WorldWideScience

Sample records for plasmas including hall

  1. Resistive mode in rotating plasma columns including the hall current

    International Nuclear Information System (INIS)

    Galvao, R.M.O.

    1983-01-01

    A new resistive mode is shown to exist in rotating plasma columns. The mode is localized in the neighbourhood of the radius where the angular velocity of the bulk plasma is equal to minus half the local angular velocity of the ions. This singular point is caused by the Hall term in the generalized Ohm law. The growth rate of the mode scales with eta sup(1/2), where eta is the plasma resistivity. (Author) [pt

  2. Resistive Instabilities in Hall Current Plasma Discharge

    International Nuclear Information System (INIS)

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-01-01

    Plasma perturbations in the acceleration channel of a Hall thruster are found to be unstable in the presence of collisions. Both electrostatic lower-hybrid waves and electromagnetic Alfven waves transverse to the applied electric and magnetic field are found to be unstable due to collisions in the E X B electron flow. These results are obtained assuming a two-fluid hydrodynamic model in slab geometry. The characteristic frequencies of these modes are consistent with experimental observations in Hall current plasma thrusters

  3. Numerical investigation of a Hall thruster plasma

    International Nuclear Information System (INIS)

    Roy, Subrata; Pandey, B.P.

    2002-01-01

    The dynamics of the Hall thruster is investigated numerically in the framework of a one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite element formulation. The model includes neutral dynamics, inelastic processes, and plasma-wall interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of time-dependent equations, while electrons are considered in steady state. Based on the experimental observations, a third order polynomial in electron temperature is used to calculate ionization rate. The results show that in the acceleration channel the increase in the ion number density is related to the decrease in the neutral number density. The electron and ion velocity profiles are consistent with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent with the predicted electron gyration velocity distribution

  4. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    Science.gov (United States)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Moritz, Jr., Joel A. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  5. Chaotic waves in Hall thruster plasma

    International Nuclear Information System (INIS)

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-01

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions

  6. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  7. Linear waves in a resistive plasma with Hall current

    International Nuclear Information System (INIS)

    Almaguer, J.A.

    1992-01-01

    Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed

  8. Numerical simulation of SMART-1 Hall-thruster plasma interactions

    NARCIS (Netherlands)

    Tajmar, Martin; Sedmik, René; Scharlemann, Carsten

    2009-01-01

    SMART-1 has been the first European mission using a Hall thruster to reach the moon. An onboard plasma diagnostic package allowed a detailed characterization of the thruster exhaust plasma and its interactions with the spacecraft. Analysis of in-flight data revealed, amongst others, an unpredicted

  9. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  10. Simulations of Hall reconnection in partially ionized plasmas

    Science.gov (United States)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  11. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    International Nuclear Information System (INIS)

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  12. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  13. Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations

    International Nuclear Information System (INIS)

    Yin Lin; Winske, Dan

    2003-01-01

    Collisionless reconnection is studied using two-dimensional (2-D) hybrid (particle ions, massless fluid electrons) and Hall-magnetohydrodynamics (Hall-MHD) simulations. Both use the full electron pressure tensor instead of a localized resistivity in Ohm's law to initiate reconnection; an initial perturbation or boundary driving to the equilibrium is used. The initial configurations include one-dimensional (1-D) and 2-D current sheets both with and without a guide field. Electron dynamics from the two calculations are compared, and overall agreement is found between the calculations in both reconnection rate and global configuration [L. Yin et al., J. Geophys. Res. 106, 10761 (2001)]. It is shown that the electron drifts in the small-transverse-scale fields near the X point cause the electron motion to decouple from the ion motion, and that reconnection occurs due to electron viscous effects contained in the off-diagonal terms of the electron pressure tensor. Comparing the hybrid and Hall-MHD simulations shows that effects of the off-diagonal terms in the ion pressure tensor, i.e., the ion gyro-radius effects, are necessary in order to model correctly the ion out-of-plane motion. It is shown that these effects can be modeled efficiently in a particle Hall-MHD simulation in which particle ions are used in a predictor/corrector manner to implement ion gyro-radius corrections [L. Yin et al., Phys. Plasmas 9, 2575 (2002)]. For modeling reconnection in large systems, a new integrated approach is examined in which Hall-MHD calculations using a full electron pressure tensor model is embedded inside a MHD simulation. The embedded simulation of current sheet thinning and reconnection dynamics in a realistic 2-D magnetotail equilibrium exhibits smooth transitions of plasma and field quantities between the two regions, with small-scale physics represented well in the compressed current sheet and in the near-X-point region

  14. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  15. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  16. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  17. Fast surface waves in an ideal Hall-magnetohydrodynamic plasma slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Debosscher, A.; Goossens, M.

