WorldWideScience

Sample records for plasmatron fuel reformer

  1. Hydrogen Generation from Plasmatron Reforming Ethanol

    Institute of Scientific and Technical Information of China (English)

    YOU Fu-bing; HU You-ping; LI Ge-sheng; GAO Xiao-hong

    2006-01-01

    Hydrogen generation through plasmatron reforming of ethanol has been carried out in a dielectric barrier discharge (DBD) reactor. The reforming of pure ethanol and mixtures of ethanol-water have been studied. The gas chromatography (GC) analysis has shown that in all conditions the reforming yield was H2, CO, CH4 and CO2 as the main products, and with little C2* . The hydrogen-rich gas can be used as fuel for gasoline engine and other applications.

  2. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  3. Reformer Fuel Injector

    Science.gov (United States)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  4. Hydrogen Generation Via Fuel Reforming

    Science.gov (United States)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. Fuel Cell/Reformers Technology Development

    Science.gov (United States)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  7. Pyrochlore catalysts for hydrocarbon fuel reforming

    Science.gov (United States)

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  8. A device for reforming a hydrocarbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kendzi, T.; Ikuo, M.

    1984-03-15

    In order to utilize the heat from the reaction of reforming of a hydrocarbon fuel and the heat scattered from a heater, a design is proposed for a fuel reforming reactor in which the gases entering the reactor first pass inside the reactor along the external wall and are heated by the heat dispersed inside the reactor. Then they go in the opposite direction along a clearance between the interior shell of the reactor and the internal body of the reactor itself with a catalyst (Kt) and a heated electrical cylindrical heater. Then the gases, already heated, go directly into the cavity of the reactor filled with the catalyst where the reforming reaction occurs and then the gases and the vapors of the reformed fuel are discharged, passing through a system of heat exchangers. The layout of such a reactor, which contains a cylindrical shell inside, a cylindrical sleeve coaxial with it and the body of the reactor itself with the heater, is given. A system for attaching the internal sleeve and the body of the reactor to the catalyst is cited. The course of the gases inside the reactor is also given.

  9. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  10. Laser plasmatron for diamond coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Glova, A. F., E-mail: afglova@triniti.ru; Lysikov, A. Yu.; Malyuta, D. D.; Nelyubin, S. S.; Peretyatko, P. I.; Ryzhkov, Yu. F. [JSC State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    An experimental installation with a laser plasmatron based on a continuous wave CO{sub 2} laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH{sub 4}/H{sub 2} gas mixture under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.

  11. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Doesburg, E.B.M.; Ommen, van J.G.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In orde

  12. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  13. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  14. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  15. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  16. Control of autothermal reforming reactor of diesel fuel

    Science.gov (United States)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  17. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  18. Leveraging Fuel Subsidy Reform for Transition in Yemen

    Directory of Open Access Journals (Sweden)

    Olivier Ecker

    2012-10-01

    Full Text Available Yemen is currently undergoing a major political transition, yet many economic challenges—including fuel subsidy reform—remain highly relevant. To inform the transition process with respect to a potential subsidy reform, we use a dynamic computable general equilibrium and microsimulation model for Yemen; we show that overall growth effects of subsidy reduction are positive in general, but poverty can increase or decrease depending on reform design. A promising strategy for a successful reform combines fuel subsidy reduction with direct income transfers to the poorest one-third of households during reform, and productivity-enhancing investment in infrastructure, plus fiscal consolidation. Public investments should be used for integrating economic spaces and restructuring of agricultural, industrial and service value chains in order to create a framework that encourages private-sector-led and job-creating growth.

  19. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  20. Determination of optimal reformer temperature in a reformed methanol fuel cell system using ANFIS models and numerical optimization methods

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl

    2015-01-01

    In this work a method for choosing the optimal reformer temperature for a reformed methanol fuel cell system is presented based on a case study of a H3 350 module produced by Serenergy A/S. The method is based on ANFIS models of the dependence of the reformer output gas composition on the reformer...... temperature and fuel flow, and the dependence of the fuel cell voltage on the fuel cell temperature, current and anode supply gas CO content. These models are combined to give a matrix of system efficiencies at different fuel cell currents and reformer temperatures. This matrix is then used to find...... the reformer temperature which gives the highest efficiency for each fuel cell current. The average of this optimal efficiency curve is 32.11% and the average efficiency achieved using the standard constant temperature is 30.64% an increase of 1.47 percentage points. The gain in efficiency is 4 percentage...

  1. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  2. Microchennel development for autothermal reforming of hydrocarbon fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel-processing is a bridging technology to assist the commercialization of fuel cell systems in the absence of a hydrogen infrastructure. The Argonne National Laboratory has been developing fuel-processing technologies for fuel cells, and has reported the development of novel catalysts that are active and selective for hydrocarbon-reforming reactions. It has been realized, however, that with pellets or conventional honeycomb catalysts, the reforming process is mass-transport limited. This study addresses the development of catalysts structures with microchannels that are able to reduce the diffusion resistance and, thereby, achieve the same production rate within a smaller reactor bed. The microchannel reforming catalysts are prepared and tested with natural gas and gasoline-type fuels in a microreactor (diameter: 1 cm) at space velocities of up to 250 000 h -1. The catalysts have also been used in engineering-scale reactors (10 kWe; diameter: 7 cm) with similar product qualities. Compared with pellet catalysts, the microchannel catalysts offer a nearly five-fold reduction in catalyst weight and volume.

  3. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  4. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  5. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  6. A reformer performance model for fuel cell applications

    Science.gov (United States)

    Sandhu, S. S.; Saif, Y. A.; Fellner, J. P.

    A performance model for a reformer, consisting of the catalytic partial oxidation (CPO), high- and low-temperature water-gas shift (HTWGS and LTWGS), and preferential oxidation (PROX) reactors, has been formulated. The model predicts the composition and temperature of the hydrogen-rich reformed fuel-gas mixture needed for the fuel cell applications. The mathematical model equations, based on the principles of classical thermodynamics and chemical kinetics, were implemented into a computer program. The resulting software was employed to calculate the chemical species molar flow rates and the gas mixture stream temperature for the steady-state operation of the reformer. Typical computed results, such as the gas mixture temperature at the CPO reactor exit and the profiles of the fractional conversion of carbon monoxide, temperature, and mole fractions of the chemical species as a function of the catalyst weight in the HTWGS, LTWGS, and PROX reactors, are here presented at the carbon-to-oxygen atom ratio (C/O) of 1 for the feed mixture of n-decane (fuel) and dry air (oxidant).

  7. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  8. Purifier-integrated methanol reformer for fuel cell vehicles

    Science.gov (United States)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  9. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  10. Porous silicon for micro-sized fuel cell reformer units

    Energy Technology Data Exchange (ETDEWEB)

    Presting, H.; Konle, J.; Starkov, V.; Vyatkin, A.; Koenig, U

    2004-04-25

    Randomly, self-organized and ordered anodically etched porous silicon with pore sizes down to hundred nanometers have been fabricated for a variety of automotive applications which range from carrier structures in fuel cell technology up to shower heads for fuel injection in combustion engines. The porous wafers are produced by deep anodic etching which is a very effective and cheap fabrication method compatible to standard Si CMOS fabrication technology. The density of nano- (and micro-) pores can be varied in a wide range by choice of substrate doping level and appropriate electrolyte solution. Surface enlargement up to a factor of 1000 can be achieved [J. Electrochem. Soc. 149 (1) (2002) G70]. After deposition of a catalyst on the inner surface of the pores these structures can be used as an effective catalytic reaction area for the injected hydrocarbons in a micro-steam reformer unit with a small reaction volume. In addition deep anodic etching (DAE) of a pinhole array with very high aspect ratios is demonstrated using a pre-patterned inverted pyramidal array which is produced by lithography and subsequent wet chemical potassium hydroxide (KOH) etch. The structures can also be used as carrier structures for the hydrogen separation membrane of the reforming gas in a reformer unit when a thin layer of palladium is evaporated prior to the anodic etching of the pores. The noble metal foil serves as anode contact during the etch as well as hydrogen separating membrane of the device.

  11. Internal reforming development for solid oxide fuel cells

    Science.gov (United States)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  12. Development of a methanol reformer for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Baard

    2003-03-01

    Vehicles powered by fuel cells are from an environmental aspect superior to the traditional automobile using internal combustion of gasoline. Power systems which are based upon fuel cell technology require hydrogen for operation. The ideal fuel cell vehicle would operate on pure hydrogen stored on-board. However, storing hydrogen on-board the vehicle is currently not feasible for technical reasons. The hydrogen can be generated on-board using a liquid hydrogen carrier such as methanol and gasoline. The objective of the work presented in this thesis was to develop a catalytic hydrogen generator for automotive applications using methanol as the hydrogen carrier. The first part of this work gives an introduction to the field of methanol reforming and the properties of a fuel cell based power system. Paper I reviews the catalytic materials and processes available for producing hydrogen from methanol. The second part of this thesis consists of an experimental investigation of the influence of the catalyst composition, materials and process parameters on the activity and selectivity for the production of hydrogen from methanol. In Papers II-IV the influence of the support, carrier and operational parameters is studied. In Paper V an investigation of the catalytic properties is performed in an attempt to correlate material properties with performance of different catalysts. In the third part of the thesis an investigation is performed to elucidate whether it is possible to utilize oxidation of liquid methanol as a heat source for an automotive reformer. In the study which is presented in Paper VI a large series of catalytic materials are tested and we were able to minimize the noble metal content making the system more cost efficient. In the final part of this thesis the reformer prototype developed in the project is evaluated. The reformer which was constructed for serving a 5 k W{sub e} fuel cell had a high performance with near 100 % methanol conversion and CO

  13. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  14. Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications

    Science.gov (United States)

    Kang, Inyong; Bae, Joongmyeon; Bae, Gyujong

    This paper discusses the reforming of liquid hydrocarbons to produce hydrogen for fuel cell applications, focusing on gasoline and diesel due to their high hydrogen density and well-established infrastructures. Gasoline and diesel are composed of numerous hydrocarbon species including paraffins, olefins, cycloparaffins, and aromatics. We have investigated the reforming characteristics of several representative liquid hydrocarbons. In the case of paraffin reforming, H 2 yield and reforming efficiency were close to thermodynamic equilibrium status (TES), although heavier hydrocarbons required slightly higher temperatures than lighter hydrocarbons. However, the conversion efficiency was much lower for aromatics than paraffins with similar carbon number. We have also investigated the reforming performance of simulated commercial diesel and gasoline using simple synthetic diesel and gasoline compositions. Reforming performances of our formulations were in good agreement with those of commercial fuels. In addition, the reforming of gas to liquid (GTL) resulted in high H 2 yield and reforming efficiency showing promise for possible fuel cell applications.

  15. Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C

    2016-06-01

    Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.

  16. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  17. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  18. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  19. Cooling of a Diesel Reformate Fuelled Solid Oxide Fuel Cell by Internal Reforming of Methane: A Modelling Study

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaowei; Alexander Kromp

    2013-01-01

    In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel.A model mixture consisting of 80% n-hexadecane and 20% 1-methylnaphthalin is used to simulate the commercial diesel.The modelling consists of several steps.First,equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to carbon (O/C) ratio,fuel utilization ratio and anode gas recirculation.Second,product composition,especially methane content,is determined for the methanation process at the operating temperatures ranging from 500 ℃ to 520 ℃.Finally,the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate.The results show that the first concept,operating the diesel reformer at low O/C ratio and/or recirculation ratio,is not realizable due to high probability of coke formation,whereas the second concept,combining a methanation process with CPOX,can provide a significant cooling effect in addition to the conventional cooling concept which needs higher levels of excess air.

  20. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...

  1. Vehicle type choice under the influence of a tax reform and rising fuel prices

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2014-01-01

    Differentiated vehicle taxes are considered by many a useful tool for promoting environmentally friendly vehicles. Various structures have been implemented in several countries, e.g. Ireland, France, The Czech Republic, and Denmark. In many countries the tax reforms have been followed by a steep...... change in new vehicle purchases toward more diesel vehicles and more fuel-efficient vehicles. The paper analyses to what extent a vehicle tax reform similar to the Danish 2007 reform may explain changes in purchasing behaviour. The paper investigates the effects of a tax reform, fuel price changes......, and technological development on vehicle type choice using a mixed logit model. The model allows a simulation of the effect of car price changes that resemble those induced by the tax reform. This effect is compared to the effects of fuel price changes and technology improvements. The simulations show...

  2. Integration of high temperature PEM fuel cells with a methanol reformer

    DEFF Research Database (Denmark)

    Pan, Chao; He, Ronghuan; Li, Qingfeng

    2005-01-01

    On-board generation of hydrogen by methanol reforming is an efficient and practical option to fuel PEMFC especially for vehicle propulsion purpose. The methanol reforming can take place at temperatures around 200°C with a nearly 100% conversion at a hydrogen yield of about 400 L–(h–kg catalyst)-1...

  3. Methane steam reforming kinetics over Ni-YSZ anodematerials for Solid Oxide FuelCells

    DEFF Research Database (Denmark)

    Mogensen, David

    energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...

  4. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...

  5. Fuel flexibility study of an integrated 25 kW SOFC reformer system

    Science.gov (United States)

    Yi, Yaofan; Rao, Ashok D.; Brouwer, Jacob; Samuelsen, G. Scott

    The operation of solid oxide fuel cells on various fuels, such as natural gas, biogas and gases derived from biomass or coal gasification and distillate fuel reforming has been an active area of SOFC research in recent years. In this study, we develop a theoretical understanding and thermodynamic simulation capability for investigation of an integrated SOFC reformer system operating on various fuels. The theoretical understanding and simulation results suggest that significant thermal management challenges may result from the use of different types of fuels in the same integrated fuel cell reformer system. Syngas derived from coal is simulated according to specifications from high-temperature entrained bed coal gasifiers. Diesel syngas is approximated from data obtained in a previous NFCRC study of JP-8 and diesel operation of the integrated 25 kW SOFC reformer system. The syngas streams consist of mixtures of hydrogen, carbon monoxide, carbon dioxide, methane and nitrogen. Although the SOFC can tolerate a wide variety in fuel composition, the current analyses suggest that performance of integrated SOFC reformer systems may require significant operating condition changes and/or system design changes in order to operate well on this variety of fuels.

  6. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    Science.gov (United States)

    Gardner, Todd H [Morgantown, WV; Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  7. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo; Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2009-07-01

    A low-temperature ethanol reformer based on a cobalt catalyst for the production of hydrogen has been designed aiming the feed of a fuel cell for an autonomous low-scale power production unit. The reformer comprises three stages: ethanol dehydrogenation to acetaldehyde and hydrogen over SnO{sub 2} followed by acetaldehyde steam reforming over Co(Fe)/ZnO catalyst and water gas shift reaction. Kinetic data have been obtained under different experimental conditions and a dynamic model has been developed for a tubular reformer loaded with catalytic monoliths for the production of the hydrogen required to feed a 1 kW PEMFC. (author)

  8. State of the art: Multi-fuel reformers for automotive fuel cell applications. Problem identification and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Pettersson, L.J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1999-12-01

    On an assignment from the Transport and Communications Research Board (KFB) a literature study and a study trip to the USA and Great Britain have been performed. The literature study and the study trip was made during late spring and autumn 1999.The purpose of the project was to collect available information about the chemical composition of the product gas from a multi-fuel reformer for a fuel cell vehicle. It was furthermore to identify problems and research needs. The report recommends directions for future major research efforts. The results of the literature study and the study trip led to the following general conclusions: With the technology available today it does not seem feasible to develop a highly efficient and reliable multi-fuel reformer for automotive applications, i. e. for applications where all types of fuels ranging from natural gas to heavy diesel fuels can be used. The potential for developing a durable and reliable system is considerably higher if dedicated fuel reformers are used.The authors propose that petroleum-derived fuels should be designed for potential use in mobile fuel cell applications. In the present literature survey and the site visit discussions we found that there are relatively low emissions from fuel cell engines compared to internal combustion engines. However, the major research work on reformers/fuel cells have been performed during steady-state operation. Emissions during start-up, shutdown and transient operation are basically unknown and must be investigated in more detail. The conclusions and findings in this report are based on open/available information, such as discussions at site visits, reports, scientific publications and symposium proceedings.

  9. The Oil Climax: Can Nigeria’s fuel subsidy reforms propel energy transitions?

    NARCIS (Netherlands)

    Osunmuyiwa, Olufolahan; Kalfagianni, Agni

    2017-01-01

    Abstract Recent studies in the field of political science and environmental resource governance suggest that oil-exporting economies have begun to implement fuel subsidy reforms. However, while most studies on this issue focus largely on the broader environmental and economic consequences of fuel su

  10. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  11. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  12. Syngas production from heavy liquid fuel reforming in inert porous media

    OpenAIRE

    Pastore, Andrea

    2010-01-01

    The electronic file misses the Nomenclature (p.xx-xii) In the effort to introduce fuel cell technology in the field of decentralized and mobile power generators, a hydrocarbon reformer to syngas seems to be the way for the market uptake. In this thesis, a potential technology is developed and investigated, in order to convert commercial liquid fuel (diesel, kerosene and biodiesel) to syngas. The fundamental concept is to oxidise the fuel in a oxygen depleted environment, obtaining hydrogen...

  13. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  14. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...... reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest...... and exhibits a comparable efficiency to the SR system. The SR system had the best relation between efficiency and volume increase. Optimal temperature profiles within each reactor were found. It was shown that temperature control can significantly reduce reactor volume and increase conversion capabilities....

  15. Plasma catalytic reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  16. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics methodas

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Ying-wei KANG; Guang-yi CAO; Xin-jian ZHU; Heng-yong TU; Jian LI

    2008-01-01

    A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.

  17. A Novel Cyclic Catalytic Reformer for Hydrocarbon Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses development of a compact reformer system based on a cyclic partial oxidation (POx)...

  18. Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

  19. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Erickson

    2005-09-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  20. Methanol steam reforming in a fuel cell drive system

    Science.gov (United States)

    Wiese, W.; Emonts, B.; Peters, R.

    Within the framework of the Joule III project a compact methanol reformer (CMR) with a specific weight of 2 kg/kW (lower heating value of H 2) was developed. This CMR contains a methanol and water vaporizer, a steam reformer, a heat carrier circuit and a catalytic burner unit. A laboratory fixed-bed reactor consisting of four tubes which could be filled with different amounts of catalyst was used to investigate the catalyst performance and the ageing behaviour. A hydrogen yield of 10 m N3/(h l Cat) can be achieved at 280°C. In this case, the methanol conversion rate is 95% and the dry product gas contains 0.9% CO. A linear decrease of the catalyst activity was observed which can be described by a loss of active catalyst mass of 5.5 mg/h. The catalyst was operated for more than 1000 h without having exhibited activity losses that made a catalyst change necessary. Besides, the stationary behaviour of the reforming reactor, the dynamic behaviour was studied. The time needed for start-up procedures has to be improved for reformers of a next generation. Moreover, the hydrogen production during reformer load changes will be discussed. Simulations of the power train in driving cycles show the different states of a reformer during dynamic operation.

  1. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  2. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  3. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  4. Synthesis of carbon nanostructures in an RF induction plasmatron

    Science.gov (United States)

    Zalogin, G. N.; Krasil'nikov, A. V.; Rudin, N. F.; Popov, M. Yu.; Kul'nitskii, B. A.; Kirichenko, A. N.

    2015-05-01

    The method and results of synthesizing carbon nanotubes and onion-like structures by the sublimation of a mixture of a carbon powder with a catalyst (Y2(CO3)3) in the plasma flow of an inert gas (argon) generated in an rf plasmatron are described. Carbon vapors are condensed into fullerene-containing soot onto various materials (Al, Cu, Ti, stainless steel) placed in the working chamber of an experimental setup. The composition of the synthesized soot is analyzed by modern highly informative methods (Raman spectroscopy, transmission electron microscopy, X-ray diffraction). Single-wall carbon nanotubes of a small diameter (1.2 nm) and onion-like structures 10-20 nm in size are formed in experiments. In a reference experiment on a mixture of argon and methane, a material, which consists of a mixture of amorphous carbon, nanosized graphite, and graphite with a crystallite size of several microns, is synthesized. The effect of the substrate material, the gas pressure, and the plasma flow velocity on the formation of carbon nanotubes is studied.

  5. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    Science.gov (United States)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  6. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  7. Development of Methanol-Reforming Catalysts for Fuel Cell Vehicles

    OpenAIRE

    2003-01-01

    Vehicles powered by proton exchange membrane (PEM) fuelcells are approaching commercialisation. Being inherently cleanand efficient sources of power, fuel cells constitute asustainable alternative to internal combustion engines to meetfuture low-emission legislation. The PEM fuel cell may befuelled directly by hydrogen, but other alternatives appearmore attractive at present, due to problems related to theproduction, transportation and handling of hydrogen. Fuelling with an alcohol fuel, such...

  8. A Novel Desulfurizer-Catalyst Combination for Logistic Fuel Reforming

    Science.gov (United States)

    2009-04-27

    dictate more efficient use of fuel resources and the synthesis of alternative fuels. In the light of eventual energy shortages, the ever-increasing... synthesis processes are based on the gasification of fossil fuels, which produce a variety of undesirable “green- house” gases. So even in the...Desulfurizers The first step was to find a suitable support material to host the sorbent. Diatomaceous earth and clinoptilolite (zeolitic clay) were

  9. Sulfur-Tolerant Autothermal Reforming Catalysts for Aviation Fuel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As solid oxide fuel cells (SOFCs) approach commercialization, interest in broader applications of this technology is mounting. While the first commercialized systems...

  10. Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels

    Science.gov (United States)

    Dokmaingam, P.; Assabumrungrat, S.; Soottitantawat, A.; Laosiripojana, N.

    Mathematical models of an indirect internal reforming solid oxide fuel cell (IIR-SOFC) fed by four different primary fuels, i.e., methane, biogas, methanol and ethanol, are developed based on steady-state, heterogeneous, two-dimensional and tubular-design SOFC models. The effect of fuel type on the thermal coupling between internal endothermic reforming with exothermic electrochemical reactions and system performance are determined. The simulation reveals that an IIR-SOFC fuelled by methanol provides the smoothest temperature gradient with high electrochemical efficiency. Furthermore, the content of CO 2 in biogas plays an important role on system performance since electrical efficiency is improved by the removal of some CO 2 from biogas but a larger temperature gradient is expected. Sensitivity analysis of three parameters, namely, a operating pressure, inlet steam to carbon (S:C) ratio and flow direction is then performed. By increasing the operating pressure up to 10 bar, the system efficiency increases and the temperature gradient can be minimized. The use of a high inlet S:C ratio reduces the cooling spot at the entrance of reformer channel but the electrical efficiency is considerably decreased. An IIR-SOFC with a counter-flow pattern (as based case) is compared with that with co-flow pattern (co-flow of air and fuel streams through fuel cell). The IIR-SOFC with co-flow pattern provides higher voltage and a smoother temperature gradient along the system due to superior matching between heat supplied from electrochemical reaction and heat required for steam reforming reaction; thus it is expected to be a better option for practical applications.

  11. Dynamic modeling and controllability analysis of an ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain); Planta Piloto de Ingenieria Quimica (CONICET-UNS), Camino de la Carrindanga km7, 8000 Bahia Blanca (Argentina); Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2010-09-15

    This work presents a controllability analysis of a low temperature ethanol reformer based on a cobalt catalyst for fuel cell application. The study is based on a non-linear dynamic model of a reformer which operates in three separate stages: ethanol dehydrogenation to acetaldehyde and hydrogen, acetaldehyde steam reforming, and water-gas-shift reaction. The controllability analysis is focused on the rapid dynamics due to mass balances and is based on a linearization of the complex non-linear model of the reformer. RGA, CN and MRI analysis tools are applied to the linear model suggesting that a good performance can be obtained with decentralized control for frequencies up to 0.1 rad s{sup -1}. (author)

  12. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, S. [Universita di Messina (Italy); Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S. [Istituto CNR-TAE, Messina (Italy)

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  13. An estimation of the water balance in a reformer/fuel-cells system

    Energy Technology Data Exchange (ETDEWEB)

    Jovan, Vladimir [Jo-ef Stefan Institute and Centre of Excellence Low-Carbon Technologies (Slovenia); Cufar, Alja [University of Ljubljana, Faculty of Mathematics and Physics (Slovenia)], e-mail: vladimir.jovan@ijs.si

    2011-07-01

    PEM fuel cells use hydrogen as fuel. Since it is a very light element, its energy density is small despite its high caloric value. Thus hydrogen storage requires a lot of space. One possible solution is simultaneous production of hydrogen from higher-density materials, such as methanol. The object of this paper is to determine what is the total water balance in a system consisting of a methanol reformer and a fuel-cells-based generator set, and to determine if water should be supplied to, or removed from, the system. Based on relatively little information obtained from technical sources and on some simple assumptions, this paper presents a model which helps to determine the actual water balance in the system. In conclusion, commercially available fuel-cell systems with realistic water production can be used for fuel reforming purposes in the methanol reformer. It is also shown that under normal operating conditions, and using commercially available devices, there is always an excess of water produced.

  14. Performance of a miniaturized silicon reformer-PrOx-fuel cell system

    Science.gov (United States)

    Kwon, Oh Joong; Hwang, Sun-Mi; Chae, Je Hyun; Kang, Moo Seong; Kim, Jae Jeong

    A fuel cell made with silicon is operated with hydrogen supplied by a reformer and a preferential oxidation (PrOx) reactor those are also made with silicon. The performance and durability of the fuel cell is analyzed and tested, then compared with the results obtained with pure hydrogen. Three components of the system are made using silicon technologies and micro electro-mechanical system (MEMS) technology. The commercial Cu-ZnO-Al 2O 3 catalyst for the reformer and the Pt-Al 2O 3 catalyst for the PrOx reactor are coated by means of a fill-and-dry method. A conventional membrane electrode assembly composed of a 0.375 mg cm -2 PtRu/C catalyst for the anode, a 0.4 mg cm -2 Pt/C catalyst for the cathode, and a Nafion™ 112 membrane is introduced to the fuel cell. The reformer gives a 27 cm 3 min -1 gas production rate with 3177 ppm CO concentration at a 1 cm 3 h -1 methanol feed rate and the PrOx reactor shows almost 100% CO conversion under the experimental conditions. Fuel cells operated with this fuel-processing system produce 230 mW cm -2 at 0.6 V, which is similar to that obtained with pure hydrogen.

  15. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A. [School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Department of Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom); Yap, D. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-03-15

    This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NO{sub x} emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced. (author)

  16. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    Science.gov (United States)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  17. STEAM AND SOFC BASED REFORMING OPTIONS OF PEM FUEL CELLS FOR MARINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Gohary

    2015-06-01

    Full Text Available The need for green energy sources without or with low emissions in addition to improve the using efficiency of current fossil fuels in the marine field makes it important to replace or improve current fossil-fuelled engines. The replacement process should work on narrowing the gap between the most scientific innovative clean energy technologies and the concepts of feasibility and cost-effective solutions. Early expectations of very low emissions and relatively high efficiencies have been met in marine power plants using fuel cell. In this study, steam and SOFC based reforming options of natural gas for PEM fuel cells are proposed as an attractive option to limit the environmental impact of the marine sector. The benefits of these two different reforming options can be assessed using computer predictions incorporating chemical flow sheeting software. It is found that a high overall efficiency approaching 60% may be achieved using SOFC based reforming systems which are significantly better than a reformed PEM system or an SOFC only system.

  18. Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation

    Science.gov (United States)

    Waller, Michael G.; Walluk, Mark R.; Trabold, Thomas A.

    2015-01-01

    Fuel cell technology has yet to realize widespread deployment, in part because of the hydrogen fuel infrastructure required for proton exchange membrane systems. One option to overcome this barrier is to produce hydrogen by reforming propane, which has existing widespread infrastructure, is widely used by the general public, easily transported, and has a high energy density. The present work combines thermodynamic modeling of propane catalytic partial oxidation (cPOx) and experimental performance of a Precision Combustion Inc. (PCI) Microlith® reactor with real-time soot measurement. Much of the reforming research using Microlith-based reactors has focused on fuels such as natural gas, JP-8, diesel, and gasoline, but little research on propane reforming with Microlith-based catalysts can be found in literature. The aim of this study was to determine the optimal operating parameters for the reformer that maximizes efficiency and minimizes solid carbon formation. The primary parameters evaluated were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. Including the lower heating values for product hydrogen and carbon monoxide, efficiency of 84% was achieved at an O2/C ratio of 0.53 and a catalyst temperature of 940 °C, resulting in near equilibrium performance. Significant solid carbon formation was observed at much lower catalyst temperatures, and carbon concentration in the effluent was determined to have a negative linear relationship at T reactor displayed good stability during more than 80 experiments with temperature cycling from 360 to 1050 °C.

  19. Plasma assisted fuel reforming for on-board hydrogen rich gas production

    OpenAIRE

    Darmon, Adeline; Rollier, Jean-Damien; Duval, Emmanuelle; Gonzalez-Aguilar, Jose; Metkemeijer, Rudolf; Fulcheri, Laurent

    2006-01-01

    Texte disponible en suivant le lien ci-dessous : http://www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5BS06%5D%20Production%20-%20Hydrocarbons/14-06-06/162.pdf; International audience; Plasma assisted fuel reforming technology appears particularly attractive for automotive applications, especially regarding compactness, response time and absence of catalyst element. In 2003, Renault and CEP have initiated a research programme on this subject. A test bench allowing reformer ...

  20. Liquid fuel reforming using microwave plasma at atmospheric pressure

    Science.gov (United States)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  1. Microplasma reforming of hydrocarbons for fuel cell power

    Science.gov (United States)

    Besser, R. S.; Lindner, P. J.

    The implementation of a microplasma approach for small scale reforming processes is explored as an alternative to more standard catalyst-based processes. Plasmas are a known approach to activating a chemical reaction in place of catalysts, and microplasmas are particularly attractive owing to their extremely high electron and power densities. Their inherent compactness gives them appeal for portable applications, but their modularity leads to scalability for higher capacity. We describe the realization of experimental microplasma reactors based on the microhollow cathode discharge (MHCD) structure by silicon micromachining for device fabrication. Experiments were carried out with model hydrocarbons methane and butane in the reactors within a microfluidic flow and analytical setup. We observe several key phenomena, including the ability to liberate hydrogen from the hydrocarbons at temperatures near ambient and sub-Watt input power levels, the tendency toward hydrocarbon decomposition rather than oxidation even in the presence of oxygen, and the need for a neutral carrier to obtain conversion. Mass and energy balances on these experiments revealed conversions up to nearly 50%, but the conversion of electrical power input to chemical reaction enthalpy was only on the order of 1%. These initial, exploratory results were recorded with devices and at process settings without optimization, and are hence promising for an emerging, catalyst-free reforming approach.

