn, Kenneth; Yukawa, Hideaki

    2000-01-01

    A 15-kb cryptic plasmid was obtained from a natural isolate of Rhodopseudomonas palustris. The plasmid, designated pMG101, was able to replicate in R. palustris and in closely related strains of Bradyrhizobium japonicum and phototrophic Bradyrhizobium species. However, it was unable to replicate in the purple nonsulfur bacterium Rhodobacter sphaeroides and in Rhizobium species. The replication region of pMG101 was localized to a 3.0-kb SalI-XhoI fragment, and this fragment was stably maintained in R. palustris for over 100 generations in the absence of selection. The complete nucleotide sequence of this fragment revealed two open reading frames (ORFs), ORF1 and ORF2. The deduced amino acid sequence of ORF1 is similar to sequences of Par proteins, which mediate plasmid stability from certain plasmids, while ORF2 was identified as a putative rep gene, coding for an initiator of plasmid replication, based on homology with the Rep proteins of several other plasmids. The function of these sequences was studied by deletion mapping and gene disruptions of ORF1 and ORF2. pMG101-based Escherichia coli-R. palustris shuttle cloning vectors pMG103 and pMG105 were constructed and were stably maintained in R. palustris growing under nonselective conditions. The ability of plasmid pMG101 to replicate in R. palustris and its close phylogenetic relatives should enable broad application of these vectors within this group of α-proteobacteria. PMID:10618203

  6. Characterization of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Bruun, Morten Sichlau; Larsen, J.L.

    2001-01-01

    Class 1 integrons were found in 26 of 40 antibiotic-resistant isolates of the fish pathogen Aeromonas salmonicida from Northern Europe and North America. Three different dhfr genes, conferring trimethoprim resistance, and one ant(3 " )1a aminoglycoside resistance gene were identified as gene...... inserts. The gene cassettes tended to be conserved among isolates from a particular geographical area. Nineteen isolates transferred R- plasmids carrying different tet determinants to Escherichia coli in filter mating assays, and in 15 cases, the class 1 integrons were co-transferred. Transferable...... sulphadiazine, trimethoprim and streptomycin resistances were invariably encoded by integrons. It thus appears that integron-encoded antibiotic resistance genes contribute substantially to the horizontal spread of antimicrobial resistance within this species, being associated with conjugative plasmids....

  7. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2012-11-01

    Full Text Available Abstract Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC and one DC2 (CCCGCCC and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii identifies the replication and conjugation loci of pWTY27 and; (iii characterizes the binding sequences of the RepA and TraA proteins.

  8. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    Science.gov (United States)

    2012-01-01

    Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842

  9. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  10. Double Copies of bla(KPC-3)::Tn4401a on an IncX3 Plasmid in Klebsiella pneumoniae Successful Clone ST512 from Italy.

    Science.gov (United States)

    Fortini, Daniela; Villa, Laura; Feudi, Claudia; Pires, João; Bonura, Celestino; Mammina, Caterina; Endimiani, Andrea; Carattoli, Alessandra

    2016-01-01

    A carbapenem-resistant sequence type 512 (ST512) Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing K. pneumoniae strain showing a novel variant plasmid content was isolated in Palermo, Italy, in 2014. ST512 is a worldwide successful clone associated with the spread of bla(KPC) genes located on the IncFIIk pKpQIL plasmid. In our ST512 strain, the bla(KPC-3) gene was unusually located on an IncX3 plasmid, whose complete sequence was determined. Two copies of bla(KPC-3)::Tn4401a caused by intramolecular transposition events were detected in the plasmid. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    Science.gov (United States)

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Construction of pRMES and pTMES plasmids to test their expression ability of Nanobodies via the efficient T7 promoter

    International Nuclear Information System (INIS)

    Masoud, H.; Quider, M.; Abbady, A.

    2014-01-01

    Nanobody technology is considered as a promising molecular biology technique performed by means of the genetic engineering of special type of antibodies, existing exclusively in Camelidea. It enables the obtaining of small proteins, referred to as Nanobodies, which are characterized by high stability and solubility, are able to link to their specific antigens. After production, the Nanobody genes are cloned within plasmids of protein expression in bacteria, allowing their stable and continuous production for research and applied purposes. This work aimed to design new plasmids for Nanobody genes cloning in order to ensure a strong expression via the efficient T7 promoter, thus enhancing the quantity of the produced Nanobodies. These plasmids were called pRMES and pTMES and their ability to express Nanobodies, NbBruc02 and Nb16M, was tested. The plasmid pTMES showed an enhanced production condition of this Nanobody. These new plasmids, by their variable characteristics, could represent efficient tools for general production of recombinant proteins, including Nanobodies (author).

  13. Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands.

    Science.gov (United States)

    Harmer, Christopher J; Hamidian, Mohammad; Ambrose, Stephanie J; Hall, Ruth M

    Both the Salmonella genomic islands (SGI) and the conjugative IncC plasmids are known to contribute substantially to the acquisition of resistance to multiple antibiotics, and plasmids in the A/C group are known to mobilize the Salmonella genomic island SGI1, which also carries multiple antibiotic resistance genes. Plasmid pRMH760 (IncC; A/C 2 ) was shown to mobilize SGI1 variants SGI1-I, SGI1-F, SGI1-K and SGI2 from Salmonella enterica to Escherichia coli where it was integrated at the preferred location, at the end of the trmE (thdF) gene. The plasmid was transferred at a similar frequency. However, we observed that co-transfer of the SGI and the plasmid was rarer. In E. coli to E. coli transfer, the frequency of transfer of the IncC plasmid pRMH760 was at least 1000-fold lower when the donor carried SGI1-I or SGI1-K, indicating that the SGI suppresses transfer of the plasmid. In addition, pRMH760 was rapidly lost from both E. coli and S. enterica strains that also carried SGI1-I, SGI1-F or SGI2. However, plasmid loss was not seen when the SGI1 variant was SGI1-K, which lacks two segments of the SGI1 backbone. The complete sequence of the SGI1-I and SGI1-F were determined and SGI1-K also carries two single base substitutions relative to SGI1-I. The IncA (A/C 1 ) plasmid RA1 was also shown to mobilize SGI2-A and though there are significant differences between the backbones of IncA and IncC plasmids, RA1 was also rapidly lost when SGI2-A was present in the same cell. We conclude that there are multiple interactions, both cooperative and antagonistic, between an IncA or IncC plasmid and the SGI1 and SGI2 family genomic islands. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  15. Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation.

    Science.gov (United States)

    Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J

    2015-07-01

    Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2010-12-20

    The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

  17. Analysis of plasmid-mediated quinolone resistance genes in clinical isolates of the tribe Proteeae from Argentina: First report of qnrD in the Americas.

    Science.gov (United States)

    Albornoz, Ezequiel; Lucero, Celeste; Romero, Genara; Rapoport, Melina; Guerriero, Leonor; Andres, Patricia; Galas, Marcelo; Corso, Alejandra; Petroni, Alejandro

    2014-12-01

    To analyse the occurrence and prevalence of plasmid-mediated quinolone resistance (PMQR) genes in the tribe Proteeae, 81 isolates (65 Proteus spp., 12 Morganella morganii and 4 Providencia stuartii) consecutively collected in 66 hospitals belonging to the WHONET-Argentina Resistance Surveillance Network were studied. Of the 81 isolates, 50 (62%) were susceptible to quinolones [43/65 (66%) Proteus spp. and 7/12 (58%) M. morganii). The remaining 31 isolates (22 Proteus spp., 5 M. morganii and all P. stuartii) showed high-level resistance to nalidixic acid (NAL) and decreased susceptibility or resistance to ciprofloxacin. All NAL-resistant isolates harboured mutations associated with quinolone resistance (MAQRs) in both gyrA (S83I/R) and parC (S80I/R), and some also had MAQRs in gyrB (S464Y/F). The unique PMQR gene detected was qnrD, which was found in 2/81 isolates (Proteus mirabilis Q1084 and Proteus vulgaris Q5169), giving a prevalence of 2.5% in Proteeae. These two isolates were from different geographical regions and both harboured MAQRs in gyrA and parC. The qnrD genes were located on the related plasmids pEAD1-1 (2683bp) and pEAD1-2 (2669bp). Plasmid pEAD1-1 was 100% identical to pCGH15 and differed in only three nucleotides from pDIJ09-518a, which were previously found in clinical isolates of P. mirabilis (China) and Providencia rettgeri (France), respectively, whilst pEAD1-2 was not previously described. The extended-spectrum β-lactamase CTX-M-2 was found in 27% (22/81) of the isolates and was significantly associated with quinolone resistance but not with qnrD (only P. mirabilis Q1084 expressed CTX-M-2). This is the first report of qnrD in the Americas. Copyright © 2014 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  18. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm.

    Science.gov (United States)

    Ramirez, Maria S; Traglia, German M; Lin, David L; Tran, Tung; Tolmasky, Marcelo E

    Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae . This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.

  19. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    Directory of Open Access Journals (Sweden)

    Tetsushi Sakuma

    2015-10-01

    Full Text Available Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc gene, in Chinese hamster ovary (CHO cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  20. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    Science.gov (United States)

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  1. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene.

    Science.gov (United States)

    Zeman, M; Mašlaňová, I; Indráková, A; Šiborová, M; Mikulášek, K; Bendíčková, K; Plevka, P; Vrbovská, V; Zdráhal, Z; Doškař, J; Pantůček, R

    2017-04-13

    Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

  2. Effects of Argonaute on Gene Expression in Thermus thermophilus.

    Directory of Open Access Journals (Sweden)

    Daan C Swarts

    Full Text Available Eukaryotic Argonaute proteins mediate RNA-guided RNA interference, allowing both regulation of host gene expression and defense against invading mobile genetic elements. Recently, it has become evident that prokaryotic Argonaute homologs mediate DNA-guided DNA interference, and play a role in host defense. Argonaute of the bacterium Thermus thermophilus (TtAgo targets invading plasmid DNA during and after transformation. Using small interfering DNA guides, TtAgo can cleave single and double stranded DNAs. Although TtAgo additionally has been demonstrated to cleave RNA targets complementary to its DNA guide in vitro, RNA targeting by TtAgo has not been demonstrated in vivo.To investigate if TtAgo also has the potential to control RNA levels, we analyzed RNA-seq data derived from cultures of four T. thermophilus strain HB27 variants: wild type, TtAgo knockout (Δago, and either strain transformed with a plasmid. Additionally we determined the effect of TtAgo on expression of plasmid-encoded RNA and plasmid DNA levels.In the absence of exogenous DNA (plasmid, TtAgo presence or absence had no effect on gene expression levels. When plasmid DNA is present, TtAgo reduces plasmid DNA levels 4-fold, and a corresponding reduction of plasmid gene transcript levels was observed. We therefore conclude that TtAgo interferes with plasmid DNA, but not with plasmid-encoded RNA. Interestingly, TtAgo presence stimulates expression of specific endogenous genes, but only when exogenous plasmid DNA was present. Specifically, the presence of TtAgo directly or indirectly stimulates expression of CRISPR loci and associated genes, some of which are involved in CRISPR adaptation. This suggests that TtAgo-mediated interference with plasmid DNA stimulates CRISPR adaptation.

  3. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs

    Directory of Open Access Journals (Sweden)

    Shuen Hon

    2016-12-01

    Full Text Available Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results. Keywords: Clostridium Thermocellum, Plasmid, adhE, Structural stability, Gene expression

  4. Improvement of in vivo transfer of plasmid DNA in muscle : Comparison of electroporation versus ultrasound

    NARCIS (Netherlands)

    Kusumanto, Yoka H.; Mulder, Nanno H.; Dam, Wendy A.; Losen, Mario H.; Meijer, Coby; Hospers, Geke A. P.

    Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods-electroporation and ultrasound-that facilitate DNA uptake into

  5. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Michael J Gebhardt

    Full Text Available The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.

  6. Plasmid Transfer in the Ocean – A Case Study from the Roseobacter Group

    Directory of Open Access Journals (Sweden)

    Jörn Petersen

    2017-07-01

    Full Text Available Plasmid mediated horizontal gene transfer (HGT has been speculated to be one of the prime mechanisms for the adaptation of roseobacters (Rhodobacteraceae to their ecological niches in the marine habitat. Their plasmids contain ecologically crucial functional modules of up to ∼40-kb in size, e.g., for aerobic anoxygenic photosynthesis, flagellar formation and the biosynthesis of the antibiotic tropodithietic acid. Furthermore, the widely present type four secretion system (T4SS of roseobacters has been shown to mediate conjugation across genus barriers, albeit in the laboratory. Here we discovered that Confluentimicrobium naphthalenivorans NS6T, a tidal flat bacterium isolated in Korea, carries a 185-kb plasmid, which exhibits a long-range synteny with the conjugative 126-kb plasmid of Dinoroseobacter shibae DFL12T. Both replicons are stably maintained by RepABC operons of the same compatibility group (-2 and they harbor a homologous T4SS. Principal component analysis of the codon usage shows a large similarity between the two plasmids, while the chromosomes are very distinct, showing that neither of the two bacterial species represents the original host of those RepABC-2 type plasmids. The two species do not share a common habitat today and they are phylogenetically only distantly related. Our finding demonstrates the first clear-cut evidence for conjugational plasmid transfer across biogeographical and phylogenetic barriers in Rhodobacteraceae and documents the importance of conjugative HGT in the ocean.

  7. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  8. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    Science.gov (United States)

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    Science.gov (United States)

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids

  10. Comparative genomics of an IncA/C multidrug resistance plasmid from Escherichia coli and Klebsiella isolates from intensive care unit patients and the utility of whole-genome sequencing in health care settings.

    Science.gov (United States)

    Hazen, Tracy H; Zhao, LiCheng; Boutin, Mallory A; Stancil, Angela; Robinson, Gwen; Harris, Anthony D; Rasko, David A; Johnson, J Kristie

    2014-08-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A bla(FOX-5) gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing bla(FOX-5) were selected for sequencing based on their plasmid profiles. An ∼ 167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Interactions Between the Cytomegalovirus Promoter and the Estrogen Response Element: Implications for Design of Estrogen-Responsive Reporter Plasmids

    OpenAIRE

    Derecka, K.; Wang, C.K.; Flint, A.P.F.

    2006-01-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)...

  12. CARTOGRAPHIE DU PLASMIDE pSU100, PLASMIDE CRYPTIQUE DE LACTOBACILLUS CASEI

    Directory of Open Access Journals (Sweden)

    F BENSALAH

    2003-06-01

    Ce plasmide appelé pSU100 a été cloné dans le vecteur de transformation pUC18 au site EcoRI chez E. coli JM103. Les profils électrophorétiques de restriction obtenus par des digestions simples, doubles et triples sous l’action de 33 endonucléases, ont contribué à l’élaboration d’une carte de restriction de ce plasmide. Cinq sites uniques ont été identifiés, ainsi que d’autres sites doubles et multiples. Une étude préliminaire du rôle physiologique de ce plasmide a permis de déceler une résistance à la kanamycine.

  13. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    Science.gov (United States)

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply

  14. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries

    Directory of Open Access Journals (Sweden)

    Gray Elizabeth C

    2009-11-01

    Full Text Available Abstract Background In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. Results It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. Conclusion These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The

  15. Plasmid-mediated quinolone resistance in Salmonella serotypes isolated from chicken carcasses in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Ata

    2014-01-01

    Full Text Available Quinolones have been extensively used for treatment of a variety of invasive and systemic infections of salmonellosis. Widespread use of these agents has been associated with the emergence and dissemination of quinolone-resistant pathogens. The quinolone resistance and plasmid-mediated quinolone resistance determinants (qnrA, qnrB, qnrS and aac(6’-Ib-cr of 85 Salmonella isolates from chicken carcasses were investigated in this study. Isolates were serotyped according to the Kauffman-White-Le Minor scheme, and broth microdilution method was used to determine quinolone resistance. Plasmid-mediated quinolone resistance genes were investigated by real-time PCR and positive results were confirmed by sequencing. Among the Salmonella isolates, 30/85 (35% and 18/85 (21% were found to be resistant to enrofloxacin (MIC ≥ 2 mg/ml, and danofloxacin (MIC ≥ 2 mg/ml, respectively. All the isolates were negative for qnrA, qnrB and aac(6’-Ib-cr genes, nevertheless 2% (S. Brandenburg and S. Dabou were positive for qnrS (qnrS1 determinant. This study is the first and unique investigating the plasmid- mediated quinolone resistance determinants of Salmonella isolated from chicken carcasses in Turkey.