  2. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  3. Performance and endurance of a PEMFC operated with synthetic reformate fuel feed

    Energy Technology Data Exchange (ETDEWEB)

    Sishtla, C.; Koncar, G.; Platon, R. [Institute of Gas Technology, Des Plaines, IL (United States); Gamburzev, S.; Appleby, A.J. [Texas Engineering Experimental Station, Texas A and M Univ. System, College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research; Velev, O.A. [AeroVironment, Inc., Monrovia, CA (United States)

    1998-03-15

    Widespread implementation of polymer electrolyte membrane fuel cell (PEMFC) powerplants for stationary and vehicular applications will be dependent in the near future on using readily available hydrocarbon fuels as the source of the hydrogen fuel. Methane and propane are ideal fuels for stationary applications, while methanol, gasoline, and diesel fuel are better suited for vehicular applications. Various means of fuel processing are possible to produce a gaseous fuel containing H{sub 2}, CO{sub 2} and CO. CO is a known electrocatalyst poison and must be reduced to low (10`s) ppm levels and CO{sub 2} is said to cause additional polarization effects. Even with no CO in the feed gas a H{sub 2}/CO{sub 2}/H{sub 2}O gas mixture will form some CO. Therefore, as a first step of developing a PEMFC that can operate for thousands of hours using a reformed fuel, we used an anode gas feed of 80% H{sub 2} and 20% CO{sub 2} to simulate the reforming of CH{sub 4}. To investigate the effect of reformate on cell performance and endurance, a single cell with an active area of 58 cm{sup 2} was assembled with a membrane electrode assembly (MEA) furnished by Texas A and M University using IGT`s internally manifolded heat exchange (IMHEX{sup TM}) design configuration. The MEA consisted of a Nafion 112 membrane with anode and cathode Pt catalyst loadings of 0.26 and 1.46 mg/cm{sup 2}, respectively. The cell was set to operate on a synthetic reformate - air at 60 C and 1 atm and demonstrated over 5000 h of endurance with a decay rate of less than 1%/1000 h of operation. The cell also underwent four successful thermal cycles with no appreciable loss in performance. The stable performance is attributed to a combination of the IGT IMHEX plate design with its inherent uniform gas flow distribution across the entire active area and MEA quality. The effects of temperature, gas composition, fuel utilization (stoics) and thermal cycle on cell performance are described. (orig.)

  4. Performance and endurance of a PEMFC operated with synthetic reformate fuel feed

    Science.gov (United States)

    Sishtla, Chakravarthy; Koncar, Gerald; Platon, Renato; Gamburzev, Serguei; Appleby, A. John; Velev, Omourtag A.

    Widespread implementation of polymer electrolyte membrane fuel cell (PEMFC) powerplants for stationary and vehicular applications will be dependent in the near future on using readily available hydrocarbon fuels as the source of the hydrogen fuel. Methane and propane are ideal fuels for stationary applications, while methanol, gasoline, and diesel fuel are better suited for vehicular applications. Various means of fuel processing are possible to produce a gaseous fuel containing H2, CO2 and CO. CO is a known electrocatalyst poison and must be reduced to low (10's) ppm levels and CO2 is said to cause additional polarization effects. Even with no CO in the feed gas a H2/CO2/H2O gas mixture will form some CO. Therefore, as a first step of developing a PEMFC that can operate for thousands of hours using a reformed fuel, we used an anode gas feed of 80% H2 and 20% CO2 to simulate the reforming of CH4. To investigate the effect of reformate on cell performance and endurance, a single cell with an active area of 58 cm2 was assembled with a membrane electrode assembly (MEA) furnished by Texas A&M University using IGT's internally manifolded heat exchange (IMHEX™) design configuration. The MEA consisted of a Nafion 112 membrane with anode and cathode Pt catalyst loadings of 0.26 and 1.46 mg/cm2, respectively. The cell was set to operate on a synthetic reformate-air at 60°C and 1 atm and demonstrated over 5000 h of endurance with a decay rate of less than 1%/1000 h of operation. The cell also underwent four successful thermal cycles with no appreciable loss in performance. The stable performance is attributed to a combination of the IGT IMHEX plate design with its inherent uniform gas flow distribution across the entire active area and MEA quality. The effects of temperature, gas composition, fuel utilization (stoics) and thermal cycle on cell performance are described.

  5. Fuel upgrading and reforming with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-31

    Systems and methods for separating hydrocarbons on an internal combustion powered vehicle via one or more metal organic frameworks are disclosed. Systems and methods can further include utilizing separated hydrocarbons and exhaust to generate hydrogen gas for use as fuel. In one aspect, a method for separating hydrocarbons can include contacting a first component containing a first metal organic framework with a flow of hydrocarbons and separating hydrocarbons by size. In certain embodiments, the hydrocarbons can include alkanes.

  6. Fuel upgrading and reforming with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-31

    Systems and methods for separating hydrocarbons on an internal combustion powered vehicle via one or more metal organic frameworks are disclosed. Systems and methods can further include utilizing separated hydrocarbons and exhaust to generate hydrogen gas for use as fuel. In one aspect, a method for separating hydrocarbons can include contacting a first component containing a first metal organic framework with a flow of hydrocarbons and separating hydrocarbons by size. In certain embodiments, the hydrocarbons can include alkanes.

  7. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  8. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Sahlin, Simon Lennart; Justesen, Kristian Kjær

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  9. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam fuel split into two processes with opposing temperature behavior in the reformate fuels. An 87.5% reduction in active electrode area diminishes the gas conversion impedance in the hydrogen/steam fuel at high fuel flow rates. In both reformates, the second and third lowest frequency processes merged...

  10. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    Science.gov (United States)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 dry reforming and cracking reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  11. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...

  12. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    Science.gov (United States)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  13. Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoguet, Jean-Christophe; Karagiannakis, George P.; Valla, Julia A.; Agrafiotis, Christos C. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Konstandopoulos, Athanasios G. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Department of Chemical Engineering, Aristotle University, P.O. Box 1517, 54006 Thessaloniki (Greece)

    2009-06-15

    The present work focuses on the development of efficient desulphurization processes for multi-fuel reformers for hydrogen production. Two processes were studied: liquid hydrocarbon desulphurization and H{sub 2}S removal from reformate gases. For each process, materials with various chemical compositions and microporous structures were synthesized and characterized with respect to their physicochemical properties and desulphurization ability. In the case of liquid phase desulphurization, the adsorption of sulphur compounds contained in diesel fuel under ambient conditions was studied employing as sorbents, zeolite-based materials, i.e. NaY, HY and metal ion-exchanged NaY and HY, as well as a high-surface area activated carbon (AC), for three different diesel fuels with sulphur content varying between 5 and 180 ppmw. Among all sorbents studied, AC showed the best desulphurization performance followed by cerium ion-exchanged HY. The gas phase desulphurization experiments involved the evaluation of zinc-based mixed oxides, synthesized by non-conventional (combustion synthesis) techniques on high steam content reformate gas mixtures. (author)

  14. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  15. A 3D model for PEM fuel cells operated on reformate

    Science.gov (United States)

    Zhou, Tianhong; Liu, Hongtan

    A three-dimensional mathematical model for PEM fuel cells operated on reformate is developed based on our previous established fuel cell model [Int. J. Transport Phenomena 3 (2001) 177], by incorporating the adsorption and oxidation kinetics of CO on platinum surface proposed by Springer et al. [Proceedings of the Electrochemical Society, Montreal, Canada, 1997; J. Electrochem. Soc. 148 (2001) A11]. This model is capable of studying the effect of CO poisoning as well as the hydrogen dilution effect by inert gases. The adsorption and oxidation kinetics of CO on a platinum surface are incorporated in the source terms of the species equations; thus, the basic form of the mathematical equations are the same as those used for PEM fuel cells operated on pure hydrogen. With this model, we can obtain detailed information on the CO poisoning and variation of CO and hydrogen concentrations inside the anode. The results from this 3D model reveal many new phenomena that cannot be obtained from previous 1D or 2D models. Results of the effects of various operating and design parameters, such as anode flow rate, gas diffuser porosity, gas diffuser thickness, and the width of the collector plate shoulder, are also presented. The modeling results demonstrate the value of this model as a design and optimization tool for the anode of PEM fuel cells operating on reformate.

  16. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial......Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile...

  17. Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach

    Science.gov (United States)

    Freni, S.; Maggio, G.; Cavallaro, S.

    The economy of the world energy sources is showing interest in the utilization of oxygenated products whose purpose is to improve the storage and the transfer of hydrogen as a non-polluting fuel with a high heat power density. An interesting field of utilization of these products is represented by the fuel cell systems for production of electricity. In this respect, the use of the water/ethanol mixture has been investigated as an alternative fuel for molten carbonate fuel cells. Some thermodynamic calculations have been carried out by a mathematical model to determine the energy and mass balances for a water/ethanol fuelled molten carbonate fuel cell. The thermodynamic efficiencies determined for this system have been correlated with the main operative parameters that give some interesting findings indicating encouraging aspects on the utilization of these systems to the production of electricity and heat. Lastly, attractive operative conditions have been determined and compared with that of a molten carbonate fuel cell with methane direct internal reforming.

  18. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    Science.gov (United States)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  19. Fuel reforming and electrical performance studies in intermediate temperature ceria - gadolinia-based SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Livermore, S.J.A. [CERAM Research, Stoke-on-Trent (United Kingdom); Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele Univ. (United Kingdom); Cotton, J.W. [CERAM Research, Stoke-on-Trent (United Kingdom); Ormerod, R.M. [Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele Univ. (United Kingdom)

    2000-03-01

    The methane reforming and carbon deposition characteristics of two nickel/ceria-gadolinia cermet anodes have been studied over the temperature range 550-700 C, for use in intermediate temperature ceria-gadolinia (CGO)-based solid oxide fuel cells (SOFCs), using conventional catalytic methods and temperature-programmed spectroscopy. The electrical performance and durability of planar CGO-based SOFCs with a 280-{mu}m-thick CGO electrolyte, screen printed cathode and different screen printed nickel/CGO cermet anodes have been studied over the temperature range 500-650 C. Temperature-programmed reduction has been used to study the reduction characteristics of the anodes, and indicates the presence of 'bulk' NiO particles and smaller NiO particles in intimate contact with the ceria. Both anodes show good activity towards methane steam reforming with methane activation occurring at temperatures as low as 210 C; steady-state steam reforming of methane was observed using a methane-rich mixture at 650 C, with 20% methane conversion. Post-reaction temperature-programmed oxidation has been used to determine the amount of carbon deposited during reforming and the strength of its interaction with the anode. (orig.)

  20. Experimental evaluation of a Pt based heat exchanger methanol reformer for a HTPEM fuel cell

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2007-01-01

    .g. methanol. A hydrocarbon as methanol can be derived from e.g. biomass and be used directly in a PEM fuel cell, but with a poor performance and often complicated water management system. Another way of using methanol in a fuel cell is by steam reforming it over a catalyst to hydrogen : CH3OH+H2O CO2 + 3H......2. Included in this reaction is the decomposition of methanol, which produces CO : CH3OH CO + 2H2 , The CO can be removed by adding extra water to the gas by a water-gas-shift: CO + H2O CO2 + H2. The hydrogen can then be used in a fuel cell with a much better performance than the DMFC. Many...... Nafion based low temperature PEM fuel cells are intolerant to CO in the anode gas, and require very pure hydrogen with only up to 100 ppm CO or even lower. Another type of PEM fuel cells, the PBI based high temperature PEM operates at high temperatures (160-180oC), and has a much higher tolerance of CO...

  1. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  2. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  3. A High Temperature Polymer Electrolyte Membrane Fuel Cell Model for Reformate Gas

    Directory of Open Access Journals (Sweden)

    M. Mamlouk

    2011-01-01

    Full Text Available A one-dimensional model of a high temperature polymer electrolyte membrane fuel cell using polybenzimidazole (PBI membranes is described. The model considers mass transport through a thin film electrolyte covering the catalyst particles as well as through the porous media. The incorporation of a thin film model describing reactant gas mass transport through electrolyte covering the electrocatalyst is shown to be an essential requirement for accurate simulation. The catalyst interface is represented using a macrohomogeneous model. The influence of carbon monoxide, carbon dioxide, and methane, which would be present in a reformate gas, is considered in terms of the effect on the anode polarisation/kinetics behaviour. The model simulates the influence of operating conditions, cell parameters, and fuel gas compositions on the cell voltage current density characteristics. The model gives good predictions of the effect of oxygen and air pressures on cell behaviour and correctly simulates the mass transport behaviour of the cell. The model with reformate gas shows that additional voltage losses associated with CO poisoning can lead to loss in voltage of tens of mV and thus reduction in power.

  4. Development of a 5 kW fuel cell APU with integrated Diesel reformer; Entwicklung einer 5 kW Brennstoffzellen-APU mit integriertem Diesel-Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Womann, M.; Weinert, R.; Garcia, P. (Tenneco - Heinrich Gillet GmbH, Edenkoben)

    2008-07-01

    Fuel cell systems have great potential to play a key role in our everyday life. Especially in mobile applications, fuel cells will help to increase system efficiencies, to avoid the release of greenhouse gases and to move to a future sustainable mobility. While fuel cell propulsion systems offer great mid- and long-term perspectives, Fuel Cell Auxiliary Power Units (APU) have a real chance to reduce fuel consumption and pollution within the next years by offering an alternative to truck idling. One of the most promising technologies for APUs are PEM (Proton Exchange Membrane) fuel cell systems that are running on diesel reformate. This technology is supported by the European Commission's Sixth Framework Program. Part of this program is the HyTRAN project. 19 partners under the lead of the VOLVO Technology Corporation are developing two innovative, fully integrated and compact fuel cell systems. An important outcome from the project is a complete Fuel Cell APU that uses newly developed components like fuel processor and air compressor. The system was first integrated virtually with CATIA V5. Modular build-up, material, space frame, insulation, system simulations and pressure drop calculations were important issues that had to be worked on. Based on the virtual study, a prototype of the system has been built that will be tested in the next step. (orig.)

  5. Millisecond autothermal catalytic reforming of carbohydrates for synthetic fuels by reactive flash volatilization

    Science.gov (United States)

    Dauenhauer, Paul Jakob

    Carbohydrates including glucose, cellulose, starch and polyols including glycerol, ethylene glycol and methanol produced in large quantities from biomass are considered as a carbon-based feedstock for high temperature catalytic reforming by catalytic partial oxidation. Autothermal catalytic partial oxidation of methanol, ethylene glycol, and glycerol with Rh and Pt-based catalysts with ceria on alumina foam supports at residence times less than ten milliseconds produced equilibrium selectivity to synthesis gas. The addition of steam at S/C>4 produced selectivity to H2 higher than 80% with little or no selectivity to minor products. In a new process referred to as 'reactive flash volatilization,' catalytic partial oxidation was combined with pyrolysis of biomass by directly impinging particles of cellulose, starch, polyethylene, soy oil, or Aspen (Populous Tremuloides) on an operating Rh-based reforming catalyst at 700-800°C. Solid particles endothermically pyrolyzed to volatile organic compounds which mixed with air and reformed on the catalyst exothermically generating heat to drive the overall process. Particles of ˜250 mum microcrystalline cellulose processed at the conditions of C/O=1.0 on a RhCe/gamma-Al2O3/alpha-Al 2O3 at a residence time of ˜70 milliseconds produced a gaseous effluent stream selecting for 50% H2 and 50% CO with no observable side products other than H2O and CO2, and feed ratio of N2/O2, the temperature of the feed gas, the total particle feed rate, and the addition of steam permitting cellulose conversion with ˜75% fuel efficiency. Cellulose, sucrose, and glycerol particle conversion was examined with high-speed photography (1000 frames/second) revealing the formation of a liquid intermediate from cellulose permitting extremely high heat flux (˜1 MW/m 2). Finally, large cellulose rods (7x7x500 mm) were directly pressed against a Rh-based reforming catalyst co-reforming methane with air to examine the processing speed as a function of

  6. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.

    2015-04-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  7. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling......, impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  8. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling...

  9. Canola Oil Fuel Cell Demonstration: Volume 3 - Technical, Commercialization, and Application Issues Associated with Harvested Biomass

    Science.gov (United States)

    2006-08-17

    Fuels for Fuel Cells.” International Journal of Hydrogen Energy , vol 26, pp. 291-301. Arthur D. Little, Inc. 2001. Conceptual Design of POX / SOFC 5...Compact Plasmatron-Boosted Hydrogen Generation Technology for Vehicular Applications.” International Journal of Hydrogen Energy , No. 24. pp. 341

  10. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  11. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  12. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  13. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  14. Development of biogas reforming Ni-La-Al catalysts for fuel cells

    Science.gov (United States)

    Benito, M.; García, S.; Ferreira-Aparicio, P.; Serrano, L. García; Daza, L.

    In this work, the results obtained for Ni-La-Al catalysts developed in our laboratory for biogas reforming are presented. The catalyst 5% Ni/5% La 2O 3-γ-Al 2O 3 has operated under kinetic control conditions for more than 40 h at 700 °C and feeding CH 4/CO 2 ratio 1/1, similar to the composition presented in biogas streams, being observed a stable behaviour. Reaction parameters studied to evaluate the catalyst activity were H 2/CO and CH 4/CO 2 conversion ratio obtained. On the basis of a CH 4 conversion of 6.5%, CH 4/CO 2 conversion ratio achieved 0.48 and H 2/CO ratio obtained was 0.43. By comparison of experimental results to equilibrium prediction for such conditions, is detectable a lower progress of reverse water gas shift reaction. This fact increases the H 2/CO ratio obtained and therefore the hydrogen production. The higher H 2/CO and a CH 4/CO 2 conversion ratio in comparison to CH 4 one close to equilibrium is due to the carbon deposits gasification which avoids catalyst deactivation. A thermodynamic analysis about the application of dry and combined methane reforming to hydrogen production for fuel cells application is presented. Data obtained by process simulation considering a Peng-Robinson thermodynamic model, allows optimizing process conditions depending on biogas composition.

  15. Modeling and optimization of catalytic partial oxidation methane reforming for fuel cells

    Science.gov (United States)

    Chaniotis, A. K.; Poulikakos, D.

    The objective of this paper is the investigation and optimization of a micro-reformer for a fuel cell unit based on catalytic partial oxidation using a systematic numerical study of chemical composition and inflow conditions. The optimization targets hydrogen production from methane. Additionally, the operating temperature, the amount of carbon formation and the methane conversion efficiency are taking into account. The fundamental investigation is first based on simplified reactor models (surface perfectly stirred reactor (SPRS)). A detailed surface chemistry mechanism is adopted in order to capture all the important features of the reforming process. As a consequence, the residence time of the process is taken into account, which means that the products are not necessary in equilibrium. Subsequently, in order to test the validity of the findings from the simplified reactor model, more detailed simulations (involving the Navier-Stokes equations) were performed for the regions of interest. A region where all the targeted operating conditions are satisfied and the yield of hydrogen is around 80% is identified.

  16. Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications

    Science.gov (United States)

    Pla, D.; Salleras, M.; Garbayo, I.; Morata, A.; Sabaté, N.; Divins, N. J.; Llorca, J.; Tarancón, A.

    2015-05-01

    A novel design of a fuel-flexible micro-reactor for hydrogen generation from ethanol and methane is proposed in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an array of more than 20000 through-silicon vertically aligned micro-channels per cm2 of 50 μm in diameter. Due to this unique configuration, the micro-reformer presents a total surface per projected area of 16 cm2/cm2 and per volume of 320 cm2/cm3. The active surface of the micro-reformer, i.e. the walls of the micro-channels, is homogenously coated with a thin film of Rh- Pd/CeO2 catalyst. Excellent steam reforming of ethanol and dry reforming of methane are presented with hydrogen production rates above 3 mL/min·cm2 and hydrogen selectivity of ca. 50% on a dry basis at operations conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 700-800ºC and fuel flows of 0.02 mLL/min for ethanol and 36 mLG/min for methane (corresponding to a system able to produce one electrical watt).

  17. Reforming processes for micro combined heat and powersystem based on solid oxide fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    . In this work, different configurations of SOFC systems for decentralized electricity production are considered and studied. The balance of plant (BoP) components will be identified including fuel and air supply, fuel management, start-up steam, anode re-circulation, exhaust gas heat management, power...... conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming, autothermal reforming and partial oxidation will be investigated for each configuration. Also effective system concepts and key performance parameters will be identified....

  18. Thermodynamic study of characteristics of the converter with separated supply of hydrocarbon fuel for thermo-oxidative and steam reforming

    Science.gov (United States)

    Bassina, I. A.; Malkov, Yu. P.; Molchanov, O. N.; Stepanov, S. G.; Troshchinenko, G. A.; Zasypkin, I. M.

    2014-04-01

    Thermodynamic studies of the converter characteristics were performed to produce hydrogen-containing syngas from hydrocarbon fuel (kerosene) with its separated supply for thermo-oxidative and steam reforming. It is demonstrated that the optimal conditions of the converter performance correlate with the oxidant ratio of α > 0.5 at the heattransfer wall temperature of 1200 K. Hydrogen content in the final syngas reaches 60 % by volume, free carbon (soot) deposition in reforming products is excluded, and there is no need to apply walls water cooling in the converter.

  19. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions

    Science.gov (United States)

    Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.

    The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.

  20. Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells

    Science.gov (United States)

    Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung

    In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.

  1. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2014-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...

  2. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...

  3. Intermediate-temperature solid oxide fuel cell employing reformed effective biogas: Power generation and inhibition of carbon deposition

    Science.gov (United States)

    Miyake, Michihiro; Iwami, Makoto; Goto, Kenta; Iwamoto, Kazuhito; Morimoto, Koki; Shiraishi, Makoto; Takatori, Kenji; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2017-02-01

    A power generation system consisting of an intermediate-temperature solid oxide fuel cell (IT-SOFC) and an external reformer for biogas is developed, and its performance is investigated for advanced use of effective biogas. The IT-SOFC is fueled with syngas produced via biogas reforming, and is successfully operated at 600 and 700 °C using Ni0.8Cu0.2 alloy/gadolinia-doped ceria electrolyte (Ni0.8Cu0.2/GDC) cermet anodes and a LaAlO3 supported-Ni (Ni/LaAlO3) catalyst. The Ni/LaAlO3 catalyst stably exhibits high reforming performance for effective biogas at 800 °C for 27 h, and carbon deposition on the catalyst is prevented. The electrochemical performance of the Ni0.8Cu0.2/GDC cermet anode using syngas fuel possessing a H2:CO ratio of approximately 3:1 is comparable to the performance achieved with H2 fuel; the anode remains stable after 24 h of operation at 700 °C without interruption and is unaffected by carbon deposition.

  4. Development of biogas reforming Ni-La-Al catalysts for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Garcia, S.; Ferreira-Aparicio, P.; Serrano, L. Garcia; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    In this work, the results obtained for Ni-La-Al catalysts developed in our laboratory for biogas reforming are presented. The catalyst 5% Ni/5% La{sub 2}O{sub 3}-{gamma}-Al{sub 2}O{sub 3} has operated under kinetic control conditions for more than 40 h at 700 C and feeding CH{sub 4}/CO{sub 2} ratio 1/1, similar to the composition presented in biogas streams, being observed a stable behaviour. Reaction parameters studied to evaluate the catalyst activity were H{sub 2}/CO and CH{sub 4}/CO{sub 2} conversion ratio obtained. On the basis of a CH{sub 4} conversion of 6.5%, CH{sub 4}/CO{sub 2} conversion ratio achieved 0.48 and H{sub 2}/CO ratio obtained was 0.43. By comparison of experimental results to equilibrium prediction for such conditions, is detectable a lower progress of reverse water gas shift reaction. This fact increases the H{sub 2}/CO ratio obtained and therefore the hydrogen production. The higher H{sub 2}/CO and a CH{sub 4}/CO{sub 2} conversion ratio in comparison to CH{sub 4} one close to equilibrium is due to the carbon deposits gasification which avoids catalyst deactivation. A thermodynamic analysis about the application of dry and combined methane reforming to hydrogen production for fuel cells application is presented. Data obtained by process simulation considering a Peng-Robinson thermodynamic model, allows optimizing process conditions depending on biogas composition. (author)

  5. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  6. Feasability of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphta

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Albertus B.M.

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  7. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane sep

  8. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Jakub Szałatkiewicz

    2016-08-01

    Full Text Available This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  9. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    Science.gov (United States)

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  10. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...... suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated...

  11. The reformation of ethanol and application to fuel cells; A reforma do etanol e sua aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ennio Peres da; Camargo, Joao Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: lh2ennio@ifi.unicamp.br; joaoc@fem.unicamp.br; Carolino, Iaponira Rando [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Quimica]. e-mail: yaponira@hotmail.com

    2002-07-01

    This paper presents the perspectives for using of ethanol (EtOH) obtained from the sugar cane for electric power production, through a integrated system constituted by a hydrogen generator, by using the ethanol reforming associated to a fuel cell feed with the produced hydrogen. The paper also focuses the present re-structuration of the Brazilian electric sector identifying the possibility of implantation that system.

  12. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    OpenAIRE

    A. Megaritis; Yap, D

    2008-01-01

    This is the post-print version of the final paper published in Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V. This paper documents the application of exhaust gas fuel reforming ...

  13. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Mochamad Syamsiro

    2014-08-01

    Full Text Available In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP and polystyrene (PS were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catalysts for the conversion of PP and PS into liquid and gaseous fuel. The treatment of natural zeolites in HCl solution showed an increase of the surface area and the Si/Al ratio while nickel impregnation increased the activity of catalyst. As a result, liquid product was reduced while gaseous product was increased. For PP, the fraction of gasoline (C5-C12 increased in the presence of catalysts. Natural zeolite catalysts could also be used to decrease the heavy oil fraction (>C20. The gaseous products were found that propene was dominated in all conditions. For PS, propane and propene were the main components of gases in the presence of nickel impregnated natural zeolite catalyst. Propene was dominated in pyrolysis over natural zeolite catalyst. The high quality of gaseous product can be used as a fuel either for driving gas engines or for dual-fuel diesel engine.

  14. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support

    Science.gov (United States)

    Hoang, D. L.; Chan, S. H.; Ding, O. L.

    Experimental and modelling studies have been conducted on catalytic autothermal reforming (ATR) of methane for hydrogen production over a sulfide nickel catalyst on a gamma alumina support. The experiments are performed with different feedstock under thermally neutral conditions. The results show that the performance of the reformer is dependent on the molar air-to-fuel ratio (A/F), the molar water-to-fuel ratio (W/F) and the flowrate of the feedstock mixture. The optimum conditions for high methane conversion and high hydrogen yield are A/F = 3-3.5, W/F = 2-2.5 and a fuel flowrate below 120-250 l h -1. Under these conditions, a methane conversion of 95-99% and a hydrogen yield of 39-41% on a dry basis can be achieved and 1 mole of methane can produce 1.8 moles of hydrogen at an equilibrium reactor temperature of not exceeding 850 °C. A two-dimensional reactor model is developed to simulate the conversion behaviour of the reactor for further study of the reforming process. The model includes all aspects of the major chemical kinetics and the heat and mass transfer phenomena in the reactor. The predicted results are successfully validated with experimental data.

  15. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L. [Department of Chemical Engineering and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Ternan, M. [EnPross Inc., 147 Banning Road, Ottawa, Ontario K2L 1C5 (Canada)

    2007-09-27

    This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H{sub 2}-CO{sub 2} gas mixture and from a H{sub 2}-CO{sub 2}-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H{sub 2}-CO{sub 2} gas mixture or a H{sub 2}-CO{sub 2}-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H{sub 2}-CO{sub 2} gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell. (author)

  16. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology

    Science.gov (United States)

    Gardner, C. L.; Ternan, M.

    This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.

  17. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    Science.gov (United States)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  18. PRICE TRANSMISSION AND HOUSEHOLDS DEMAND ELASTICITY FOR FROZEN FISH UNDER FUEL SUBSIDY REFORM IN DELTA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Achoja Felix Odemero

    2013-07-01

    Full Text Available Fuel subsidy removal is assumed to translate to general increase in the cost of operating business such as fish marketing.The response of price of fish and corresponding demand elasticity are welfare issues worthy of investigation in Nigeria. The present study evaluates price transmission in fish marketing system by analysing the response of fish market indices to fuel subsidy reform in Nigeria. Primary data collected with structured questionnaire from purposively selected 78 frozen fish marketers, were analysed with descriptive statistics and regression model. A test of hypothesis shows a significant price transmission of about 100% (P < 0.05. Marketing cost increased by 31.8% and profitability dropped by 24.20%, confirming negative effect of new price regime. The result further revealed a 0.05% drop in quantity of frozen fish demanded by households. It was recommended that economic measures should be introduced by the government to cushion the effect of fuel policy removal.

  19. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    their effects on a reformate-operated stack. Polarization curves were also recorded to complement the impedance analysis of the researched phenomena. An equivalent circuit model was used to estimate the different resistances at varying parameters. It showed a significantly higher low frequency resistance...... at lower stoichiometry. Both anode and cathode stoichiometric ratios had significant effects on the stack performance during the dry hydrogen and reformate operation modes. In both cases the effects faded away when sufficient mass transport was achieved, which took place at λanode= 1.3 for dry hydrogen......, λanode= 1.6 for reformate operation and λcathode= 4.The work also compared dry hydrogen, steam reforming and autothermal reforming gas feeds at160 ◦Cand showed appreciably lower performance in the case of autothermal reforming at the same stoichiometry, mainly attributable to mass transport related...

  20. Removal of CO from reformed fuels by selective methanation over Ni-B-Zr-Oδ catalysts

    Institute of Scientific and Technical Information of China (English)

    Qihai Liu; Xinfa Dong; Yibing Song; Weiming Lin

    2009-01-01

    The Ni-B-Oδ and Ni-B-Zr-Oδcatalysts were prepared by the method of chemical reduction, and the deep removal of CO by selective methana-tion from the reformed fuels was performed over the as-prepared catalysts. The results showed that zirconium strongly influenced the activity and selectivity of the Ni-B-Zr-Oδ catalysts. Over the Ni-B-Oδ catalyst, the highest CO conversion obtained was only 24.32% under the experi-mental conditions studied. However, over the Ni-B-Zr-Oδ catalysts, the CO methanation conversion was higher than 90% when the temperature was increased to 220℃. Additionally, it was found that the Ni/B mole ratio also affected the performance of the Ni-B-Zr-Oδ catalysts. With the increase of the Ni/B mole ratio from 1.8 to 2.2, the CO methanation activity of the catalyst was improved. But when the Ni/B mole ratio was higher than 2.2, the performance of the catalyst for CO selective methanation decreased instead. Among all the catalysts, the Ni29B13Zr58Oδcatalyst investigated here exhibited the highest catalytic performance for the CO selective methanation, which was capable of reducing the CO outlet concentration to less than 40 ppm from the feed gases stream in the temperature range of 230-250℃, while the CO2 conversion was kept below 8% all along. Characterization of the Ni-B-Oδ and Ni-B-Zr-Oδ catalysts was provided by XRD, SEM, DSC, and XPS.

  1. Modelling of CH4 multiple-reforming within the Ni-YSZ anode of a solid oxide fuel cell

    Science.gov (United States)

    Tran, Dang Long; Tran, Quang Tuyen; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2017-08-01

    A new approach for the modelling of the simultaneous dry and steam reforming of CH4 (methane multiple-reforming (MMR)) within the Ni-YSZ anode of a solid oxide fuel cell (SOFC) is introduced in this paper. MMR is modelled by using artificial neural network (ANN) and fuzzy inference system (FIS) that can express the gas composition and temperature dependences of the consumption or the production rate of gaseous species involved in MMR. The necessary parameters for this approach are determined from the measured reforming kinetics for an anode-supported cell (ASC) fuelled by a CH4-CO2-H2O-N2 mixture. The developed MMR model is incorporated into a 3D-CFD planar ASC model to calculate the SOFC performance, and the calculated results match well with experimental values for the feed of simulated biogas (CH4/CO2 = 1) and H2. The established SOFC model considering MMR is a powerful tool to simulate the performance of internal reforming SOFC.

  2. Reforming processes for micro combined heat and powersystem based on solid oxide fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    a large variety of gaseous fuels. The high operating temperature (700-1000°C) of SOFCs has a number of consequences, the most important of which are the possibility to partially reform the raw fuel in the fuel cell anode compartment and the possibility to use high quality heat for cogeneration....... In this work, different configurations of SOFC systems for decentralized electricity production are considered and studied. The balance of plant (BoP) components will be identified including fuel and air supply, fuel management, start-up steam, anode re-circulation, exhaust gas heat management, power...

  3. A Phenomenological Study on the Synergistic Role of Precious Metals and the Support in the Steam Reforming of Logistic Fuels on Monometal Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Clean power source utilizing vast logistic fuel reserves (jet fuels, diesel, and coal would be the main driver in the 21st century for high efficiency. Fuel processors are required to convert these fuels into hydrogen-rich reformate for extended periods in the presence of sulfur, and deliver hydrogen with little or no sulfur to the fuel cell stack. However, the jet and other logistic fuels are invariably sulfur-laden. Sulfur poisons and deactivates the reforming catalyst and therefore, to facilitate continuous uninterrupted operation of logistic fuel processors, robust sulfur-tolerant catalysts ought to be developed. New noble metal-supported ceria-based sulfur-tolerant nanocatalysts were developed and thoroughly characterized. In this paper, the performance of single metal-supported catalysts in the steam-reforming of kerosene, with 260 ppm sulfur is highlighted. It was found that ruthenium-based formulation provided an excellent balance between hydrogen production and stability towards sulfur, while palladium-based catalyst exhibited rapid and steady deactivation due to the highest propensity to sulfur poisoning. The rhodium supported system was found to be most attractive in terms of high hydrogen yield and long-term stability. A mechanistic correlation between the role of the nature of the precious metal and the support for generating clean desulfurized H2-rich reformate is discussed.

  4. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  5. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    Science.gov (United States)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  6. Solid oxide fuel cell (SOFC) systems with integrated reforming or gasification of hydrocarbons; Solid Oxide Fuel Cell (SOFC)-Systeme mit integrierter Reformierung bzw. Vergasung von Kohlenwasserstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Schlitzberger, Christian

    2012-07-01

    In this thesis, innovative concepts for structurally, thermally and materially integrated SOFC-systems with optional CO{sub 2}-capture are developed and analyzed. Initially, options to increase the electrical system-efficiency as coupling of fuel reforming and fuel cell based on the principle of the chemical heat pump and a electrically cascaded stack structure are developed and evaluated regarding e.g. theoretically achievable efficiencies. Based on this evaluation and the state of the art, a new planar stack- and system-design with direct internal reforming and without bipolar plates is systematically constructed. This basic unit can be adopted to different fuel-, operation- and application-requirements and represents a compact system with only few balance-of-plant-components. Due to the thermal and material couplings, the SOFC-waste heat can be directly used to supply the necessary heat for the endothermic reforming process. Additionally, a part of the hot anode off-gas, consisting mainly of water vapor, is recycled as a reforming agent. Therefore, based on the principle of the chemical heat pump, depending on the fuel used, system efficiencies of more than 60% can be achieved, even though the SOFC itself reached only an electrical efficiency of approximately 50%. Because of the cascaded SOFC structure resulting in high fuel utilization, postcombustion of the waste gases is no longer necessary. Due to the fact that SOFC membrane allows only an oxygen-ion flow and thus represents an air separation unit and the SOFC design without the mixing of anode and cathode flows, a simple CO{sub 2}-separation can be realized by condensing the water vapor out of the anode off-gas. In the second part of the thesis mathematical models of the SOFC-system-components are developed and implemented in the C++ based cycle simulation software ENBIPRO (Energie-Bilanz-Programm) owned by the institute. Applying the mathematical models different stack- and system-concepts for several

  7. High temperature reformation of aluminum and chlorine compounds behind the Mach disk of a solid-fuel rocket exhaust

    Science.gov (United States)

    Park, C.

    1976-01-01

    Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.

  8. Silicon-based miniaturized-reformer for portable fuel cell applications

    Science.gov (United States)

    Kwon, Oh Joong; Hwang, Sun-Mi; Ahn, Jin-Goo; Kim, Jae Jeong

    A micro-reformer was made by using silicon fabrication technology and a new catalyst loading method of 'fill-and-dry coating'. The techniques of silicon wet etching, bonding and thin-film deposition were applied in the micro-reformer process, and a commercial Cu-ZnO-Al 2O 3 catalyst served as the reforming catalyst. The volume of the single micro-reactor was 0.55 cm 3 and the micro-reformer stack, which consists of one vaporizer and two reformers, occupied 15 cm 3. Methanol solution was used as the reactant and the composition and feed rate were varied. The operating temperature of the reformer was in the range of 280-320 °C and was controlled by an electrical thin-film heater at a fixed vaporizer temperature of 150 °C. The product gas was composed of 75% H 2, 25% CO 2 and 2100 ppm CO. The maximum hydrogen production rate and conversion were about 200 cm 3 and 95% at 320 °C, respectively.

  9. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  10. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  11. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    Science.gov (United States)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  12. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  13. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    Science.gov (United States)

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-06-09

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  14. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    Science.gov (United States)

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  15. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    Science.gov (United States)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.

    2014-12-01

    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  16. Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.

    2013-08-15

    A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800°C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750°C and 0.8 volts was 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.

  17. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2017-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization...

  18. Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell

    Science.gov (United States)

    Assabumrungrat, S.; Laosiripojana, N.; Piroonlerkgul, P.

    The boundary of carbon formation for the dry reforming of methane in direct internal reforming solid oxide fuel cells (DIR-SOFCs) with different types of electrolyte (i.e., an oxygen ion-conducting electrolyte (SOFC-O 2-) and a proton-conducting electrolyte (SOFC-H +)) was determined by employing detailed thermodynamic analysis. It was found that the required CO 2/CH 4 ratio decreased with increasing temperature. The type of electrolyte influenced the boundary of carbon formation because it determined the location of water formed by the electrochemical reaction. The extent of the electrochemical reaction also played an important role in the boundary of carbon formation. For SOFC-O 2-, the required CO 2/CH 4 ratio decreased with the increasing extent of the electrochemical reaction due to the presence of electrochemical water in the anode chamber. Although for SOFC-H + the required CO 2/CH 4 ratio increased with the increasing extent of the electrochemical reaction at high operating temperature (T > 1000 K) following the trend previously reported for the case of steam reforming of methane with addition of water as a carbon suppresser, an unusual opposite trend was observed at lower operating temperature. The study also considered the use of water or air as an alternative carbon suppresser for the system. The required H 2O/CH 4 ratio and air/CH 4 ratio were determined for various inlet CO 2/CH 4 ratios. Even air is a less attractive choice compared to water due to the higher required air/CH 4 ratio than the H 2O/CH 4 ratio; however, the integration of exothermic oxidation and the endothermic reforming reactions may make the use of air attractive. Water was found to be more effective than carbon dioxide in suppressing the carbon formation at low temperatures but their effect was comparable at high temperatures. Although the results from the study were based on calculations of the SOFCs with different electrolytes, they are also useful for selecting suitable feed

  19. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NARCIS (Netherlands)

    Scherrer, B.; Evans, A.; Santis-Alvarez, A. J.; Jiang, B.; Martynczuk, J.; Galinski, H.; Nabavi, M.; Prestat, M.; Tölke, R.; Bieberle, A.; Poulikakos, D.; Muralt, P.; Niedermann, P.; Dommann, A.; Maeder, T.; Heeb, P.; Straessle, V.; Muller, C.; Gauckler, L. J.

    2014-01-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer micro-SOFC assembly. The device consists of

  20. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NARCIS (Netherlands)

    Scherrer, B.; Evans, A.; Santis-Alvarez, A. J.; Jiang, B.; Martynczuk, J.; Galinski, H.; Nabavi, M.; Prestat, M.; Tölke, R.; Bieberle, A.; Poulikakos, D.; Muralt, P.; Niedermann, P.; Dommann, A.; Maeder, T.; Heeb, P.; Straessle, V.; Muller, C.; Gauckler, L. J.

    2014-01-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer micro-SOFC assembly. The device consists of

  1. Development, investigation and modelling of a micro reformer as part of a system for off-grid power supply with PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rochlitz, Lisbeth

    2008-11-18

    In this thesis a micro reformer fuel cell system ({mu}RFCS) for 300 Wel off-grid power supply, fuelled with bioethanol, was simulated, designed, developed and investigated in a test-rig. First a literature study was carried through to point out the specific characteristics of micro reforming, the most important being heat transfer, and present the systems currently under research and already on the market. As a next step, the processes of the RFCS were simulated with the commercial simulation tool CHEMCAD. This comprised thermodynamic equilibrium simulations for the separate reactions of steam reforming, water gas shift and selective methanation. It also included a simulation of the complete {mu}RFCS with thermodynamic equilibrium for all reactors and assumed values for heat loss and fuel cell efficiency. The resulting net electrical efficiency was 24%. As a third step, a reaction pathway scheme with parallel and serial reactions for the steam reforming reaction of ethanol was simulated, developed, evaluated and proven plausible by matching the simulation to experimental results obtained in the {mu}RFCS test rig. The equilibrium simulations were used to evaluate the catalyst screening carried through for reformer, water gas shift and selective methanation catalysts. The catalysts for the {mu}RFCS were chosen and the optimum operating conditions determined by the screening tests. Having accomplished the simulation and design of the system, the largest proportion of this work was spent on the construction, set-up, testing and evaluation of the complete {mu}RFCS. The focus for the evaluations lay on the reformer side of the system. The technical feasibility was demonstrated for an ethanol/water mix of 3 ml/min at S/C 3. The first tests without optimized heat and water management between the reformer system and the fuel cell system resulted in power output of around 115 W{sub el}, at a total electrical efficiency of 31%. (orig.)

  2. Pembuatan Fuel dari Liquid Hasil Pirolisis Plastik Polipropilen Melalui Proses Reforming Dengan Katalis NiO/γ-Al2O3

    Directory of Open Access Journals (Sweden)

    Mahendra Fajri Nugraha

    2013-09-01

    Full Text Available Estimasi jumlah timbulan sampah di Indonesia pada tahun 2008 mencapai 38,5 juta ton/tahun. Melihat dari sifat penyusun plastik yang tersusun dari komponen hidrokarbon minyak bumi, maka limbah plastik sangat berpotensi untuk dikonversi menjadi BBM. Tujuan penelitian ini Mempelajari proses konversi limbah plastik khususnya jenis polipropilen (PP menjadi fuel serta pengaruh berbagai macam komposisi katalis NiO/γ-Al2O3, temperatur, laju alir reaktan pada reactor reforming terhadap kualitas fuel (yield aromatis yang dihasilkan. Pada penelitian ini bahan baku yang digunakan merupakan plastik jenis Polipropilen (PP. Pada penelitian ini minyak yang telah dihasilkan pada proses pirolisis selanjutnya akan di reforming. Pada penelitian ini digunakan logam NiO dengan penyangga γ-Al2O3 (NiO/γ-Al2O3 sebagai katalis untuk proses reforming minyak hasil pirolisis plastik polipropilen. Variabel penelitian meliputi Loading Ni (% massa : 6; 10; 14, Laju alir (ml/jam : 2I7; 500; 690, Suhu reaksi (oC : 400; 450; 500. Berdasarkan hasil penelitian dan analisa diketahui bahwa % yield aromatis terbesar pada proses reforming minyak hasil pirolisis plastik polipropilen dihasilkan dengan kondisi operasi 14 % loading Ni pada katalis, temperatur reforming 500oC serta laju reaktan sebesar 217 mL/jam. Dengan kata lain dapat disimpulkan bahwa pada penelitian ini, hasil terbaik didapat pada variabel flowlaju terendah dan variabel suhu tertinggi. Kondisi operasi efektif dalam pembuatan fuel pada proses reforming diperoleh saat loading Ni pada katalis NiO/γ-Al2O3 14 %, temperatur reforming 400oC serta laju reaktan 500 mL/jam.

  3. LiquidPower-1. Development and proof-of-concept of core methanol reformer for stationary and motive fuel cell systems and hydrogen refuelling stations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krogsgaard, J.; Mortensen, Henrik [H2 Logic A/S, Herning (Denmark); Skipper, T. [Dantherm Power A/S, Hobro (Denmark)

    2013-03-15

    LiquidPower-1 has developed laboratory test systems for methanol reforming and tested reformers from four different suppliers. This has contributed to determining the state-of-the-art level for methanol reforming and enabled an update of the LiquidPower R and D Roadmap onwards a commercialisation of the technology. The project has achieved the following results: 1) A detailed technical specification of methanol reformers for the fuel cell back-up power and hydrogen refueling station markets has been conducted; 2) Laboratory test systems for methanol reformers has been developed and established at Dantherm Power and H2 Logic; 3) Initial test of reformers from four suppliers has been conducted - with two suppliers being selected for continued tests; 4) Extensive laboratory tests conducted of reformers from two suppliers, with the aim to determine state-of-the-art for price, efficiency, capacity and lifetime. Several errors and break-downs were experienced during the test period, which revealed a need for further R and D to improve lifetime and stability; 5) The LiquidPower F and U Roadmap has been updated. Reformer TCO targets (Total Cost of Operation) for each of the markets have been calculated including updated targets for efficiency and cost. These targets also serve as the main ones to be pursued as part of the continued R and D roadmap execution. Compared to the previous edition of the Roadmap, the project has confirmed the viability of methanol reforming, but also revealed that stability and lifetime needs to be addressed and solved before commencing commercialization of the technology. If the Roadmap is successful a commercialization can commence beyond 2015. (Author)

  4. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Avgouropoulos, George; Papavasiliou, Joan; Ioannides, Theophilos; Neophytides, Stylianos

    2015-11-01

    Highly active Al-doped CuMnOx catalyst supported on metallic copper foam was prepared via the combustion method and placed adjacent to the anode electrocatalyst of a high temperature PEM fuel cell operating at 200-210 °C. The addition of aluminum oxide in the catalyst composition enhanced the specific surface area (19.1 vs. 8.6 m2 g-1) and the reducibility of the Cu-Mn spinel oxide. Accordingly, the catalytic performance of CuMnOx was also improved. The doped sample is up to 2.5 times more active than the undoped sample at 200 °C, depending on the methanol concentration at the inlet, while CO selectivity is less than 0.8% in all cases. A membrane-electrode assembly comprising the ADVENT cross-linked TPS® high-temperature polymer electrolyte was integrated with the Cu-based methanol reformer in an Internal Reforming Methanol Fuel Cell (IRMFC). In order to avoid extensive poisoning of the reforming catalyst by H3PO4, a thin separation plate was placed between the reforming catalyst and the electrooxidation catalyst. Preliminary results obtained from a single-cell laboratory prototype demonstrated the improved functionality of the unit. Indeed, promising electrochemical performance was obtained during the first 24 h, during which the required H2 for achieving 580 mV at 0.2 A cm-2, was supplied from the reformer.

  5. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  6. Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications

    Science.gov (United States)

    Choi, Yongtaek; Stenger, Harvey G.

    To evaluate reaction rates for making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, the water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a microreactor testing unit using a commercial Cu-ZnO/Al 2O 3 catalyst for the first three reactions and Pt-Fe/γ-alumina catalyst for the last reaction. The activity tests were performed between 120 and 325 °C at atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, a simplified reaction network of five elementary reactions was proposed and parameters for all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. Combining the three reactors with several heat exchange options, an integrated methanol reformer system was designed and simulated using MATLAB. Using this simulation, the product distribution, the effects of reactor volume and temperature, and the options of water and air injection rates were studied. Also, a series of optimization tests were conducted to give maximum hydrogen yield and/or maximum economic profit.

  7. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  8. Non-linear model reduction and control of molten carbonate fuel cell systems with internal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Min

    2007-10-12

    Currently, the process design of fuel cells and the development of control strategies is mainly based on heuristic methods. Fuel cell models are often too complex for control purposes, or they are developed for a specific type of fuel cell and valid only in a small range of operation conditions. The application of fuel cell models to controller design is still limited. Furthermore, suitable and simple-to-implement design strategies for fuel cell control remain an open area. There is thus a motivation for simplifying dynamic models for process control applications and for designing suitable control strategies for fuel cells. This is the main objective of this work. As an application example, the 250 kW industrial molten carbonate fuel cell (MCFC) system HotModule by MTU CFC Solutions, Germany is considered. A detailed dynamic two-dimensional spatially distributed cross-flow model of a MCFC from literature is taken as a starting point for the investigation. In Chapter 2, two simplified model versions are derived by incorporating additional physical assumptions. One of the simplified models is extended to a three-dimensional stack model to deal with physical and chemical phenomena in the stack. Simulations of the stack model are performed in Chapter 3 in order to calculate the mass and temperature distributions in the direction perpendicular to the electrode area. The other simplified model forms the basis for a low order reduced model that is derived in Chapter 4. The reduced-order model is constructed by application of the Karhunen-Loeve Galerkin method. The spatial temperature, concentration and potential profiles are approximated by a set of orthogonal time independent spatial basis functions. Problem specific basis functions are generated numerically from simulation data of the detailed reference model. The advantage of this approach is that a small number of basis functions suffices in order to approximate the solution of the detailed model very well. The

  9. Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car

    Science.gov (United States)

    Peters, R.; Düsterwald, H. G.; Höhlein, B.

    A methanol reformer concept including a reformer, a catalytic burner, a gas cleaning unit, a PEMFC and an electric motor for use in fuel-cell-powered passenger cars was investigated. Special emphasis was placed on the dynamics and the long-term stability of the reformer. Experiments on a laboratory scale were performed in a methanol steam reformer consisting of four different reactor tubes, which were separately balanced. Due to the endothermy of the steam reforming reaction of methanol, a sharp drop in the reaction temperature of about 50 K occurs at the beginning of the catalyst bed. This agrees well with the high catalytic activity at the entrance of the catalyst bed. Forty-five percent of the methanol was converted within the first 10 cm of the catalyst bed where 12.6 g of the CuO/ZnO catalyst was located. Furthermore, CO formation during methanol steam reforming strongly depends on methanol conversion. Long-term measurements for more than 700 h show that the active reaction zone moved through the catalyst bed. Calculations, on the basis of these experiments, revealed that 63 g of reforming catalyst was necessary for mobile PEMFC applications, in this case for 400 W el at a system efficiency of 42% and a theoretical specific hydrogen production of 5.2 m 3n/(h kg Cat). This amount of catalyst was assumed to maintain a hydrogen production of at least 80% of the original amount over an operating range of 3864 h. Cycled start-up and shut-down processes of the methanol steam reformer under nitrogen and hydrogen atmospheres did not harm the catalytic activity. The simulation of the breakdown of the heating system, in which a liquid water/methanol mixture was in close contact with the catalyst, did not reveal any deactivation of the catalytic activity.

  10. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  11. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  12. Military Requirements for JP-8 Reformers and Solid Oxide Fuel Cell Power Systems

    Science.gov (United States)

    2005-12-01

    agreement between the Purchasing Authority and the supplier. The inhibitor shall be composed entirely of diethylene glycol mono- methyl ether except that...occur. 2. Federal Specification A-A-52624 – Antifreeze, Multi Engine Type This CID covers the requirements for ethylene glycol -based and propylene ...percentage listed): • 2-Napthalenol [(Phenylazo) phenyl ]-Azo Alkyl Derivatives • Benzene • Ethyl Benzene • Other absorbent materials. Ground Fuel

  13. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    Science.gov (United States)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  14. A micro-structured 5kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units Part I. Development of autothermal reforming catalyst and reactor

    OpenAIRE

    Kolb, Gunther; Baier, Tobias; Schürer, Jochen; Tiemann, David; Ziogas, Athanassios; Ehwald, Hermann; Alphonse, Pierre

    2008-01-01

    A micro-structured autothermal reformer was developed for a fuel processing/fuel cell system running on iso-octane and designed for an electrical power output of 5kWel. The target application was an automotive auxiliary power unit (APU). The work covered both catalyst and reactor development. In fixed bed screening, nickel and rhodium were identified as the best candidates for autothermal reforming of gasoline. Under higher feed flow rates applied in microchannel testing, a catalyst formul...

  15. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison

    Science.gov (United States)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    Dynamic modeling and analysis of solid oxide fuel cell systems can provide insight towards meeting transient response application requirements and enabling an expansion of the operating envelope of these high temperature systems. SOFC modeling for system studies are accomplished with channel-level interface charge transfer models, which implement dynamic conservation equations coupled with additional submodels to capture the porous media mass transport and electrochemistry of the cell. Many of these models may contain simplifications in order to decouple the mass transport, fuel reforming, and electrochemical processes enabling the use of a 1-D model. The reforming reactions distort concentration profiles of the species within the anode, where hydrogen concentration at the triple-phase boundary may be higher or lower than that of the channel altering the local Nernst potential and exchange current density. In part one of this paper series, the modeling equations for the 1-D and 'quasi' 2-D models are presented, and verified against button cell electrochemical and channel-level reforming data. Steady-state channel-level modeling results indicate a 'quasi' 2-D SOFC model predicts a more uniform temperature distribution where differences in the peak cell temperature and maximum temperature gradient are experienced. The differences are most prominent for counter-flow cell with high levels of internal reforming. The transient modeling comparison is discussed in part two of this paper series.

  16. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    Science.gov (United States)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  17. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  18. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, J.-D.; Hendriksen, Peter Vang;

    2011-01-01

    of such a system require SOFC models that include accurate description of the steam reforming rate. The objective of this article is to review the reported kinetic expressions for the steam reforming reaction. Extensive work has been performed on traditional catalysts for steam reforming. Because of differences...

  19. Biogas Production from Local Biomass Feedstock in the Mekong Delta and Its Utilization for a Direct Internal Reforming Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Shiratori

    2017-05-01

    Full Text Available Fuel-flexible solid oxide fuel cell (SOFC technologies are presently under study in a Vietnam-Japan international joint research project. The purpose of this project is to develop and demonstrate an SOFC-incorporated energy circulation system for the sustainable development of the Mekong Delta region. Lab-scale methane fermentation experiments in this study with a mixture of biomass feedstock collected in the Mekong Delta (shrimp pond sludge, bagasse, and molasses from sugar production recorded biogas production yield over 400 L kgVS−1 with H2S concentration below 50 ppm level. This real biogas was directly supplied to an SOFC without any fuel processing such as desulfurization, methane enrichment and pre-reforming, and stable power generation was achieved by applying paper-structured catalyst (PSC technology.

  20. Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; Evans, Tabitha; Starace, Anne K.; ten Dam, Jeroen; Watson, Michael J.; Magrini, Kim

    2017-01-07

    Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon present in this stream. This work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). The MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.

  1. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    Science.gov (United States)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  2. Numerical Simulation of Plasma-Dynamical Processes in the Technological Inductively Coupled RF Plasmatron with Gas Cooling

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2016-01-01

    Full Text Available The electrodeless inductively coupled RF plasmatron (ICP torches became widely used in various fields of engineering, science and technology. Presently, owing to development of new technologies to produce very pure substances, nanopowders, etc., there is a steadily increasing interest in the induction plasma. This generates a need for a broad range of theoretical and experimental studies to optimize the design and technological parameters of different ICP equipment.The paper presents a numerical model to calculate parameters of inductively coupled RF plasmatron with gas-cooling flow. A finite volume method is used for a numerical solution of a system of Maxwell's and heat transfer equations in the application package ANSYS CFX (14.5. The pseudo-steady approach to solving problems is used.A numerical simulation has been computed in the application package ANSYS CFX (14.5 for a specific design option of the technological ICP, which has a three-coils inductor and current amplitude in the range J к = 50-170 A (3 MHz. The pure argon flows in the ICP. The paper discusses how the value of discharge current impacts on the thermodynamic parameters (pressure, temperature and the power energy in discharge zone. It shows that the ICP can generate a plasma stream with a maximum temperature of about 10 kK and an output speed of 10-15 m/s. The work determines a length of the plasma stream with a weight average temperature of more than 4 kK. It has been found that in order to keep the quartz walls in normal thermal state, the discharge current amplitude should not exceed 150 A. The paper shows the features of the velocity field distribution in the channel of the plasma torch, namely, the formation of vortex in the position of the first coil. The results obtained are important for calculating the dynamics of heating and evaporation of quartz particles in the manufacturing processes for plasma processing of quartz concentrate into high-purity quartz and

  3. Investigations on autothermal reforming of kerosene Jet A-1 for supplying solid oxide fuel cells (SOFC); Untersuchungen zur autothermen Reformierung von Kerosin Jet A-1 zur Versorgung oxidkeramischer Festelektrolyt-Brennstoffzellen (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, B.

    2007-01-25

    The auxiliary power unit of commercial aircraft is a gas turbine producing electric power with an efficiency of 18 %. This APU can be replaced by a fuel cell system, consisting of an autothermal kerosene reformer and a solid oxide fuel cell (SOFC). The fuel is kerosene Jet A-1. The autothermal reforming of Jet A-1 is practically investigated under variation of steam-to-carbon-ratio, air ratio, space velocity, time in operation and reactor pressure on commercial catalysts. Using stationary system simulation the thermodynamic processes of the device is investigated. Finally, the autothermal reformer and the SOFC consisting of 14 cells are coupled. During this test series, I-V-characteristics are measured, fuel utilisation is calculated and the self-sufficient system operation is shown. (orig.)

  4. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  5. Combining GTL fuel, reformed EGR and HC-SCR aftertreatment system to reduce diesel NO{sub x} emissions. A statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Fernandez, J. [E.T.S. Ingenieros Industriales, Dpto. Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Tsolakis, A. [School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Cracknell, R.F.; Clark, R.H. [Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH (United Kingdom)

    2009-03-15

    An ultra-low sulphur diesel (ULSD) fuel and a synthetic gas-to-liquid (GTL) fuel, besides different types of standard and reformed EGR, were evaluated in a single-cylinder, direct injection, diesel engine equipped with hydrocarbon-selective catalytic reduction (HC-SCR) aftertreatment system. The results obtained were statistically analysed (at 95% statistical significance) to identify the most significant factors that affect NO{sub x} emissions and to search for the optimum operation conditions in order to minimize these emissions. For that purpose, a fully crossed factorial experimental design was used, including two different engine speeds (1200 and 1500 rpm), two engine loads (25% and 50%), and four EGR/REGR ratios (0%, 10%, 20% and 30%) resulting in almost one hundred tests. An optimal combination of fuel type, REGR type and REGR ratio was proved to reduce around 89-95% of the reference NO{sub x} emissions. In general, at 25% engine load GTL fuelling combined with the reformed EGR with the highest hydrogen content was found the most desirable, as the hydrogen sharply increased the NO{sub x} conversion in the SCR catalyst. Differently, at 50% load standard EGR was sufficient to reach high NO{sub x} reductions. These findings may be used for the implementation of a system on-board capable to switch from EGR to REGR, which will help engine manufacturers to meet the future emission regulations. (author)

  6. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    , i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...

  7. Utilization of gases from biomass gasification in a reforming reactor coupled to an integrated planar solid oxide fuel cell: Simulation analysis

    Directory of Open Access Journals (Sweden)

    Costamagna Paola

    2004-01-01

    Full Text Available One of the high-efficiency options currently under study for a rational employment of hydrogen are fuel cells. In this scenario, the integrated planar solid oxide fuel cell is a new concept recently proposed by Rolls-Royce. The basic unit of a modular plant is the so called "strip", containing an electro-chemical reactor formed by a number of IP-SOFC modules, and a reforming reactor. For a better under standing of the behavior of a system of this kind, a simulation model has been set up for both the electrochemical reactor and the reformer; both models follow the approach typically employed in the simulation of chemical reactors, based on the solution of mass and energy balances. In the case of the IP-SOFC electro chemical reactor, the model includes the calculation of the electrical resistance of the stack (that is essentially due to ohmic losses, activation polar is action and mass transport limitations, the mass balances of the gaseous flows, the energy balances of gaseous flows (anodic and cathodic and of the solid. The strip is designed in such a way that the reaction in the reforming reactor is thermally sustained by the sensible heat of the hot air exiting the electrochemical section; this heat exchange is taken into account in the model of the reformer, which includes the energy balance of gaseous flows and of the solid structure. Simulation results are reported and discussed for both the electrochemical reactor in stand-alone configuration (including comparison to experimental data in a narrow range of operating conditions and for the complete strip.