  16. Relative entropy differences in bacterial chromosomes, plasmids, phages and genomic islands

    DEFF Research Database (Denmark)

    Bohlin, Jon; van Passel, Mark W. J.; Snipen, Lars

    2012-01-01

    with the strongest association being in phages. Relative entropy was also found to be lower in the obligate intracellular Mycobacterium leprae than in the related M. tuberculosis when measured on a shared set of highly conserved genes. Conclusions: We argue that relative entropy differences reflect how plasmids...

  17. Circulation of a multiresistant, conjugative, IncA/C plasmid within the nosocomial Providencia stuartii population in the Athens area.

    Science.gov (United States)

    Giakkoupi, Panagiota; Tryfinopoulou, Kyriaki; Polemis, Michalis; Pappa, Olga; Miriagou, Vivi; Vatopoulos, Alkiviadis

    2015-05-01

    The objective of the study is to report a multidrug-resistant outbreak of Providencia stuartii that occurred in inpatients in the Athens area in 2012 resulting from a very successful transmissible A/C multidrug-resistant plasmid. Thirteen multidrug-resistant P. stuartii clinical isolates from 5 hospitals were studied. Molecular typing was performed by pulsed-field gel electrophoresis. Antibiotic resistance genes and their genetic surround were detected by PCR and sequencing. Plasmid analysis included conjugation experiments using liquid cultures, sizing by S1 digestion, and incompatibility replicon typing by PCR. Isolates were grouped into 2 distinct clonal types A and B, exhibiting similarity less than 70%. Isolates of type A were recovered from patients hospitalized in 4 different hospitals with no obvious epidemiological linkage, while isolates of type B were recovered from patients treated in a single hospital. Both clonal types harbored a conjugative plasmid of 130 bp and IncA/C replicon type carrying 5 β-lactamase genes bla(SHV-5), bla(VEB-1), bla(VIM-1), bla(OXA-10), and bla(TEM-1) and aminoglycosides resistant determinants. All β-lactamase genes were included in stable structures as IS26, IS1999, and In-e541. The current plasmid seemed to have many common determinants with previously reported plasmids derived from P. stuartii and Proteus mirabilis clinical isolates and exhibited the ability to circulate in nosocomial bacterial populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes.

    Science.gov (United States)

    Ashiuchi, Makoto; Yamashiro, Daisuke; Yamamoto, Kento

    2013-09-01

    Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Radioactive probes for human gene localisation by in situ hybridisation

    International Nuclear Information System (INIS)

    Fennell, S.J.

    1980-07-01

    Radioactive probes of high specific activity have been used for human gene localisation on metaphase chromosome preparations. Human 5S ribosomal RNA was used as a model system, as a probe for the localisation of human 5S ribosomal genes. 125 I-labelled mouse 5S ribosomal RNA was used to study the 5S ribosomal gene content and arrangement in families with translocations on the long arm of chromosome 1 close to or containing the 5S ribosomal RNA locus, by in situ hybridisation to human metaphase chromosomes from peripheral blood cultures. This confirmed the chromosomal assignment of 5S ribosomal genes to 1q 42-43. In situ hybridisation probes were also prepared from recombinant plasmids containing Xenopus laevis oocyte 5S or 28S/18S gene sequences to give [ 3 H]-labelled cRNA and [ 3 H]-labelled nick-translated plasmid DNA. Studies on the kinetics of hybridisation of plasmid probes with and without ribosomal gene sequences questioned the role of plasmid DNA for amplification of signal during gene localisation. Gene localisation was obtained with nick-translated plasmid DNA containing the 28S/18S ribosomal DNA insert after short exposure times, but poor results were obtained using a [ 3 H]-labelled cRNA probe transcribed from the plasmid with the 5S gene insert. (author)

  20. Large-scale preparation of plasmid DNA.

    Science.gov (United States)

    Heilig, J S; Elbing, K L; Brent, R

    2001-05-01

    Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.

  1. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake.

    Science.gov (United States)

    Flach, Carl-Fredrik; Johnning, Anna; Nilsson, Ida; Smalla, Kornelia; Kristiansson, Erik; Larsson, D G Joakim

    2015-10-01

    Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Characterization of the Complete Nucleotide Sequences of IncA/C2 Plasmids Carrying In809-Like Integrons from Enterobacteriaceae Isolates of Wildlife Origin.

    Science.gov (United States)

    Papagiannitsis, Costas C; Kutilova, Iva; Medvecky, Matej; Hrabak, Jaroslav; Dolejska, Monika

    2017-09-01

    A total of 18 Enterobacteriaceae (17 from gulls and 1 from a clinical sample) collected from Australia, carrying IncA/C plasmids with the IMP-encoding In809-like integrons, were studied. Seven plasmids, being representatives of different origins, plasmid sizes, replicon combinations, and resistance genes, were completely sequenced. Plasmid pEc158, identified in a clinical Escherichia coli ST752 isolate, showed extensive similarity to type 2 IncA/C 2 plasmids. pEc158 carried none of the bla CMY-2 -like region or ARI-B and ARI-A regions, while it contained a hybrid transposon structure. The six remaining plasmids, which were of wildlife origin, were highly similar to each other and probably were fusion derivatives of type 1 and type 2 A/C 2 plasmids. The latter plasmids contained an ARI-B region and hybrid transposon structures. In all plasmids, hybrid transposon structures containing In809-like integrons were inserted 3,434 bp downstream of the rhs2 start codon. In all cases, the one outermost 38-bp inverted repeat (IR) of the transposon was associated with the Tn 1696 tnp module, while the other outermost 38-bp IR of the transposon was associated with either a Tn 6317 -like module or a Tn 21 mer module. However, the internal structure of the transposon and the resistance genes were different in each plasmid. These findings indicated that, for the specific periods of time and settings, different IncA/C 2 plasmid types carrying In809-like elements circulated among isolates of wildlife and clinical origins. Additionally, they provided the basis for speculations regarding the reshuffling of IncA/C 2 plasmids with In809-like integrons and confirmed the rapid evolution of IncA/C 2 plasmid lineages. Copyright © 2017 American Society for Microbiology.

  3. The Plasmid Complement of Lactococcus lactis UC509.9 Encodes Multiple Bacteriophage Resistance Systems

    Science.gov (United States)

    Ainsworth, Stuart; Mahony, Jennifer

    2014-01-01

    Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage. PMID:24814781

  4. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    Science.gov (United States)

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  5. Complete nucleotide sequence of pGA45, a 140,698-bp incFIIY plasmid encoding blaIMI-3-mediated carbapenem resistance, from river sediment

    Directory of Open Access Journals (Sweden)

    Bingjun eDang

    2016-02-01

    Full Text Available Plasmid pGA45 was isolated from the sediment of Haihe River using E. coli CV601 (gfp-tagged as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G+C content of 52.03%. Sequence analysis shows that pGA45 belongs to incFIIY group and harbors a backbone region shares high homology and gene synteny to several other incF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1 and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one blaIMI-3-containing region and one type VI secretion system region. The blaIMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the blaIMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of blaIMI carbapenemase genes.

  6. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island.

    Science.gov (United States)

    MacArthur, Iain; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Vázquez-Boland, José A

    2017-05-01

    The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome.

    Science.gov (United States)

    Pistorio, Mariano; Giusti, María A; Del Papa, María F; Draghi, Walter O; Lozano, Mauricio J; Tejerizo, Gonzalo Torres; Lagares, Antonio

    2008-09-01

    The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N(2)-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.

  8. Association between gene variants and response to buprenorphine maintenance treatment.

    Science.gov (United States)

    Gerra, Gilberto; Somaini, Lorenzo; Leonardi, Claudio; Cortese, Elena; Maremmani, Icro; Manfredini, Matteo; Donnini, Claudia

    2014-01-30

    A variety of studies were addressed to differentiate responders and non-responders to substitution treatment among heroin dependent patients, without conclusive findings. In particular, preliminary pharmacogenetic findings have been reported to predict treatment effectiveness in mental health and substance use disorders. Aim of the present study was to investigate the possible association of buprenorphine (BUP) treatment outcome with gene variants that may affect kappa-opioid receptors and dopamine system function. One hundred and seven heroin addicts (West European, Caucasians) who underwent buprenorphine maintenance treatment were genotyped and classified into two groups (A and B) on the basis of treatment outcome. Non-responders to buprenorphine (group B) have been identified taking into account early drop out, continuous use of heroin, severe behavioral or psychiatric problems, misbehavior and diversion during the 6 months treatment period. No difference was evidenced between responders and non-responders to BUP in the frequency of kappa opioid receptor (OPRK1) 36G>T SNP. The frequency of dopamine transporter (DAT) gene polymorphism (SLC6A3/DAT1), allele 10, was evidently much higher in "non-responder" than in "responder" individuals (64.9% vs. 55.93%) whereas the frequency of the category of other alleles (6, 7 and 11) was higher in responder than in non-responder individuals (11.02% vs. 2.13% respectively). On one hand, the hypothesis that possible gene-related changes in kappa-opioid receptor could consistently affect buprenorphine pharmacological action and clinical effectiveness was not confirmed in our study, at least in relation to the single nucleotide polymorphism 36G>T. On the other hand, the possibility that gene-related dopamine changes could have reduced BUP effectiveness and impaired maintenance treatment outcome was cautiously supported by our findings. DAT1 gene variants such as allele 10, previously reported in association with personality and

  9. [Cloning and gene expression in lactic acid bacteria].

    Science.gov (United States)

    Bondarenko, V M; Beliavskaia, V A

    2000-01-01

    The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.

  10. Unraveling the regulatory network of IncA/C plasmid mobilization: When genomic islands hijack conjugative elements.

    Science.gov (United States)

    Carraro, Nicolas; Matteau, Dominick; Burrus, Vincent; Rodrigue, Sébastien

    2015-01-01

    Conjugative plasmids of the A/C incompatibility group (IncA/C) have become substantial players in the dissemination of multidrug resistance. These large conjugative plasmids are characterized by their broad host-range, extended spectrum of antimicrobials resistance, and prevalence in enteric bacteria recovered from both environmental and clinical settings. Until recently, relatively little was known about the basic biology of IncA/C plasmids, mostly because of the hindrance of multidrug resistance for molecular biology experiments. To circumvent this issue, we previously developed pVCR94ΔX, a convenient prototype that codes for a reduced set of antibiotic resistances. Using pVCR94ΔX, we then characterized the regulatory pathway governing IncA/C plasmid dissemination. We found that the expression of roughly 2 thirds of the genes encoded by this plasmid, including large operons involved in the conjugation process, depends on an FlhCD-like master activator called AcaCD. Beyond the mobility of IncA/C plasmids, AcaCD was also shown to play a key role in the mobilization of different classes of genomic islands (GIs) identified in various pathogenic bacteria. By doing so, IncA/C plasmids can have a considerable impact on bacterial genomes plasticity and evolution.

  11. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae

    DEFF Research Database (Denmark)

    Johnson, Timothy J.; Bielak, Eliza Maria; Fortini, Daniela

    2012-01-01

    and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid...

  12. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  13. Dissemination of plasmid-encoded AmpC β-lactamases in antimicrobial resistant Salmonella serotypes originating from humans, pigs and the swine environment.

    Science.gov (United States)

    Keelara, Shivaramu; Thakur, Siddhartha

    2014-09-17

    The aim of this study was to characterize and determine the inter-serovar exchange of AmpC β-lactamase conferring plasmids isolated from humans, pigs and the swine environment. Plasmids isolated from a total of 21 antimicrobial resistant (AMR) Salmonella isolates representing human clinical cases (n=6), pigs (n=6) and the swine farm environment (n=9) were characterized by replicon typing and restriction digestion, inter-serovar transferability by conjugation, and presence of AmpC β-lactamase enzyme encoding gene blaCMY-2 by southern hybridization. Based on replicon typing, the majority (17/21, 81%) of the plasmids belonged to the I1-Iγ Inc group and were between 70 and 103kb. The potential for inter-serovar plasmid transfer was further confirmed by the PCR detection of AMR genes on the plasmids isolated from trans-conjugants. Plasmids from Salmonella serovars Anatum, Ouakam, Johannesburg and Typhimurium isolated from the same cohort of pigs and their environment and S. Heidelberg from a single human clinical isolate had identical plasmids based on digestion with multiple restriction enzymes (EcoRI, HindIII and PstI) and southern blotting. We demonstrated likely horizontal inter-serovar exchange of plasmid-encoding AmpC β-lactamases resistance among MDR Salmonella serotypes isolated from pigs, swine farm environment and clinical human cases. This study provides valuable information on the role of the swine farm environment and by extension other livestock farm environments, as a potential reservoir of resistant bacterial strains that potentially transmit resistance determinants to livestock, in this case, swine, humans and possibly other hosts by horizontal exchange of plasmids. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakai, Y; Goh, T K; Tani, Y

    1993-06-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as in monomeric forms in C. boidinii cells. The C. boidinii URA3 gene was overexpressed in C. boidinii on these CARS vectors. CARS1 and CARS2 were found to function as an autonomous replicating element in Saccharomyces cerevisiae as well. Different portions of the CARS1 sequence were needed for autonomous replicating activity in C. boidinii and S. cerevisiae. C. boidinii could also be transformed with vectors harboring a CARS fragment and the S. cerevisiae URA3 gene.

  15. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Matsui, Mari; Yamane, Kunikazu; Takeuchi, Fumihiko; Ohnishi, Makoto; Hishinuma, Akira; Arakawa, Yoshichika; Kuroda, Makoto

    2011-01-01

    The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  16. pirABvp-Bearing Vibrio parahaemolyticus and Vibrio campbellii Pathogens Isolated from the Same AHPND-Affected Pond Possess Highly Similar Pathogenic Plasmids

    Directory of Open Access Journals (Sweden)

    Xuan Dong

    2017-10-01

    Full Text Available Acute hepatopancreatic necrosis disease (AHPND is a severe shrimp disease originally shown to be caused by virulent strains of Vibrio parahaemolyticus (VPAHPND. Rare cases of AHPND caused by Vibrio species other than V. parahaemolyticus were reported. We compared an AHPND-causing V. campbellii (VCAHPND and a VPAHPND isolate from the same AHPND-affected pond. Both strains are positive for the virulence genes pirABvp. Immersion challenge test with Litopenaeus vannamei indicated the two strains possessed similar pathogenicity. Complete genome comparison showed that the pirABvp-bearing plasmids in the two strains were highly homologous, and they both shared high homologies with plasmid pVA1, the reported pirABvp-bearing plasmid. Conjugation and DNA-uptake genes were found on the pVA1-type plasmids and the host chromosomes, respectively, which may facilitate the dissemination of pirABvp. Novel variations likely driven by ISVal1 in the genetic contexts of the pirABvp genes were found in the two strains. Moreover, the VCAHPND isolate additionally contains multiple antibiotic resistance genes, which may bring difficulties to control its future outbreak. The dissemination of the pirABvp in non-parahaemolyticus Vibrio also rises the concern of missing detection in industrial settings since the isolation method currently used mainly targeting V. parahaemolyticus. This study provides timely information for better understanding of the causes of AHPND and molecular epidemiology of pirABvp and also appeals for precautions to encounter the dissemination of the hazardous genes.

  17. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host.

    Science.gov (United States)

    Purser, Joye E; Lawrenz, Matthew B; Caimano, Melissa J; Howell, Jerrilyn K; Radolf, Justin D; Norris, Steven J

    2003-05-01

    Borrelia burgdorferi, a spirochaete that causes Lyme borreliosis, contains 21 linear and circular plasmids thought to be important for survival in mammals or ticks. Our results demonstrate that the gene BBE22 encoding a nicotinamidase is capable of replacing the requirement for the 25 kb linear plasmid lp25 during mammalian infection. Transformation of B. burgdorferi lacking lp25 with a shuttle vector containing the lp25 gene BBE22 (pBBE22) restored infectivity in mice to a level comparable to that of wild-type Borrelia. This complementation also restored the growth and host adaptation of lp25-B. burgdorferi in dialysis membrane chambers (DMCs) implanted in rats. A single Cys to Ala conversion at the putative active site of BBE22 abrogated the ability of pBBE22 to re-establish infectivity or growth in DMCs. Additional Salmonella typhimurium complementation studies and enzymatic analysis demonstrated that the BBE22 gene product has nicotinamidase activity and is most probably required for the biosynthesis of NAD. These results indicate that some plasmid-encoded products fulfil physiological functions required in the enzootic cycle of pathogenic Borrelia.

  18. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    OpenAIRE

    Sakai, Y; Goh, T K; Tani, Y

    1993-01-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as...

  20. Plasmid pORF-hTRAIL targeting to glioma using transferrin-modified polyamidoamine dendrimer

    Directory of Open Access Journals (Sweden)

    Gao S

    2015-12-01

    Full Text Available Song Gao,1,* Jianfeng Li,2 Chen Jiang,2 Bo Hong,3 Bing Hao4,* 1Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 2Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 3Department of Pathology, The Second Affiliated Hospital, 4Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A gene drug delivery system for glioma therapy based on transferrin (Tf-modified polyamidoamine dendrimer (PAMAM was prepared. Gene drug, tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL-encoding plasmid open reading frame (pORF-hTRAIL, Trail, was condensed by Tf-modified PAMAM to form nanoparticles (NPs. PAMAM-PEG-Tf/DNA NPs showed higher cellular uptake, in vitro gene expression, and cytotoxicity than PAMAM-PEG/DNA NPs in C6 cells. The in vivo targeting efficacy of NPs was visualized by ex vivo fluorescence imaging. Tf-modified NPs showed obvious glioma-targeting trend. Plasmid encoding green fluorescence protein (GFP was also condensed by modified or unmodified PAMAM to evaluate the in vivo gene expression level. The PAMAM-PEG-Tf/plasmid encoding enhanced green fluorescence protein (pEGFP NPs exhibited higher GFP expression level than PAMAM-PEG/pEGFP NPs. TUNEL assay revealed that Tf-modified NPs could induce much more tumor apoptosis. The median survival time of PAMAM-PEG-Tf/Trail-treated rats (28.5 days was longer than that of rats treated with PAMAM-PEG/Trail (25.5 days, temozolomide (24.5 days, PAMAM-PEG-Tf/pEGFP (19 days, or saline (17 days. The therapeutic effect was further confirmed by magnetic resonance imaging. This study demonstrated that targeting gene delivery system had potential application for the

  1. Prevalence and characteristics of extended-spectrum β-lactamase and plasmid-mediated fluoroquinolone resistance genes in Escherichia coli isolated from chickens in Anhui province, China.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The aim of this study was to characterize the prevalence of extended-spectrum β-lactamase (ESBL genes and plasmid-mediated fluoroquinolone resistance (PMQR determinants in 202 Escherichia coli isolates from chickens in Anhui Province, China, and to determine whether ESBL and PMQR genes co-localized in the isolates. Antimicrobial susceptibility for 12 antimicrobials was determined by broth microdilution. Polymerase chain reactions (PCRs, DNA sequencing, and pulsed field gel electrophoresis (PFGE were employed to characterize the molecular basis for β-lactam and fluoroquinolone resistance. High rates of antimicrobial resistance were observed, 147 out of the 202 (72.8% isolates were resistant to at least 6 antimicrobial agents and 28 (13.9% of the isolates were resistant to at least 10 antimicrobials. The prevalence of blaCTX-M, blaTEM-1 and blaTEM-206 genes was 19.8%, 24.3% and 11.9%, respectively. Seventy-five out of the 202 (37.1% isolates possessed a plasmid-mediated quinolone resistance determinant in the form of qnrS (n = 21; this determinant occurred occasionally in combination with aac(6'-1b-cr (n = 65. Coexistence of ESBL and/or PMQR genes was identified in 31 of the isolates. Two E. coli isolates carried blaTEM-1, blaCTX-M and qnrS, while two others carried blaCTX-M, qnrS and aac(6'-1b-cr. In addition, blaTEM-1, qnrS and aac(6'-1b-cr were co-located in two other E. coli isolates. PFGE analysis showed that these isolates were not clonally related and were genetically diverse. To the best of our knowledge, this study is the first to describe detection of TEM-206-producing E. coli in farmed chickens, and the presence of blaTEM-206, qnrS and aac(6'-1b-cr in one of the isolates.

  2. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    Science.gov (United States)

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  3. Characterization of new plasmids from methylotrophic bacteria.

    Science.gov (United States)

    Brenner, V; Holubová, I; Benada, O; Hubácek, J

    1991-07-01

    Several tens of methanol-utilizing bacterial strains isolated from soil were screened for the presence of plasmids. From the obligate methylotroph Methylomonas sp. strain R103a plasmid pIH36 (36 kb) was isolated and its restriction map was constructed. In pink-pigmented facultative methylotrophs (PPFM), belonging to the genus Methylobacterium four plasmids were detected: plasmids pIB200 (200 kb) and pIB14 (14 kb) in the strain R15d and plasmids pWU14 (14 kb) and pWU7 (7.8 kb) in the strain M17. Because of the small size and the presence of several unique REN sites (HindIII, EcoRI, NcoI), plasmid pWU7 was chosen for the construction of a vector for cloning in methylotrophs. Cointegrates pKWU7A and pKWU7B were formed between pWU7 and the E. coli plasmid pK19 Kmr, which were checked for conjugative transfer from E. coli into the methylotrophic host.

  4. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Explanatory chapter: how plasmid preparation kits work.

    Science.gov (United States)

    Koontz, Laura

    2013-01-01

    To isolate plasmid DNA from bacteria using a commercial plasmid miniprep kit (if interested, compare this protocol with Isolation of plasmid DNA from bacteria). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Plasmid mediated colistin resistance in food animal intestinal contents detected by selective enrichment

    Science.gov (United States)

    Colistin (polymyxin E) is a cationic polypeptide antibiotic that has broad-spectrum activity against Gram-negative bacteria. It is classified as critically important in human medicine for treating hard-to-treat multi-drug resistant infections. Recently a plasmid-mediated colistin resistance gene (mc...

  7. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919

    Science.gov (United States)

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  8. Transfer of the lambdadv plasmid to new bacterial hosts

    International Nuclear Information System (INIS)

    Kellenberger-Gujer, G.; Boy de la Tour, E.; Berg, D.E.

    1974-01-01

    Lambda dv, which was derived from bacteriophage lambda, replicates autonomously as a plasmid in Escherichia coli and consists of only the immunity region (imm/sup lambda/) and DNA replication genes (O, P) of the ancestral phage. Addition phages (lambda imm 21 --lambda dv) carry the lambda dv fragment inserted as a tandem duplication in their genome (sequence A imm 21 O P imm/sup lambda/ O P R) are formed as recombinants after lambda imm 21 infection of strains carrying lambda dv. Addition phages were used to transfer lambda dv to new bacterial hosts. Lambda dv transfer by excision of the lambda dv segment from the addition phage genome requires a bacterial Rec or a phage Red recombination system. Successful transfer is stimulated by uv irradiation of the addition phage before infection. Some properties of the newly transferred lambda dv plasmids are described. (U.S.)

  9. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  10. Tissue-specific Calibration of Real-time PCR Facilitates Absolute Quantification of Plasmid DNA in Biodistribution Studies

    Directory of Open Access Journals (Sweden)

    Joan K Ho

    2016-01-01

    Full Text Available Analysis of the tissue distribution of plasmid DNA after administration of nonviral gene delivery systems is best accomplished using quantitative real-time polymerase chain reaction (qPCR, although published strategies do not allow determination of the absolute mass of plasmid delivered to different tissues. Generally, data is expressed as the mass of plasmid relative to the mass of genomic DNA (gDNA in the sample. This strategy is adequate for comparisons of efficiency of delivery to a single site but it does not allow direct comparison of delivery to multiple tissues, as the mass of gDNA extracted per unit mass of each tissue is different. We show here that by constructing qPCR standard curves for each tissue it is possible to determine the dose of intact plasmid remaining in each tissue, which is a more useful parameter when comparing the fates of different formulations of DNA. We exemplify the use of this tissue-specific qPCR method by comparing the delivery of naked DNA, cationic DNA complexes, and neutral PEGylated DNA complexes after intramuscular injection. Generally, larger masses of intact plasmid were present 24 hours after injection of DNA complexes, and neutral complexes resulted in delivery of a larger mass of intact plasmid to the spleen.

  11. Isolation and sequence analysis of pCS36-4CPA, a small plasmid from Citrobacter sp. 36-4CPA.

    Science.gov (United States)

    Zharikova, Natalia V; Iasakov, Timur R; Bumazhkin, Boris K; Patutina, Ekaterina O; Zhurenko, Evgeniia I; Korobov, Vladislav V; Sagitova, Alina I; Kuznetsov, Boris B; Markusheva, Tatiana V

    2018-05-01

    A small plasmid designated pCS36-4CPA with a size of 5217 base pairs and G-C content of 50.74% was isolated from Citrobacter sp. 36-4CPA. The origin of replication ( ori ) of the plasmid was identified as a region of about 800 bp in length with an identity of 67.1% to the ColE1 plasmid at the nucleotide level. The replication region contained typical elements of ColE1-like plasmids: RNA I and RNA II with their corresponding -10 and -35 boxes, a single-strand initiation site ( ssi ), and a lagging-strand termination site ( terH ). As seen in other ColE1-like plasmids, pCS36-4CPA carried mobilisation machinery that include mobABCD genes but it did not possess the rom gene. Analysis of the multimer resolution site ( mrs ) was performed and XerC and XerD binding sites were identified. Also, the 70-nt transcript Rcd of pCS36-4CPA was predicted and similarity of the transcript's secondary structure with those of the ColE1-family was shown. The cargo module of pCS36-4CPA contained three open reading frames (ORFs). Two of them (ORF5 and ORF6) showed no significant homology to any known gene sequences but contained putative THAP DNA-binding (DBD) and type II restriction endonuclease Eco O109I domains. The seventh open reading frame (ORF7) encodes YhdJ-like DNA modification methylase. The region highly homologous to pCS36-4CPA was found in the Salmonella phage SE2 genome.

  12. Plasmid-mediated UV-protection in Streptococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, M.C.; Rouault, A. (Institut National de la Recherche Agronomique, Rennes (France). Lab. de Recherches de Technologie Laitiere); Moillo-Batt, A. (Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital de Pontchaillon, 35 - Rennes (France))

    1985-02-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by co-transfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci.

  13. Plasmid-mediated UV-protection in Streptococcus lactis

    International Nuclear Information System (INIS)

    Chopin, M.-C.; Rouault, A.

    1985-01-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by cotransfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci. (orig.)

  14. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  15. Behavior of IncQ Plasmids in Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Schilperoort, Rob

    1981-01-01

    Inc-Q plasmids were introduced into Agrobacterium tumefuciens, by mobilization from Escherichia coli with an Inc-P plasmid, or by transformation with purified plasmid DNA. It was found that they were stably maintained. The presence of an Inc-Q plasmid did not influence tumorigenicity. These results

  16. Common changes in global gene expression induced by RNA polymerase inhibitors in Shigella flexneri.

    Directory of Open Access Journals (Sweden)

    Hua Fu

    Full Text Available Characterization of expression profile of organisms in response to antimicrobials provides important information on the potential mechanism of action of the drugs. The special expression signature can be used to predict whether other drugs act on the same target. Here, the common response of Shigella flexneri to two inhibitors of RNA polymerase was examined using gene expression profiling. Consistent with similar effects of the two drugs, the gene expression profiles indicated that responses of the bacteria to these drugs were roughly the same, with 225 genes affected commonly. Of them, 88 were induced and 137 were repressed. Real-time PCR was performed for selected genes to verify the microarray results. Analysis of the expression data revealed that more than 30% of the plasmid-encoded genes on the array were up-regulated by the antibiotics including virF regulon, other virulence-related genes, and genes responsible for plasmid replication, maintenance, and transfer. In addition, some chromosome-encoded genes involved in virulence and genes acquired from horizontal transfer were also significantly up-regulated. However, the expression of genes encoding the beta-subunit of RNA polymerase was increased moderately. The repressed genes include those that code for products associated with the ribosome, citrate cycle, glycolysis, thiamine biosynthesis, purine metabolism, fructose metabolism, mannose metabolism, and cold shock proteins. This study demonstrates that the two antibiotics induce rapid cessation of RNA synthesis resulting in inhibition of translation components. It also indicates that the production of virulence factors involved in intercellular dissemination, tissue invasion and inflammatory destruction may be enhanced through derepressing horizontal transfer genes by the drugs.

  17. Interspecific gene flow and maintenance of species integrity in oaks

    Directory of Open Access Journals (Sweden)

    Oliver Gailing

    2014-07-01

    Full Text Available Oak species show a wide variation in morphological and physiological characters, and species boundaries between closely related species are often not clear-cut. Still, despite frequent interspecific gene flow, oaks maintain distinct morphological and physiological adaptations. In sympatric stands, spatial distribution of species with different ecological requirements is not random but constrained by soil and other microenvironmental factors. Pre-zygotic isolation (e.g. cross incompatibilities, asynchrony in flowering, pollen competition and post-zygotic isolation (divergent selection contribute to the maintenance of species integrity in sympatric oak stands. The antagonistic effects of interspecific gene flow and divergent selection are reflected in the low genetic differentiation between hybridizing oak species at most genomic regions interspersed by regions with signatures of divergent selection (outlier regions. In the near future, the availability of high-density genetic linkage maps anchored to scaffolds of a sequenced Q. robur genome will allow to characterize the underlying genes in these outlier regions and their putative role in reproductive isolation between species. Reciprocal transplant experiments of seedlings between parental environments can be used to characterize selection on outlier genes. High transferability of gene-based markers will enable comparative outlier screens in different oak species.

  18. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.

    Science.gov (United States)

    Llop, Pablo; Barbé, Silvia; López, María M

    The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees ( E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae , which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.

  19. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...

  20. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...... in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H. influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions....

  1. Multiplex PCR Study of Plasmid-Mediated AmpC Beta-Lactamases Genes in Clinical Isolates of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maryam Dehghani

    2017-02-01

    Full Text Available Background:   AmpC β-lactamases are important cephalosporinases chromosomally encoded in many of Enterobacteriaceae and a few other organisms where they mediate resistance to cephalothin, cefazolin, cefoxitin and penicillins. The six different families of plasmid-mediated AmpC β-lactamases have been described, but no phenotypic test can discriminate among them. AmpC multiplex PCR has been successfully used to discriminate plasmid-mediated ampC specific families in organisms such as Klebsiella pneumonia and Escherichia coli. The aim of this study was to indicate the prevalence of AmpC β-lactamase genes by specifically designed primers through PCR test.Methods:   243 total clinical urine samples were collected, and 227 isolates were identified as Escherichia coli based on standard biochemical tests. Subsequently, the isolates were screened by disc diffusion and combined disc test for β-lactamase production. Resistant isolates were evaluated by PCR for ampC family determination. Results:  Antibiotic resistance pattern were observed as follows: cefepime (%25, ceftazidime (%31, ceftriaxone (%37, cefotaxime (%38. The ratio of isolates was detected as ESBLs and AmpC producers were 34% and 5.2%, respectively. PCR performed on 12 selected isolates via phenotypic tests and the results revealed that among 12 isolates, 11 contained blaCMY-42. Conclusion:  Unfortunately, antibiotic resistance has become an increasingly critical problem in many countries like Iran and occurrence of isolates co-expressing AmpC-β-lactamases and ESBLs can create serious problems in the future. As antibiotic options in the treatment of AmpC β-lactamases and ESBLs producing organisms are extremely limited, molecular screening by laboratories is suggested to reduce the risk of therapeutic defeat.