  8. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of hydrogen separation type reforming technology); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Suiso bunrigata kaishitsu gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of new hydrogen production technology using natural gas as the feedstock, for promotion of commercializing high-efficiency fuel cell systems. The hydrogen separation type reforming system is composed of a reformer for producing and purifying hydrogen, and hydrogen suction unit for separating hydrogen produced. The reformer itself can produce pure hydrogen, because the hydrogen permeation membrane, provided in the reforming catalyst bed, can purify hydrogen selectively separated from the reformer gas. The remaining reformer off gas is burned with air to generate heat for the reforming reactions. This reforming process can produce as much hydrogen as does the conventional process at lower temperature, around 500 degrees C versus 800 degrees C needed by the conventional one, and hence more efficient, because hydrogen permeating through the membrane is discharged out of the system to allow the reactions to proceed without being limited by the chemical equilibrium. For development of membrane module manufacturing technology, the prototype membranes are prepared and their performances are evaluated. They are also incorporated in the test reformer to investigate the module performance and interactions between the membrane and reformer structure. Also described are improvement of efficiency of the hydrogen separation type reformer and development of the demonstration system. (NEDO)

  9. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-07-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO{sub 2} (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO{sub 2}-equivalent/kg H{sub 2} for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO{sub 2}-equivalent/kg H{sub 2} for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO{sub 2}-eq emissions.(author)

  10. High yield hydrogen production from low CO selectivity ethanol steam reforming over modified Ni/Y 2O 3 catalysts at low temperature for fuel cell application

    Science.gov (United States)

    Sun, Jie; Luo, Dingfa; Xiao, Pu; Jigang, Li; Yu, Shanshan

    Ethanol-water mixtures were converted directly into H 2 with 67.6% yield and >98% conversion by catalytic steam reforming at 350 °C over modified Ni/Y 2O 3 catalysts heat treated at 500 °C. XRD was used to test the structure and calculate the grain sizes of the samples with different scan rates. The initial reaction kinetics of ethanol over modified and unmodified Ni/Y 2O 3 catalysts were studied by steady state reaction and a first-order reaction with respect to ethanol was found. TPD was used to analyze mechanism of ethanol desorption over Ni/Y 2O 3 catalyst. Rapid vaporization, efficiency tube reactor and catalyst were used so that homogeneous reactions producing carbon, acetaldehyde, and carbon monoxide could be minimized. And even no CO detective measured during the first 49 h reforming test on the modified catalyst Ni/Y 2O 3. This process has great potential for low cost H 2 generation in fuel cells for small portable applications where liquid fuel storage is essential and where systems must be small, simple, and robust.

  11. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part II: Benchmarking transient response and dynamic model fidelity assessment

    Science.gov (United States)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    One- and 'quasi' two-dimensional (2-D) dynamic, interface charge transport models of a solid oxide fuel cell (SOFC) developed previously in a companion paper, are benchmarked against other models and simulated to evaluate the effects of coupled transport and chemistry. Because the reforming reaction can distort the concentration profiles of the species within the anode, a 'quasi' 2-D model that captures porous media mass transport and electrochemistry is required. The impact of a change in concentration at the triple-phase boundary is twofold wherein the local Nernst potential and anode exchange current densities are influenced, thereby altering the current density and temperature distributions of the cell. Thus, the dynamic response of the cell models are compared, and benchmarked against previous channel-level models to gauge the relative importance of capturing in-situ reforming phenomena on cell performance. Simulation results indicate differences in the transient electrochemical response for a step in current density where the 'quasi' 2-D model predicts a slower rise and fall in cell potential due to the additional volume of the porous media and mass transport dynamics. Delays in fuel flow rate are shown to increase the difference observed in the electrochemical response of the cells.

  12. Development and test of 2 kW natural gas reformers for high and low temperature PEM fuel cells. Project report 2; Udvikling/afproevning af 2 kW naturgasreformere for hoej- og lavtemperatur PEM-braendselsceller. Projektrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de [Dansk Gasteknisk Center (Denmark); Bech-Madsen, J. [IRD (Denmark); Bandur, V. [DTU (Denmark); Bartholin, N. [DPS (Denmark)

    2005-11-15

    The use of fuel cells for combined heat and power generation has advantages as regards technology and usability compared to existing CHP technology. Special characteristics for a fuel cell plant are: 1) It can be constructed in modules over a wide power range, 2) The efficiency is significantly independent of size, 3) It is noiseless, 4) A flexible coupling between power and heat production, 5) As there is no movable parts, long service check intervals can be expected, 6) Low emissions. The fuel for fuel cells is hydrogen and optimal utilization and CO{sub 2} reduction will require a 'hydrogen society'. While waiting for a 'hydrogen society' to arise, it is possible to use central or on-site reformers that convert natural gas to hydrogen. There will be some CO{sub 2} emission connected to energy use. The objective of the present project has been development and test of on-site reformers (fuel processors) for hydrogen supply to respectively high and low temperature PEM fuel cells aiming at use in single family houses. Sulphur cleaning, reformers, and lab-scale coupling with fuel cell KV units have been developed and tested during the project, as well as development and test of periphery equipment. (BA)

  13. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  14. Investigation of sulfur interactions on a conventional nickel-based solid oxide fuel cell anode during methane steam and dry reforming

    Science.gov (United States)

    Jablonski, Whitney S.

    Solid oxide fuel cells (SOFC) are an attractive energy source because they do not have undesirable emissions, are scalable, and are feedstock flexible, which means they can operate using a variety of fuel mixtures containing H2 and hydrocarbons. In terms of fuel flexibility, most potential fuel sources contain sulfur species, which severely poison the nickel-based anode. The main objective of this thesis is to systematically evaluate sulfur interactions on a conventional Ni/YSZ anode and compare sulfur poisoning during methane steam and dry reforming (SMR and DMR) to a conventional catalyst (Sud Chemie, Ni/K2O-CaAl2O4). Reforming experiments (SMR and DMR) were carried out in a packed bed reactor (PBR), and it was demonstrated that Ni/YSZ is much more sensitive to sulfur poisoning than Ni/K2O-CaAl2O4 as evidenced by the decline in activity to zero in under an hour for both SMR and DMR. Adsorption and desorption of H2S and SO2 on both catalysts was evaluated, and despite the low amount of accessible nickel on Ni/YSZ (14 times lower than Ni/K2O-CaAl2O4), it adsorbs 20 times more H2S and 50 times more SO2 than Ni/K 2O-CaAl2O4. A one-dimensional, steady state PBR model (DetchemPBED) was used to evaluate SMR and DMR under poisoning conditions using the Deutschmann mechanism and a recently published sulfur sub-mechanism. To fit the observed deactivation in the presence of 1 ppm H2S, the adsorption/desorption equilibrium constant was increased by a factor 16,000 for Ni/YSZ and 96 for Ni/K2O-CaAl2O4. A tubular SAE reactor was designed and fabricated for evaluating DMR in a reactor that mimics an SOFC. Evidence of hydrogen diffusion through a supposedly impermeable layer indicated that the tubular SAE reactor has a major flaw in which gases diffuse to unintended parts of the tube. It was also found to be extremely susceptible to coking which leads to cell failure even in operating regions that mimic real biogas. These problems made it impossible to validate the tubular SAE

  15. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO{sub 2} catalysts for biogas oxidative steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vita, Antonio, E-mail: antonio.vita@itae.cnr.it; Italiano, Cristina; Fabiano, Concetto; Laganà, Massimo; Pino, Lidia

    2015-08-01

    A series of nanosized Ni/CeO{sub 2} catalysts were prepared by Solution Combustion Synthesis (SCS) varying the fuel (oxalyldihydrazide, urea, carbohydrazide and glycerol), the cerium precursor (cerium nitrate and cerium ammonium nitrate) and the nickel loading (ranging between 3.1 and 15.6 wt%). The obtained powders were characterized by X-ray Diffraction (XRD), N{sub 2}-physisorption, CO-chemisorption, Temperature Programmed Reduction (H{sub 2}-TPR) and Scanning Electron Microscopy (SEM). The catalytic activity towards the Oxy Steam Reforming (OSR) of biogas was assessed. The selected operating variables have a strong influence on the nature of combustion and, in turn, on the morphological and structural properties of the synthesized catalysts. Particularly, the use of urea allows to improve nickel dispersion, surface area, particle size and reducibility of the catalysts, affecting positively the biogas OSR performances. - Highlights: • Synthesis of Ni/CeO{sub 2} nanopowders by quick and easy solution combustion synthesis. • The fuel and precursor drive the structural and morphological properties of the catalysts. • The use of urea as fuel allows to improve nickel dispersion, surface area and particle size. • Ni/CeO{sub 2} (7.8 wt% of Ni loading) powders synthesized by urea route exhibits high performances for the biogas OSR process.

  16. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-01-01

    surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all......In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC) are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA) of 45 cm2 active...... the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may...

  17. Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier

    Directory of Open Access Journals (Sweden)

    IGBN Makertihartha

    2009-05-01

    Full Text Available The synthesis of hydrogen from hydrocarbons through the steam reforming of methanol on Cu/ZnO/Al2O3 catalyst has been investigated. This process is assigned to be one of the promising alternatives for fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of methanol steam reforming which is a gas phase catalytic reaction between methanol and water. In this research, the Cu/ZnO/Al2O3 catalyst prepared by the dry impregnation was used. The specific surface area of catalyst was 194.69 m2/gram.The methanol steam reforming (SRM reaction was carried out by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding the reaction, catalyst was reduced in the H2/N2 mixture at 160 °C. This study shows that at 300 °C reaction temperature, methanol conversion reached 100% at 28 mL/minute gas flow rate. This conversion decreased significantly with the increase of gas flow rate. Meanwhile, the catalyst prepared for SRM was stable in 36 hours of operation at 260 °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.

  18. Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells

    Science.gov (United States)

    Iulianelli, A.; Liguori, S.; Huang, Y.; Basile, A.

    2015-01-01

    Steam reforming of a model biogas mixture is studied for generating clean hydrogen by using an inorganic membrane reactor, in which a composite Pd/Al2O3 membrane separates part of the produced hydrogen through its selective permeation. The characteristics of H2 perm-selectivity of the fresh membrane is expressed in terms of H2/N2 ideal selectivity, in this case equal to 4300. Concerning biogas steam reforming reaction, at 380 °C, 2.0 bar H2O:CH4 = 3:1, GHSV = 9000 h-1 the permeate purity of the recovered hydrogen is around 96%, although the conversion (15%) and hydrogen recovery (>20%) are relatively low; on the contrary, at 450 °C, 3.5 bar H2O:CH4 = 4:1, GHSV = 11000 h-1 the conversion is increased up to more than 30% and the recovery of hydrogen to about 70%. This novel work constitutes a reference study for new developments on biogas steam reforming reaction in membrane reactors.

  19. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  20. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  1. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  2. Autothermal reforming of simulated and commercial fuels on zirconia-supported mono- and bimetallic noble metal catalysts

    OpenAIRE

    Kaila, Reetta

    2008-01-01

    New energy sources are needed if energy supply and demand are to remain in balance. At the same time, the level of emissions needs to be reduced to minimise their contribution to the greenhouse effect. Renewable energy sources, and hydrogen (H2), have been attracting much attention, and more efficient technologies for energy recovery have been developed. Among these are fuel cells. H2 is not a source of energy but an energy carrier, which needs to be produced from a primary fuel (hydroca...

  3. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Science.gov (United States)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  4. Energetic-economical analysis of a stationary for energy generation with fuel cells and natural gas reforming; Analise energetico-economica de um sistema estacionario de geracao de energia com celulas a combustivel e reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues; Silva, Cristiane Abrantes da; Soares, Guilherme Fleury Wanderley; Lopes, Francisco da Costa; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  5. Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology

    Science.gov (United States)

    Shiratori, Y.; Sakamoto, M.

    2016-11-01

    Direct internal reforming (DIR) operation of a solid oxide fuel cell (SOFC) is a very attractive concept for downsizing and cost reduction of SOFC systems. This study aimed to develop stable operation of a DIR-SOFC fuelled by biogas. The current-voltage (I-V) curves of 2 × 2 cm2 planar SOFCs (anode- and electrolyte-supported cells, ASC and ESC, respectively.) were measured at 800 °C in the direct feed of a simulated biogas mixture (CH4/CO2 = 1), and the flexible structured catalyst material (paper-structured catalyst (PSC)) was applied on the anode material for performance enhancement. By applying a hydrotalcite (HT)-dispersed PSC (HT-PSC), the sulfur tolerance of the SOFC in the DIR operation was remarkably improved. By the effect of the HT-PSC, for both ASC and ESC, a stable cell voltage higher than 800 mV was obtained over 200 h at 0.2 A cm-2 in the direct feed of simulated biogas under 5 ppm H2S poisoning.

  6. Fuel Tax Just Around Corner

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Currently, the National Development and Reform Commission, the country's top economic planning body, is working with other government departments on reforming China's retail oil price mechanism and introducing a fuel tax.

  7. 非热等离子体烃类燃料氧化重整反应器的研究进展%Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    丁天英; 刘景林; 赵天亮; 朱爱民

    2015-01-01

    Oxidative reforming (partial oxidation) of fuel is mildly exothermic and has the advantages of fast reaction and low energy cost, which is especially suitable for on-line production of H2 or H2-rich gas. Atmospheric-pressure non-thermal plasma provides a very promising new technology for oxidative reforming of fuel with significant advantages of feed flexibility, fast response, and compact, efficient reactor. The recent developments of atmospheric pressure non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel are reviewed. The warm plasma generated by spark and gliding arc discharges and its fuel reforming reactors are presented. Compared with the reactors of cold plasma generated by corona and dielectric barrier discharges, the warm plasma reactor exhibits high fuel conversion as well as low energy cost.%燃料氧化重整(部分氧化)为温和的放热反应,其反应速率快、能耗低,特别适用于在线制取氢气或富氢气体。大气压非热等离子体为燃料氧化重整提供了一种应用前景广泛的新技术,展现了对燃料具有普适性、快速响应和反应器紧凑高效等优点。综述了大气压非热等离子体烃类燃料氧化重整反应器的研究进展,着重阐述了火花和滑动弧放电产生的暖等离子体及其烃类燃料重整反应器。与电晕和介质阻挡放电产生的冷等离子体反应器相比,暖等离子体反应器具有燃料转化率高和能耗低的优点。

  8. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    Science.gov (United States)

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  9. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  10. Deployable Fuel Cell Power Generator - Multi-Fuel Processor

    Science.gov (United States)

    2009-02-01

    apparent difference between the two investigations is the catalyst; however, the larger capacity of the packed-bed over that of microchannel reactor might...Steam Reforming Reactor and the Radiant Burner ................................................................... 7  6: Combustion Fuel Vaporizer...demonstrate the direct steam reforming concept. Packed-bed steam reforming reactor and coiled tube steam generator with radiant burners were used. The

  11. Applications of solar reforming technology

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  12. Fuel Reforming Technologies (BRIEFING SLIDES)

    Science.gov (United States)

    2009-09-01

    Surface Analysis, Reactions Thermodynamics Modeling, Novel Catalyst Materials Formulation, and Catalyst Coating On Substrate; Catalytic Reactor system...catalyst materials formulation  Catalytic reactor system testing and analysis  Catalyst Coating On Metal Substrate  Reactions Thermodynamics Modeling...Technology & Core Competency  Microchannel and Matrix Technologies  Transport Phenomena Theory, Formulation, And Modeling  Computational And

  13. 镍基整体式催化剂重整净化生物制粗燃气性能的研究%Reforming of Biomass Raw Fuel Gas over Monolithic Catalyst

    Institute of Scientific and Technical Information of China (English)

    王晨光; 王铁军; 常杰; 吕鹏梅

    2007-01-01

    The performance of the Ni monolithic catalyst for dry reforming and partial oxidation reforming(POR) of biomass fuel gas were studied at 750 ℃ during 108 hours with naphthalene as tar model compound. The catalyst shows good performance in both dry reforming and POR. Tar was completely converted to permanent gases and lighter hydrocarbon compounds. The catalyst kept its activity during the lifetime test.%以萘为焦油模型化合物,考察了镍基整体式催化剂上生物质粗燃气干重整和临氧重整的性能.镍基重整催化剂表现出良好的催化重整活性,焦油全部转化为H2、CO及微量轻质组分.在750 ℃下连续反应108 h,未检测到反应器压降变化和CH4与焦油转化率下降,整体式催化剂表现出较好的活性和稳定性.

  14. Hydrogen production through allothermal ethanol reforming for fuel cells application: first generation prototype; Producao de hidrogenio atraves da reforma-vapor do etanol para aplicacoes em celulas a combustivel: prototipo de primeira geracao

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Silva, Ennio Peres da; Camargo, Joao Carlos; Neves Junior, Newton Pimenta; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Lab. de Hidrogenio; Pinto, Cristiano da Silva [Centro Nacional de Referencia em Energia do Hidrogenio, Campinas, SP (Brazil)

    2004-07-01

    This paper describes preliminary results obtained with the allothermal ethanol reforming system for synthesis gas (syn-gas) production and hydrogen upgrading and purification for fuel cell applications. The system was designed to supply hydrogen to a 500 W PEM (Proton Exchange Membrane) fuel cell, with an electrical efficiency of 45%, which requires approximately 0.45 m3.h-1 of hydrogen, with a maximum carbon monoxide concentration of 20 {mu}mol.mol-1 (ppm). The study was performed changing the operation temperature and analyzing the resulting syn-gas through gas chromatography for a specific catalyst. This catalyst was tested up to 700 deg C, 1 bar and fixed stoichiometric steam to carbon ratio. The syn-gas, before carbon monoxide shift reactor implementation, was submitted to a two-bed-three-segments purification step composed of chemical and physical molecular sieves for hydrogen purification. The carbon monoxide shift reactor (water gas shift reactor) is under development to improve the efficiency-to-hydrogen and maximize the life of the purification bed. The final results also include a discussion about possible reactions involved in ethanol steam-reforming for such catalyst. (author)

  15. Studies on the efficiency during reactivation of a generation system based on natural gas reformer and a 5 k W fuel cell; Estudos de eficiencia durante reativacao de um sistema de geracao baseado em reformador de gas natural e celula a combustivel de 5 kW

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Francisco da Costa; Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues da; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: fcl@cepel.br

    2008-07-01

    Fuel cell based power generation systems have been pointing as promising technology for stationary applications mainly to supply power to critical loads. Among several types of fuel cells the Polymer Electrolyte Membrane Fuel Cells (PEMFC) are the main type used around the world. Nowadays reformers are widely employed to produce hydrogen for fuel cells. The Fuel Cell Laboratory of CEPEL has a power plant based on a 5 kW PEMFC and a natural gas reformer. For a long time the PEMFC was inoperable due to reformer malfunctioning and during this time the full power availability of PEMFC was lost due to deactivation of its catalytic sites. In most cases this deactivation is reversible. So it was started a reactivation process aiming to recover the full operational condition of the PEMFC unit. During this process the gas flow relationship and efficiency of the reformer were studied. An analysis of the PEMFC reactivation was conducted where it was noted that the reactivation took place as expected. During the reactivation process the PEMFC and the whole system efficiency were analyzed. The results suggest that the PEMFC can reach efficiency compatible with conventional power generation systems thus allowing PEMFC technology to compete with these energy sources in point of efficiency. (author)

  16. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  17. Kinetics of Internal Methane Steam Reforming in Solid Oxide Fuel Cells and Its Influence on Cell Performance– Coupling Experiments and Modeling

    NARCIS (Netherlands)

    Fan, L.; Pourquie, M.J.B.M.; Thattai, A.; Verkooijen, A.H.M.; Aravind, P.V.

    2013-01-01

    Mathematical modeling tools are useful for predicting the safe operation limits and efficiencies of SOFCs. For a particular SOFC design, variations in internal methane reforming kinetic parameters is expected to affect local gas compositions, local Nernst voltages, current densities and temperature

  18. Toward highly efficient in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer

    NARCIS (Netherlands)

    Hua, B.; Yan, N.; Li, M.; Sun, Y.-F.; Chen, J.; Zhang, Y.-Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    The escalating global warming effects are a reason for immediate measures to reduce the level of greenhouse gases. In this context, dry reforming of methane (DRM), an old yet both scientifically and industrially important process, is making a comeback in contributing to the utilization of CO2. Howev

  19. Kinetics of Internal Methane Steam Reforming in Solid Oxide Fuel Cells and Its Influence on Cell Performance– Coupling Experiments and Modeling

    NARCIS (Netherlands)

    Fan, L.; Pourquie, M.J.B.M.; Thattai, A.; Verkooijen, A.H.M.; Aravind, P.V.

    2013-01-01

    Mathematical modeling tools are useful for predicting the safe operation limits and efficiencies of SOFCs. For a particular SOFC design, variations in internal methane reforming kinetic parameters is expected to affect local gas compositions, local Nernst voltages, current densities and temperature

  20. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  1. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  2. A contribution to the modelling of steam reformers for natural gas fuelled fuel cell heating systems; Ein Beitrag zur Modellierung von Dampfreformern fuer erdgasbetriebene Brennstoffzellenheizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, Joerg

    2010-10-29

    The author attempted to verify the assumptions and simplifications of common mathematical models of small-scale steam reformers. The emphasis was on the derivation of important model parameters on the basis of easily identifiable catalyst, fluid and reactor characteristics. An easily validated 2D model of a reformer tube is then used for a wide sensitivity analysis and a comparative investigation of various reactor types. [German] Die Motivation dieser Arbeit liegt in der Ueberpruefung der bislang in mathematischen Modellen von kleintechnischen Dampfreformern getroffenen Annahmen und Vereinfachungen, mit speziellem Augenmerk auf die Aufklaerung der Herkunft wichtiger Modellparameter anhand von leicht bestimmbaren Katalysator-, Fluid- und Reaktoreigenschaften. Ein leicht zu validierendes, zweidimensionales Modell eines Reformerrohres soll im Anschluss fuer eine breit angelegte Sensitivitaetsanalyse und eine vergleichende Untersuchung verschiedener Reaktortypen dienen.

  3. Methanol partial oxidation reformer

    Science.gov (United States)

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Administrative Reform

    DEFF Research Database (Denmark)

    Plum, Maja

    Through the example of a Danish reform of educational plans in early childhood education, the paper critically addresses administrative educational reforms promoting accountability, visibility and documentation. Drawing on Foucaultian perspectives, the relation between knowledge and governing...... of administrative technology, tracing how the humanistic values of education embed and are embedded within ‘the professional nursery teacher' as an object and subject of administrative practice. Rather than undermining the humanistic potential of education, it is argued that the technology of accounting...

  5. Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Solid oxide fuel cells (SOFCs) deliver an energy-efficient and eco-friendly pathway to convert biogas into syngas and electricity. However, many problems still need to be solved before their commercialization. Some of the disadvantages of biogas SOFC technology include coking and sulfur poisoning th

  6. Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Solid oxide fuel cells (SOFCs) deliver an energy-efficient and eco-friendly pathway to convert biogas into syngas and electricity. However, many problems still need to be solved before their commercialization. Some of the disadvantages of biogas SOFC technology include coking and sulfur poisoning

  7. Adsorptive Desulfurization of JP-8 Fuel Using Ag+/Silica Based Adsorbents at Room Temperature

    Science.gov (United States)

    2012-09-01

    cell-quality hydrogen is liquid phase desulfurization (figure 1). Any organic sulfur compounds in the fuel are converted into hydrogen sulfide in...the fuel processing reformer, resulting in poisoning the reformation catalysts as well as poisoning downstream operations. Therefore, it is essential...the reformation catalysts from potential poisoning (1). Figure 1. Schematic diagram of logistic fuel processing. Adsorbents with a high

  8. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  9. Energy Analysis in Combined Reforming of Propane

    Directory of Open Access Journals (Sweden)

    K. Moon

    2013-01-01

    Full Text Available Combined (steam and CO2 reforming is one of the methods to produce syngas for different applications. An energy requirement analysis of steam reforming to dry reforming with intermediate steps of steam reduction and equivalent CO2 addition to the feed fuel for syngas generation has been done to identify condition for optimum process operation. Thermodynamic equilibrium data for combined reforming was generated for temperature range of 400–1000°C at 1 bar pressure and combined oxidant (CO2 + H2O stream to propane (fuel ratio of 3, 6, and 9 by employing the Gibbs free energy minimization algorithm of HSC Chemistry software 5.1. Total energy requirement including preheating and reaction enthalpy calculations were done using the equilibrium product composition. Carbon and methane formation was significantly reduced in combined reforming than pure dry reforming, while the energy requirements were lower than pure steam reforming. Temperatures of minimum energy requirement were found in the data analysis of combined reforming which were optimum for the process.

  10. Telecom Reform

    DEFF Research Database (Denmark)

    and information infrastructure issues - for people in government, academia, industry and the consulting community. This book addresses the process of policy and regulatory reform in telecom that is now in its formative stage. It draws on detailed knowledge of industry development and regulatory experience...

  11. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  12. Reform and Backlash to Reform

    DEFF Research Database (Denmark)

    Hougaard Jensen, Svend E.; Hagen Jørgensen, Ole

    Using a stochastic general equilibrium model with overlapping generations, this paper studies (i) the effects on both extensive and intensive labor supply responses to changes in fertility rates, and (ii) the potential of a retirement reform to mitigate the effects of fertility changes on labor...

  13. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  14. Technical Reform on the Fuel Measuring System of Gantry Crane%场桥燃油计量系统技术改造

    Institute of Scientific and Technical Information of China (English)

    徐世基; 王衍安; 杜少隆; 王国栋

    2011-01-01

    In order to raise the correctness of the oil measuring, a new oil measuring system has been developed. This paper introduces respectively traditional oil measuring model and the new oil measuring unit, and then compares two kinds of effect of them. After reform the oil level of the oil measuring system has been measured with ultrasonic and could be collected and stored in time, which achieves the result of correct measuring.%为了提高油量计量的准确性,研发了一套新的油位计量系统。介绍了传统的油位计量模式,和改进后的油位计量装置,并对两者效果作了比较。改造后的油位计量系统用超声波检测并可进行油量实时采取。达到了准确计量油量的效果。

  15. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  16. Additive effect of Ce, Mo and K to nickel-cobalt aluminate supported solid oxide fuel cell for direct internal reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Bu Ho; Park, Jungdeok; Yoon, Heechul; Kim, Hyeon Hui; Kim, Lim; Chung, Jong Shik [POSTECH, Pohang (Korea, Republic of)

    2014-01-15

    Direct internal reforming of methane (steam/carbon=0.031, 850 .deg. C) is tested using button cells of Ni-YSZ/YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl{sub 2}O{sub 4}. The Ni-CoAl{sub 2}O{sub 4} supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl{sub 2}O{sub 4} support, cells with 0.5 wt% CeO{sub 2} exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K{sub 2}CO{sub 3} additives, their performance is worse than that in the CeO{sub 2} case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH{sup -} and CO{sub 3}{sup 2-} in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.

  17. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  18. Are Fuel Price Hikes Justifiable?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China saw its third fuel price hike this year when the National Development and Reform Commission, China’s top price regulator, hiked gasoline and diesel retail prices up by 9 percent, effective on June 30. It is the second rally in a month after the country initiated a new fuel pricing scheme in May.

  19. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  20. Arbitration Reform

    Directory of Open Access Journals (Sweden)

    Svetlana Stepurina

    2017-01-01

    Full Text Available УДК 347.73:341.63Subject. This informational article highlights recent changes to the Russian legislation on arbitration.Purpose. To highlight the most important aspects of arbitration law reform, and examines the effects they will have on the development of arbitration in RussiaMethodology. The author uses a formal-legal method.Results, scope of application. The author distinguishes the difference between constantly acting arbitration courts and arbitration courts ad hoc. The special status of a number of arbitration institutions (the ICAC and MAC at the Russian Chamber of Commerce and Industry, is contrary to the constitutional principle of equality under the law. A major achievement of the new legislation on arbitration courts is expanding the range arbitrarily disputes.Conclusions. The new legislation more clearly prescribed the interaction of arbitration and state courts, including requiring the latter to promote the arbitrators, acting under the regulations of the permanent arbitration institutions in obtaining evidence.In addition, the reform of the arbitration law have left aside the problem of improving the quality of judicial control over arbitration decisions.The arbitration law will still be able to improve the arbitration, to enhance its credibility and attractiveness for the participants of civil turnover.

  1. Comparative analysis between two systems to generate electric energy for isolated community in the interior of the Amazon state: fuel cells with natural gas reformer versus diesel generation; Analise comparativa entre dois sistemas de geracao de energia eletrica para a comunidade isolada no interior do estado do Amazonas: celula a combustivel com reformador para gas natural versus gerador diesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Paula Duarte; Bergamini, Cristiane Peres; Camargo, Joao Carlos; Lopes, Daniel Gabriel [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica; Esteves, Gheisa Roberta Telles [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo de Pesquisas e Estudos Ambientais; Silva, Ennio Peres da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin

    2004-07-01

    Although great part of the domestic territory is already supplied with electric energy, still there are many regions where the system is precarious or nonexistent, generically called isolated communities. In the majority of the cases these communities are supplied with Diesel oil generators and the substitution of this fuel for available alternative energy in the localities has been object of study of some institutions of research spread throughout the country. Currently, the use of fuel cells has been strongly argued in the generation of electric energy associated with the local energy necessity, from the use of a regional fuel and this is due to the high efficiency of allied energy conversion to the low ambient impacts that this equipment offers. Most of the different types of fuel cells use hydrogen as a fuel to produce electricity, and it is extracted from renewable or non-renewable sources of energy. Then, the article has the objective of comparing in first analysis the energy efficiency and the cost between the two systems: the ones used currently in the great majority of the isolated communities, constituted of a Diesel engine-generator system, with Natural Gas Reformer System/ Purifier of Hydrogen/ Fuel Cell/ and to analyze if such project presents characteristics that qualifies it to get the carbon credits proposed in the Mechanism of Clean Development. (author)

  2. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  3. Dimensions of health system reform.