  2. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  3. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  4. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  5. Construction of Biologically Functional Bacterial Plasmids In Vitro

    Science.gov (United States)

    Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.

    1973-01-01

    The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039

  6. Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis.

    Directory of Open Access Journals (Sweden)

    Gaël Erauso

    Full Text Available The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600(T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum. pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae.

  7. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants. In addi...... adaptation to metal stress did not significantly increase the permissiveness of the soil bacterial community towards conjugal plasmid transfer........ In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  8. Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

    Science.gov (United States)

    Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P . claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005

  9. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus.

    Science.gov (United States)

    Kupferwasser, L I; Skurray, R A; Brown, M H; Firth, N; Yeaman, M R; Bayer, A S

    1999-10-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing the qacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in the qacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance gene qacA also mediates in vitro resistance to cationic tPMP-1.

  10. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    International Nuclear Information System (INIS)

    Burr, T.J.; Norelli, J.L.; Katz, B.H.; Bishop, A.L.

    1990-01-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two 32 P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizations were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10 6 CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains

  11. Prevalence of plasmid-bearing and plasmid-free Chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia.

    Science.gov (United States)

    Yeow, Tee Cian; Wong, Won Fen; Sabet, Negar Shafiei; Sulaiman, Sofiah; Shahhosseini, Fatemeh; Tan, Grace Min Yi; Movahed, Elaheh; Looi, Chung Yeng; Shankar, Esaki M; Gupta, Rishien; Arulanandam, Bernard P; Hassan, Jamiyah; Abu Bakar, Sazaly

    2016-03-18

    The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis-infected patients. A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27-35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1% (92/180). Of the 92 chlamydia-infected patients, 93.5% (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5% (6/92) were caused by the plasmid-free (-) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (-) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (-) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.

  12. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China.

    Science.gov (United States)

    Wang, Yang; Zhang, Wanjiang; Wang, Juan; Wu, Congming; Shen, Zhangqi; Fu, Xiao; Yan, Yang; Zhang, Qijing; Schwarz, Stefan; Shen, Jianzhong

    2012-03-01

    A total of 149 porcine Staphylococcus isolates with florfenicol MICs of ≥ 16 μg/ml were screened for the presence of the multiresistance gene cfr, its location on plasmids, and its genetic environment. In total, 125 isolates carried either cfr (16 isolates), fexA (92 isolates), or both genes (17 isolates). The 33 cfr-carrying staphylococci, which included isolates of the species Staphylococcus cohnii, S. arlettae, and S. saprophyticus in which the cfr gene has not been described before, exhibited a wide variety of SmaI pulsed-field gel electrophoresis patterns. In 18 cases, the cfr gene was located on plasmids. Four different types of cfr-carrying plasmids--pSS-01 (n = 2; 40 kb), pSS-02 (n = 3; 35.4 kb), pSS-03 (n = 10; 7.1 kb), and pBS-01 (n = 3; 16.4 kb)--were differentiated on the basis of their sizes, restriction patterns, and additional resistance genes. Sequence analysis revealed that in plasmid pSS-01, the cfr gene was flanked in the upstream part by a complete aacA-aphD-carrying Tn4001-like transposon and in the downstream part by a complete fexA-carrying transposon Tn558. In plasmid pSS-02, an insertion sequence IS21-558 and the cfr gene were integrated into transposon Tn558 and thereby truncated the tnpA and tnpB genes. The smallest cfr-carrying plasmid pSS-03 carried the macrolide-lincosamide-streptogramin B resistance gene erm(C). Plasmid pBS-01, previously described in Bacillus spp., harbored a Tn917-like transposon, including the macrolide-lincosamide-streptogramin B resistance gene erm(B) in the cfr downstream region. Plasmids, which in part carry additional resistance genes, seem to play an important role in the dissemination of the gene cfr among porcine staphylococci.

  13. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Cho, Jae Sung; Cho, In Jin

    2018-01-01

    Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable...... plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest....

  14. Limited Dissemination of Extended-Spectrum β-Lactamase- and Plasmid-Encoded AmpC-Producing Escherichia coli from Food and Farm Animals, Sweden.

    Science.gov (United States)

    Börjesson, Stefan; Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-04-01

    Extended-spectrum β-lactamase (ESBL)- and plasmid-encoded ampC (pAmpC)-producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans.

  15. New plasmid-mediated aminoglycoside 6'-N-acetyltransferase, AAC(6')-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate.

    Science.gov (United States)

    Jin, Wanchun; Wachino, Jun-Ichi; Kimura, Kouji; Yamada, Keiko; Arakawa, Yoshichika

    2015-05-01

    Enterobacteriaceae clinical isolates showing amikacin resistance (MIC 64 to >256 mg/L) in the absence of 16S rRNA methyltransferase (MTase) genes were found. The aim of this study was to clarify the molecular mechanisms underlying amikacin resistance in Enterobacteriaceae clinical isolates that do not produce 16S rRNA MTases. PCR was performed to detect already-known amikacin resistance determinants. Cloning experiments and sequence analyses were performed to characterize unknown amikacin resistance determinants. Transfer of amikacin resistance determinants was performed by conjugation and transformation. The complete nucleotide sequence of the plasmids was determined by next-generation sequencing technology. Amikacin resistance enzymes were purified with a column chromatography system. The enzymatic function of the purified protein was investigated by thin-layer chromatography (TLC) and HPLC. Among the 14 isolates, 9 were found to carry already-known amikacin resistance determinants such as aac(6')-Ia and aac(6')-Ib. Genetic analyses revealed the presence of a new amikacin acetyltransferase gene, named aac(6')-Ian, located on a 169 829 bp transferable plasmid (p11663) of the Serratia marcescens strain NUBL-11663, one of the five strains negative for known aac(6') genes by PCR. Plasmid p11663 also carried a novel ESBL gene, named blaTLA-3. HPLC and TLC analyses demonstrated that AAC(6')-Ian catalysed the transfer of an acetyl group from acetyl coenzyme A onto an amine at the 6'-position of various aminoglycosides. We identified aac(6')-Ian as a novel amikacin resistance determinant together with a new ESBL gene, blaTLA-3, on a transferable plasmid of a S. marcescens clinical isolate. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs).

    Science.gov (United States)

    Hon, Shuen; Lanahan, Anthony A; Tian, Liang; Giannone, Richard J; Hettich, Robert L; Olson, Daniel G; Lynd, Lee R

    2016-12-01

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE . To explore the effects of overexpressing wild-type, mutant, and exogenous adhE s, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum . As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.

  17. Plasmid fermentation process for DNA immunization applications.

    Science.gov (United States)

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  18. Comparative genomics of the pIPO2/pSB102 family of environmental plasmids : sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331

    NARCIS (Netherlands)

    Mela, Francesca; Fritsche, Kathrin; Boersma, Hidde; van Elsas, Jan D.; Bartels, Daniela; Meyer, Folker; de Boer, Wietse; van Veen, Johannes A.; Leveau, Johan H. J.

    2008-01-01

    Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We

  19. Formation of Escherichia coli Hfr strains by integrative suppression with the P group plasmid RP1.

    OpenAIRE

    Martin, R R; Thorlton, C L; Unger, L

    1981-01-01

    Hfr strains of Escherichia coli were obtained by integrative suppression of a dnaA(Ts) mutation by the Inc P-1 plasmid RP1 without prior creation of an unnatural homology between the plasmid and the E. coli chromosome. Unmodified RP1 mobilized the polarized transfer of the chromosome in a counterclock-wise direction from a distinct origin between 81 min (pyrE) and 82 min (dnaA) with pyrE as a leading marker. Inheritance of RP1-Hfr chromosomal and antibiotic resistance genes was due to recombi...

  20. Antimicrobial susceptibility pattern and plasmid-mediated ...

    African Journals Online (AJOL)

    negative Staphylococci (CoNS) were isolated from clinical samples and isolates subjected to antibiotic susceptibility testing, plasmid curing and plasmid DNA isolation. Result: The highest percentages isolates were recovered from urine samples and ...

  1. F14:A-:B- and IncX4 Inc group cfr-positive plasmids circulating in Escherichia coli of animal origin in Northeast China.

    Science.gov (United States)

    Wang, Xiumei; Zhu, Yao; Hua, Xin; Chen, Fuguang; Wang, Changzhen; Zhang, Yanhe; Liu, Siguo; Zhang, Wanjiang

    2018-04-01

    The objective of this study was to investigate the prevalence of the cfr gene in Escherichia coli isolates from domestic animals in Northeast China and to characterize the cfr-containing plasmids. Between June 2015 and April 2016, 370 E. coli isolates were collected from pigs, chickens, and dairy cows in Northeast China. Among these, 111 were florfenicol resistant, including 109 isolates carrying the floR gene and 6 positives for cfr. The prevalence of cfr in E. coli isolates from the four northeast provinces in China was 1.6% (6/370), which was higher than that previously reported (0.08% and 0.5%). All six cfr-containing E. coli isolates were highly resistant to florfenicol (100%), cefotaxime (100%), and fosfomycin (100%). Complete sequence analysis of two cfr-carrying plasmids revealed high homology of the IncX4-type pEC14cfr plasmid with two other cfr-harboring plasmids, pSD11 and pGXEC6, found in swine E. coli isolates from southern China. pEC14cfr-like plasmids have been isolated in five provinces in southern and northern China. The isolation sites were up to 2700 kilometers apart, implying that pEC14cfr-like plasmids are likely to be national epidemic cfr-carrying plasmids that mediate the dissemination of cfr in China. Moreover, the genetic structure (IS26-IS26-cfr-rec-pre/mob-ramA-IS26) of the second cfr-carrying plasmid, IncF14:A-:B- pEC295cfr, represents a novel genetic environment for cfr identified for the first time in the present study. Sequence homology analysis indicated that the cfr-carrying element was most likely introduced into a cfr-negative pEC12 plasmid backbone, which evolved into the cfr-carrying vector, pEC295cfr. Moreover, isolation of the IncF14:A-:B- pEC295cfr plasmid harboring cfr suggests that IncFII plasmids maybe have become additional effective vehicles for cfr dissemination. These results highlight the importance of surveying the prevalence of IncX4 and IncFII plasmids in gram-negative bacteria, especially in swine E. coli

  2. Construction and confirmation of the plasmid of human mitochondrial DNA 4977 bp deletion induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Xiaosui; Zhou Lijun; Wang Yuxiao; Qu Jia; Feng Jiangbing; Lu Xue; Chen Deqing; Liu Qingjie

    2006-01-01

    Objective: To construct a stable plasmid that spanning deleted human mitochondrial DNA (mtDNA) 4977 bp induced by ionizing radiation and another one for control DNA fragment, in order to use in the human mitochondrial genome study in the future. Methods: The peripheral blood, which had no mtDNA 4977 bp deletion found in previous study, was exposed to 10 Gy 60 Co γ-rays in vitro. The total cell DNA was extracted and PCR was carried out: a nest-PCR of three-round PCR was used for the mtDNA 4977 bp deletion and one- round regular PCR was used for the control ND1 gene. The PCR products were used for transfection by electroporation and the positive clones were obtained after screening. The plasmid DNA was isolated and sequenced after enzymatic digestion and purification. The sequence result was BLASTed with the human mitochondrial genome. Results: The sizes of PCR products for the flanked 4977 bp deletion and the ND1 gene were similar with those predicted according to GeneBank. The sequences for the positive clones were above 99 per cent homologous with the human mitochondrial genome after BLASTed. Conclusion: The plasmids for deleted human mtDNA 4977 bp and control DNA fragment have been constructed successfully, and they could be used in the quality and quantity studies on human mtDNA 4977 bp deletion. (authors)

  3. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

    OpenAIRE

    Burbank, Lindsey P.; Van Horn, Christopher R.

    2017-01-01

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are foun...

  4. Acquisition through Horizontal Gene Transfer of Plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 Points towards the Dairy Origin of the Species

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Maistrou, Eleni; Plakas, Thomas; Papandreou, Nikos C.; Hamodrakas, Stavros J.; Ferreira, Stéphanie; Supply, Philip; Renault, Pierre; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Background Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex. Methodology/Principal Findings We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland) showing that pSMA198’s acquisition is not a recent event. Conclusions/Significance Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species. PMID:25584532

  5. glucuronidase gene in indica and japonica rice (Oryza sativa L.)

    African Journals Online (AJOL)

    Plasmid pUCGUS containing the uidA gene encoding β- lucuronidase was used to optimize transformation conditions using various combinations of helium pressure, target distance and gap distance. Plasmid pHX4 carrying hygromycin phosphotransferase (hph) gene and pUCGUS was used for co bombardment.

  6. Intrathecal injection of naked plasmid DNA provides long-term expression of secreted proteins.

    Science.gov (United States)

    Hughes, Travis S; Langer, Stephen J; Johnson, Kirk W; Chavez, Raymond A; Watkins, Linda R; Milligan, Erin D; Leinwand, Leslie A

    2009-01-01

    Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.

  7. Novel Ambler class A beta-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1.

    Science.gov (United States)

    Poirel, Laurent; Cattoir, Vincent; Soares, Ana; Soussy, Claude-James; Nordmann, Patrice

    2007-02-01

    The plasmid-mediated quinolone resistance determinant QnrS1 was identified in non-clonally related Enterobacter cloacae isolates in association with a transferable narrow-spectrum beta-lactam resistance marker. Cloning experiments allowed the identification of a novel Ambler class A beta-lactamase, named LAP-1. It shares 62 and 61% amino acid identity with the most closely related beta-lactamases, TEM-1 and SHV-1, respectively. It has a narrow-spectrum hydrolysis of beta-lactams and is strongly inhibited by clavulanic acid and sulbactam and, to a lesser extent, by tazobactam. Association of the blaLAP-1 gene with the qnrS1 gene was identified in E. cloacae isolates from France and Vietnam. These genes were plasmid located and associated with similar insertion sequences but were not associated with sul1-type class 1 integrons, as opposed to the qnrA genes.

  8. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  9. Characterization of Virulence Plasmids and Serotyping of Rhodococcus equi Isolates from Submaxillary Lymph Nodes of Pigs in Hungary

    OpenAIRE

    Makrai, László; Takayama, Saki; Dénes, Béla; Hajtós, István; Sasaki, Yukako; Kakuda, Tsutomu; Tsubaki, Shiro; Major, Andrea; Fodor, László; Varga, János; Takai, Shinji

    2005-01-01

    The plasmid types and serotypes of 164 Rhodococcus equi strains obtained from submaxillary lymph nodes of swine from different piggeries in 28 villages and towns located throughout the country were examined. The strains were tested by PCR for the presence of 15- to 17-kDa virulence-associated protein antigen (VapA) and 20-kDa virulence-associated protein antigen (VapB) genes. Plasmid DNAs were isolated and analyzed by digestion with restriction endonucleases to estimate size and compare their...

  10. Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal.

    Science.gov (United States)

    Martini, María Carla; Albicoro, Francisco Javier; Nour, Eman; Schlüter, Andreas; van Elsas, Jan Dirk; Springael, Dirk; Smalla, Kornelia; Pistorio, Mariano; Lagares, Antonio; Del Papa, María Florencia

    2015-07-01

    Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae.

    LENUS (Irish Health Repository)

    Walsh, Fiona

    2010-06-01

    A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously.

  12. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.

    Science.gov (United States)

    Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M

    2018-02-13

    Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis To examine the role of pheromone signaling in vivo , we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF- recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF- recipient. While rescue of the CF- mating defect by coculture with CF+ recipients is easily accomplished in vitro , no extracellular complementation occurred in vivo This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo In the absence of CF+ recipients, a low level of transfer to CF- recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis , an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did

  13. Multilocus sequence typing of IncN plasmids

    DEFF Research Database (Denmark)

    García-Fernández, Aurora; Villa, Laura; Moodley, Arshnee

    2011-01-01

    that spread and persistence of this particular IncN-carrying blaVIM-1 lineage in Greece. CONCLUSIONS: This study proposes the use of pMLST as a suitable and rapid method for identification of IncN epidemic plasmid lineages. The recent spread of blaCTX-M-1 among humans and animals seems to be associated......OBJECTIVES: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid...... in different countries from both animals and humans belonged to ST1, suggesting dissemination of an epidemic plasmid through the food chain. Fifteen of 17 plasmids carrying blaVIM-1 from Klebsiella pneumoniae and Escherichia coli, isolated during a 5year period in Greece were assigned to ST10, suggesting...

  14. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    Science.gov (United States)

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  15. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Shirley Lam

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection. METHODS: Plasmid-based small hairpin RNA (shRNA was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection. RESULTS: Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1. CONCLUSION: Taken together, these

  16. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    OpenAIRE

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and s...

  17. Characterization of a novel plasmid type and various genetic contexts of bla OXA-58 in Acinetobacter spp. from multiple cities in China.

    Directory of Open Access Journals (Sweden)

    Yiqi Fu

    Full Text Available BACKGROUND/OBJECTIVE: Several studies have described the epidemiological distribution of blaOXA-58-harboring Acinetobacter baumannii in China. However, there is limited data concerning the replicon types of blaOXA-58-carrying plasmids and the genetic context surrounding blaOXA-58 in Acinetobacter spp. in China. METHODOLOGY/PRINCIPAL FINDINGS: Twelve non-duplicated blaOXA-58-harboring Acinetobacter spp. isolates were collected from six hospitals in five different cities between 2005 and 2010. The molecular epidemiology of the isolates was carried out using PFGE and multilocus sequence typing. Carbapenemase-encoding genes and plasmid replicase genes were identified by PCR. The genetic location of blaOXA-58 was analyzed using S1-nuclease method. Plasmid conjugation and electrotransformation were performed to evaluate the transferability of blaOXA-58-harboring plasmids. The genetic structure surrounding blaOXA-58 was determined by cloning experiments. The twelve isolates included two Acinetobacter pittii isolates (belong to one pulsotype, three Acinetobacter nosocomialis isolates (belong to two pulsotypes and seven Acinetobacter baumannii isolates (belong to two pulsotypes/sequence types. A. baumannii ST91 was found to be a potential multidrug resistant risk clone carrying both blaOXA-58 and blaOXA-23. blaOXA-58 located on plasmids varied from ca. 52 kb to ca. 143 kb. All plasmids can be electrotransformed to A. baumannii recipient, but were untypeable by the current replicon typing scheme. A novel plasmid replicase named repAci10 was identified in blaOXA-58-harboring plasmids of two A. pittii isolates, three A. nosocomialis isolates and two A. baumannii isolates. Four kinds of genetic contexts of blaOXA-58 were identified. The transformants of plasmids with structure of IS6 family insertion sequence (ISOur1, IS1008 or IS15-ΔISAba3-like element-blaOXA-58 displayed carbapenem nonsusceptible, while others with structure of intact ISAba3-like element

  18. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  19. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  20. Interactions between the cytomegalovirus promoter and the estrogen response element: implications for design of estrogen-responsive reporter plasmids.

    Science.gov (United States)

    Derecka, K; Wang, C K; Flint, A P F

    2006-07-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)ERE) was not estrogen responsive. Inhibition of ERE function was not due to an effect in trans or due to lack of estrogen receptor. It was not due to an interaction between the cmv promoter and the SeAP gene. cmv promoter function was dependent on NF-kappaB, and mutagenesis in the NF-kappaB sites reduced basal reporter expression without imparting responsiveness to estrogen. A mutation in the TATA box also failed to impart estrogen responsiveness. Modeling of DNA accessibility indicated the ERE was inserted at a site accessible to transcription factors. We conclude that the cmv promoter inhibits ERE function in cis when the two sequences are located in the same construct, and that this effect does not involve an interaction between cmv and reporter gene, NF-kappaB sites or the TATA box, or DNA inaccessibility.

  1. F-127-PEI co-delivering docetaxel and TFPI-2 plasmid for nasopharyngeal cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao, E-mail: taoliu18@126.com [Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Zhang, Xinyu [Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Ke, Bo [Jiangxi Key Laboratory of Hematological Oncology and Cell Biology, Jiangxi Provincial People' s Hospital, Nanchang 330006 (China); Wang, Yigang [School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wu, Xidong [Department of Pharmacology, Jiangxi Institute of Materia Medica,Nanchang 330029 (China); Jiang, Gang [Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Wu, Ting [Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041 (China); Nie, Guohui, E-mail: nghui@21cn.com [Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen 518036 (China)

    2016-04-01

    The co-delivery of drug and gene has become the primary strategy in cancer therapy. However, to construct one safe co-delivering system with higher drug loading and gene transfection efficiency for cancer therapy is still challenging. Herein, a novel degradable nanocarriers were synthesized and characterized in this study, which was composed of polyethylenimine (PEI)-linked PEO–PPO–PEO (Pluronic F127), called F127-PEI. Then the nanocarrier was used for hydrophobic docetaxel (DOC) and functional gene (TFPI-2 plasmid) co-delivery to treat nasopharyngeal cancer (NPC). The results indicated that F127-PEI nanocarriers had higher DOC loading amount and possessed good gene delivery effect in vitro. For co-delivery analysis, the obtained F127-PEI/DOC/TFPI-2 complexes could induce a more significant apoptosis than DOC or TFPI-2 alone, and decreased invasive capacity of NPC HNE-1 cells more obviously. Moreover, the F127-PEI copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k by the hemolysis and MTT assays, which suggests a promising potential for NPC therapy. - Highlights: • F127-PEI was synthesized and used for drug and gene co-delivery. • F127-PEI showed good delivery ability to docetaxel and TFPI-2 plasmid. • The co-loaded complexes showed synergistic effect to nasopharyngeal carcinoma. • F127-PEI showed better blood safety and lower cytotoxicity compared to PEI-25k.

  2. F-127-PEI co-delivering docetaxel and TFPI-2 plasmid for nasopharyngeal cancer therapy

    International Nuclear Information System (INIS)

    Liu, Tao; Zhang, Xinyu; Ke, Bo; Wang, Yigang; Wu, Xidong; Jiang, Gang; Wu, Ting; Nie, Guohui

    2016-01-01

    The co-delivery of drug and gene has become the primary strategy in cancer therapy. However, to construct one safe co-delivering system with higher drug loading and gene transfection efficiency for cancer therapy is still challenging. Herein, a novel degradable nanocarriers were synthesized and characterized in this study, which was composed of polyethylenimine (PEI)-linked PEO–PPO–PEO (Pluronic F127), called F127-PEI. Then the nanocarrier was used for hydrophobic docetaxel (DOC) and functional gene (TFPI-2 plasmid) co-delivery to treat nasopharyngeal cancer (NPC). The results indicated that F127-PEI nanocarriers had higher DOC loading amount and possessed good gene delivery effect in vitro. For co-delivery analysis, the obtained F127-PEI/DOC/TFPI-2 complexes could induce a more significant apoptosis than DOC or TFPI-2 alone, and decreased invasive capacity of NPC HNE-1 cells more obviously. Moreover, the F127-PEI copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k by the hemolysis and MTT assays, which suggests a promising potential for NPC therapy. - Highlights: • F127-PEI was synthesized and used for drug and gene co-delivery. • F127-PEI showed good delivery ability to docetaxel and TFPI-2 plasmid. • The co-loaded complexes showed synergistic effect to nasopharyngeal carcinoma. • F127-PEI showed better blood safety and lower cytotoxicity compared to PEI-25k

  3. Plasmids of Raw Milk Cheese Isolate Lactococcus lactis subsp. lactis Biovar diacetylactis DPC3901 Suggest a Plant-Based Origin for the Strain ▿ †

    Science.gov (United States)

    Fallico, Vincenzo; McAuliffe, Olivia; Fitzgerald, Gerald F.; Ross, R. Paul

    2011-01-01

    The four-plasmid complement of the raw milk cheese isolate Lactococcus lactis subsp. lactis biovar diacetylactis DPC3901 was sequenced, and some genetic features were functionally analyzed. The complete sequences of pVF18 (18,977 bp), pVF21 (21,739 bp), pVF22 (22,166 bp), and pVF50 (53,876 bp) were obtained. Each plasmid contained genes not previously described for Lactococcus, in addition to genes associated with plant-derived lactococcal strains. Most of the novel genes were found on pVF18 and encoded functions typical of bacteria associated with plants, such as activities of plant cell wall modification (orf11 and orf25). In addition, a predicted high-affinity regulated system for the uptake of cobalt was identified (orf19 to orf21 [orf19-21]), which has a single database homolog on a plant-derived Leuconostoc plasmid and whose functionality was demonstrated following curing of pVF18. pVF21 and pVF22 encode additional metal transporters, which, along with orf19-21 of pVF18, could enhance host ability to uptake growth-limiting amounts of biologically essential ions within the soil. In addition, vast regions from pVF50 and pVF21 share significant homology with the plant-derived lactococcal plasmid pGdh442, which is indicative of extensive horizontal gene transfer and recombination between these plasmids and suggests a common plant niche for their hosts. Phenotypes associated with these regions include glutamate dehydrogenase activity and Na+ and K+ transport. The presence of numerous plant-associated markers in L. lactis DPC3901 suggests a plant origin for the raw milk cheese isolate and provides for the first time the genetic basis to support the concept of the plant-milk transition for Lactococcus strains. PMID:21803914

  4. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment

    DEFF Research Database (Denmark)

    Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.; Porse, Andreas

    2017-01-01

    lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness......The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high...... infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant...

  5. Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in 'Escherichia coli' K-12

    International Nuclear Information System (INIS)

    Walker, G.C.

    1977-01-01

    The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultaviolet irradiation, and reactivation of ultraviolet-irradiated lambda in unirradiated cells. All these effects are shown to be dependent on the recA + lexA + genotype but not on the recB + recC + or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42 0 . The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated lambda in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components. (orig.) [de

  6. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    Science.gov (United States)

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia

    Directory of Open Access Journals (Sweden)

    C.B. Sacramento

    2010-08-01

    Full Text Available The main objective of the present study was to find suitable DNA-targeting sequences (DTS for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS and hypoxia-responsive element (HRE sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF. The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2 and hypoxia (less than 5% O2 were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  8. Transposon characterization of vancomycin-resistant Enterococcus faecium (VREF) and dissemination of resistance associated with transferable plasmids

    DEFF Research Database (Denmark)

    Migura, Lourdes Garcia; Liebana, Ernesto; Jensen, Lars Bogø

    2007-01-01

    Objectives: VanA glycopeptide resistance has persisted on broiler farms in the UK despite the absence of the antimicrobial selective pressure, avoparcin. This study aimed to investigate the contribution of horizontal gene transfer of Tn 1546 versus clonal spread in the dissemination of the resist......Objectives: VanA glycopeptide resistance has persisted on broiler farms in the UK despite the absence of the antimicrobial selective pressure, avoparcin. This study aimed to investigate the contribution of horizontal gene transfer of Tn 1546 versus clonal spread in the dissemination...... plasmid replicons, associated with antimicrobial resistance on several unrelated farms. Conclusions: Horizontal transfer of vancomycin resistance may play a more important role in the persistence of antimicrobial resistance than clonal spread. The presence of different plasmid replicons, associated...... with antimicrobial resistance on several unrelated farms, illustrates the ability of these enterococci to acquire and disseminate mobile genetic elements within integrated livestock systems....

  9. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa.

    Science.gov (United States)

    Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C

    2010-12-01

    Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.

  10. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina

    Directory of Open Access Journals (Sweden)

    Giovanna Rincon Cruz

    2013-11-01

    Full Text Available High quinolone resistance rates were observed among oxyiminocephalosporin-resistant enterobacteria. In the present study, we searched for the prevalence of plasmid-mediated quinolone resistance (PMQR genes within the 55 oxyiminocephalosporin-resistant enterobacteria collected in a previous survey. The main PMQR determinants were aac(6'-Ib-cr and qnrB, which had prevalence rates of 42.4% and 33.3%, respectively. The aac(6'-Ib-cr gene was more frequently found in CTX-M-15-producing isolates, while qnrB was homogeneously distributed among all CTX-M producers.

  11. Absence of YbeY RNase compromises the growth and enhances the virulence plasmid gene expression of Yersinia enterocolitica O:3.

    Science.gov (United States)

    Leskinen, Katarzyna; Varjosalo, Markku; Skurnik, Mikael

    2015-02-01

    YbeY was recently recognized as an endoribonuclease playing a role in ribosome biosynthesis. In Escherichia coli it functions as a single-strand-specific RNase that processes the 3' end of the 16S rRNA and is crucial for the late-stage 70S ribosome quality control system. Here we report that YbeY is not essential in Yersinia enterocolitica serotype O:3, yet its absence strongly compromised the bacterium. The lack of YbeY resulted in misprocessing of 16S rRNA and a severe decrease of growth rate with complete growth arrest observed at elevated temperatures. Moreover, a ybeY mutation severely disturbed regulation of the Yersinia virulence plasmid (pYV) genes and affected the expression of regulatory small RNA species. Transcription of the pYV genes was upregulated in the ybeY mutant at 22 °C; the same genes were repressed in the wild-type bacterium. Furthermore, ybeY inactivation impaired many virulence-related features, such as resistance to elevated temperature and acid, and hindered utilization of different carbohydrates. In addition, the ybeY mutant strain showed decreased infectivity in a tissue culture infection model, especially at the stage of cell adhesion. Taken together, this study demonstrates the crucial role of YbeY in Y. enterocolitica O:3 physiology and pathogenicity. © 2015 The Authors.

  12. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  13. Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress.

    Directory of Open Access Journals (Sweden)

    Birson Ingti, Deepjyoti Paul, Anand Prakash Maurya

    2017-06-01

    Full Text Available Objectives: Organisms harboring multiple plasmid mediated β-lactamases are major concerns in nosocomial infections. Among these plasmid mediated β-lactamases, ACT (EBC family is a clinically important enzyme capable of hydrolyzing broad spectrum cephalosporins. Therefore, the present study was undertaken to determine the prevalence of ACT determinant along with other co-existing β-lactamase genes in P. aeruginosa strains. Methods: A total of 176 Pseudomonas isolates were phenotypically screened for the presence of AmpC β-lactamase by M3DET Method followed by Molecular detection using PCR assay. Transcriptional evaluation of blaACT-2 gene was analyzed by RT-PCR and its transferability was performed by transformation and conjugation. Results: Present study demonstrates the presence of ACT-2 allele among 12 strains of P. aeruginosa. Co-existence of other β-lactamase genes were encountered among ACT-2 harboring strains which includes CTX-M (n=2, SHV (n=3, TEM (n=2, VEB (n=2, OXA-10 (n=1, CIT (n=2 and DHA (n=3. Fingerprinting by REP PCR revealed the isolates harboring ACT-2 to be distinct and these isolates showed high resistance to expanded-spectrum cephalosporins and even to carbapenem group of drugs. This ACT-2 allele was encoded in the plasmid (L/M, FIA, FIB Inc. Group and conjugatively transferable. Transcriptional analysis revealed a significant increase in ACT-2 expression (483 fold when induced by ceftriaxone at 4 µg/ml followed by ceftazidime at 8 µg/ml (31 fold and cefotaxime 4 µg/ml (8 fold. Conclusion: In this study detection of ACT-2 plasmid mediated AmpC β-lactamase along with other β-lactamase genes in clinical isolates of P. aeruginosa represents a serious therapeutic challenge. Therefore, revision in antimicrobial policy is required for effective treatment of patients infected with pathogen expressing this mechanism. J Microbiol Infect Dis 2017; 7(2: 75-82

  14. The Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments.

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okamura, Masashi; Dong-Liang, Hu; Tamura, Yutaka

    2018-04-30

    Flies play an important role as vectors in the transmission of antimicrobial-resistant bacteria (ARB) and are hypothesized to transfer ARB between internal and external livestock housing areas. The aim of this study was to understand the role that flies may play in the maintenance of ARB in the farm environment. We first evaluated the fate of ingested antimicrobial-resistant Escherichia coli harboring a plasmid containing antimicrobial-resistance genes (ARGs) throughout the housefly (Musca domestica) life cycle, from adult to the subsequent F1 generation. Antimicrobial-resistant E. coli was isolated from different life cycle stages and ARG carriage quantified. The ingested E. coli persisted throughout the fly life cycle, and ARG carriage was maintained at a constant level in the housefly microbiota. To clarify the transmission of ARB from flies to livestock, 30-day-old chickens were inoculated with maggots containing antimicrobial-resistant E. coli. Based on the quantification of bacteria isolated from cecal samples, antimicrobial-resistant E. coli persisted in these chickens for at least 16 days. These results suggest that flies act as a reservoir of ARB throughout their life cycle and may therefore be involved in the maintenance and circulation of ARB in the farm environment.