    Science.gov (United States)

    Frenk, J

    1994-01-31

    During recent years there has been a growth of worldwide interest in health system reform. Countries at all levels of economic development are engaged in a creative search for better ways of organizing and financing health care, while promoting the goals of equity, effectiveness, and efficiency. Together with economic, political, and ideological reasons, this search has been fueled by the need to find answers to the complexities posed by the epidemiologic transition, whereby many nations are facing the simultaneous burdens of old, unresolved problems and new, emerging challenges. In order to better understand reform attempts, it is necessary to develop a clear conception of the object of reform: the health system. This paper presents the health system as a set of relationships among five major groups of actors: the health care providers, the population, the state as a collective mediator, the organizations that generate resources, and the other sectors that produce services with health effects. The relationships among providers, population, and the state form the basis for a typology of health care modalities. The type and number of modalities present in a country make it possible to characterize its health system. In the last part, the paper proposes that health system reform operates at four policy levels: systemic, which deals with the institutional arrangements for regulation, financing, and delivery of services; programmatic, which specifies the priorities of the system, by defining a universal package of health care interventions; organizational, which is concerned with the actual production of services by focusing on issues of quality assurance and technical efficiency; and instrumental, which generates the institutional intelligence for improving system performance through information, research, technological innovation, and human resource development. The dimensions of reform offer a repertoire of policy options, which need to be enriched by cross

  4. Control of a methanol reformer system using an Adaptive Neuro‐Fuzzy Inference System approach

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andersen, John; Ehmsen, Mikkel Præstholm

    This work presents a stoichiometry control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for an HTPEM fuel cell. One such system is the Serenus H3-350 battery charger developed by the Danish company Serenegy® which this work is based on. The poster...

  5. A green reform is not always green

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Jensen, Thomas Christian

    2013-01-01

    This paper analyses a tax reform, explicitly conceived by policy makers to be climate-friendly, that partly replaces a high vehicle registration tax by road user charging and allows for differentiation of the remaining registration tax by fuel efficiency. A microeconomic framework is proposed...

  6. Global Competitives: Economic Imperatives for School Reform.

    Science.gov (United States)

    Negroni, Peter J.

    This paper describes the need for systemic educational reform in view of the gap between students who are adequately prepared for tomorrow's jobs and the needs of business/industry. Rapid changes in the workplace--fueled by technological advances, altered family structures, expectations of varied and higher performance skills, and an increase of…

  7. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  8. An Analysis of Biogas Reforming Process on Ni/YSZ and Ni/SDC Catalysts

    Directory of Open Access Journals (Sweden)

    Janusz Szmyd

    2012-02-01

    Full Text Available The conversion of biogas to electricity presents an attractive niche application for fuel cells. Thus attempts have been made to use biogas as a fuel for high temperature fuel cell systems such as SOFC. Biogas can be converted to hydrogen-rich fuel in a reforming process. For hydrocarbon-based fuel, three types of fuel conversion can be considered in reforming reactions: an external reforming system, an indirect internal reforming system and a direct internal reforming system. High-temperature SOFC eliminates the need for an expensive external reforming system. The possibility of using internal reforming is one of the characteristics of high temperature fuel cells like SOFC. However, for high-temperature operation, thermal management of the SOFC system becomes an important issue. To properly carry out thermal management, both detailed modeling and numerical analyses of the phenomena occurring inside the SOFC system is required. In the present work, the process of reforming biogas on a Ni/YSZ and a Ni/SDC catalyst has been numerically and experimentally investigated. Measurements including different thermal boundary conditions, steam-to-carbon ratios and several different fuel compositions were taken. A numerical model containing methane/steam reforming reaction, dry reforming reaction and shift reaction has been proposed to predict the gas mixture composition at the outlet of the reformer. The results of the numerical computation were compared with experimental data and good agreement has been found. The results indicate the importance of combined, numerical and experimental studies in the design of SOFC reformers. The combined approach used leads to the successful prediction of the outlet gas composition for different modelling conditions.

  9. Steam reforming of tars at low temperature and elevated pressure for model tar component naphthalene

    OpenAIRE

    Speidel, Michael; Fischer, Holger

    2016-01-01

    A process of pressurized gasification and power generation in a hybrid system of Solid Oxide Fuel Cell (SOFC) and gas turbine enables an efficient use of biomass. This process requires tar reforming in order to protect the SOFC from plugging. Tars must be converted at 5 bar absolute pressure (bara) while avoiding secondary steam reforming of methane in order to reduce the required heat input for the tar reformer. This can be realized at low reforming temperatures (

  10. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    Science.gov (United States)

    2008-04-09

    demonstrated the ability of the Liquid Tin Anode Solid Oxide Fuel Cell (LTA SOFC) to direct convert logistic fuel, JP-8. The demonstration of direct JP-8...conversion without fuel processing or reforming was unprecedented in fuel cell technology. The DOD has a broad interest in power generation using

  11. Efficiency enhancement in gasoline reforming through the recirculation of reformate

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [DaimlerChrysler AG, RBP/AS, 89081 Ulm (Germany); Sommer, M. [DaimlerChrysler AG, RTC/A, 70567 Stuttgart (Germany); Diezinger, S.; Trimis, D.; Durst, F. [FAU Erlangen-Nurnberg, LSTM, 91031 Erlangen (Germany)

    2006-03-21

    Fuel processors for on-board hydrogen production have to meet numerous technical demands. They should be efficient, compact and lightweight, capable of different loads and able to perform cold start ups. In this paper, the recirculation of reformate is proposed as a means of efficiency enhancement. Different system configurations based on this idea are introduced and simulated. The resulting effect on the system's efficiency, the water balance as well as the impact of recirculation on the system's volume and weight are discussed. (author)

  12. Hydrogen production for fuel cell by oxidative reforming of diesel surrogate: influence of ceria and/or lanthana over the activity of Pt/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    M.C. Alvarez-Galvan; R.M. Navarro; F. Rosa; Y. Briceno; M.A. Ridao; J.L.G. Fierro [Instituto de Catalisis y Petroleoquimica (CSIC), Madrid (Spain)

    2008-09-15

    A series of Pt catalysts supported on Al{sub 2}O{sub 3} (Pt/A), Al{sub 2}O{sub 3}-CeO{sub 2} (Pt/A-C), Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} (Pt/A-L) and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3}-CeO{sub 2} (Pt/A-L-C) have been prepared and tested in the oxidative reforming of diesel surrogate with the aim of studying the influence of ceria and lanthana additives over the activity and stability toward hydrogen production for fuel cell application. Several characterization techniques, such as adsorption-desorption of N{sub 2}, X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, H{sub 2} chemisorption, and thermogravimetric analysis, have been used to define textural, structural, and surface properties of catalysts and to establish relationships with their behaviour in reaction. This physicochemical characterization has shown that lanthana inhibits the formation of {alpha} phase in alumina support and decreases ceria dispersion. Activity results show a better performance of ceria-loaded catalysts, being the Pt/A-C sample the system that offers higher H{sub 2} yields after 8 h of reaction. The greater H{sub 2} production for ceria-loaded catalysts, particularly in the case of the system Pt/A-C, is attributed to the Pt-Ce interaction that may change the electronic properties and/or the dispersion of active metal phase. Also, the Ce{sup III} form of Ce{sup IV}/Ce{sup III} redox pair enhances the adsorption of oxygen and water molecules, thus increasing the catalytic activity and also decreasing coke deposition over surface active Pt phases. Stability tests showed that catalysts in which Pt crystallites are deposited on the alumina substrate covered by a lanthana monolayer, give rise to an increase in stability toward H{sub 2} production. 48 refs., 10 figs., 3 tabs.

  13. Cost analysis of electrical power from an ethanol reformer and the fuel cell in the development of productive activities in the community Pico do Amor, MT, Brazil; Analise do custo da energia eletrica proveniente de um reformador de etanol e celula a combustivel no desenvolvimento de atividades produtivas na comunidade Pico do Amor/MT

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Davi Gabriel; Teixeira, Andre Frazao; Lopes, Daniel Gabriel; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Departamento de Energia; Instituto Aqua Genesis, Campinas, SP (Brazil); Hytron, Campinas, SP (Brazil)

    2010-07-01

    This work has the objective to analyze the impact of the cost of from an ethane reformer / fuel cell in the family income considering the development of two productive activities selected by the community itself: the production and marketing of cassava flour and 'rapadura', a typical brazilian candy. The community energy demand was analyzed to achieve the results; estimated the energy cost from the implemented system and the money from the selling of the cassava flour and 'rapadura' produced with this electricity; the study of sensibility of the ethanol price in the electrical energy cost was done too, and the cassava flour and 'rapadura' in the family funds. From the results, it was verified that the electrical energy cost has a 16,4% impact in the family gross income and a net value around R$ 260,85/family, indicating that the community will have enough funds to pay for the energy and also will rise the amount of money for each family. Besides, the comparative analyze of the cost of the electricity from the ethanol/fuel cell reformer and photovoltaic systems shows that, considering only the maintenance and operation costs, the first one should be more attractive than the second one. (author)

  14. Cost analysis of electrical power from an ethanol reformer and the fuel cell in the development of productive activities in the community Pico do Amor, MT, Brazil; Analise do custo da energia eletrica proveniente de um reformador de etanol e celula a combustivel no desenvolvimento de atividades produtivas na comunidade Pico do Amor/MT

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Davi Gabriel; Teixeira, Andre Frazao; Lopes, Daniel Gabriel; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Departamento de Energia; Instituto Aqua Genesis, Campinas, SP (Brazil); Hytron, Campinas, SP (Brazil)

    2010-07-01

    This work has the objective to analyze the impact of the cost of from an ethane reformer / fuel cell in the family income considering the development of two productive activities selected by the community itself: the production and marketing of cassava flour and 'rapadura', a typical brazilian candy. The community energy demand was analyzed to achieve the results; estimated the energy cost from the implemented system and the money from the selling of the cassava flour and 'rapadura' produced with this electricity; the study of sensibility of the ethanol price in the electrical energy cost was done too, and the cassava flour and 'rapadura' in the family funds. From the results, it was verified that the electrical energy cost has a 16,4% impact in the family gross income and a net value around R$ 260,85/family, indicating that the community will have enough funds to pay for the energy and also will rise the amount of money for each family. Besides, the comparative analyze of the cost of the electricity from the ethanol/fuel cell reformer and photovoltaic systems shows that, considering only the maintenance and operation costs, the first one should be more attractive than the second one. (author)

  15. nigeria's banking sector reforms

    African Journals Online (AJOL)

    NESG PUBLICATIONS

    sector reforms to enthrone sound financial practices and good corporate governance ... April - June 2009 . 9. NIGERIA'S BANKING SECTOR REFORMS: THE JOURNEY SO FAR ..... implementation of a code of sound corporate governance in ...

  16. THE REFORM OF NATIONAL SOCIAL-ECONOMIC SYSTEMS AND EUROPEAN REFORM

    Directory of Open Access Journals (Sweden)

    Carmen RADU

    2016-06-01

    Full Text Available The paper proposes to analyze from a national and European perspective the reform possibilities of public policies which regard the social-economic sphere. We thus take into consideration the analysis of the public policies’ evolution regarding the health system, pensions system, demographic stimulation and the undertaking of key-structural reforms for economy and administration. Resources marked as necessary for a reform are burdened by new challenges emerged on the international agenda: a new economic crisis with starting point in China, managing evolutions on fuel markets, managing the refugees exodus situation which forces the European Union’s frontiers, etc. Establishing social-economic security at national level as well as in the European Union depends on the pragmatism of economic and social policies as well as on the courage to start a reform.

  17. Reforming Organizational Structures

    OpenAIRE

    Van de Walle, Steven

    2016-01-01

    textabstractPublic sectors have undergone major transformations. Public sector reform touches upon the core building blocks of the public sector: organizational structures, people and finances. These are objects of reform. This chapter presents and discusses a set of major transformations with regard to organizational structures. It provides readers a fairly comprehensive overview of the key reforms that have taken place in Western public sectors. Structural reforms in the public sector show ...

  18. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  19. Analysis and development of an ethanol compact reformer for hydrogen production for fuel cell; Analise e modelagem de reformador compacto de etanol para obtencao de hidrodenio para celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, P.R.F.; Oliveira, A.A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: renzo@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    The objective of this work is to analyze the ethanol steam reforming for hydrogen production in a compact and modular reforming unit designed for the generation of 1 kw of electrical power. For this, initially the thermodynamic limits for the steam reforming of ethanol are calculated in order to assess the limits in the production of hydrogen and other by-products and to select the best values of process stoichiometry, temperature and pressure for maximum hydrogen selectivity and minimum coke formation. In the following, a First and second Laws analysis is performed to analyze the equilibrium conditions of the main chemical reactions and to estimate the magnitude of the heat transfer required by the heating, evaporation, superheating and reforming of ethanol. Then, the catalytic reformer reactor is analyzed and sized, basing the analysis into the application of the equation for the conservation of mass of the chemical species and a model for the chemical kinetics. A basic reactor design is then proposed accompanied by the corresponding sizes and operating conditions. (author)

  20. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  1.  Railway Reforms

    DEFF Research Database (Denmark)

    Asmild, Mette; Holvad, Torben; Hougaard, Jens Leth;

    -directional Efficiency Analysis, which enables investigation of how railway reforms affect the inefficiencies of specific cost drivers. The main findings are that the reform initiatives generally improve operating efficiency but potentially differently for different cost drivers. Specifically, the paper provides clear......This paper considers railway operations in 23 European countries during 1995-2001, where a series of reform initiatives were launched by the European Commission, and analyses whether these reform initiatives improved the operating efficiency of the railways. Efficiency is measured using Multi...... empirical evidence that accounting separation is important for improving operating efficiency for both material and staff costs, whereas other reforms only influenced one of these factors...

  2. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  3. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  4. Demonstration of direct internal reforming for MCFC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Aasberg-Petersen, K.; Christensen, P.S.; Winther, S.K. [HALDOR TOPSOE A/S, Lynby (Denmark)] [and others

    1996-12-31

    The conversion of methane into hydrogen for an MCFC by steam reforming is accomplished either externally or internally in the stack. In the case of external reforming the plant electrical efficiency is 5% abs. lower mainly because more parasitic power is required for air compression for stack cooling. Furthermore, heat produced in the stack must be transferred to the external reformer to drive the endothermic steam reforming reaction giving a more complex plant lay-out. A more suitable and cost effective approach is to use internal steam reforming of methane. Internal reforming may be accomplished either by Indirect Internal Reforming (DIR) and Direct Internal Reforming (DIR) in series or by DIR-only as illustrated. To avoid carbon formation in the anode compartment higher hydrocarbons in the feedstock are converted into hydrogen, methane and carbon oxides by reaction with steam in ail adiabatic prereformer upstream the fuel cell stack. This paper discusses key elements of the desire of both types of internal reforming and presents data from pilot plants with a combined total of more than 10,000 operating hours. The project is being carried out as part of the activities of the European MCFC Consortium ARGE.

  5. Reforming Technologies to Improve the Performance of Combustion Systems

    Directory of Open Access Journals (Sweden)

    Hashim Hassan

    2014-09-01

    Full Text Available A large number of theoretical and experimental studies have shown that the performance of kerosene combustion increases significantly if combustion is being assisted by the addition of hydrogen to the fuel/air mixture during the combustion process. It reduces the amount of CO, CO2 and NOx emissions, while increasing the flame stability limits. It also helps in bruning fuel/air mixtures at much leaner equivalence ratios. The same principle could be applied to gain benefits in gas turbine combustors. Hydrogen for this purpose could be produced by the reforming of hydrocarbon fuels using a reformer module. This paper presents key hydrogen reforming technologies which, by implementation in gas turbine combustors, hold potential for improving both their performance and service life.

  6. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  7. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  8. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek;

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... distillation fractions of technical 2nd generation bioethanol, produced in a pilot plant, influence the performance of nickel- and ruthenium-based catalysts during steam reforming, and we discuss what is required to obtain high activity and long catalyst lifetime. We conclude that the use of technical...

  9. Numerical analysis of helium-heated methane/steam reformer

    Science.gov (United States)

    Mozdzierz, M.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2016-09-01

    One of the most promising between many high temperature nuclear reactors applications is to produce hydrogen with heat gained. The simplest and the best examined method is steam reforming of methane. The fabricated hydrogen has wide range of use, for example can be electrochemically oxidized in fuel cells. However, heat management inside methane/steam reformer is extremely important because huge temperature gradients can cause catalyst deactivation. In this work the analysis of temperature field inside helium-heated methane/steam reformer is presented. The optimal system working conditions with respect to methane conversion rate are proposed.

  10. Diesel fuel processor for hydrogen production for 5 kW fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, D.; Melgar, A.; Briceno, Y. [Fundacion CIDAUT. Parque Tecnologico de Boecillo, P. 209, 47151 Boecillo (Valladolid) (Spain); Navarro, R.M.; Alvarez-Galvan, M.C. [Instituto de Catalisis y Petroquimica (CSIC), C/ Marie Curie 2, Cantoblanco (Madrid) (Spain); Rosa, F. [Instituto Nacional de Tecnica Aeroespacial, Carretera San Juan del Puerto-Matalascanas, km 33, 21130 Mazagon-Moguer (Huelva) (Spain)

    2007-07-15

    The present paper describes a diesel fuel processor designed to produce hydrogen to feed a PEM fuel cell of 5 kW. The fuel processor includes three reactors in series: (1) oxidative steam reforming reactor; (2) one-step water gas shift reactor; and (3) a preferential oxidation reactor. The design of the system was accomplished by means of a one-dimensional model. A specific study of the fuel-air mixing chamber was carried out with Fluent by taking into account fuel evaporation and cool flame processes. The assembly of the installation allowed the characterisation of each component and the control of each working parameter. The first experimental results obtained in the reformer system using decaline and diesel fuels demonstrate the feasibility of the design to produce hydrogen suitable to feed a PEM fuel cell. (author)

  11. Ceramic Microchannel Development for Compact Fuel Processors of Hydrocarbon Fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel processing is a bridging technology for faster commercialization of fuel cell system under lack of hydrogen infrastructures. Argonne national laboratory has been developing fuel processing technologies for fuel cell based electric power. We have reported the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts, the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  12. Steepest Ascent Tariff Reforms

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan D.

    2006-01-01

    a theoretical concept where the focus is upon the size of welfare gains accruing from tariff reforms rather than simply with the direction of welfare effects that has been the concern of theliterature.JEL code: F15.Keywords: Steepest ascent tariff reforms; piecemeal tariff policy; welfare; market access; small......This paper introduces the concept of a steepest ascent tariff reform for a small open economy. By construction, it is locally optimal in that it yields the highest gain in utility of any feasible tariff reform vector of the same length. Accordingly, it provides a convenient benchmark...... existing reforms are locally optimal, provide geometric illustrations and compare welfare effectiveness of reforms using numerical examples. Moreover, being a general concept, we apply it to the issue of market access and examine its implications. Overall, the paper's contribution lies in presenting...

  13. Energy sector reform, energy transitions and the poor in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Gisela [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2008-08-15

    There is little systematic information about the impact of energy sector reform on all sources and methods of energy utilised or potentially utilised by the poor. It is not sufficiently known what fuels the poor use, if a larger range of fuels becomes available and affordable and if barriers to access and consumption are reduced. A detailed assessment is presented for four countries, three in Africa (Botswana, Ghana and Senegal) and for comparison one in Latin America (Honduras), of steps taken to reform the energy sector and their effect on various groups of poor households. The paper analyses the pattern of energy supply to, and use by, poor households and explores the link - or its absence - to energy policy. We investigate what works for the poor and which type of reforms and implementation are effective and lead to a transition to more efficient and clean fuels from which the poor benefit. Energy sector reforms when adjusted to the specific conditions of the poor have a positive impact on access and use of clean, safe and efficient fuels. The poor are using gradually less wood as cooking fuel. Gas and kerosene are made more widely available through market liberalisation and subsidy in the particular case of Senegal. Electricity access and use is generally promoted or subsidised through changes in payment conditions and lifeline tariffs. (author)

  14. Investigation of Aerogel/Xerogel Catalysts for Autothermal Reforming of JP-8

    Science.gov (United States)

    2013-12-19

    supercritical conditions, where CO2 is typically used as the supercritical fluid. This conventional approach has proven to be costly as well as time...reforming catalysts for hydrogen production . Conversion of hydrocarbon fuels, such as gasoline, methanol , diesel, JP-8 and isobutanol by reforming is an...and Ar analysis (Carboxen 1000). The fractional conversion of n-Dodecane resulting from reforming (Xref) and the product yields of H2, CO, CO2 , and C1

  15. Lesotho - Land Administration Reform

    Data.gov (United States)

    Millennium Challenge Corporation — Michigan State University was assigned to design the impact evaluation (IE) of the Land Administration Reform Project (LARP) funded under the Millennium Challenge...

  16. Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems

    Science.gov (United States)

    Park, Gu-Gon; Yim, Sung-Dae; Yoon, Young-Gi; Lee, Won-Yong; Kim, Chang-Soo; Seo, Dong-Joo; Eguchi, Koichi

    An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al 2O 3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al 2O 3 pellets prepared by 'incipient wetness' were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H 2, 24.5% CO 2 and 2.2% CO at 230-260 °C which can produce power output of 59 Wt.

  17. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  18. Iran, reform, revolution or resignation?; Iran: reforme, revolution ou resignation?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is an information report made by the French commission of economic affairs after a visit of a delegation of members of the French parliament in Iran in April 15-18, 2003. The report describes: 1 - the international political situation of Iran; 2 - the domestic political situation of Iran: political institutions, yearn of change; 3 - the economic trades that would be possible to develop: economic and financial situation of Iran, fossil fuel resources, economic reforms to be implemented; 4 - the French-Iranian economical cooperation to be strengthened: French companies in Iran, towards a new era in bilateral economic relations, the challenge of the adhesion to the world trade organization (WTO). (J.S.)

  19. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    Science.gov (United States)

    Kim, Keunsoo; Jeong, Jihoon; Azad, Abul K.; Jin, Sang Beom; Kim, Jung Hyun

    2016-03-01

    Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln0.5Sr0.5Ti0.5Mn0.5O3±d were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln0.5Sr0.5Ti0.5Mn0.5O3±d; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln0.5Sr0.5Ti0.5Mn0.5O3±d, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln0.5Sr0.5Ti0.5Mn0.5O3±d from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM). In various respects, NSTM and SSTM will be desirable reforming catalysts and anode candidates for high temperature solid oxide fuel cell.

  20. Carbon oxides free fuel processing for fuel cell applications

    Science.gov (United States)

    Choudhary, Tushar V.

    Fuel processing represents a very important aspect of fuel cell technology. The widespread utilization of fuel cells will only be possible if CO x-free hydrogen producing technologies are developed. Towards this objective, step-wise reforming of hydrocarbons and catalytic decomposition of ammonia were investigated for hydrogen production. Also, novel Au-based catalysts were synthesized for preferentially eliminating CO in the presence of excess hydrogen. The step-wise reforming of hydrocarbons was investigated for production of CO-free hydrogen for proton exchange membrane fuel cells. Proof of concept pulse reactor experiments employing Ni-based catalysts clearly showed the feasibility of the cyclic step-wise reforming process for clean hydrogen production. Under optimum conditions the CO content in the hydrogen was found to be less than 20 ppm by this process (a large amount of CO is obtained as a by-product from conventional methods of hydrogen production). The step-wise reforming process thus greatly simplifies fuel reforming, as expensive and circuitous post-reforming hydrogen purification processes are eliminated. The process was profoundly influenced by the operating temperature, space velocity and nature of the catalyst support. Catalytic ammonia decomposition was investigated for COx-free hydrogen production for alkaline fuel cells. These studies revealed that Ru, Ir and Ni-based catalysts were active for the process with Ru being the most active and Ni the least. The catalyst supports played a decisive role in determining the ammonia decomposition activity. Partial pressure dependence studies of the reaction rate on model Ir (100) catalysts yielded a positive order (0.9 +/- 0.l) with respect to ammonia and negative order (-0.7 +/- 0.l) with respect to hydrogen. The negative order with respect to hydrogen was attributed to the enhancement in the reverse of the ammonia decomposition reaction in the presence of surface hydrogen atoms. Novel nano-Au catalysts

  1. Plasma promoted manufacturing of hydrogen and vehicular applications

    Science.gov (United States)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  2. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  3. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-01-01

    , a possible solution, an avoidance of the long recharging time is combining them with the use of fuel cells. Fuel cells continuously deliver electrical power as long as a proper fuel supply is maintained. The ideal fuel for fuel cells is hydrogen, which in it’s pure for has high volumetric storage...... requirements. One of the solutions to this fuel storage problem is using liquid fuels such as methanol that through a chemical reformer converts the fuel into a hydrogen rich gas mixture. Methanol is a liquid fuel, which has low storage requirements and high temperature polymer electrolyte membrane (HTPEM......) fuel cells can eciently run on the reformed hydrogen rich gas, although with reduced performance depending on the contaminants, such as CO, in the gas. By estimating the amount of CO in the fuel cell, it could be possible to adjust the fuel cell system operating parameters to increase performance...

  4. Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    Steam reforming of hydrocarbons using a catalytic plate-type-heat-exchanger (CPHE) reformer is an attractive method of producing hydrogen for a fuel cell-based micro combined-heat-and-power system. In this study the flow distribution in a CPHE reformer, which uses a coated wire-mesh catalyst...

  5. Educational Reform in Mexico.

    Science.gov (United States)

    Fuentes, Bertha Orozco; Elizando Y Carr, Sandra

    1993-01-01

    Since the 1970s, each presidential regime has presented an educational modernization reform program for Mexico. Although the various reforms have widened educational opportunities, the quality of education has continued to deteriorate because of student and teacher desertion, a low scholastic progress index, accessibility problems, lack of an…

  6. Comments on UN Reform

    Institute of Scientific and Technical Information of China (English)

    YangHongxi; ZhangYaowu

    2004-01-01

    On October 9-13 2004, United Nations SecretaryGeneral Kofi Annan paid an official visit to China.During his stay, he had discussions with Chinese leaders on UN reform and changes in the international situation and etc. In recent 59th UN General Assembly Session, UN reform was also one of the hot topics.

  7. Reforming Organizational Structures

    NARCIS (Netherlands)

    S.G.J. Van de Walle (Steven)

    2016-01-01

    textabstractPublic sectors have undergone major transformations. Public sector reform touches upon the core building blocks of the public sector: organizational structures, people and finances. These are objects of reform. This chapter presents and discusses a set of major transformations with

  8. Durability study of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F.; Yuan, X.Z.; Martin, J.J.; Wang, H.J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; Bi, X.T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Pei, P.C.; Huang, H.Y. [Tsinghua Univ., Beijing (China). Dept. of Automotive Engineering

    2007-07-01

    Technical challenges limit the commercialization of polymer electrolyte membrane fuel cells (PEM) for use in stationary applications and transport. These include: on-board storage and infrastructure for hydrogen fuel as well as the fuel cell system itself; high costs; and, durability under a wide range of operational conditions. Durability is defined as the maximum service life of a fuel cell system with no more than 10 per cent loss in efficiency at the end of life. This paper presented a literature review and analysis in order to provide a unified definition of PEM fuel cell service life when operated at either steady state or dynamic load conditions. The paper presented an analysis of different operating conditions and the dependence of PEM fuel cell durability on the operating condition. The paper also reviewed durability studies of the different components of a PEM fuel cell, and also examined various degradation mechanisms. These included: load or thermal cycles; fuel or oxidant starvation; high or low humidification levels; and, reformate or simulated reformed gases as fuels. A relationship between the accelerated service life of a PEM fuel cell and the real service life was then developed. To obtain real service life under normal testing conditions, statistical models based on accelerated service life data were illustrated. It was concluded that the service life of a fuel cell and its components is a function of more than one or two variables. 46 refs., 4 tabs., 3 figs.

  9. Solid oxide fuel cell power plant having a bootstrap start-up system

    Science.gov (United States)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  10. Solid oxide fuel cell power plant having a bootstrap start-up system

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  11. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL; Steeper, Richard R. [Sandia National Laboratories (SNL); Splitter, Derek A [ORNL; Kalaskar, Vickey B [ORNL; Pihl, Josh A [ORNL; Daw, C Stuart [ORNL

    2014-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed. The other experimental facility, located at Sandia National Laboratories, uses a dump valve to capture the exhaust from a single NVO event for analysis. Results from the two experiments are in excellent trend-wise agreement and indicate that the reforming process under low-O2 conditions produces substantial concentrations of H2, CO, methane, and other short-chain hydrocarbon species. The concentration of these species is found to be strongly dependent on fuel injection timing and injected fuel type, with weaker dependencies on NVO duration and initial temperature, indicating that NVO reforming is kinetically slow. Further, NVO reforming does not require a large energy input from the engine, meaning that it is not thermodynamically expensive. The implications of these results on HCCI and other forms of combustion are discussed in detail.

  12. An African Reformation

    Directory of Open Access Journals (Sweden)

    Erna Oliver

    2017-02-01

    Full Text Available The year 2017 is the year in which the Reformation, started by Martin Luther, is celebrating its 500th birthday. This depicts a milestone in the life of the Church of the Reformation and also in the life of Christians worldwide. This is a good time to ponder on the epistemological question of the validity and necessity of the (European Reformation (i.e. improvement, renovation or change. If this question is answered in a positive way, then it could bring us to the realisation that the time is ripe for an African Reformation. This article will argue that this is indeed the case. A reformation, transformation and change is needed for the African Christian context. However, the question could well be asked: Who will be the ‘second Luther?’

  13. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  14. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  15. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  16. Use of alternative fuels in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    A future sustainable energy system will certainly be based on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types the solid oxide fuel cell (SOFC) has a number of advantages that places them in a favorable position: high efficiency, parallel production of electricity and high value heat, prevention of NOx emission, flexibility regarding usable fuels, and certain tolerance towards impurities. It is thus a natural option, to combine such a highly efficient energy conversion tool with a sustainable fuel supply. In the present contribution, the use of alternative compared to conventional fuels in SOFCs was evaluated. Regarding carbon containing, biomass derived fuels, SOFCs showed excellent power output and stability behavior during long-term testing under technologically relevant conditions. Moreover, ammonia can be used directly as fuel. The chemical and structural properties of the SOFC anode makes it even possible, to combine a chemical conversion of the fuel, for example methane into synthesis gas via steam reforming and decomposition of ammonia into hydrogen and nitrogen, with the electrochemical production of electricity in one step. (au)

  17. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  18. Hydrogen Production with Steam Reforming of Dimethyl Ether

    Institute of Scientific and Technical Information of China (English)

    Kaoru TAKEISHI; Akane ARASE

    2005-01-01

    @@ 1Introduction Steam reforming of methanol and gasoline is actively researched and developed as hydrogen supply methods for the fuel cells of vehicles and so on. However, these materials have the problems such as the infrastructure, toxicity, difficulty of the reforming, and so forth. Dimethyl ether (DME) does not contain the poisonous substances, and is expected as a clean fuel of the next generation. DME is able to take the place of light oil and LPG, and its physical properties are similar to those of LPG. There is possibility that DME infrastructures will be settled more rapidly than those of hydrogen and methanol, because LPG infrastructures existing are able to use for DME. Then, we have been studying on steam reforming of DME for the hydrogen production.