  15. An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents

    OpenAIRE

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-01-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here...

  16. Gene therapy for patients with advanced solid tumors

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Dahlstroem, Karin; Laessoee, Line

    2017-01-01

    -computed tomography (PET-CT) scans. RESULTS: Seven patients were enrolled and treated at dose levels from 50 to 250 μg of plasmid AMEP, the study was terminated early due to cessation of plasmid production. Minimal systemic toxicity was observed and only transient mild pain was associated with the delivery......BACKGROUND: Gene electrotrotransfer describes the use of electric pulses to transfer DNA to cells. Particularly skeletal muscle has potential for systemic secretion of therapeutic proteins. Gene electrotransfer to muscle using the integrin inhibitor plasmid AMEP (Antiangiogenic MEtargidin Peptide...... of the electric pulses. MRI of the treated muscles revealed discrete intramuscular edema 24 h after treatment. The changes in the muscle tissue resolved within 2 weeks after treatment. Peak concentrations of plasmid AMEP was detected only in plasma within the first 24 hours after injection. Protein AMEP could...

  17. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans

    NARCIS (Netherlands)

    Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik

    The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum

  18. Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laing, E; Pretorius, I S

    1993-05-01

    A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1s). A pectinase cassette comprising ADC1P-MF alpha 1s-pelE-TRP5T and ADC1P-MF alpha 1s-peh1-TRP5T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, inserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10P) and yeast orotidine-5'-phosphate carboxylase gene terminator (URA3T), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate agarose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation.

  19. Purification and characterization of the d-xylose isomerase gene from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N W.Y.; Rosenfeld, S; Stevis, P; Tsao, G T

    1983-11-01

    A DNA fragment containing both the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene and the D-xylulokinase (ATP: D-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The D-xylose isomerase gene was separated from the D-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The D-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the D-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first D-xylose isomerase gene that has been isolated and extensively purified from any organism. D-Xylose isomerase, the enzyme product of the D-xylose isomerase gene, is responsible for the conversion of D-xylose to D-xylulose, as well as D-glucose to D-fructose. It is widely believed that yeast cannot ferment D-xylose to ethanol primarily because of the lack of D-xylose isomerase in yeast. D-Xylose isomerase (also known as D-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the D-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting D-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology. 14 references.

  20. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy.

    LENUS (Irish Health Repository)

    van Pijkeren, Jan Peter

    2012-01-31

    Bacteria-mediated transfer of plasmid DNA to mammalian cells (bactofection) has been shown to have significant potential as an approach to express heterologous proteins in various cell types. This is achieved through entry of the entire bacterium into cells, followed by release of plasmid DNA. In a murine model, we show that Listeria monocytogenes can invade and spread in tumors, and establish the use of Listeria to deliver genes to tumors in vivo. A novel approach to vector lysis and release of plasmid DNA through antibiotic administration was developed. Ampicillin administration facilitated both plasmid transfer and safety control of vector. To further improve on the gene delivery system, we selected a Listeria monocytogenes derivative that is more sensitive to ampicillin, and less pathogenic than the wild-type strain. Incorporation of a eukaryotic-transcribed lysin cassette in the plasmid further increased bacterial lysis. Successful gene delivery of firefly luciferase to growing tumors in murine models and to patient breast tumor samples ex vivo was achieved. The model described encompasses a three-phase treatment regimen, involving (1) intratumoral administration of vector followed by a period of vector spread, (2) systemic ampicillin administration to induce vector lysis and plasmid transfer, and (3) systemic administration of combined moxifloxacin and ampicillin to eliminate systemic vector. For the first time, our results reveal the potential of Listeria monocytogenes for in vivo gene delivery.

  1. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum.

    Science.gov (United States)

    Egervärn, M; Roos, S; Lindmark, H

    2009-11-01

    The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions. A tet(W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm(B) and one strain each was positive for erm(C) and erm(T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet(M) gene. The majority of the tet(W)-positive Lact. reuteri strains and all erm-positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study. Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated. These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.

  2. Dissemination of imipenem-resistant Acinetobacter baumannii with new plasmid-borne bla(OXA-72) in Taiwan.

    Science.gov (United States)

    Kuo, Shu-Chen; Yang, Su-Pen; Lee, Yi-Tzu; Chuang, Han-Chuan; Chen, Chien-Pei; Chang, Chi-Ling; Chen, Te-Li; Lu, Po-Liang; Hsueh, Po-Ren; Fung, Chang-Phone

    2013-07-13

    The systemic surveillance of imipenem-resistant Acinetobacter baumannii (IRAB) from multicenters in Taiwan revealed the emergence of isolates with bla(OXA-72). This study described their genetic makeup, mechanism of spread, and contribution to carbapenem resistance. Two hundred and ninety-one non-repetitive isolates of A. baumannii were collected from 10 teaching hospitals from different geographical regions in Taiwan from June 2007 to September 2007. Minimal inhibitory concentrations (MICs) were determined by agar dilution. Clonality was determined by pulsed-field gel electrophoresis. Plasmid was extracted and digested by restriction enzymes, and subsequently analyzed by electrophoresis and Southern blot for bla(OXA-72). The flanking regions of bla(OXA-72) were determined by inverse PCR. The contribution of bla(OXA-72) to imipenem MIC was determined by transforming plasmids carrying bla(OXA-72) into imipenem-susceptible A. baumannii. Among 142 IRAB in Taiwan, 27 harbored bla(OXA-72); 22 originated from Southern Taiwan, 5 from Central Taiwan, and none from Northern Taiwan. There were two major clones. The bla(OXA-72) was identified in the plasmids of all isolates. Two genetic structures flanking plasmid-borne bla(OXA-72) were identified and shared identical sequences in certain regions; the one described in previous literature was present in only one isolate, and the new one was present in the remaining isolates. Introduction of bla(OXA-72) resulted in an increase of imipenem MIC in the transformants. The overexpression of bla(OXA-72) mRNA in response to imipenem further supported the contribution of bla(OXA-72). In conclusion, isolates with new plasmid-borne blaOXA-72 were found to be disseminated successfully in Southern Taiwan. The spread of the resistance gene depended on clonal spread and dissemination of a new plasmid. Bla(OXA-72) in these isolates directly led to their imipenem-resistance.

  3. The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.

    Science.gov (United States)

    Harrison, Ellie; Koufopanou, V; Burt, A; MacLean, R C

    2012-11-01

    Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade-off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  4. A new mouse model for renal lesions produced by intravenous injection of diphtheria toxin A-chain expression plasmid

    Directory of Open Access Journals (Sweden)

    Nakamura Shingo

    2004-04-01

    Full Text Available Abstract Background Various animal models of renal failure have been produced and used to investigate mechanisms underlying renal disease and develop therapeutic drugs. Most methods available to produce such models appear to involve subtotal nephrectomy or intravenous administration of antibodies raised against basement membrane of glomeruli. In this study, we developed a novel method to produce mouse models of renal failure by intravenous injection of a plasmid carrying a toxic gene such as diphtheria toxin A-chain (DT-A gene. DT-A is known to kill cells by inhibiting protein synthesis. Methods An expression plasmid carrying the cytomegalovirus enhancer/chicken β-actin promoter linked to a DT-A gene was mixed with lipid (FuGENE™6 and the resulting complexes were intravenously injected into adult male B6C3F1 mice every day for up to 6 days. After final injection, the kidneys of these mice were sampled on day 4 and weeks 3 and 5. Results H-E staining of the kidney specimens sampled on day 4 revealed remarkable alterations in glomerular compartments, as exemplified by mesangial cell proliferation and formation of extensive deposits in glomerular basement membrane. At weeks 3 and 5, gradual recovery of these tissues was observed. These mice exhibited proteinuria and disease resembling sub-acute glomerulonephritis. Conclusions Repeated intravenous injections of DT-A expression plasmid DNA/lipid complex caused temporary abnormalities mainly in glomeruli of mouse kidney. The disease in these mice resembles sub-acute glomerulonephritis. These DT-A gene-incorporated mice will be useful as animal models in the fields of nephrology and regenerative medicine.

  5. Radioautographic test for genetic cotton transformation by pCaVItoxneo hybrid plasmid

    International Nuclear Information System (INIS)

    Imamkhodjaeva, A.S.

    2006-01-01

    Full text: Search for novel technologies in biology, application of up-to-date methods in gene engineering, manipulation with the recombinant DNA, in particular, open opportunities for experiments with plants. To identify some DNA fragments in an organism's genome, radioautographic methods, such as dot- and blot-hybridization are frequently used. As a rule, genomic DNA is first isolated from the plant's organ. Its purification and subsequent manipulation is followed by hybridization with a probe labeled with radioactive components. The purified DNA, cDNA of RNA reverse transcription or a DNA fragment cloned in E-coli could serve as the probe. Radioautography shows homologically hybridized fragments. We have performed express dot-hybridization analysis on hybrid plasmid transformation of G.Hirsutum L. (108F) and G. Barbadense L. (C-6037) cotton sorts. pCaVItoxneo plasmid obtained on the basis of independently replicated plasmid-like DNA of the G.Hirsutum L. (pGHm2) cotton mitochondria was used (Yusupov T., 1994). There are hybrid two-domain gene of insectotoxin and enzymatically active kanamycine - phosphotransferase in the plasmid. The whole content is controlled by the plant promoter of cauliflower mosaic virus (19 S SFMV). The plasmid in question was added to the pollen sprouting medium followed by the transfer of the suspension on the pistil stigmas of the pre-prepared cotton flowers. The seed budding as the result of the experiment were analyzed by means of dot-hybridization method. DNA probes used for radioactive hybridization were labeled by method of Fainberg and Vagelstein (1990). To perform that DNA was dissolved in Tris-EDTA (10:1), containing 10mM of Tris HCl and 1mM EDTA, denaturated at 100 d eg C for 2 minutes with subsequent addition of oligonucleotide primers and annealing. DNA synthesis in the presence of 32 P labeled dATP and dCTP (Tashkent) was performed in the reaction mixture of potassium-phosphate buffer containing 67mM of MgCl 2 , 1 mg/ml of

  6. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  7. Highly Effective Non-Viral Antitumor Gene Therapy System Comprised of Biocompatible Small Plasmid Complex Particles Consisting of pDNA, Anionic Polysaccharide, and Fully Deprotected Linear Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Koyama

    2015-07-01

    Full Text Available We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”, is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice.

  8. Characterization of Two Multidrug-Resistant IncA/C Plasmids from the 1960s by Using the MinION Sequencer Device.

    Science.gov (United States)

    Szabó, Mónika; Nagy, Tibor; Wilk, Tímea; Farkas, Tibor; Hegyi, Anna; Olasz, Ferenc; Kiss, János

    2016-11-01

    Two A/C incompatibility group (IncA/C family) plasmids from the 1960s have been sequenced and classified into the A/C 2 type 1 group. R16a and IP40a contain novel antibiotic resistance islands and a complete GIsul2 genomic island not previously found in the family. In the 173.1-kb R16a, the 29.9-kb antibiotic resistance island (ARI) is located in a unique backbone position not utilized by ARIs. ARI R16a consists of Tn1, Tn6020, and Tn6333, harboring the resistance genes bla TEM-1D and aphA1b and a mer module, respectively; a truncated Tn5393 copy; and a gene cluster with unknown function. Plasmid IP40a is 170.4 kb in size and contains a 5.6-kb ARI inserted into the kfrA gene. ARI IP40a carrying bla TEM-1D and aphA1b genes is composed of Tn1 with a Tn6023 insertion. Additionally, IP40a harbors single IS2, IS186, and Tn1000 insertions scattered in the backbone; an IS150 copy in GIsul2; and a complete Tn6333 carrying a mer module at the position of ARI R16a Loss of resistance markers in R16a, IP40a, and R55 was observed during stability tests. Every phenotypic change proved to be the result of recombination events involving mobile elements. Intramolecular transposition of IS copies that generated IP40a derivatives lacking large parts of the backbone could account for the formation of other family members, too. The MinION platform proved to be a valuable tool in bacterial genome sequencing since it generates long reads that span repetitive elements and facilitates full-length plasmid or chromosome assembly. Nanopore technology enables rapid characterization of large, low-copy-number plasmids and their rearrangement products. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Plasmid mediated enhancement of uv resistance in Streptococcus faecalis

    International Nuclear Information System (INIS)

    Miehl, R.; Miller, M.; Yasbin, R.E.

    1980-01-01

    A 38.5-Mdal plasmid of Streptococcus faecalis subdp. zymogenes has been shown to enhance survival following uv irradiation. In addition, the presence of this plasmid increases the mutation frequencies following uv irradiation and enhanced W-reactivation. The data presented indicate that S. faecalis has an inducible error-prone repair system and that the plasmid enhances these repair functions

  10. Characterization of a Staphylococcal Plasmid Related to pUB110 and Carrying Two Novel Genes, vatC and vgbB, Encoding Resistance to Streptogramins A and B and Similar Antibiotics

    OpenAIRE

    Allignet, Jeanine; Liassine, Nadia; El Solh, Névine

    1998-01-01

    We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogr...

  11. Expression of minichromosome maintenance genes in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhong HB

    2017-11-01

    Full Text Available Hongbin Zhong,1,* Bin Chen,1,* Henrique Neves,2 Jinchun Xing,1 Youxin Ye,1 Ying Lin,1 Guohong Zhuang,3 Shu-Dong Zhang,4 Jiyi Huang,1,5 Hang Fai Kwok2 1Xiang’an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People’s Republic of China; 2Faculty of Health Sciences, University of Macau, Taipa, Macau SAR; 3Medical College of Xiamen University, Xiamen, Fujian, People’s Republic of China; 4Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK; 5The First Clinical School of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China *These authors contributed equally to this work Abstract: Minichromosome maintenance (MCM proteins play an essential role in DNA replication. They have been shown to be overexpressed in various types of cancer. However, the role of this family in renal cell carcinoma (RCC is widely unknown. In this study, we have identified a number of RCC datasets in the Gene Expression Omnibus database and also investigated the correlation between the expression levels of MCM genes and clinicopathological parameters. We found that the expression levels of MCM genes are positively correlated with one another. Expression levels of MCM2, MCM5, MCM6, and MCM7, but not of MCM3 and MCM4, were higher in RCC compared to paired adjacent normal tissue. Only the expression level of MCM4, but not of other MCMs, was positively correlated with tumor grade. In addition, a high-level expression of MCM2 in either primary tumor or metastases of RCC predicted a shorter disease-free survival time, while a high-level expression of MCM4 or MCM6 in primary tumor was also associated with poorer disease-free survival. Interestingly, we also demonstrated that patients with their primary RCC overexpressing 2 or more MCM genes had a shorter disease-free survival time, while those with RCC metastases overexpressing 3 or more MCM genes had a shorter

  12. Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Mülleder

    2016-09-01

    Full Text Available Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical Saccharomyces cerevisiae laboratory strains. The 23 single-copy plasmids complement for deficiencies in HIS3, LEU2, URA3, MET17 or LYS2 genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.