  19. Catalytic combustion and steam reforming of hydrocarbons in microreactor

    Directory of Open Access Journals (Sweden)

    Dimov Sergey

    2017-01-01

    Full Text Available Catalytic combustion of fuel gas using a platinum catalyst was experimentally investigated in the slit microreactor. The composition of the exhaust gases was determined depending on temperature and time of contact. Data of methane steam reforming were received in that reactor with rhodium catalysts depending on temperature for three samples with different composition of doping substances.

  20. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  1. Atuarfitsialak: Greenland's Cultural Compatible Reform

    Science.gov (United States)

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  2. Hydrogen production from E85 fuel with ceria-based catalysts

    Science.gov (United States)

    Swartz, Scott L.; Matter, Paul H.; Arkenberg, Gene B.; Holcomb, Franklin H.; Josefik, Nicholas M.

    The use of renewable (crop-derived) fuels to produce hydrogen has considerable environmental advantages with respect to reducing net emissions of carbon dioxide into the atmosphere. Ethanol is an example of a renewable fuel from which hydrogen can be derived, and E85 is a commercially available ethanol-based fuel of increasing importance. The distributed production of hydrogen from E85 fuel is one potential way of assuring availability of hydrogen as PEM fuel cells are introduced into service. NexTech Materials is collaborating with the U.S. Army Construction Engineering Laboratory (CERL) on the development of a hydrogen reformation process for E85 fuel. This paper describes the technical status of E85 fuel reforming process development work using Rh/ceria catalysts. Reforming results are compared for steam reforming and oxidative steam reforming of ethanol (the primary constituent of E85 fuel), isooctane, ethanol/iso-octane fuel mixtures (as a surrogate to E85), and commercially available E85 fuel. Stable reforming of E85 at 800 °C and a space velocity of 58,000 scm 3 g cat -1 h -1 over a 200-h period is reported.

  3. 小松HM400-2铰卡发动机燃油过滤的改造%Reform of Komatsu HM400-2 Articulated Dump Truck Engine Fuel Filter

    Institute of Scientific and Technical Information of China (English)

    朱志兴

    2015-01-01

    小松HM400-2铰接式卡车发动机燃油系统采用的是高压共轨技术,但因燃油适应能力差,导致高压共轨油槽故障频发.此故障成为制约该设备利用率关键因素之一.通过对高压共轨技术介绍,结合该铰接式卡车发动机燃油系统结构特点进行了分析,对共轨油槽故障现象进行了描述和分析.借鉴同型号发动机燃油过滤结构成功经验基础上,提出了燃油系统中过滤器的改造方案,并组织实施,取得了良好效果.%Engine fuel system of articulated truck of Komatsu HM400-2 model is using the high pressure common rail technology. Its adaptability to poor quality fuel causes frequent faults to high pressure common rail tank. This kind of fault restricts the equipment utilization rate becomes one of the key factors to decrease the equipment failure rate. In this article, the high pressure common rail technology is introduced, the common rail tank failure phenomena is described and analyzed, combining the characteristics of the articulated truck engine fuel system structure. Based on the same model engine fuel filter structure of successful experience, the retrofit scheme of fuel oil filter system is put forward, and implemented, which has obtained the good effect.

  4. Railway Reform in China.

    OpenAIRE

    1998-01-01

    The purpose of this working paper is to consider the current situation of Chinese Railways, the progress of reforms to date, and possible future developments. The first section describes the current problems of Chinese Railways, as a vast organisation subject to strong central control, facing enormous and rapidly growing demands which it is unable to satisfy. The progress of reform in Chinese Railways to date, and in particular the Economic Contract Responsibility System instituted in the lat...

  5. 直接内重整熔融碳酸盐燃料电池中甲烷蒸汽重整催化剂探索性研究%Pilot Study on the Use of Methane Steam Reforming Catalyst in Molten Carbonate Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    李广龙; 周利; 王英旭; 王鹏杰; 林化新; 朱秀玲; 邵志刚

    2011-01-01

    选择甲烷蒸汽重整催化剂用于直接内重整熔融碳酸盐燃料电池(DIR-MCFC)中,并考察了DIR-MCFC的性能,讨论了电池放电量、气体压力、燃料气进料水/碳比(S/C)等因素对该催化剂性能的影响.结果表明,重整催化剂能够满足电池放电需求;放电量大小影响电池内的H2含量,但对CH4含量影响不大;当气体压力为0.36MPa时,电池内的H2含量最大;S/C越低,电池性能越高,相同放电量下,S/C=1时的电池电压比S/C=2时的高.%A methane steam reforming catalyst was selected by the comparison of its catalytic properties and resistance to carbon deposition. The performance of a molten carbon fuel cell (MCFC) using this catalyst was studied. The effect of discharge magnitude, gas pressure,and steam-carbon ratio (S/C) on the catalyst was also investigated. The results indicated that the catalyst could make the cell perform well,and the increment of the current affected the content of H2 in the cell. but it had minor effect on the content of CH4. In addition, the reforming reaction depended on the gas pressure. There was a maximal content of H2 in the cell at 0.36 MPa. With the decrease of S/C, the performance of MCFC was improved.

  6. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  7. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  8. Review of different renewable fuels for potential utilization in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Paradis, H.; Andersson, M.; Yuan, J.; Sunden, B. [Lund Univ., Lund (Sweden). Dept. of Energy Sciences

    2010-07-01

    A literature review was carried out to enhance knowledge about alternative fuels for solid oxide fuel cells (SOFCs). This paper outlined the materials and structure of SOFCs along with the possibilities involving SOFCs fed with different renewable fuels. The alternative fuels discussed in this study were methanol, ethanol, di-methyl-ether (DME), ammonia, biogas and and natural gas (methane). Finally, the different hydrogen-based fuels were compared and analyzed. Due to their high operating temperature and suitable catalyst material, SOFCs provide a good enough environment for renewable fuels. The development of new catalyst materials could help promote the use of alternative fuels in SOFCs, so they can better tolerate impurities and effectively reform the hydrocarbon fuels. The high cost for both SOFCs and the alternative fuels remains a concern for market implementation. It was concluded that although renewable fuels in SOFCs are promising and have shown good tendency as an energy provider, further research is still needed. 25 refs., 5 tabs.

  9. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    Science.gov (United States)

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  10. Evaluation of Partial Oxidation Reformer Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  11. Refuelling stations for hydrogen or reformate gas

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2006-02-15

    A prestudy concerning refuelling stations for reformate gas/hydrogen has been performed on the request of Swedish Gas Centre. The plan is to build a small-scale fuel processor for said application during 2006 as a continuation of the RandD programme in the fuel processing area. Catator has designed and evaluated small-scale fuel processors in a series of SGC-projects. The fuel processor system was abbreviated 'Stur-unit' and contained reactors for steam reforming, water-gas shift and preferential oxidation, tied together in a single train unit. The STUR-unit is operated at atmospheric conditions and will produce reformate gas of fuel cell quality (normally less than 20 ppm of CO). Catator has designed and delivered a number of Stur-units ranging from 1 nm{sup 3} to 50 nm{sup 3}/hr of hydrogen. Different fuels have been evaluated, both gases and liquids. Catator has also designed a pressurised system together with Intelligent Energy (abbreviated 'Hestia-unit'). This unit operates at 5-10 bar(a) and utilizes physical purification by means of fast-cycle PSA to provide essential pure hydrogen. Both units have been subjected to successful long-term testing. The hydrogen demand in Malmoe (the proposed location for the refuelling station) is presently low and irregular since only two buses utilize Hythane (a mixture between natural gas and hydrogen) at the moment. The interest for hydrogen and hydrogen containing fuels is, however, expected to increase in a near future. E.ON Gas (the owner of the existing refuelling station) has forwarded a number of specifications for the fuel processor system. The unit shall operate on natural gas and biogas. Bio-derived liquid fuels (bio ethanol and E85 - a mixture between ethanol and gasoline) could also be interesting alternatives. Depending on the low demand for hydrogen (average of about 1 nm{sup 3}/hr), the production capacity can be rather low - 5-10 nm{sup 3}/hr is probably more than enough for the time being

  12. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    Energy Technology Data Exchange (ETDEWEB)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  13. Use of biofuels to produce hydrogen (reformation processes).

    Science.gov (United States)

    Ramírez de la Piscina, Pilar; Homs, Narcís

    2008-11-01

    This tutorial review deals with the catalytic reformation of ethanol and glycerol to produce hydrogen that can be used as an energy carrier in a fuel cell. Both the worldwide production of ethanol in large amounts to be used as a biofuel and that of glycerol as a by-product in biodiesel manufacture are presented. The catalytic reformation processes of both ethanol and glycerol are contemplated, including thermodynamic and kinetic aspects. Catalysts are analyzed as a function of operation conditions, selectivity and stability.

  14. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...... steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D...

  15. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  16. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. [Colorado School of Mines, Golden, CO (United States)

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  17. Rorty the Reformer?

    Directory of Open Access Journals (Sweden)

    Harvey Cormier

    2008-12-01

    Full Text Available Rorty should be read as a reformer, rather than a revolutionary transformer. While the reformer aims to improve what is already good, the revolutionary transformer seeks to dispense with the merely good in a quest for the absolutely best. For Rorty this choice was a bad choice. In order to make the case that Rorty was a reformer,we explicate Rorty’s views on truth. These views argue that we can obtain consensus about what is worth preserving and improving without reference to either rightness, truth, or objectivity. For after all, there is no way for philosophers to get outside the circle of language within which we debate about what we take to be authoritative and aceptable.

  18. Health care reforms

    Directory of Open Access Journals (Sweden)

    Marušič Dorjan

    2016-09-01

    Full Text Available In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country.

  19. Health care reforms.

    Science.gov (United States)

    Marušič, Dorjan; Prevolnik Rupel, Valentina

    2016-09-01

    In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country.

  20. The Danish Police Reform

    DEFF Research Database (Denmark)

    Degnegaard, Rex; Mark, Sofie

    2013-01-01

    Many cases highlight the need for responsible management in regards to transparency of organisations and involvement of stakeholders in decisions that will impact citizens, patients, customers and/or clients. Often these cases take an outside-in approach as they illustrate why it is essential...... for organisations to work with transparency and involvement with the aim of upholding and further developing a social responsibility to their environment. This case on the other hand takes an inside-out perspective on social responsibility by illustrating how social responsibility is necessary for public......, the reform process was problematic and the following years were challenging and filled with changes and turbulence. Media, politicians and the police itself directed heavy criticism towards the effects of the reform and reviews of the reform as well as of the work of the police were carried out resulting...

  1. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  2. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  3. Method for assessing modular concepts for reformate gas processing for PEM fuel cell systems for decentral power supply; Methodik zur Bewertung modularer Konzepte zur Reformatgasaufbereitung fuer PEM-Brennstoffzellenanlagen zur dezentralen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, J.

    2007-02-08

    The dissertation presents the fundamentals of hydrogen gas processing and CO gas purification methods and, on this basis, develops a method for energetic modularisation of the gas treatment process. All process stages are modelled and analyzed on the basis of mass and energy balances. The theoretical discussion of solution methods for the balance equations of the various process stages is limited to the steam reforming and CO gas purification system. Parameters are defined for energetic assessment of the process variants. The method leads to the identification of energetically optimized process variants. Its main goal is the optimum utilisation of process-internal energy and mass flows. The graphic pinch method is a key component of the method presented; it is adapted to the exemplary process. [German] In der Dissertation wird, ausgehend von der Darstellung der Grundlagen der Wasserstoffgasaufbereitungs- und CO-Gasreinigungsverfahren, eine Methodik zur energetischen Modularisierung des Gasaufbereitungsprozesses entwickelt. Die Modellierung und Analyse der einzelnen Prozessstufen erfolgt auf der Basis von Masse- und Energiebilanzen. Die theoretische Darstellung der Loesungsmethoden fuer die Bilanzgleichungen der einzelnen Prozessstufen ist dabei auf das System Dampfreformierung und CO-Gasreinigung eingegrenzt. Parameter zur energetischen Bewertung der Prozessvarianten werden definiert. Die Methodik fuehrt zur Eingrenzung energetisch optimierter Prozessvarianten. Ihr Hauptziel liegt in der optimalen Nutzung prozessinterner Energie- und Stoffstroeme. Ein zentraler Bestandteil der Methodik ist die graphische Pinch-Methode. Sie wird dem vorliegenden Prozess angepasst.

  4. Thermodynamical simulation for solid oxide (SOFC) type fuel cells with ethanol direct internal reforming; Simulacao termodinamica para celulas a combustivel do tipo SOFC com reforma interna direta do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aline Lima da; Malfatti, Celia de Fraga; Heck, Nestor Cezar [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM)]. E-mail: als14br2000@yahoo.com.br; Mello, Celso Gustavo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Quimica (PPGEQ); Halmenschlager, Cibele Melo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM). Lab. de Materiais Ceramicos

    2008-07-01

    In SOFC, high operative temperature allows the direct conversion of ethanol into H{sub 2} to take place in the electrochemical cell. Direct internal reforming of ethanol, however, can produce undesirable products that diminish system efficiency and, in the case of carbon deposition over the anode, may occur the breakdown of the electrode. In this way, thermodynamic analysis is fundamental to predict the product distribution as well as the conditions favorable for carbon to precipitate inside the cell. Equilibrium determinations are performed by the Gibbs energy minimization method, using the GRG algorithm. Thermodynamic conditions for carbon deposition were analyzed, in order to establish temperature ranges and H{sub 2}O/ethanol ratios where carbon precipitation is not feasible. A mathematical relationship between Lagrange multipliers and carbon activity is presented, unveiling the carbon activity in atmosphere. The effect of the type of solid electrolyte (O{sup 2-} or H{sup +} conducting) on carbon formation is also investigated. The results of this work are in agreement with previous results reported in literature using the stoichiometric method. (author)

  5. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  6. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  7. Fuel Tax Levy Just Rround Corner

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ The issue of the "tax-for-fee" reform has become the focus of social attention again when State Administration of Taxation (SAT) Director Xie Xuren said the fuel tax levy is already under the examination and approval process. Xie made those remarks at the press conference held by the News Office of the State Council on January 13.

  8. Tailor-made Reform

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Few people imagined how China would change when the country initiated its reform and opening-up policies almost 28 years ago. Without previous experience, the Chinese are following a trial-and-error approach in pressing ahead with the reform process, exploiting a method of development that seemed suitable to national conditions at the time. In an article published in the 21st Century Business Herald,Lou Jiwei, Vice Minister of Finance, looks back at China's path to revitalize its long-isolated economy. E...

  9. Internal combustion engine with thermochemical recuperation fed by ethanol steam reforming products - feasibility study

    Science.gov (United States)

    Cesana, O.; Gutman, M.; Shapiro, M.; Tartakovsky, L.

    2016-08-01

    This research analyses the performance of a spark ignition engine fueled by ethanol steam reforming products. The basic concept involves the use of the internal combustion engine's (ICE) waste heat to promote onboard reforming of ethanol. The reformer and the engine performance were simulated and analyzed using GT-Suite, Chem CAD and Matlab software. The engine performance with different compositions of ethanol reforming products was analyzed, in order to find the optimal working conditions of the ICE - reformer system. The analysis performed demonstrated the capability to sustain the endothermic reactions in the reformer and to reform the liquid ethanol to hydrogen-rich gaseous fuel using the heat of the exhaust gases. However, the required reformer's size is quite large: 39 x 89 x 73 cm, which makes a feasibility of its mounting on board a vehicle questionable. A comparison with ICE fed by gasoline or liquid ethanol doesn't show a potential of efficiency improvement, but can be considered as a tool of additional emissions reduction.

  10. Stepping Forward In Political Reform

    Institute of Scientific and Technical Information of China (English)

    LAI HAIRONG

    2011-01-01

    It seems that the bulk of foreign media reports about China's reforms have limited their focus to changes in China's economic setup with little mention paid to its political reform.Actually,since China carried out the reform and opening-up policy in 1978,it has not only made fundamental changes to its economic system but also implemented a series of important reforms to its political institutions.

  11. Stepping Forward In Political Reform

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    It seems that the bulk of foreign media reports about China’s reforms have limited their focus to changes in China’s economic setup with little mention paid to its political reform.Actually,since China carried out the reform and opening-up policy in 1978,it has not only made fundamental changes to its economic system but also implemented a series of important reforms to its political institutions

  12. Phosphoric acid fuel cell power plant system performance model and computer program

    Science.gov (United States)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  13. Globalization, Citizenship and Educational Reform

    Science.gov (United States)

    Qi, Jie

    2009-01-01

    This paper explores the notions of globalization as embodied in Japanese educational reforms during the 1980s and 1990s. Modern institutional discourses of educational reform in Japan have shifted over time and all of these reform movements have been constructed by particular social and historical trajectories. Generally speaking, it has been…

  14. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  15. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  16. The Stuttgart Reform Concept.

    Science.gov (United States)

    Bienert, F.

    1987-01-01

    Reviews curriculum reform being implemented at the Library School of Stuttgart for students planning to work in public libraries. Components of the new curriculum include core courses in library science, electives in special areas of librarianship, seminars in chosen subject disciplines, and field work in libraries and government agencies. (LRW)

  17. The buzz on reform.

    Science.gov (United States)

    Bouchard, E A

    1994-01-01

    Mr. Bouchard bravely travels through the maze of lingo and anagrams spawned by recent attempts at healthcare reform. This comprehensive list of terminology and definitions, which provides considerable detail and analysis, will be invaluable to anyone trying to understand current trends.

  18. Reforming Rights Protection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For China, the recently established UN Human Rights Council is a victory of multilateralism This spring witnessed a significant reform in the United Nations human rights protection mechanism. On March 15, the UN General Assembly approved a draft resolution, with a 170 to 4 vote and 3 abstentions, to create a Human Rights Council (HRC). Then, March 23, the UN Economic and

  19. Reforming Rail Freight

    Institute of Scientific and Technical Information of China (English)

    Lan Xinzhen

    2013-01-01

    Market-oriented reforms have come to one of China's last major monopoly industries Freight Train No.82410 from Beijing to southwest China's Chengdu departed from Dahongmen Station at 4 p.m.on June 26.The departure was a special one because it was the first container train of the Beijing Railway Bureau to depart following

  20. Telecommunication reform in Ghana

    OpenAIRE

    Haggarty, Luke; Mary M. Shirley; Wallsten, Scott

    2003-01-01

    In 1996 Ghana privatized its incumbent telecommunications firm by selling 30 percent of Ghana Telecom to Telekom Malaysia, licensing a second network operator, and allowing multiple mobile firms to enter the market. The reforms yielded mixed results. Landline telephone penetration increased dramatically while the number of mobile subscribers surpassed even this higher level of fixed line s...

  1. Educational Reforms in Yugoslavia

    Science.gov (United States)

    Kintzer, Frederick C.

    1978-01-01

    Yugoslavia's educational system had to be completely rebuilt after World War II to ensure the nation's full and rapid competition in the postwar world. The reforms are discussed in light of the political, social, and economic structure of Yugoslavia. (Author/LBH)

  2. Reformer Takes French Reins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The painful reforms chosen by French voters to rejuvenate their sluggish economy have smoothed the way for Nicolas Sarkozy to take up France’s top political job.The 52-year-old leader of the ruling right-wing Union

  3. China Launched VAT Reform

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ In order to boost domestic demand,reduce the tax burden on companies,encourage technological upgrades and push for industrial restructuring,China decided to extend its value-added tax(VAT) reform to all industries nationwide beginning January 1,2009.

  4. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  5. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  6. Dimethyl ether (DME) as an alternative fuel

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  7. MEDIUM PRESSURE HYDROUPGRADING PROCESS (MHUG) AND PRODUCTION OF CLEAN FUELS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The medium pressure hydroupgrading process (MHUG) unit with an 800 kt/a processing capacity of Jinzhou Petrochemical Company is used to hydroupgrade the mixture of FCC LCO fuel and straight-run diesel fuel in the presence of RN/RT series catalysts for improvement of the quality of the diesel fuel. Meanwhile, catalytic reforming feedstock is also obtained. The sulfur, nitrogen and aromatics contained in the hydroupgraded diesel fuel products can be minimized and the cetane number can be heightened. The produced clean fuels can meet the requirements of environmental protection.

  8. Energy Price Reform in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Market-based reform of energy prices is the most effective approach to enhancing energy efficiency. The policies of energy conservation and enhancing energy efficiency in the 1 lth Five-year Plan period (2006-2010) work directly to set up a series of reform measures related to energy pricing by market mechanism. Energy price reform will deeply influence China's industrial interest pattern, and its development in the next five years and even 10 or 20 years.This paper analyzes the significance, timing, present status and problems related to energy price reform, and discusses the goal, principle and measures of coal, electricity, oil and gas price reform separately.

  9. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  10. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John

    2012-01-01

    This work presents the experimental study and modelling of a methanol reformer system for a high temperature polymer electrolyte membrane (HTPEM) fuel cell stack. The analyzed system is a fully integrated HTPEM fuel cell system with a DC/DC control output able to be used as e.g. a mobile battery...... charger. The advantages of using a HTPEM methanol reformer is that the high quality waste heat can be used as a system heat input to heat and evaporate the input methanol/water mixture which afterwards is catalytically converted into a hydrogen rich gas usable in the high CO tolerant HTPEM fuel cells....... Creating a fuel cell system able to use a well known and easily distributable liquid fuel such as methanol is a good choice in some applications such as range extenders for electric vehicles as an alternative to compressed hydrogen. This work presents a control strategy called Current Correction...

  11. The 'reformation' of counselling

    Directory of Open Access Journals (Sweden)

    G.A. Lotter

    2001-08-01

    Full Text Available Although the Reformation took place some four hundred years ago, one area in which reformation is really needed today is the counselling of people. Since Wilhelm Wundt started the “study of the mind” in 1879, William James and Sigmund Freud followed and secular psychology gradually has developed to take the “front seat”; hence moving Biblical counselling, which has been practised since the times of the New Testament, to the “back burner”. This development had been going on for the greater part of the 20th century, up to the publication of Competent to Counsel by Jay E. Adams in 1970. In the model for counselling suggested by Adams, the principles of the Reformation of the sixteenth century, Soli Deo Gloria, Soli Scriptura, Soli Fidei, Sola Gratia, etc. were again implemented in assisting and counselling people with personal and interpersonal problems. The epistomological and anthropological approach of secular psychology differs radically from that of Biblical principles, thus necessitating a new “reformation” of counselling. Within this new form counselling, inter alia, implies the following: the Word of God has its rightful place, sin has to be taken seriously and the work of the Holy Spirit should be recognised. In this article it is proposed that the “reformation” of counselling was started by scholars with a Biblical Reformational approach and that this method of counselling followed the parameters of the Reformation of the sixteenth century. This “reformation” developed into a new direction in counselling and still continues today with fascinating new frontiers opening up for Biblical counselling.

  12. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with thermal efficiency is

  13. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  14. Tri-reforming as a process of CO2 utilization and a novel concept of energy storage in chemical products

    Directory of Open Access Journals (Sweden)

    Świrk Katarzyna

    2017-01-01

    In this paper two scenarios for methane tri-reforming implementation are discussed: (i Tri-reforming as a effective way for chemical CO2 utilization, without the separation of carbon dioxide from flue gases from fossil fuel-fired power stations, and (ii dry reforming of methane improved by the addition of water and oxygen, which may be applied as a chemical energy storage process. The literature on the subject of trireforming is shortly reviewed, including thermodynamics of the process, the possible conversions of methane and carbon dioxide, and proposed catalysts, both studied in tri-reforming, and in single processes (SRM, DRM and POM.

  15. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D...... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  16. Effect of current-voltage characteristics on plasma reforming

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, N. [Univ. of Science and Technology, Daejeon (Korea, Republic of). Environmental System Engineering; Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division; Hur, M.; Kim, K.T.; Kim, S.J.; Song, Y.H. [Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division

    2010-07-01

    Studies have shown that the energy costs associated with plasma fuel reforming can vary depending on the type of plasma generation technique. The reasons for the different energy costs, however, are not yet clear, since different types of plasma reactor lead to not only different plasma conditions but also lead to different reaction conditions that is not relevant to plasma, such as gas residence time, heat and mass flow conditions. This paper presented the results of a parametric study on methane partial oxidation which was conducted to determine the optimal operating conditions and geometrical design of an arc jet plasma fuel reformer. The arc reactor used in this study was designed to control various operating parameters such as arc length, gas residence time, and gas mixing. Two different types of power supply were tested, notably one that produced high voltage with low current, and one that produced relatively low voltage and high current. The effects of these different voltage-current characteristics on gas reforming process were analyzed based on methane conversion rates, selectivity of products, and thermal efficiencies. The study showed that the input power but not the voltage plays an important role in the present partial oxidation process. The gas residence time was also found to be an important factor in controlling the reformer process. 10 refs., 8 figs.

  17. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    孙艳朋; 聂勇; 吴昂山; 姬登祥; 于凤文; 计建炳

    2012-01-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  18. Cost reductions of fuel cells for transport applications: fuel processing options

    Science.gov (United States)

    Teagan, W. P.; Bentley, J.; Barnett, B.

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R&D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice, operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under 150/kW in stationary applications and 30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories.

  19. Controller design and experiment for autothermal reforming of methanol in miniature reactor.

    Science.gov (United States)

    Lu, Jiangang; Zhuang, Hong; Yang, Qinmin; Wang, Xuefei; Zheng, Jianfeng; Chen, Jinshui; Sun, Youxian

    2014-09-01

    In this paper, a miniature methanol fuel processor and its controller design is introduced for onboard hydrogen production. The hydrogen is generated via autothermal reforming of methanol. The control scheme consists of a hydrogen flow rate controller and a reforming temperature controller. To deal with uncertain system dynamics and external disturbance, an adaptive sliding mode control algorithm is adopted as the hydrogen flow rate controller for regulating hydrogen flow rate by manipulating methanol flow rate. Additionally, a high-gain observer is implemented to estimate the unmeasurable system state. The stability of closed-loop system is guaranteed by standard Lyapunov analysis. Furthermore, a variable ratio control law is employed as the reforming temperature controller to achieve steady reforming temperature by adjusting the reforming air flow rate. Finally, the effectiveness of the entire system is testified by experimental means.

  20. The Danish school reform

    DEFF Research Database (Denmark)

    Bager, Ann; Mølholm, Martin; Horsbøl, Anders

    (Latour), e.g. civil service and municipal practices and texts, into the organizational practices of two local schools. On the basis of these analyses, we will establish a participatory process in which local actors are involved in the co-creation of new plurivocal and egalitarian dialogue designs......The paper presents a methodological framework for the study of the discursive emergence of the recent Danish School reform (2014). The framework will enable discourse scholars to hold an actively involved position in changing and furthering plurivocal processes of translations, negotiations...... and implementation of the reform. The framework is operationalized through research-based participatory collaborative processes involving local actors in two Danish public schools. It interlinks diverse discourse strategies and perceptive distances that traditionally belong to separate branches within discourse...

  1. Routes for deactivation of different autothermal reforming catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  2. Exergy analysis in hydrogen production from auto thermal reforming of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Lourenco Gobira [SENAI, Salvador, BA (Brazil). Centro Integrado de Manufatura e Tecnologia - CIMATEC; Nebra, Silvia Azucena de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    2008-07-01

    This work makes an exergetic analysis in the production of hydrogen by Autothermal Reforming of Methane, ATR. ATR is combination between Steam Methane Reforming, SMR, and partial reforming. In the ATR, the reforming reaction can be endothermic, exothermic or neutral depending on the relation CH{sub 4}-H{sub 2}O-O{sub 2}. The first step of ATR is the reforming where synthesis gas, containing H{sub 2}, H{sub 2}O, CO{sub 2}, CO and residual CH{sub 4} is formed. Thermodynamic chemical equilibrium is assumed in all reactions of process. After reforming, Shift reactions produce more H{sub 2} reacting CO and H{sub 2}O. After Shift Reactions the synthesis gas is purified by absorption and adsorption. The absorption is made in Diethanolamine, DEA, and produce CO{sub 2} as by product. The adsorption is made in fixed beds of molecular sieves. This procedure can produce H{sub 2} highly pure (99,999 %, wt) proper to fuel cells. The exergetic analysis identifies the sources of irreversibility of the process. It was employed the Fuel-Product concept where the Control Volumes, CV, may present as product the total, physical or chemical exergies. The desegregation of the exergy into physical and chemical is essential to evaluate the perform of CV's. The results show that the main source of irreversibility is the Reformer. (author)

  3. Ready for RMB Reform

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Now that the global recovery has taken hold and with the Chinese economy gaining ground,China's central bank-the People's Bank of China-has decided to proceed with reform of the renminbi(yuan)exchange rate regime and improve the flexibility.The central bank's spokesman on June 20 addressed a number of concerns over the issue in a statement posted on its website.Edited excerpts follow:

  4. Ready for RMB Reform

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Now that the global recovery has taken hold and with the Chinese economy gaining ground,China’s central bank—the People’s Bank of China—has decided to proceed with reform of the renminbi(yuan) exchange rate regime and improve the flexibility.The central bank’s spokesman on June 20 addressed a number of concerns over the issue in a statement posted on its website.Edited excerpts follow:

  5. The Finish Municipal Reform

    Directory of Open Access Journals (Sweden)

    Pekka Kettunen

    2015-06-01

    Full Text Available The article aims at evaluating the municipal amalgamation process as a way of reforming local government, by two criteria – efficiency in service provision and level of democracy. Those issues are applied onto a Finnish case study, as amalgamation is more common in Northern Europe. The author gives a review of amalgamation studies in the world and of the extensive evaluation reports of amalgamation reform in Finland. The paper examines amalgamation policy from two perspectives – from the instrumental or goal-oriented view and from the process aspect. The findings on the relatively high number of instances of amalgamation in Finland are the following: the main process-driving factors were political parties that mostly supported the reform and the underlying urge to construct larger entities which made municipalities take part in the process. The level of efficiency in the New, amalgamated municipalities is not necessarily higher, as efficient service provision can be found both in small and large municipalities. Efficiency is more determined by the dynamics of a municipal economy while the size of a municipality alone does not make a difference. As amalgamations change the nature of local political life they affect democracy both positively and negatively.

  6. Political Reform at Watershed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    How to promote the reform of political institutions is one of the thorny issues facing China.The recent publication of the first book systematically illustrating the overall plan of the reform of China’s political institutions,Storming the Fortress:A Research Report on the Reform of China’s Political Institutions After the 17th Party Congress (abbreviated as Storming the Fortress) has attracted a lot of public attention.Besides the sensitive topic,the identities of the authors also con- tribute to the book’s bestselling.Most authors of the book are from the Party School of the Central Committee of the Communist Party of China (CPC),an important think tank of the CPC.Because of this many people believe that the book represents the official standpoint.Beijing Review reporter Feng Jianhua conducted an interview with Professor Zhou Tianyong,Chief Compiler of the book and Deputy Director of the Research Office of the Party School of the CPC Central Committee.

  7. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keunsoo [Department of Engine Research, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Daejeon 305-343 (Korea, Republic of); Jeong, Jihoon [Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Azad, Abul K. [Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tunku Link, Gadong BE1410 (Brunei Darussalam); Jin, Sang Beom [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yusung-Gu, Daejeon 305-719 (Korea, Republic of); Kim, Jung Hyun, E-mail: jhkim2011@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yusung-Gu, Daejeon 305-719 (Korea, Republic of)

    2016-03-01

    Graphical abstract: Measured Ti 2p peaks and deconvolution peaks of Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} under oxidizing condition (left) and NSTM under reducing condition (right). - Highlights: • Chemical states of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) were analyzed. • Charge compensation occurred with the reduction of Mn and Ti. • The Nd substitution effect allowed some Ti to convert into a metallic behavioral component. • NSTM and SSTM had a large amount of lattice oxygen; however, LSTM retained a large quantity of adsorbed oxygen. - Abstract: Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O

  8. 21st Century Renewable Fuels, Energy, and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berry, K. Joel [Kettering Univ., Flint, MI (United States); Das, Susanta K. [Kettering Univ., Flint, MI (United States)

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  9. Portable fuel cell systems for America's army: technology transition to the field

    Science.gov (United States)

    Patil, Ashok S.; Dubois, Terry G.; Sifer, Nicholas; Bostic, Elizabeth; Gardner, Kristopher; Quah, Michael; Bolton, Christopher

    The US Army Communications, Electronics Research Development and Engineering Center (CERDEC) envisions three thrust areas for portable fuel cell systems for military applications. These areas include soldier power (500 W), it is imperative that the fuel cell power units be able to operate on fuels within the military logistics chain [DOD 4140.25-M, DOD Directive 4140.25 (1993)]. CERDEC is currently conducting research on catalysts and microchannel fuel reformers that offer great promise for the reforming of diesel and JP-8 fuels into hydrogen. In addition to research work on PEM fuel cells and enabling technologies, the Army is also conducting research on direct methanol and solid oxide fuel cells, and combined heat and power applications utilizing new high temperature fuel cells.

  10. Conversion of crop seed oils to jet fuel and associated methods

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  11. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  12. Hydrogen generation from 2,2,4-trimethyl pentane reforming over molybdenum carbide at low steam-to-carbon ratios

    Science.gov (United States)

    Cheekatamarla, Praveen K.; Thomson, William J.

    Because of the need for an efficient and inexpensive reforming catalyst, the objective of this work is to determine the feasibility of employing Mo 2C catalyst for the steam reforming and oxy-steam reforming of the higher hydrocarbons typical of transportation fuels such as gasoline. It is shown that bulk Mo 2C catalysts can successfully reform 2,2,4-trimethyl pentane (isooctane) to generate H 2, CO and CO 2 at very low steam/carbon ratios, without coke formation, eliminating the need for pre-reforming. Maximum hydrogen generation was observed at a S/C ratio of 1.3 and 1000 °C during SR reactions and S/C of 0.71, O 2/C of 0.12 at 900 °C during oxidative steam reforming reactions.

  13. Solid oxide fuel cell performance comparison fuelled by methane, MeOH, EtOH and diesel surrogate C8H18

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Cinti, Giovanni; Nielsen, Mads Pagh

    2016-01-01

    Carbon deposition is a major cause of degradation in solid oxide fuel cell systems. The ability to predict carbon formation in reforming processes is thus absolutely necessary for stable operation of solid oxide fuel cell systems. In the open literature it is found that thesteam input is always...... considered in large excess compared to what required by the reforming process with the purpose of reducing carbon formation and avoiding rapid degradation of the cell performance. This makes it difficult to consistently compare system performance with different fuels. In this work, the molar compositions...... required for the reforming process for each fuel was related to the heat required for the reforming process and fuel cell open circuit voltage. Furthermore, in an experimental test, steam reforming product compositions were used to evaluate and compare SOFC performance with different hydrocarbons...

  14. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Hiroyasu [Government Industrial Research Inst., Osaka (Japan)

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  15. MODELLING AND FUZZY LOGIC CONTROL OF PEM FUEL CELL SYSTEM POWER GENERATION FOR RESIDENTIAL APPLICATION

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2010-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...

  16. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  17. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  18. Education Reform in Hong Kong

    Directory of Open Access Journals (Sweden)

    Chris Dowson

    2000-05-01

    Full Text Available Since the early 1990s, the pace of educational reform in Hong Kong has accelerated and broadened to incorporate almost all areas of schooling. The reforms introduced during this period can be subsumed under what has generally been labelled the quality movement. In this paper, we review and comment on a number of policy reform initiatives in the four areas of "Quality Education," English Language Benchmarking, Initial Teacher Training and the Integration of Pupils with Special Needs into Ordinary Classrooms. Following a brief description of each policy initiative, the reforms are discussed in terms of their consistency, coherence and cultural fit.

  19. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  20. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  1. Reform Drivers and Reform Obstacles in Natural Resource Management

    DEFF Research Database (Denmark)

    Gezelius, Stig S.; Raakjær, Jesper; Hegland, Troels Jacob

    2010-01-01

    ABSTRACT: The ability to transform historical learning into institutional reform is a key to success in the management of common pool natural resources. Based on a model of institutional inertia and a comparative analysis of Northeast Atlantic fisheries management from 1945 to the present....... Institutional inertia entails that large-scale management reform tends to be crisis driven....

  2. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  3. Medical Education and Curriculum Reform: Putting Reform Proposals in Context

    Directory of Open Access Journals (Sweden)

    Daniel Kam Yin Chan, MD, MB.BS, MHA

    2004-01-01

    Full Text Available The purpose of this paper is to elaborate criteria by which the principles of curriculum reform can be judged. To this end, the paper presents an overview of standard critiques of medical education and examines the ways medical curriculum reforms have responded to these critiques. The paper then sets out our assessment of these curriculum reforms along three parameters: pedagogy, educational context, and knowledge status. Following on from this evaluation of recent curriculum reforms, the paper puts forward four criteria with which to gauge the adequacy medical curriculum reform. These criteria enable us to question the extent to which new curricula incorporate methods and approaches for ensuring that its substance: overcomes the traditional opposition between clinical and resource dimensions of care; emphasizes that the clinical work needs to be systematized in so far as that it feasible; promotes multi-disciplinary team work, and balances clinical autonomy with accountability to non-clinical stakeholders.

  4. Environmental fiscal reforms

    Directory of Open Access Journals (Sweden)

    Ashish Chaturvedi

    2014-09-01

    Full Text Available The paper presents concepts and instruments of environmental fiscal reforms (EFR and their application in the Indian context. EFR can lead to environmental improvement more efficiently and cost effectively than traditional regulation. There is substantial experience of successful EFR implementation in the European Union. India has also adopted some EFR measures such as deregulation of petrol prices, coal cess, and subsidy for setting up common effluent treatment plants. The challenges of implementing EFR measures in India are also discussed, including inadequate analysis, policy framework and institutional capacity, as well as conflict with poverty reduction and building political support.

  5. Drug Pricing Reforms

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas

    2015-01-01

    Reference price systems for prescription drugs have found widespread use as cost containment tools. Under such regulatory regimes, patients co-pay a fraction of the difference between pharmacy retail price of the drug and a reference price. Reference prices are either externally (based on drug...... prices in other countries) or internally (based on domestic drug prices) determined. In a recent study, we analysed the effects of a change from external to internal reference pricing in Denmark in 2005, finding that the reform led to substantial reductions in prices, producer revenues, and expenditures...

  6. TAX REFORM IN SINGAPORE

    OpenAIRE

    Glenn Jenkins; Rup Khadka

    1998-01-01

    Globalization has forced many governments to change their economic policies, including tax policies, in the recent years. It has had an even greater impact on Singapore’s economy due to the high degree of its openness with respect to trade and investment. In this context, Singapore undertook a major restructuring of its tax system in the early 1990s. The introduction of a modern value added tax system (goods and services tax) was a part of the overall tax reform package. This paper examines h...

  7. SOFC system with integrated catalytic fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, C.; Tompsett, G.A.; Kendall, K.; Ormerod, R.M. [Birchall Centre for Inorganic Chemistry and Materials Science, Keele Univ. (United Kingdom)

    2000-03-01

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm{sup -2} at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H{sub 2}/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack. (orig.)

  8. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  9. SOFC system with integrated catalytic fuel processing

    Science.gov (United States)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  10. The Danish Regulatory Reform of Telecommunications

    DEFF Research Database (Denmark)

    Skouby, Knud Erik

    1998-01-01

    An overview of the liberalisation process and regulatory reform of telecommunications in Denmark......An overview of the liberalisation process and regulatory reform of telecommunications in Denmark...

  11. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  12. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hong Seok; Lee, Chung Ho; Suh, Jeong Se [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-11-15

    Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than 250℃). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and 220℃ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of 180℃ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

  13. Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    , is considered to investigate the effect of catalyst wire-mesh pressure drop characteristics on flow distribution in the CPHE reformer. Flow distribution in a CPHE reformer is rarely uniform due to inlet and exhaust manifold design. Poorly-designed manifolds may lead to severe flow maldistribution, flow reversal...... in some of the CPHE reformer channels and increased overall pressure drop. Excessive flow maldistribution can significantly reduce the CPHE reformer performance. Detailed three-dimensional models are used to investigate the flow distribution at three different catalyst wire-mesh pressure drop coefficients......Steam reforming of hydrocarbons using a catalytic plate-type-heat-exchanger (CPHE) reformer is an attractive method of producing hydrogen for a fuel cell-based micro combined-heat-and-power system. In this study the flow distribution in a CPHE reformer, which uses a coated wire-mesh catalyst...

  14. Ageing-Driven Pension Reforms

    NARCIS (Netherlands)

    Bonenkamp, J.; Meijdam, Lex; Ponds, Eduard; Westerhout, Ed

    2016-01-01

    This paper stems from the observation that there are two world-wide trends, pension reform and population ageing, and asks whether the two may be related. Exploring the cases of pension reform in different countries, we find that, although they are very different, the cases share a common characteri

  15. Ageing-driven pension reform

    NARCIS (Netherlands)

    Bonenkamp, J.; Meijdam, Lex; Ponds, Eduard; Westerhout, Ed

    2017-01-01

    This paper stems from the observation that there are two world-wide trends, pension reform and population ageing, and asks whether the two may be related. Exploring the cases of pension reform in different countries, we find that, although they are very different, the cases share a common characteri

  16. Higher Education and School Reform.

    Science.gov (United States)

    Clark, Shirley M.

    1993-01-01

    Higher education has related asynchronously to recent cycles in social movements affecting school reform. Current efforts in Oregon illustrate this pattern in public colleges. Although higher education is not likely to overcome its skepticism of reform dynamics, there is both reason and potential for promising alliances with schools. (Author/MSE)

  17. Student Attitudes and Calculus Reform.

    Science.gov (United States)

    Bookman, Jack; Friedman, Charles P.

    1998-01-01

    Compares the attitudes about mathematics of students from traditionally taught calculus classes and those taught in a "reformed" calculus course. Reports that one to two years after, reform students felt significantly more that they understood how math was used and that they had been required to understand math rather than to memorize formulas.…

  18. Green tax reform in Denmark

    OpenAIRE

    Andersen, Mikael Skou

    1994-01-01

    In June 1993, the new Danish coalition government introduced a comprehensive tax reform that includes a substantial package of new green taxes. The tax reform, which became effective on 1 January 1994, will gradually phase in new green taxes worth approximately 12 billion DKK (1.6 billion ECU) to substitute for decreased income taxes.

  19. George's Complaint: Reforming the Dragon

    Science.gov (United States)

    Buxton, Bruce

    2007-01-01

    The evangelical tone and history of American culture has long been identified as a force for anti-intellectualism. The metaphors of educational reform are a demonstration of how this plays out. The very nature of the positivist social science research used to support proposed reform is anti-intellectual and feeds a debate that favors extremes over…

  20. The Other Face of Reform.

    Science.gov (United States)

    Ahern, Ursula M.; Compton, Cynthia M.

    2001-01-01

    According to William Spady's "Beyond Counterfeit Reforms," politically driven, mechanistic "reforms" box educators into smaller, limiting ways of thinking and running schools. Donald McAdams's book "Fighting to Save Our Urban Schools...and Winning!" shows the salubrious effects of high expectations and community…

  1. Model development of integrated CPOx reformer and SOFC stack system

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2016-12-01

    Full Text Available The main purpose of this study was to develop a mathematical model, in a steady state and dynamic mode, of a Catalytic Partial Oxidation (CPOx reformer – Solid Oxide Fuel Cell (SOFC stack integrated system in order to assess the system performance. Mass balance equations were written for each component in the system together with energy equation and implemented into the MATLAB Simulink simulation tool. Temperature, gas concentrations, pressure and current density were computed in the steady-state mode and validated against experimental data. The calculated I–V curve matched well the experimental one. In the dynamic modelling, several different conditions including step changes in fuel flow rates, stack voltage as well as temperature values were applied to estimate the system response against the load variations. Results provide valuable insight into the operating conditions that have to be achieved to ensure efficient CPOx performance for fuel processing for the SOFC stack applications.

  2. Ecological tax reform

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    An environmental tax reform is seen by many as a possible solution to some crucial problems of modern society - pollution, excessive resource consumption and unemployment. Changes in the system of taxation are here seen as a long term process, one that must cheapen the costs of labour and make the costs of resource use more expensive - a process which can also create major changes in our society as to conceptions of quality, work, consumption etc. The conference presented proposals for an ecological tax and duty system that would contribute to: Changing technology so that it becomes more resource and energy effective. Changing the economic mechanisms so that resource consumption and pollution become more expensive while human resources become cheaper. Changing personal life styles and values so that material consumption becomes less decisive for our choices and priorities. An environmental tax reform is neither without problems nor painless. An economy and an industrial sector based on increasing consumption of energy and raw materials will, in the long run, lead to drawbacks that far outweigh those that are connected with an economic re-orientation whose driving force is another conception of nature. (EG)

  3. Small School Reform

    Directory of Open Access Journals (Sweden)

    Carroll E. Bronson

    2013-05-01

    Full Text Available This qualitative ethnographic case study explored the evolution of a public urban high school in its 3rd year of small school reform. The study focused on how the high school proceeded from its initial concept, moving to a small school program, and emerging as a new small high school. Data collection included interviews, observations, and document review to develop a case study of one small high school sharing a multiplex building. The first key finding, “Too Many Pieces, Not Enough Glue,” revealed that the school had too many new programs starting at once and they lacked a clear understanding of their concept and vision for their new small school, training on the Montessori philosophies, teaching and learning in small schools, and how to operate within a teacher-cooperative model. The second key finding, “A Continuous Struggle,” revealed that the shared building space presented problems for teachers and students. District policies remain unchanged, resulting in staff and students resorting to activist approaches to get things done. These findings offer small school reform leaders suggestions for developing and sustaining a small school culture and cohesion despite the pressures to revert back to top-down, comprehensive high school norms.

  4. Fluidized bed membrane reactor for hydrogen production by steam reforming of higher hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rakib, M.A.; Grace, J.R.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Elnashaie, S.S.E.H. [Pennsylvania State Univ., Harrisburg, PA (United States). Environmental and Sustainable Engineering; Bolkan, Y.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2007-07-01

    Hydrogen is an an environment friendly fuel that has many applications such as a carbon-free fuel, and as a fuel for hydrogen fuel cells for automotive and other applications. It can be converted into useful forms of energy in many ways and has been used effectively in a number of internal combustion engine vehicles mixed with natural gas (hythane), and in a growing number of fuel cell vehicles. It can also be combined with oxygen without combustion in an electrochemical reaction to produce direct-current electricity in fuel cells. As the demand of hydrogen is projected to increase, research is being conducted into ways of improving hydrogen production, separation, purification and storage. This paper presented the results of a study that investigated modeling of a fluidized bed membrane reactor for steam reforming of higher hydrocarbons, in order to get the sizing of an experimental reformer setup. In the simulations, n-heptane was used as a model compound to represent steam reforming of naphtha. The reformer was modeled as a bubbling fluidized bed reactor, consisting of two pseudo phases, a dense phase and a bubble phase, both in plug flow. The paper discussed the irreversibility of steam reforming of higher hydrocarbons, kinetic modeling of a fluidized bed membrane reactor, and presented the model assumptions. Model equations for the reaction side and the separator side as well as the interphase mass exchange coefficient were provided. It was concluded that challenges specific to higher hydrocarbons included catalyst deactivation and possible membrane fouling. 26 refs., 1 tab., 9 figs., 1 appendix.

  5. Summary report : universal fuel processor.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  6. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  7. Public Administration reforms and results

    Directory of Open Access Journals (Sweden)

    Gunnar Helgi Kristinsson

    2014-12-01

    Full Text Available Research on administrative reforms during the past thirty years indicates that reform efforts of countries differ. The Anglo Saxon states were at the forefront of the New Public Management movement while countries on mainland Europe were more hesitant and moved further towards the Neo-Weberian state. Academics have tried to explain different reform efforts within countries by looking at political, historical and cultural issues, values and economic factors to name just a few. Three hypotheses are put forward to explain reform efforts in different states. This research involves analysing the implementation of two different reform trends, New Public Management and the Neo-Weberian tradition. The analysis indicates that countries vary in their commitment to reform rather than in the emphasis on either New Public Management or the Neo-Weberian State. Decentralization, clear objectives and consultation with communities and experts are closely related to national reform efforts. However, Iceland does distinguish itself from Europe and the Nordic countries. The analysis reveals that although decentralization is high in the Icelandic system, autonomy of agencies does not have a strong relation to a varied use of administrative instruments. The second part of the article focuses on the results and achievements of reform programmes. The achievement of reform programmes are examined in relation to theories of bounded rationality, street level bureaucracy (bottom up and consensus decision making. Three hypotheses are presented and tested to explain what causes reforms programmes to be successful in some countries and not in others. The analysis reveals that countries are more likely to succeed if bounded rationality is applied with careful preparation and when stakeholders are consulted.

  8. Comparative study of two theoretical models of methane and ethane steam reforming process

    Science.gov (United States)

    Brus, Grzegorz; Kaczmarczyk Marcin Tomiczek, Robert; Mozdzierz, Marcin

    2016-09-01

    From the chemical point of view the reforming process of heavy hydrocarbons such as Associated Petroleum Gas (APG) is very complex. One of the main issue is a set of undesired chemical reactions that causes deposition of solid carbon and consequently block catalytic property of a reactor. The experimental investigation is crucial to design APG reforming reactors. However, the experiment needs to be preceded by careful thermodynamical analysis to design safe operation conditions. In case of small number of reactants and reactions such as in case of steam reforming of pure methane, the problem can be solved by treating each equilibrium reaction constant as an element of the system of non-linear equations. The system of equations can be solved by Newton-Raphson method. However in case of large number of reactants and reaction, such as in case of APG reforming this method is inefficient. A large number of strongly non-linear equations leads often to converge problem. In this paper the authors suggest to use different approach called Parametric Equation Method. In this method a system of non-linear equations is replaced by a set of single non-linear equations solved separately. The methods were used to simulate steam reforming of methane-ethane rich fuel. The results of computations from both methods were juxtaposed and comparative study were conducted. Finally safe operation conditions for steam reforming of methane-ethane fuel were calculated and presented.

  9. Chile's health sector reform: lessons from four reform periods.

    Science.gov (United States)

    de la Jara, J J; Bossert, T

    1995-01-01

    This paper applies an interdisciplinary approach to analyze the process of health reform in four significant periods in Chilean history: (1) the consolidation of state responsibility for public health in the 1920s, (2) the creation of the state-run National Health Service in the 1950s, (3) the decentralization of primary care and privatization of health insurance in the 1980s, and (4) the strengthening of the mixed public-private market in the 1990s. Building on the authors' separate disciplines, the paper examines the epidemiological, political and economic contexts of these reforms to test simple hypotheses about how these factors shape reform adoption and implementation. The analysis underlines: (1) the importance of epidemiological data as an impetus to public policy; (2) the inhibiting role of economic recession in adoption and implementation of reforms: and (3) the importance of the congruence of reforms with underlying political ideology in civil society. The paper also tests several hypotheses about the reform processes themselves, exploring the role of antecedents, interest groups, and consensus-building in the policy process. It found that incremental processes building on antecedent trends characterize most reform efforts. However, interest group politics and consensus building were found to be complex processes that are not easily captured by the simple hypotheses that were tested. The interdisciplinary approach is found to be a promising form of analysis and suggests further theoretical and empirical issues to be explored.

  10. Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit

    Science.gov (United States)

    Samsun, Remzi Can; Krupp, Carsten; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef

    2016-01-01

    As auxiliary power units in trucks and aircraft, fuel cell systems with a diesel and kerosene reforming capacity offer the dual benefit of reduced emissions and fuel consumption. In order to be commercially viable, these systems require a quick start-up time with low energy input. In pursuit of this end, this paper reports an electrical start-up strategy for diesel fuel processing. A transient computational fluid dynamics model is developed to optimize the start-up procedure of the fuel processor in the 28 kWth power class. The temperature trend observed in the experiments is reproducible to a high degree of accuracy using a dual-cell approach in ANSYS Fluent. Starting from a basic strategy, different options are considered for accelerating system start-up. The start-up time is reduced from 22 min in the basic case to 9.5 min, at an energy consumption of 0.4 kW h. Furthermore, an electrical wire is installed in the reformer to test the steam generation during start-up. The experimental results reveal that the generation of steam at 450 °C is possible within seconds after water addition to the reformer. As a result, the fuel processor can be started in autothermal reformer mode using the electrical concept developed in this work.

  11. Fuel and Chemicals from Renewable Alcohols

    DEFF Research Database (Denmark)

    Hansen, Jeppe Rass

    2008-01-01

    The present work entitled Fuel and Chemicals from Renewable Alcohols covers the idea of developing routes for producing sustainable fuel and chemicals from biomass resources. Some renewable alcohols are already readily available from biomass in significant amounts and thus the potential...... be converted into hydrogen by steam reforming over nickel or ruthenium based catalysts. This process could be important in a future hydrogen society, where hydrogen can be utilized in high efficiency fuel cells. Hydrogen produced from biofeedstocks can also be used directly in the chemical industry, where...... it can compete with hydrogen production from natural gas. Similar substitution possibilities are emerging in the case of conversion of renewable alcohols to synthesis gas, which is used for instance in the manufacture of methanol and synthetic fuel. Here it is illustrated how glycerol can be converted...

  12. A cost effective steam reformer for a distributed hydrogen infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, P.C. [Chemical Engineering, Lund University, Box 124, 221 00 Lund (Sweden); Burford, H.; Duraiswamy, K.; Porter, B.; Woods, R. [Intelligent Energy, 2955 Redondo Avenue, Long Beach, CA 90806 (United States)

    2008-02-15

    In this paper the design and demonstration of a 7nm{sup 3}h{sup -1} integrated steam reforming based hydrogen production unit using a Fischer-Tropsch diesel is reported. The system design is discussed in detail, including the fuel processor itself as well as the hydrogen purification and results from stand-alone operation of the combined unit operations is reported. Further, the results of an integration of the fuel processor and a system consisting of 4 kWe fuel cells, 30 kWe photovoltaic installation and hydrogen storage are described. Finally, a discussion on the advantages of a hydrogen based integrated system versus a load-following system is pointed out. The operation of the fuel-processing unit showed a lower heating value based system efficiency of about 58%, including parasitic power consumption, with hydrogen produced containing less than 1 ppm CO. Fuel conversion was about 90%, and the parasitic power consumption was low enough to be considered acceptable. When integrated with the fuel cells the operation indicates that the hydrogen quality is good enough for long-term operation. (author)

  13. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  14. The economic cost of fuel price subsidies in Ghana

    Science.gov (United States)

    Ofori, Roland Oduro

    I adapt the Harberger formula for deadweight loss to develop approximations for the deadweight loss created by multiple fuel price subsidies. I also estimate the own-price, cross-price, and income elasticities of demand for gasoline and diesel in Africa. I use data on fuel prices and sales in combination with my formulas and elasticity estimates to calculate the deadweight loss of fuel price subsidies in Ghana from 2009 to 2014. I show that the average efficiency cost of the gasoline and diesel price subsidies in Ghana is 0.8% of fuel price subsidy transfers. This result stresses the futility of basing subsidy reforms on economic efficiency losses, which are relatively small due to very inelastic energy demand, and the need for such reforms to be motivated by the poor-targeting of subsidies to low-income households and the impact of subsidies on government debt-financing.

  15. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  16. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    Science.gov (United States)

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  17. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    Science.gov (United States)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  18. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.;

    2007-01-01

    Biomass is probably the only realistic green and sustainable carbonaceous alternative to fossil fuels. By degradation and fermentation, it can be converted into bioethanol, which is a chemical with a range of possible applications. In this study, the catalytic steam-reforming of ethanol for the p...

  19. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    Science.gov (United States)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-01-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  20. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  1. Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments

    Science.gov (United States)

    Santarelli, Massimo; Quesito, Francesco; Novaresio, Valerio; Guerra, Cosimo; Lanzini, Andrea; Beretta, Davide

    2013-11-01

    This work focuses on the heterogeneous reactions taking place in a tubular anode-supported solid oxide fuel cell (SOFC) when the designated fuel is biogas from anaerobic digestion directly feeding the fuel cell. Operational maps of the fuel cell running on direct reforming of biogas were first obtained. Hence a mathematical model incorporating the kinetics of reforming reactions on Ni catalyst was used to predict the gas composition profile along the fuel channel. The model was validated against experimental data based on polarization curves. Also, the anode off-gas composition was collected and analyzed through a gas chromatograph. Finally, the model has been used to predict and analyze the gas composition change along the anode channel to evaluate effectiveness of the direct steam reforming when varying cell temperature, inlet fuel composition and the type of reforming process. The simulations results confirmed that thermodynamic-equilibrium conditions are not fully achieved inside the anode channel. It also outlines that a direct biogas utilization in an anode-supported SOFC is able to provide good performance and to ensure a good conversion of the methane even though when the cell temperature is far from the nominal value.

  2. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    Science.gov (United States)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  3. The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, A.V.; Murzina, E.V.; Eraenen, K.; Murzin, D.Yu. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Kirilin, A.V. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Zelinsky Institute of Organic Chemistry, Moscow (Russian Federation); Kustov, L.M. [Zelinsky Institute of Organic Chemistry, Moscow (Russian Federation); Mikkola, J.-P. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Umeaa University, Technical Chemistry Department of Chemistry, Chemical-Biological Centre, Umeaa (Sweden)

    2010-11-15

    Aqueous Phase Reforming (APR) has during the recent years emerged as a potent, alternative means of processing raw materials of biological origin to component suitable as chemicals and fuel components. In contrary to e.g. steam reforming, aqueous phase reforming bares the promise of lower temperatures in processing which gives rise to potential of reduced energy consumption in the upgrading process itself. Aqueous phase reforming was studied over Pt/Al2O3 at 225 C. Stable catalyst performance and high selectivity was observed. Upon a comparison of two 'bio-alcohols', bio-ethanol and Sorbitol (a sugar alcohol), the latter one is a better feedstock from overall energy utilization viewpoint but the use of it results in a broad range of products. Interestingly, in the case of sorbitol-ethanol mixtures, an improvement in the hydrogen yield was observed. (author)

  4. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    Science.gov (United States)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  5. Letters to a Young Education Reformer

    Science.gov (United States)

    Hess, Frederick M.

    2017-01-01

    In "Letters to a Young Education Reformer," Frederick M. Hess distills knowledge from twenty-five years of working in and around school reform. Inspired by his conversations with young, would-be reformers who are passionate about transforming education, the book offers a window into Hess's thinking about what education reform is and…

  6. Reforming Our Expectations about Juvenile Justice

    Science.gov (United States)

    Rodriguez, Pamela F.; Baille, Daphne M.

    2010-01-01

    Typing the term "juvenile justice reform" into a Google[TM] search will result in 60 pages of entries. But what is meant by juvenile justice reform? What does it look like? How will one know when it is achieved? This article defines juvenile justice reform, discusses the principles of effective reform, and describes the practice of juvenile…

  7. A Cornerstone of Health Reform

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to ensure fair and affordable health services for all Chinese citizens and to set up a healthcare system that covers both urban and rural residents, the Chinese Government put forward a strategic task of deepening the healthcare system reform. The major objective of this reform is to provide medical service as a public service. In an interview with Beijing-based Guangming Daily, Li Weiping, a fellow researcher at the Institute of Medicine and Economy under the Ministry of Health, says that public hospitals are key to making this reform work and medical workers will need to drive this process forward.

  8. A modeling software linking approach for the analysis of an integrated reforming combined cycle with hot potassium carbonate CO[subscript 2] capture

    OpenAIRE

    Nord, Lars Olof; Kothandaraman, Anusha; BOLLAND, Olav; Herzog, Howard J.; McRae, Gregory J.

    2009-01-01

    The focus of this study is the analysis of an integrated reforming combined cycle (IRCC) with natural gas as fuel input. This IRCC consisted of a hydrogen-fired gas turbine (GT) with a single-pressure steam bottoming cycle for power production. The reforming process section consisted of a pre-reformer and an air-blown auto thermal reformer (ATR) followed by water-gas shift reactors. The air to the ATR was discharged from the GT compressor and boosted up to system pressure by an air booster co...