  13. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    Science.gov (United States)

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Movement and equipositioning of plasmids by ParA filament disassembly

    DEFF Research Database (Denmark)

    Ringgaard, Simon; van Zon, Jeroen; Howard, Martin

    2009-01-01

    , plasmids consistently migrate behind disassembling ParA cytoskeletal structures, suggesting that ParA filaments pull plasmids by depolymerization. The perpetual cycles of ParA assembly and disassembly result in continuous relocation of plasmids, which, on time averaging, results in equidistribution...

  15. A plasmid carrying mucA and mucB genes from pKM101 in Haemophilus influenzae and Escherichia coli

    International Nuclear Information System (INIS)

    Spikes, D.; Setlow, J.K.

    1989-01-01

    The plasmid pMucAMucB, constructed from the Haemophilus influenzae vector pDM2, and a similar plasmid, constructed from pBR322, increased the survival after UV irradiation of Escherichia coli AB1157 with the umu-36 mutation and also caused UV-induced mutation in the E. coli strain. In H. influenzae, pMucAMucB caused a small but reproducible increase in survival after UV irradiation in wild-type cells and in a rec-1 mutant, but there was no increase in spontaneous mutation in the wild type or in the rec-1 mutant and no UV-induced mutation

  16. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids.

    Science.gov (United States)

    Sam, Mohammad Reza; Azadbakhsh, Azadeh Sadat; Farokhi, Farrah; Rezazadeh, Kobra; Sam, Sohrab; Zomorodipour, Alireza; Haddad-Mashadrizeh, Aliakbar; Delirezh, Nowruz; Mokarizadeh, Aram

    2016-05-01

    Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  17. The evolution of heart gene delivery vectors

    Science.gov (United States)

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  18. Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Heidi Gumpert

    2017-09-01

    Full Text Available The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing Escherichia coli lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.

  19. [Genome Rearrangements in Azospirillum brasilense Sp7 with the Involvement of the Plasmid pRhico and the Prophage phiAb-Cd].

    Science.gov (United States)

    Katsy, E I; Petrova, L P

    2015-12-01

    Alphaproteobacteria of the species Azospirillum brasilense have a multicomponent genome that undergoes frequent spontaneous rearrangements, yielding changes in the plasmid profiles of strains. Specifically, variants (Cd, Sp7.K2, Sp7.1, Sp7.4, Sp7.8, etc.) of the type strainA. brasilense Sp7 that had lost a 115-MDa plasmid were previously selected. In many of them, the molecular weight of a 90-MDa plasmid (p90 or pRhico), which is a kind of "depot" for glycopolymer biosynthesis genes, increased. In this study, a collection of primers was designed to the plasmid pRhico and to the DNA of prophage phiAb-Cd integrated in it. The use ofthese primers in polymerase chain reactions allowed the detection of the probable excision of phiAb-Cd phage from the DNA of A. brasilense variants Sp7.4 and Sp7.8 and other alterations of the pRhico structure in A. brasilense strains Cd, Sp7.K2, and Sp7.8. The developed primers and PCR conditions may be recoin mended for primary analysis of spontaneous plasmid rearrangements in A. brasilense Sp7 and related strains.

  20. Simple method for identification of plasmid-coded proteins

    International Nuclear Information System (INIS)

    Sancar, A.; Hack, A.M.; Rupp, W.D.

    1979-01-01

    Proteins encoded by plasmid DNA are specifically labeled in uv-irradiated cells of Escherichia coli carrying recA and uvrA mutations because extensive degradation of the chromosome DNA occurs concurrently with amplification of plasmid DNA

  1. Plasmid marker rescue transformation proceeds by breakage-reunion in Bacillus subtilis

    International Nuclear Information System (INIS)

    Weinrauch, Y.; Dubnau, D.

    1987-01-01

    Bacillus subtilis carrying a plasmid which replicates with a copy number of about 1 was transformed with linearized homologous plasmid DNA labeled with the heavy isotopes 2 H and 15 N, in the presence of 32 Pi and 6-(p-hydroxyphenylazo)-uracil to inhibit DNA replication. Plasmid DNA was isolated from the transformed culture and fractionated in cesium chloride density gradients. The distribution of total and donor plasmid DNA was examined, using specific hybridization probes. The synthesis of new DNA, associated with the integration of donor moiety, was also monitored. Donor-specific sequences were present at a density intermediate between that of light and hybrid DNA. This recombinant DNA represented 1.4% of total plasmid DNA. The latter value corresponded well with the transforming activity (1.7%) obtained for the donor marker. Newly synthesized material associated with plasmid DNA at the recombinant density amounted to a minor portion of the recombinant plasmid DNA. These data suggest that, like chromosomal transformation, plasmid marker rescue transformation does not require replication for the integration of donor markers and, also like chromosomal transformation, proceeds by a breakage-reunion mechanism. The extent of donor DNA replacement of recipient DNA per plasmid molecule of 54 kilobases (27 kilobase pairs) was estimated as 16 kilobases

  2. Molecular Cloning, Expression and Characterization of Plasmid Encoding Rhomboid 4 (ROM4 of Tachyzoite of Toxoplasma gondii RH Strain

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi RAHIMI

    2017-12-01

    Full Text Available AbstractBackground: The objective of this study was to clone, express and characterize the gene encoding rhomboid 4 (ROM4 proteins, a vital gene in surface adhesion and host cell invasion process of tachyzoite of T. gondii in an appropriate expression vector and eukaryotic cell for production of recombinant protein.Methods: Toxoplasma RNA was isolated from tachyzoites (RH strain and complementary DNA was synthesized. Oligonucleotide primer pair was designed based on Toxoplasma ROM4 gene sequence with XhoI and EcoRI restriction sites at 5´ end of forward and reverse primers, respectively. ROM4 gene was amplified by PCR, cloned into pTG19-T vector and the recombinant plasmid was sequenced. The gene was subcloned into pcDNA3 plasmid and expressed in CHO cells as eukaryotic cell. SDS-PAGE and western blotting were performed for protein determination and verification.Results: Cloning of ROM4 gene in pTG19-T vector was confirmed by colony-PCR and enzymatic digestion. The results of enzymatic digestion and gene sequencing confirmed successful cloning and subcloning procedures. The nucleotide sequence of the cloned ROM4 gene showed 99% homology compared to the corresponding sequences of original gene. SDS-PAGE and western blotting analyses of the purified protein revealed a single band having expected size of 65 kDa.Conclusion: This eukaryotic expression system is an appropriate system for high-level recombinant protein production of ROM4 gene from T. gondii tachyzoites used as antigenic component for serological assay and vaccine development.

  3. PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms

    OpenAIRE

    Manuel Ares-Arroyo; Cristina Bernabe-Balas; Alfonso Santos-Lopez; Maria R. Baquero; Kashi N. Prasad; Dolores Cid; Carmen Martin-Espada; Alvaro San Millan; Bruno Gonzalez-Zorn

    2018-01-01

    ColE1 plasmids are important vehicles for the spread of antibiotic resistance in the Enterobacteriaceae and Pasteurellaceae families of bacteria. Their monitoring is essential, as they harbor important resistant determinants in humans, animals and the environment. In this work, we have analyzed ColE1 replicons using bioinformatic and experimental approaches. First, we carried out a computational study examining the structure of different ColE1 plasmids deposited in databases. Bioinformatic an...

  4. Diversity and homogeneity among small plasmids of Aeromonas salmonicida subsp. salmonicida linked with geographical origin

    Directory of Open Access Journals (Sweden)

    Sabrina A Attéré

    2015-11-01

    Full Text Available Furunculosis, which is caused by Aeromonas salmonicida subsp. salmonicida, is a major salmonid disease in fish farms worldwide. Several plasmids found in this bacterium confer phenotypes such drug resistance and virulence. Small plasmids (pAsa1, pAsa2, pAsa3, and pAsal1 related to ColE1- and ColE2-type replicons are usually present in its normal plasmidome. In the present study, with the objective to investigate if these plasmids display particularities related to the origin of the isolates bearing them, a total of 153 isolates, including 78 new and 75 previously described, were analyzed for the presence of small plasmids by PCR and DNA restriction fragment profiling. A geographical dichotomy between Canadian and European isolates for their propensity to do not have pAsa3 or pAsal1 was found. In addition, the genotyping analysis led to the identification of two European isolates harboring an unusual pAsal1. An investigation by next-generation sequencing (NGS of these two isolates shed light on two pAsal1 variants (pAsal1C and pAsal1D. As with pAsal1B, another pAsal1 variant previously described, these two new variants bore a second insertion sequence (ISAS5 in addition to the usual ISAS11. The characterization of these variants suggested that they could predominate over the wild-type pAsal1 in stressful conditions such as growth at temperatures of 25°C and above. To obtain a comprehensive portrait of the mutational pressure on small plasmids, 26 isolates whose DNA had been sequenced by NGS were investigated. pAsa3 and pAsal1 were more prone to mutations than pAsa1 and pAsa2, especially in the mobA gene, which encodes a relaxase and a primase. Lastly, the average copy number of each plasmid per cell was assessed using raw sequencing data. A clear trend with respect to the relative proportion per cell of each plasmid was identified. Our large-scale study revealed a geographical dichotomy in small plasmid repertoire in addition to a clear trend

  5. First detection of AmpC β-lactamase bla(CMY-2) on a conjugative IncA/C plasmid in a Vibrio parahaemolyticus isolate of food origin.

    Science.gov (United States)

    Li, Ruichao; Lin, Dachuan; Chen, Kaichao; Wong, Marcus Ho Yin; Chen, Sheng

    2015-07-01

    Vibrio parahaemolyticus is an important causative agent of gastroenteritis, with the consumption of contaminated seafood being the major transmission route. Resistance to penicillin is common among V. parahaemolyticus strains, whereas cephalosporin resistance remains rare. In an attempt to assess the current prevalence and characteristics of antibiotic resistance of this pathogen in common food samples, a total of 54 (17% of the total samples) V. parahaemolyticus strains were isolated from 318 meat and seafood samples purchased from supermarkets and wet markets in Shenzhen, China, in 2013. These isolates exhibited high-level resistance to ampicillin, yet they were mostly susceptible to other antimicrobials, except for two that were resistant to extended-spectrum cephalosporins. The β-lactamase gene blaPER-1 was detectable in one strain, V. parahaemolyticus V43, which was resistant to both third- and fourth-generation cephalosporins. Compared to other blaPER-1-positive V. parahaemolyticus strains reported in our previous studies, strain V43 was found to harbor an ∼200-kb conjugative plasmid carrying genes that were different from the antimicrobial resistance genes reported from the previous studies. The β-lactamase gene blaCMY-2 was detectable for the first time in another V. parahaemolyticus isolate, V4, which was resistant to third-generation cephalosporins. This blaCMY-2 gene was shown to be located in an ∼150-kb IncA/C-type conjugative plasmid with a genetic structure consisting of traB-traV-traA-ISEcp1-blaCMY-2-blc-sugE-encR-orf1-orf2-orf3-orf4-dsbC-traC, which is identical to that of other IncA/C conjugative plasmids in Enterobacteriaceae, albeit with a different size. These findings indicate that the transmission of extended-spectrum-β-lactamase (ESBL) and AmpC β-lactamase genes via conjugative plasmids can mediate the development of extended-spectrum cephalosporin resistance in V. parahaemolyticus, thereby posing a potential threat to public health

  6. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  7. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  8. An Enterobacter Plasmid as a New Genetic Background for the Transposon Tn1331

    Science.gov (United States)

    2011-11-25

    determined to be 99% similar to E. cloacae by both 16S rDNA and Phoenix analysis and was designated Enterobacter sp W001. Enterobacter sp W001 was...adolescents. JAMA. 2002;287(23):3096–3102. 9. Foster TJ. Plasmid- determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol...mediated type II dihydrofolate reductase gene among trimethoprim -resistant urinary pathogens in Greek hospitals. J Antimicrob Chemother. 1992;29

  9. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Seetharam, S.; Protic-Sabljic, M.; Seidman, M.M.; Kraemer, K.H.

    1987-01-01

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher frequency of plasmids with mutations, fewer plasmids with two or more mutations in the marker gene, and a new mutagenic hotspot. The major type of base substitution mutation was the G:C to A:T transition with both cell lines. These results, together with similar findings published earlier with cells from a xeroderma pigmentosum patient in complementation group A, suggest that isolated G:C to A:T somatic mutations may be particularly important in generation of human skin cancer by UV radiation

  10. Cloning of a recA-like gene of Proteus mirabilis

    International Nuclear Information System (INIS)

    Eitner, G.; Solonin, A.S.; Tanyashin, V.I.

    1981-01-01

    A gene of Proteus mirabilis that can substitute for functions of the recA gene of Escherichia coli has been cloned into the plasmid pBR322, using shotgun experiments. The recA-like gene (recAsub(P.m.)) has been localized by restriction mapping within a 1.5-Md PstI fragment that is a part of two cloned Hind III fragments of the chromosome of P. mirabilis. The restriction map of the recAsub(P.m.) gene differs from that of the recA gene of E. coli. Funtionally, the recombinant plasmids containing the recAsub(P.m.) gene restore a nearly wild-type level of UV-resistance to several point and deletion mutants in the recA gene of E. coli. (Auth.)

  11. Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri.

    OpenAIRE

    Vescovo, M; Morelli, L; Bottazzi, V

    1982-01-01

    Sixteen strains of Lactobacillus reuteri and 20 strains of Lactobacillus acidophilus were tested for resistance to 22 antibiotics by using commercially available sensitivity disks. Evidence suggesting linkage of these resistances to plasmids was obtained by "curing" experiments with acridine dyes and high growth temperatures. Examination of plasmid patterns of agarose gel electrophoresis provided further evidence of loss in plasmid DNA under curing conditions in some of the strains examined.

  12. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.

    Science.gov (United States)

    Houba-Hérin, N; Domin, M; Pédron, J

    1994-07-01

    Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.

  13. Identification of oriT and a recombination hot spot in the IncA/C plasmid backbone.

    Science.gov (United States)

    Hegyi, Anna; Szabó, Mónika; Olasz, Ferenc; Kiss, János

    2017-09-06

    Dissemination of multiresistance has been accelerating among pathogenic bacteria in recent decades. The broad host-range conjugative plasmids of the IncA/C family are effective vehicles of resistance determinants in Gram-negative bacteria. Although more than 150 family members have been sequenced to date, their conjugation system and other functions encoded by the conserved plasmid backbone have been poorly characterized. The key cis-acting locus, the origin of transfer (oriT), has not yet been unambiguously identified. We present evidence that IncA/C plasmids have a single oriT locus immediately upstream of the mobI gene encoding an indispensable transfer factor. The fully active oriT spans ca. 150-bp AT-rich region overlapping the promoters of mobI and contains multiple inverted and direct repeats. Within this region, the core domain of oriT with reduced but detectable transfer activity was confined to a 70-bp segment containing two inverted repeats and one copy of a 14-bp direct repeat. In addition to oriT, a second locus consisting of a 14-bp imperfect inverted repeat was also identified, which mimicked the function of oriT but which was found to be a recombination site. Recombination between two identical copies of these sites is RecA-independent, requires a plasmid-encoded recombinase and resembles the functioning of dimer-resolution systems.