  9. Autothermal reforming over a Pt/Gd-doped ceria catalyst: Heat and mass transport limitations in the steam reforming section

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sungkwang [Center for Fuel Cell Research, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791 (Korea); Bae, Joongmyeon [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-07-15

    Autothermal reforming (ATR) has several advantages for fuel cell applications, such as a compact reactor structure and fast response. Using oxidation reactions inside the reactor, ATR does not have the external heat transfer limitations associated with steam reforming. However, mass and heat transfer limitations inside and outside the catalyst particles are still anticipated. In this study, transport limitations in the steam reforming section of ATR over a Pt/Gd-doped ceria catalyst are analyzed by numerical simulations based on a reaction rate equation in which parameters are adjusted to measured kinetic data. The simulation results show that significant transport limitations characterize the steam reforming section of packed-bed ATR reactors. The activity per catalyst bed volume is highly dependent on the particle size, and only the thin exterior layer of the particles is involved in catalyzing the reactions. Based on the results, it is shown that an eggshell type catalyst particle could reduce catalyst material significantly without a considerable decline in the activity per catalyst bed volume. (author)

  10. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  11. Organic-inorganic hybrid nanostructured materials for photovoltaics and solar fuels

    NARCIS (Netherlands)

    Lai, Lai-Hung

    2016-01-01

    The hydrogen economy aiming to use hydrogen as a new potential fuel for motive power has been proposed as a promising model for this century. However, until now most of the H2 in use still comes from steam reforming which produces H2 via steam reaction at high temperature with fossil fuel. Solar

  12. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl;

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site. This art...

  13. Organic-inorganic hybrid nanostructured materials for photovoltaics and solar fuels

    NARCIS (Netherlands)

    Lai, Lai-Hung

    2016-01-01

    The hydrogen economy aiming to use hydrogen as a new potential fuel for motive power has been proposed as a promising model for this century. However, until now most of the H2 in use still comes from steam reforming which produces H2 via steam reaction at high temperature with fossil fuel. Solar ene

  14. Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    In a hybrid fuel cell system, low-temperature reforming technology, which uses waste heat as a heat source, is applied to improve system efficiency. A low temperature reformer is required to optimize geometry in low thermal conditions so that the reformer can achieve the proper methane conversion rate. This study analyzed internal temperature distributions and the reaction patterns of a reformer by considering the change of the shape factor on the limited heat supply condition. Unlike the case of a high temperature reformer, analysis showed that the reaction of a low temperature reformer takes place primarily in the high temperature region of the reactor exit. In addition, it was confirmed that the efficiency can be improved by reducing the GHSV (gas hourly space velocity) or increasing the heat transfer area in the radial direction. Through reacting characteristic analysis, according to change of the aspect ratio, it was confirmed that a low temperature reformer can improve the efficiency by increasing the heat transfer in the radial direction, rather than in the longitudinal direction.

  15. A reforming accountability: GPs and health reform in New Zealand.

    Science.gov (United States)

    Jacobs, K

    1997-01-01

    Over the last ten years or so, many countries have undertaken public sector reforms. As a result of these changes, accounting has come to play a more important role. However, many of the studies have only discussed the reforms at a conceptual level and have failed to study how the reforms have been implemented and operated in practice. Based on the work of Lipsky (1980) and Gorz (1989), it can be argued that those affected by the reforms have a strong incentive to subvert the reforms. This prediction is explored via a case study of general practitioner (GP) response to the New Zealand health reforms. The creation of Independent Practice Associations (IPAs) allowed the State to impose contractual-accountability and to cap their budget exposure for subsidies. From the GP's perspective, the IPAs absorbed the changes initiated by the State, and managed the contracting, accounting and budgetary administration responsibilities that were created. This allowed individual GPs to continue practising as before and provided some collective protection against the threat of state intrusion into GP autonomy. The creation of IPAs also provided a new way to manage the professional/financial tension, the contradiction between the professional motivation noted by Gorz (1989) and the need to earn a living.

  16. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  17. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  18. Methane Steam Reforming Kinetics in Operating Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Fan, L.

    2014-01-01

    By 2040, electricity generation will account for more than 40 % of global energy consumption. Gains in efficiency through energy-saving practices and technologies – such as hybrid vehicles and new, high efficiency natural gas power plants – will temper demand growth and curb emissions. Different

  19. Methanol Steam Reforming Catalysts for Fuel Cell Driven Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    Yongfeng Li; Xinfa Dong; Weiming Lin

    2003-01-01

    Cu/ZnAlO catalysts derived from hydroxycarbonate precursors containing hydrotalcite-likelayered double hydroxides (LDHs) were studied. The influence on the performance of the catalysts wasalso studied when the Al in the Cu/ZnAlO catalyst was partly or completely replaced by Zr or Ce.

  20. Methane Steam Reforming Kinetics in Operating Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Fan, L.

    2014-01-01

    By 2040, electricity generation will account for more than 40 % of global energy consumption. Gains in efficiency through energy-saving practices and technologies – such as hybrid vehicles and new, high efficiency natural gas power plants – will temper demand growth and curb emissions. Different fro

  1. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hagen, Anke

    2009-01-01

    Biomass-derived fuel, e.g. biogas, is a potential fuel for solid oxide fuel cells (SOFCs). At operating temperature (850 °C) reforming of the carbon-containing biogas takes place over the Ni-containing anode. However, impurities in the biogas, e.g. H2S, can poison both the reforming...... the polarization resistance increased when adding H2S. These changes in resistance were found to happen at 1212 Hz, which is related to reactions at the anode–electrolyte interface. These findings can be used to identify S-related effects on the performance, when an SOFC is fuelled with biogas or other fuels...

  2. What Next in School Reform?

    Science.gov (United States)

    Barker, Bernard

    2009-01-01

    This article reviews the current state of education reform in the United Kingdom and uses the BBC film "The Choir to explore alternative ways of improving the quality of learning and teaching in schools.

  3. Nitrate absorption through hydrotalcite reformation.

    Science.gov (United States)

    Frost, Ray L; Musumeci, Anthony W

    2006-10-01

    Thermally activated hydrotalcite based upon a Zn/Al hydrotalcite with carbonate in the interlayer has been used to remove nitrate anions from an aqueous solution resulting in the reformation of a hydrotalcite with a mixture of nitrate and carbonate in the interlayer. X-ray diffraction of the reformed hydrotalcites with a d(003) spacing of 7.60 A shows that the nitrate anion is removed within a 30 min period. Raman spectroscopy shows that two types of nitrate anions exist in the reformed hydrotalcite (a) nitrate bonded to the 'brucite-like' hydrotalcite surface and (b) aquated nitrate anion in the interlayer. Kinetically the nitrate is replaced by the carbonate anion over a 21 h period. Two types of carbonate anions are observed. This research shows that the reformation of a thermally activated hydrotalcite can be used to remove anions such as nitrate from aqueous systems.

  4. New Lessons for Districtwide Reform

    Science.gov (United States)

    Fullan, Micheal; Bertani, Al; Quinn, Joanne

    2004-01-01

    Successful district level institutions share ten principles for successful reforms. The crucial components of change for effective leadership include a collective moral purpose, capacity building, ongoing learning, and demanding culture among others.

  5. Green, Reform, Win-Win

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Boao Forum for Asia this year enjoys three high lights, namely "Green, Reform and Win-Win".The old but hot topics attracted accumulated attention from the whole world, and more fresh ideas were ushered in.

  6. Carbon Capture via Chemical-Looping Combustion and Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus; Mattisson, Tobias; Ryden, Magnus; Lyngfelt, Anders

    2006-10-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Further, two different types of chemical-looping reforming (CLR) have been presented in recent years. CLR is a technology to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology.

  7. Green tax reform and competitiveness

    OpenAIRE

    Koskela, Erkki; Schöb, Ronnie; Sinn, Hans-Werner

    2000-01-01

    This paper develops a model of a small open economy that produces an export good with domestic labour and imported energy and is stuck in an unemployment situation resulting from an excessive fixed net-of-tax wage rate. We study a revenue-neutral green tax reform that substitutes energy for wage taxes. A moderate green tax reform will boost employment, improve welfare, and increase the economy's competitiveness. The driving force behind these results is the technological substitution process ...

  8. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  9. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  10. Effects of H2S on molten carbonate fuel cells

    Science.gov (United States)

    Remick, R. J.

    1985-06-01

    Phase 2 work was directed toward determination of the impact of H2S contaminants upon the ability of nickel-10% chromium anodes to catalyze the steam reforming reaction. Small amounts of three hydrocarbons representative of three homologous series were added to the fuel. These series were the paraffin series with methane as its representative, the olefin series with ethylene and the aromatics with toluene. Results indicated that the nickel-10% chromium anode had little catalytic activity toward the steam reforming of methane, but the steam reform did have 70% of the ethylene and about 30% of the toluene. The addition of 5 ppM hydrogen sulfide to the fuel totally poisoned all steam reforming activity. Phase 3 work addressed the impact on cell performance of SO2 in the oxidant gases. The cell was operated for 200 hours on clean fuel and oxidant. After baseline data had been collected, the cell was switched to an oxidant supply that contained 2 ppM of SO2. After 170 hours of operation on contaminated oxidant, no SO2 could be detected in the oxidant exhaust although 200 ppM of H2S were present in the fuel exhaust steam.

  11. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of co

  12. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  13. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  14. Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit

    Science.gov (United States)

    Specchia, S.; Tillemans, F. W. A.; van den Oosterkamp, P. F.; Saracco, G.

    Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kW e biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel. Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O 2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).

  15. Graduate Quantum Mechanics Reform

    CERN Document Server

    Carr, L D

    2008-01-01

    We address four main areas in which graduate quantum mechanics education in the U.S. can be improved: course content; textbook; teaching methods; and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all four of these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, use modern textbooks that include such content, incorporate a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey (QMCS). We find that graduate students respond well to research-based techniques that have previously been tested mainly in introductory courses, and that they learn a great deal of the new content introduced in each ve...

  16. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... 400 ppm of the carbon in the feed at approx. 600 °C. The different promoters did not influence the product distribution to any significant extent. Selective poisoning with small amounts of K2SO4 on Ni–CeO2/MgAl2O4 at 600 °C decreased carbon deposition from 900 to 200 ppm of the carbon in the feed...

  17. JP-8 catalytic cracking for compact fuel processors

    Science.gov (United States)

    Campbell, Timothy J.; Shaaban, Aly H.; Holcomb, Franklin H.; Salavani, Reza; Binder, Michael J.

    In processing heavier hydrocarbons such as military logistic fuels (JP-4, JP-5, JP-8, and JP-100), kerosene, gasoline, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack; second, these fuels may contain non-volatile residue (NVR), up to 1.5 vol.%, which could potentially accumulate in a fuel processor; and third is the high coking potential of heavy hydrocarbons. Catalytic cracking of a distillate fuel prior to reforming can resolve these issues. Cracking using an appropriate catalyst can convert the various heavy organosulfur species in the fuel to lighter sulfur species such as hydrogen sulfide (H 2S), facilitating subsequent sulfur adsorption on zinc oxide (ZnO). Cracking followed by separation of light cracked gas from heavies effectively eliminates non-volatile aromatic species. Catalytic cracking can also convert heavier hydrocarbons to lights (C 1-C 3) at high conversion, which reduces the potential for coke formation in the reforming process. In this study, two types of catalysts were compared for JP-8 cracking performance: commercially-available zeolite materials similar to catalysts formulated for fluidized catalytic cracking (FCC) processes, and a novel manganese/alumina catalyst, which was previously reported to provide high selectivity to lights and low coke yield. Experiments were designed to test each catalyst's effectiveness under the high space velocity conditions necessary for use in compact, lightweight fuel processor systems. Cracking conversion results, as well as sulfur and hydrocarbon distributions in the light cracked gas, are presented for the two catalysts to provide a performance comparison.

  18. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  19. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2009-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  20. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  1. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  2. Let's make a deal: trading malpractice reform for health reform.

    Science.gov (United States)

    Sage, William M; Hyman, David A

    2014-01-01

    Physician leadership is required to improve the efficiency and reliability of the US health care system, but many physicians remain lukewarm about the changes needed to attain these goals. Malpractice liability-a sore spot for decades-may exacerbate physician resistance. The politics of malpractice have become so lawyer-centric that recognizing the availability of broader gains from trade in tort reform is an important insight for health policy makers. To obtain relief from malpractice liability, physicians may be willing to accept other policy changes that more directly improve access to care and reduce costs. For example, the American Medical Association might broker an agreement between health reform proponents and physicians to enact federal legislation that limits malpractice liability and simultaneously restructures fee-for-service payment, heightens transparency regarding the quality and cost of health care services, and expands practice privileges for other health professionals. There are also reasons to believe that tort reform can make ongoing health care delivery reforms work better, in addition to buttressing health reform efforts that might otherwise fail politically.

  3. Steam reforming of biodiesel by-product to make renewable hydrogen.

    Science.gov (United States)

    Slinn, Matthew; Kendall, Kevin; Mallon, Christian; Andrews, James

    2008-09-01

    The aim of this paper was to investigate the viability of steam reforming the combined glycerol and water by-product streams of a biodiesel plant. A platinum alumina catalyst was used to optimise the operating conditions for glycerol steam reforming and mass spectroscopy was chosen to measure reformer gas yield. The problem is that glycerol steam reforming is relatively untested even with pure glycerol and the by-product quality may be too poor. The strategy was therefore to optimise the process using pure glycerol and compare the performance with by-product glycerol. To test catalyst degradation caused by carbon deposition, a Solid Oxide fuel cell (SOFC) was used as a separate reformer and electrical performance was measured to indicate carbon deposition. This is the first time a SOFC has been run on glycerol. The results showed that thermodynamic theory can be used to predict reformer performance. At high temperatures high gas yield can be reached (almost 100%) and selectivities of 70% (dry basis) obtained. The optimum conditions for glycerol reforming were 860 degrees C temperature (maximum tested), 0.12 mols/min glycerol flow per kg of catalyst and 2.5 steam/carbon ratio. Reforming catalysts lasted for several days of continuous operation with minimal degradation, 0.4% of feed deposited. By-product glycerol performed slightly worse with a lower yield and more carbon deposition, 2% of feed. The results show that glycerol steam reforming is a viable alternative use for glycerol and potentially a better option than purification.

  4. Thermodynamic and chemical kinetic analysis of a 5 kw, compact steam reformer - PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Luis Evelio Garcia; Oliveira, Amir Antonio Martins [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], e-mail: evelio@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    Here we present a thermodynamic and chemical kinetic analysis of the methane steam reforming for production of 5 kw of electrical power in a PEM fuel cell. The equilibrium analysis is based on the method of element potentials to find the state of minimum Gibbs free energy for the system and provides the equilibrium concentration of the reforming products. The objective of this analysis is to obtain the range of reforming temperature, pressure and steam-methane molar ratio that results in maximum hydrogen production subjected to low carbon monoxide production and negligible coke formation. The thermal analysis provides the heat transfer rates associated with the individual processes of steam production, gas-phase superheating and reforming necessary to produce 5 kw of electrical power in a PEM fuel cell and allows for the calculation of thermal efficiencies. Then, the chemical reaction pathways for hydrogen production in steam reforming are discussed and the available chemical, adsorption and equilibrium constants are analyzed in terms of thermodynamic consistency. This analysis provides the framework for the reactor sizing and for establishing the adequate operation conditions. (author)

  5. Fuel cell transit bus development & commercialization programs at Gerogetown University

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.; Larkins, J.; Romano, S. [Georgetown Univ., Washington, DC (United States)

    1996-12-31

    Fourteen years ago, Georgetown University (GU) perceived the need for a clean, efficient power systems for transportation that could operate on non-petroleum based fuels. The transit bus application was selected to begin system development. GU recognized the range and recharge constraints of a pure battery powered transit bus. A Fuel Cell power system would circumvent these limitations and, with an on board reformer, accommodate liquid fuel for rapid refueling. Feasibility studies for Fuel Cell power systems for transit buses were conducted with the Los Alamos National Laboratory in 1983. Successful results of this investigation resulted in the DOT/DOE Fuel Cell transit bus development program. The first task was to prove that small Fuel Cell power plants were possible. This was achieved with the Phase I development of two 25 kW Phosphoric Acid Fuel Cell (PAFC) brassboard systems. A liquid cooled version was selected for the Phase II activity in which three 30-foot Fuel Cell powered Test Bed Buses (TBBs) were fabricated. The first of these TBBs was delivered in the spring of 1994. All three of these development vehicles are now in Phase III of the program to conduct testing and evaluation, is conducting operational testing of the buses. The test will involve two fuel cell-operated buses; one with a proton exchange fuel cell and the other with a phosphoric acid fuel cell.

  6. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  7. Recent key technical barriers in solid oxide fuel cell technology

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2014-03-01

    Full Text Available High-temperature solid oxide fuel cells (SOFCs are considered as suitable components of future large-scale clean and efficient power generation systems. However, at its current stage of development some technical barriers exists which limit SOFC’s potential for rapid large-scale deployment. The present article aims at providing solutions to key technical barriers in SOFC technology. The focus is on the solutions addressing thermal resistance, fuel reforming, energy conversion efficiency, materials, design, and fuel utilisation issues.

  8. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec P...... of the species as in a LTPEM fuel cell system. The use of the HTPEM fuel cell makes it possible to use reformed gas at high CO concentrations, still with a stable efficient performance....

  9. Determination of optimum electrolyte composition for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  10. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  11. Macro Level Modeling of a Tubular Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Farshid Zabihian

    2010-11-01

    Full Text Available This paper presents a macro-level model of a solid oxide fuel cell (SOFC stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rates, temperature, pressure, and fuel utilization factor. The model outputs the composition of the exhaust, work produced, heat available for the fuel reformer, and electrochemical properties of SOFC for model validation. It was developed considering the activation, concentration, and ohmic losses to be the main over-potentials within the SOFC, and mathematical expressions for these were chosen based on available studies in the literature. The model also considered the water shift reaction of CO and the methane reforming reaction. The model results were validated using experimental data from Siemens Westinghouse. The results showed that the model could capture the operating pressure and temperature dependency of the SOFC performance successfully in an operating range of 1–15 atm for pressure and 900 °C–1,000 °C for temperature. Furthermore, a sensitivity analysis was performed to identify the model constants and input parameters that impacted the over-potentials.

  12. Investigation of atmospheric pressure streamer discharges for methane reforming

    Science.gov (United States)

    Pachuilo, M. V.; Stefani, F.; Rosocha, L. A.; Raja, L. L.

    2015-09-01

    Hydrogen has several valuable uses in transportation: it can lower the coefficient of variation under lean burn conditions in internal combustion engines, and it is essential for the operation of fuel cells. Currently hydrogen can only be produced efficiently by reducing fossil fuels in large facilities. However, on-board production is desirable to reduce the infrastructure associated with storing and distributing hydrogen. Plasma dry reforming processes are viable candidates for onboard production. Our current work investigates the fundamental behavior of a single streamer discharge in methane. The electron temperature, and active species generation are determined through time resolved spectroscopy. This work will hopefully accelerate the development of non-thermal plasma based devices that include: dielectric barrier discharges, pulsed corona discharges, and other atmospheric-pressure plasma devices.

  13. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    Science.gov (United States)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  14. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  16. Tailored reforming of n-dodecane in an aqueous discharge reactor

    KAUST Repository

    Zhang, Xuming

    2016-03-24

    Here, we present an original technical approach to simultaneously produce a tailored synthetic liquid fuel and a syngas. In an aqueous discharge reactor with gaseous bubbles, we reformed an emulsified n-dodecane/water mixture. The higher dielectric permittivity of the mixture facilitates electrical discharges that cause the electron impact dissociation of n-dodecane into alkyl and hydrogen radicals, while the addition of water also provides a steam-reforming environment inside the discharged bubbles. We added methane and carbon dioxide to the system because they dissociate into methyl and oxygen radicals, respectively, which prevent the alkyl-alkyl recombinations that result in the formation of long-chain hydrocarbons (HCs). Thus, we were able to control product selectivity by adding methane to increase the production of short-chain HCs and hydrogen gas or by adding carbon dioxide to increase the production of oxygenated fuels, such as 1-dodecanol. Using gas chromatography and gas chromatography-mass spectrometry we detail the compositions of both the synthetic liquid and the syngas, and we provide conceptual chemical mechanisms to selectively increase the production of oxygenates and that of HCs that are shorter or longer than the base fuel. The basis of this in-liquid discharge for the purpose of fuel reforming has potential applications to advanced engines to control ignition delay time, a continuing focus of study in our lab. © 2016 IOP Publishing Ltd.

  17. Tailored reforming of n-dodecane in an aqueous discharge reactor

    Science.gov (United States)

    Zhang, Xuming; Cha, Min Suk

    2016-05-01

    Here, we present an original technical approach to simultaneously produce a tailored synthetic liquid fuel and a syngas. In an aqueous discharge reactor with gaseous bubbles, we reformed an emulsified n-dodecane/water mixture. The higher dielectric permittivity of the mixture facilitates electrical discharges that cause the electron impact dissociation of n-dodecane into alkyl and hydrogen radicals, while the addition of water also provides a steam-reforming environment inside the discharged bubbles. We added methane and carbon dioxide to the system because they dissociate into methyl and oxygen radicals, respectively, which prevent the alkyl-alkyl recombinations that result in the formation of long-chain hydrocarbons (HCs). Thus, we were able to control product selectivity by adding methane to increase the production of short-chain HCs and hydrogen gas or by adding carbon dioxide to increase the production of oxygenated fuels, such as 1-dodecanol. Using gas chromatography and gas chromatography-mass spectrometry we detail the compositions of both the synthetic liquid and the syngas, and we provide conceptual chemical mechanisms to selectively increase the production of oxygenates and that of HCs that are shorter or longer than the base fuel. The basis of this in-liquid discharge for the purpose of fuel reforming has potential applications to advanced engines to control ignition delay time, a continuing focus of study in our lab.

  18. Can ICT Reform Public Agencies?

    Science.gov (United States)

    Jansen, Arild; Løvdal, Einar

    This study examines the reorganisation of the administration of admission to higher education in Norway, which has also included the development of a nationwide, ICT-based case handling system. This reform process was initiated out of the need to provide politicians with information for control and regulatory purposes, and the reform resulted in a centralised management information system. This system, however, has evolved into a coordinated but also partly locally delegated decision-making instrument which processes most of the applications for admission to higher education in Norway.

  19. Central bank conservatism and labor market reform

    OpenAIRE

    Jordahl, Henrik; Laséen, Stefan

    1999-01-01

    How does central bank conservatism affect labor market reform? In this paper we examine the economic forces at work. An increase in conservatism triggers two opposite effects. It reduces the inflation bias of discretionary monetary policy and hence the benefits of a reform. It also increases unemployment variability, which increases the precautionary benefits of a reform. In combination, the two effects produce a u-shaped relation between conservatism and labor market reform. An empirical inv...

  20. Data reconciliation and optimal operation of a Catalytic naphtha reformer

    Directory of Open Access Journals (Sweden)

    Tore Lid

    2008-10-01

    Full Text Available The naphtha reforming process converts low-octane gasoline blending components to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function as the producer of hydrogen to the refinery hydrotreaters. A process model based on a unit model structure, is used for estimation of the process condition using data reconciliation. Measurements are classified as redundant or non redundant and the model variables are classified as observable, barely observable or unobservable. The computed uncertainty of the measured and unmeasured variables shows that even if a variable is observable it may have a very large uncertainty and may thereby be practically unobservable. The process condition at 21 data points, sampled from two years of operation, was reconciled and used to optimize the process operation. There are large seasonal variations in the reformer product price and two operational cases are studied. In case 1, the product price is high and throughput is maximized with respect to process and product quality constraints. In case 2, the product price is low and the throughput is minimized with respect to a low constraint on the hydrogen production. Based on the characteristics of the optimal operation, a "self optimizing" control structure is suggested for each of the two operational cases.

  1. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  2. Environmental benefits of transport and stationary fuel cells

    Science.gov (United States)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  3. Oncology payment reform to achieve real health care reform.

    Science.gov (United States)

    McClellan, Mark B; Thoumi, Andrea I

    2015-05-01

    Cancer care is transforming, moving toward increasingly personalized treatment with the potential to save and improve many more lives. Many oncologists and policymakers view current fee-for-service payments as an obstacle to providing more efficient, high-quality cancer care. However, payment reforms create new uncertainties for oncologists and may be challenging to implement. In this article, we illustrate how accountable care payment reforms that directly align payments with quality and cost measures are being implemented and the opportunities and challenges they present. These payment models provide more flexibility to oncologists and other providers to give patients the personalized care they need, along with more accountability for demonstrating quality improvements and overall cost or cost growth reductions. Such payment reforms increase the importance of person-level quality and cost measures as well as data analysis to improve measured performance. We describe key features of quality and cost measures needed to support accountable care payment reforms in oncology. Finally, we propose policy recommendations to move incrementally but fundamentally to payment systems that support higher-value care in oncology.

  4. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  5. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.

    Science.gov (United States)

    Pla, D; Salleras, M; Morata, A; Garbayo, I; Gerbolés, M; Sabaté, N; Divins, N J; Casanovas, A; Llorca, J; Tarancón, A

    2016-08-07

    A novel design of a silicon-based micro-reformer for onboard hydrogen generation from ethanol is presented in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an active low-thermal-mass structure suspended by an insulating membrane. The suspended structure includes an embedded resistive metal heater and an array of ca. 20k vertically aligned through-silicon micro-channels per square centimetre. Each micro-channel is 500 μm in length and 50 μm in diameter allowing a unique micro-reformer configuration that presents a total surface per projected area of 16 cm(2) cm(-2) and per volume of 320 cm(2) cm(-3). The walls of the micro-channels become the active surface of the micro-reformer when coated with a homogenous thin film of Rh-Pd/CeO2 catalyst. The steam reforming of ethanol under controlled temperature conditions (using the embedded heater) and using the micro-reformer as a standalone device are evaluated. Fuel conversion rates above 94% and hydrogen selectivity values of ca. 70% were obtained when using operation conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 750 °C and fuel flows of 0.02 mlL min(-1) (enough to feed a one watt power source).

  6. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Boder, M.; Dittmeyer, R. [Research Group Technical Chemistry, Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany)

    2006-04-18

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons. (author)

  7. An Evolving List of School Reform Terms.

    Science.gov (United States)

    Bermudez, Pedro R.; Lindahl, Lois T.

    1999-01-01

    Discusses educational reform efforts that will change the school culture and improve instructional programs and includes a list of terms that represent the language of school reform. Understanding these terms might serve to influence the change process in schools that are thinking about or are actually engaged in systemic reform initiatives.…

  8. 49 CFR 260.13 - Credit reform.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Credit reform. 260.13 Section 260.13... REHABILITATION AND IMPROVEMENT FINANCING PROGRAM Overview § 260.13 Credit reform. The Federal Credit Reform Act of 1990, 2 U.S.C. 661, requires Federal agencies to set aside the subsidy cost of new credit...

  9. The Danish structural reform of government

    DEFF Research Database (Denmark)

    Gjerding, Allan Næs

    2005-01-01

    The reform of the three-tier system of government that the Danish society is about to implement is in accordance with the Danish tradition of structural reforms in the pre-war period. The agenda of the current reform derives naturally from the political debates and analyses that have taken place...

  10. General Education Reform: Opportunities for Institutional Alignment

    Science.gov (United States)

    Fuess, Scott M., Jr.; Mitchell, Nancy D.

    2011-01-01

    General education reform provides strategic opportunities for departments. This article analyzes reform at the University of Nebraska-Lincoln, illustrating how departments could use the reform process to clarify their strategic planning, align with institutional goals, and steer the university closer to departmental objectives. (Contains 1 table.)

  11. Reform of China's Pension System

    Institute of Scientific and Technical Information of China (English)

    YanzhongWang

    2005-01-01

    This paper mainly analyzes development and reform of China's pension system. It introduces the evolution of China's pension system reform and discusses its strengths and problems.The paper then proposes some suggestions on the direction of China's pension reform. The last section is devoted to a discussion of China's corporate occupational pension, which is a fast-developing area of the pension system.

  12. Globalization and Educational Reform in Contemporary Japan

    Science.gov (United States)

    Qi, Jie; Zhang, Sheng Ping

    2008-01-01

    This study explores the notions of globalization as embodied in Japanese educational reforms. Modern institutional discourses of educational reform in Japan have shifted over time and all of these reform movements have been constructed by particular social and historical trajectories. Generally speaking, it has been taken for granted that the…

  13. Governance Reform at China's "985 Project" Universities

    Science.gov (United States)

    Qingnian, Xiong; Duanhong, Zhang; Hong, Liu

    2011-01-01

    Higher education reform in China is deepening, and the governance reform taking place at the 985 Project universities over the past decade has displayed a shift from government driven to internally driven, from adaptive to proactive, and from localized to systemic. This reflects the overall status of governance reform in China's higher education.…

  14. Governance Reform at China's "985 Project" Universities

    Science.gov (United States)

    Qingnian, Xiong; Duanhong, Zhang; Hong, Liu

    2011-01-01

    Higher education reform in China is deepening, and the governance reform taking place at the 985 Project universities over the past decade has displayed a shift from government driven to internally driven, from adaptive to proactive, and from localized to systemic. This reflects the overall status of governance reform in China's higher education.…

  15. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  16. Fast start-up of microchannel fuel processor integrated with an igniter for hydrogen combustion

    Science.gov (United States)

    Ryi, Shin Kun; Park, Jong Soo; Cho, Song Ho; Kim, Sung Hyun

    A Pt-Zr catalyst coated FeCrAlY mesh is introduced into the combustion outlet conduit of a newly designed microchannel reactor (MCR) as an igniter of hydrogen combustion to decrease the start-up time. The catalyst is coated using a wash-coating method. After installing the Pt-Zr/FeCrAlY mesh, the reactor is heated to its running temperature within 1 min with hydrogen combustion. Two plate-type heat-exchangers are introduced at the combustion outlet and reforming outlet conduits of the microchannel reactor in order to recover the heat of the combustion gas and reformed gas, respectively. Using these heat-exchangers, methane steam reforming is carried out with hydrogen combustion and the reforming capacity and energy efficiency are enhanced by up to 3.4 and 1.7 times, respectively. A compact fuel processor and fuel-cell system using this reactor concept is expected to show considerable advancement.

  17. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  18. Reforming European Universities and Reforming European Welfare States: Parallel Drivers of Change?

    OpenAIRE

    Kwiek, Marek

    2013-01-01

    We are discussing here links between reform agendas and their rationales in higher education and in the welfare state. Lessons learnt from welfare state reforms can be useful in understanding higher education reforms, and we see the links between the two under-­‐researched. Assuming that higher education services have traditionally been state-­‐funded welfare state services in postwar Continental Europe, welfare state reforms debates as a background to higher education reforms debates are ...

  19. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  20. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.