  14. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    Science.gov (United States)

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    Science.gov (United States)

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  16. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  17. Integration of replication-defective R68.45-like plasmids into the Pseudomonas aeruginosa chromosome.

    Science.gov (United States)

    Reimmann, C; Rella, M; Haas, D

    1988-06-01

    R68.45 and other similar broad-host-range (IncP) plasmids carrying a tandem repeat of the 2.1 kb insertion element IS21 mobilize the chromosome of many different Gram-negative bacteria. To analyse the structure of R68.45-chromosome cointegrates, whose involvement in the mobilization process had been postulated previously, we selected for the stable integration of R68.45-like plasmids into the Pseudomonas aeruginosa chromosome. Two plasmids were chosen: pME28, a transfer-deficient, mobilizable RP1 derivative with an inactive replication control (trfA) gene, and pME487, an R68.45 derivative with a trfA(ts) mutation causing temperature-sensitive replication. Chromosomally integrated pME28 and pME487 were found to be flanked by single IS21 elements. This structure is in agreement with a 'cut-and-paste' mode of R68.45 transposition. pME28 and pME487 showed a low specificity of insertion but rarely (less than 0.1%) induced auxotrophic mutations. Hfr (high-frequency-of-recombination) donors of P. aeruginosa could be obtained by chromosomal integration of pME487 or pME28; in the latter case, the transfer functions lacking from pME28 had to be provided in trans on an autonomous plasmid. Hfr donors gave higher conjugational linkage and transferred longer stretches of the P. aeruginosa chromosome than did R68.45 donors. This suggests that the integration of R68.45 into the donor chromosome is short-lived in P. aeruginosa.

  18. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    Science.gov (United States)

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  19. In Vivo Transmission of an IncA/C Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the Plasmid Results in a Variable Cost of Fitness.

    Science.gov (United States)

    Johnson, Timothy J; Singer, Randall S; Isaacson, Richard E; Danzeisen, Jessica L; Lang, Kevin; Kobluk, Kristi; Rivet, Bernadette; Borewicz, Klaudyna; Frye, Jonathan G; Englen, Mark; Anderson, Janet; Davies, Peter R

    2015-05-15

    IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine

    International Nuclear Information System (INIS)

    Kang, Yu; Zhang, Xiaoyan; Jiang, Wei; Wu, Chaoqun; Chen, Chunmei; Zheng, Yufang; Gu, Jianren; Xu, Congjian

    2009-01-01

    Compared with viral vectors, nonviral vectors are less immunogenic, more stable, safer and easier to replication for application in cancer gene therapy. However, nonviral gene delivery system has not been extensively used because of the low transfection efficiency and the short transgene expression, especially in vivo. It is desirable to develop a nonviral gene delivery system that can support stable genomic integration and persistent gene expression in vivo. Here, we used a composite nonviral gene delivery system consisting of the piggyBac (PB) transposon and polyethylenimine (PEI) for long-term transgene expression in mouse ovarian tumors. A recombinant plasmid PB [Act-RFP, HSV-tk] encoding both the herpes simplex thymidine kinase (HSV-tk) and the monomeric red fluorescent protein (mRFP1) under PB transposon elements was constructed. This plasmid and the PBase plasmid were injected into ovarian cancer tumor xenografts in mice by in vivo PEI system. The antitumor effects of HSV-tk/ganciclovir (GCV) system were observed after intraperitoneal injection of GCV. Histological analysis and TUNEL assay were performed on the cryostat sections of the tumor tissue. Plasmid construction was confirmed by PCR analysis combined with restrictive enzyme digestion. mRFP1 expression could be visualized three weeks after the last transfection of pPB/TK under fluorescence microscopy. After GCV admission, the tumor volume of PB/TK group was significantly reduced and the tumor inhibitory rate was 81.96% contrasted against the 43.07% in the TK group. Histological analysis showed that there were extensive necrosis and lymphocytes infiltration in the tumor tissue of the PB/TK group but limited in the tissue of control group. TUNEL assays suggested that the transfected cells were undergoing apoptosis after GCV admission in vivo. Our results show that the nonviral gene delivery system coupling PB transposon with PEI can be used as an efficient tool for gene therapy in ovarian cancer

  1. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-01-01

    Lactococcus garvieae is a lactic acid bacterium found in raw-milk dairy products as well as a range of aquatic and terrestrial environments. The plasmids in L. garvieae have received little attention compared to those of dairy Lactococcus lactis, in which the genes carried by these extrachromosomal elements are considered of adaptive value. The present work reports the sequencing and analysis of the plasmid complement of L. garvieae IPLA 31405, a strain isolated from a traditional, Spanish, starter-free cheese made from raw-milk. It consists of pLG9 and pLG42, of 9,124 and 42,240 nucleotides, respectively. Based on sequence and structural homology in the putative origin of replication (ori) region, pLG9 and pLG42 are predicted to replicate via a theta mechanism. Real-time, quantitative PCR showed the number of copies per chromosome equivalent of pLG9 and pLG42 to be around two and five, respectively. Sequence analysis identified eight complete open reading frames (orfs) in pLG9 and 36 in pLG42; these were organized into functional modules or cassettes containing different numbers of genes. These modules were flanked by complete or interrupted insertion sequence (IS)-like elements. Among the modules of pLG42 was a gene cluster encoding specific components of a phosphoenolpyruvate-phosphotransferase (PEP-PTS) system, including a phospho-β-galacosidase. The cluster showed a complete nucleotide identity respect to that in plasmids of L. lactis. Loss of pLG42 showed this to be involved in lactose assimilation. In the same plasmid, an operon encoding a type I restriction/modification (R/M) system was also identified. The specificity of this R/M system might be broadened by different R/M specificity subunits detected in pLG9 and in the bacterial chromosome. However, challenges of L. garvieae IPLA 31405 against L. lactis phages proved that the R/M system was not involved in phage resistance. Together, these results support the hypothesis that, as in L. lactis, pLG42

  2. A polymerase chain reaction-based methodology to detect gene doping.

    Science.gov (United States)

    Carter, Adam; Flueck, Martin

    2012-04-01

    The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.

  3. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid.

    Science.gov (United States)

    Tagg, Kaitlin A; Iredell, Jonathan R; Partridge, Sally R

    2014-08-01

    Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin.

    Science.gov (United States)

    Li, Jun; Li, Beibei; Wendlandt, Sarah; Schwarz, Stefan; Wang, Yang; Wu, Congming; Ma, Zhiyong; Shen, Jianzhong

    2014-04-01

    To investigate the genetic basis of pleuromutilin resistance in coagulase-negative staphylococci of porcine origin that do not carry known pleuromutilin resistance genes and to determine the localization and genetic environment of the identified resistance gene. Plasmid DNA of two pleuromutilin-resistant Staphylococcus cohnii and Staphylococcus simulans isolates was transformed into Staphylococcus aureus RN4220. The identified resistance plasmids were sequenced completely. The candidate gene for pleuromutilin resistance was cloned into shuttle vector pAM401. S. aureus RN4220 transformants carrying this recombinant shuttle vector were tested for their MICs. S. cohnii isolate SA-7 and S. simulans isolate SSI1 carried the same plasmid of 5584 bp, designated pSA-7. A variant of the vga(E) gene was detected, which encodes a 524 amino acid ATP-binding cassette protein. The variant gene shared 85.7% nucleotide sequence identity and the variant protein 85.3% amino acid sequence identity with the original vga(E) gene and Vga(E) protein, respectively. The Vga(E) variant conferred cross-resistance to pleuromutilins, lincosamides and streptogramin A antibiotics. Plasmid pSA-7 showed an organization similar to that of the apmA-carrying plasmid pKKS49 from methicillin-resistant S. aureus and the dfrK-carrying plasmid pKKS966 from Staphylococcus hyicus. Sequence comparisons suggested that recombination events may have played a role in the acquisition of this vga(E) variant. A novel vga(E) gene variant was identified, which was located on a small plasmid and was not associated with the transposon Tn6133 [in contrast to the original vga(E) gene]. The plasmid location may enable its further dissemination to other staphylococci and possibly also to other bacteria.

  5. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  6. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure

    Directory of Open Access Journals (Sweden)

    Biryukova Irina V

    2008-08-01

    Full Text Available Abstract Background The development of modern producer strains with metabolically engineered pathways poses special problems that often require manipulating many genes and expressing them individually at different levels or under separate regulatory controls. The construction of plasmid-less marker-less strains has many advantages for the further practical exploitation of these bacteria in industry. Such producer strains are usually constructed by sequential chromosome modifications including deletions and integration of genetic material. For these purposes complex methods based on in vitro and in vivo recombination processes have been developed. Results Here, we describe the new scheme of insertion of the foreign DNA for step-by-step construction of plasmid-less marker-less recombinant E. coli strains with chromosome structure designed in advance. This strategy, entitled as Dual-In/Out, based on the initial Red-driven insertion of artificial φ80-attB sites into desired points of the chromosome followed by two site-specific recombination processes: first, the φ80 system is used for integration of the recombinant DNA based on selective marker-carrier conditionally-replicated plasmid with φ80-attP-site, and second, the λ system is used for excision of inserted vector part, including the plasmid ori-replication and the marker, flanked by λ-attL/R-sites. Conclusion The developed Dual-In/Out strategy is a rather straightforward, but convenient combination of previously developed recombination methods: phages site-specific and general Red/ET-mediated. This new approach allows us to detail the design of future recombinant marker-less strains, carrying, in particular, rather large artificial insertions that could be difficult to introduce by usually used PCR-based Recombineering procedure. The developed strategy is simple and could be particularly useful for construction of strains for the biotechnological industry.

  7. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  8. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    Science.gov (United States)

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasmid profilling and similarities in identities of probable microbes isolated from crude oil contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Toochukwu Ekwutosi OGBULIE

    2013-05-01

    Full Text Available Plasmid analysis of bacteria isolated from agricultural soil experimentally contaminated with crude oil was carried out and the resultant bands’ depicting the different molecular sizes of the plasmid DNA molecules per isolate was obtained. There was no visible band observed for Klebsiella indicating that the organism lack plasmid DNA that confers degradative ability to it, possibly the gene could be borne on the chromosomal DNA which enabled its persistence in the polluted soil. Molecular characterization was undertaken to confirm the identities of the possible microorganisms that may be present in crude oil-contaminated soil. The result of the DNA extracted and amplified in a PCR using EcoRI and EcoRV restriction enzymes for cutting the DNA of the bacterial cells indicated no visible band for cuts made with EcoRV restriction enzyme showing that the enzyme is not specific for bacterial DNA of isolates in the samples, hence there was no amplification. By contrast though, visible bands of amplicons were observed using EcoRI restriction enzymes. The resultant visible bands of microbial profile obtained using the universal RAPD primer with nucleotide sequence of 5’—CTC AAA GCA TCT AGG TCC A---3’ showed that only Pseudomonas fluorescens and Bacillus mycoides had visible bands at identical position on the gel indicating that both species possibly had identical sequence or genes of negligible differences coding for degradation of hydrocarbons as shown by similar values in molecular weight and positions in the gel electrophoresis field.

  10. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2015-03-01

    Full Text Available The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland. It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m Lubin mine were taken and twenty bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e. they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  11. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville; Redinbo, Matthew R. (Curtin U.); (Sydney); (UNC)

    2016-01-04

    Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids.

    IMPORTANCEUnderstanding the

  12. A ketoreductase gene from Streptomyces mycarofaciens 1748 DNA involved in biosynthesis of a spore pigment

    Institute of Scientific and Technical Information of China (English)

    夏焕章; 王以光

    1997-01-01

    An efficient plasmid transformation system for S. mycarofaciens 1748 has been established. In order to determine the function of MKR gene in S. mycarofaciens 1748, the gene disruption experiment was carried out. For this purpose the plasmid pKC1139 was used. A recombinant strain with white spore appeared, in contrast to the grey-colour spore of S. mycarofaciens 1748. This suggested that homologous recombination between plasmid-borne MKR gene sequence and the chromosome of S. mycarofaciens 1748 had occurred. A Southern hybridization experiment using α- P-labelled MKR gene as probe indicated that the desired integration event had occurred in the re-combinant. The result of gene disruption showed that the alteration of this gene in the chromosome of S. mycarofa-ciens 1748 made sporulating colonies remain white instead of taking on the typical grey colour of sporulating wild type colonies, suggesting that MKR gene is involved in the biosynthesis of a spore pigment. The recombinant strain was in-cubated wit

  13. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H- Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates.

    Science.gov (United States)

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina

    2017-12-01

    -uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H - patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. Copyright © 2017 American Society for Microbiology.

  14. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates

    Science.gov (United States)

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge

    2017-01-01

    -uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H− patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. PMID:28970221

  15. [Comparative study of aromatic ring meta-cleavage enzymes in Pseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl and m-toluate].

    Science.gov (United States)

    Selifonov, S A; Starozoĭtov, I I

    1990-12-01

    It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.

  16. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB + clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA + transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB + and lysA + . The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  17. Complete Sequence of Four Multidrug-Resistant MOBQ1 Plasmids Harboring blaGES-5 Isolated from Escherichia coli and Serratia marcescens Persisting in a Hospital in Canada.

    Science.gov (United States)

    Boyd, David; Taylor, Geoffrey; Fuller, Jeff; Bryce, Elizabeth; Embree, Joanne; Gravel, Denise; Katz, Kevin; Kibsey, Pamela; Kuhn, Magdalena; Langley, Joanne; Mataseje, Laura; Mitchell, Robyn; Roscoe, Diane; Simor, Andrew; Thomas, Eva; Turgeon, Nathalie; Mulvey, Michael

    2015-06-01

    The usefulness of carbapenems for gram-negative infections is becoming compromised by organisms harboring carbapenemases, enzymes which can hydrolyze the drug. Currently KPC (class A), NDM (class B), and OXA-48 types (class D) are the most globally widespread carbapenemases. However, among the GES-type class A extended-spectrum β-lactamases (ESBLs) there are variants that hydrolyze carbapenems, with blaGES-5 being the most common. Two Escherichia coli and two Serratia marcescens harboring blaGES-5 on plasmids were isolated by the Canadian Nosocomial Infection Surveillance Program (CNISP) from four different patients in a single hospital over a 2-year period. Complete sequencing of the blaGES-5 plasmids indicated that all four had nearly identical backbones consisting of genes for replication, partitioning, and stability, but contained variant accessory regions consisting of mobile elements and antimicrobial resistance genes. The plasmids were of a novel replicon type, but belonged to the MOBQ1 group based on relaxase sequences, and appeared to be mobilizable, but not self-transmissible. Considering the time periods of bacterial isolation, it would appear the blaGES-5 plasmid has persisted in an environmental niche for at least 2 years in the hospital. This has implications for infection control and clinical care when it is transferred to clinically relevant gram-negative organisms.

  18. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Multiple drug resistance isolates causing UTI has seri- ous implications for the empiric therapy against patho- genic isolates and for the possible co-selection of antimicrobial resistant mediated by multi drug resistant plasmids21,22. E. coli from clinical isolates are known to harbour plasmids of different molecular sizes23.

  19. Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain.

    Science.gov (United States)

    Radziwill-Bienkowska, Joanna Maria; Robert, Véronique; Drabot, Karolina; Chain, Florian; Cherbuy, Claire; Langella, Philippe; Thomas, Muriel; Bardowski, Jacek Karol; Mercier-Bonin, Muriel; Kowalczyk, Magdalena

    2017-07-01

    The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectin-coated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29-MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6 mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.

  20. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A Sequences

    Directory of Open Access Journals (Sweden)

    Alexandra E Grier

    2016-01-01

    Full Text Available Increasing demand for large-scale synthesis of in vitro transcribed (IVT mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3′ polyadenosine (poly(A tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A tail lengths to ≃120 base pairs (bp. Here, we have developed a novel method for generation of extended poly(A tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A tracts up to ≃500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A tracts and 3′ termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s.