    1996-01-01

    The propagation of fast sausage and kink magnetohydrodynamic (MHD) surface waves in an ideal magnetized plasma slab is studied taking into account the Hall term in the generalized Ohm close-quote s law. It is found that the Hall effect modifies the dispersion characteristics of MHD surface modes when the Hall term scaling length is not negligible (less than, but comparable to the slab thickness). The dispersion relations for both modes have been derived for parallel propagation (along the ambient equilibrium magnetic field lines).The Hall term imposes some limits on the possible wave number range. It turns out that the space distribution of almost all perturbed quantities in sausage and kink surface waves with Hall effect is rather complicated as compared to that of usual fast MHD surface waves. The applicability to solar wind aspects of the results obtained, is briefly discussed. copyright 1996 American Institute of Physics

  18. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  19. Structure of intermediate shocks in collisionless anisotropic Hall-magnetohydrodynamics plasma models

    International Nuclear Information System (INIS)

    Sánchez-Arriaga, G.

    2013-01-01

    The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

  20. Two dimensional Hall MHD modeling of a plasma opening switch with density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Zabaidullin, O [Kurchatov Institute, Moscow (Russian Federation); Chuvatin, A; Etlicher, B [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The results of two-dimensional numerical modeling of the Plasma Opening Switch in the MHD framework with Hall effect are presented. An enhanced Hall diffusion coefficient was used in the simulations. Recent experiments justify the application of this approach. The result of the modeling also correlates better with the experiment than in the case of the classical diffusion coefficient. Numerically generated pictures propose a switching scenario in which the translation between the conduction and opening phases can be explained by an abrupt `switching on` and further domination of the Hall effect at the end of the conduction phase. (author). 3 figs., 6 refs.

  1. On electrostatic acceleration of plasmas with the Hall effect using electrode shaping

    International Nuclear Information System (INIS)

    Wang, Zhehui; Barnes, Cris W.

    2001-01-01

    Resistive magnetohydrodynamics (MHD) is used to model the electromagnetic acceleration of plasmas in coaxial channels. When the Hall effect is considered, the inclusion of resistivity is necessary to obtain physically meaningful solutions. In resistive MHD with the Hall effect, if and only if the electric current and the plasma flow are orthogonal (J·U=0), then there is a conserved quantity, in the form of U 2 /2+w+eΦ/M, along the flow, where U is the flow velocity, Φ is the electric potential, w is the enthalpy, and M is the ion mass. New solutions suggest that in coaxial geometry the Hall effect along the axial plasma flow can be balanced by proper shaping of conducting electrodes, with acceleration then caused by an electrostatic potential drop along the streamlines of the flow. The Hall effect separation of ion and electron flow then just cancels the electrostatic charge separation. Assuming particle ionization increases with energy density in the system, the resulting particle flow rates (J p ) scales with accelerator bias (V bias ) as J p ∝V bias 2 , exceeding the Child--Langmuir limit. The magnitude of the Hall effect (as determined by the Morozov Hall parameter, Ξ, which is defined as the ratio of electric current to particle current) is related to the energy needed for the creation of each ion--electron pair

  2. Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Mann, G.

    1999-01-01

    The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)

  3. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  4. An axially propagating two-stream instability in the Hall thruster plasma

    Czech Academy of Sciences Publication Activity Database

    Tsikata, S.; Cavalier, Jordan; Héron, A.; Honore, C.; Lemoine, N.; Gresillon, D.; Coulette, D.

    2014-01-01

    Roč. 21, č. 7 (2014), 072116-072116 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Collective Thomson scattering * Hall thruster * kinetic theory * electrostatic modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4890025

  5. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  6. Hall effect in non-ideal plasma of argon and xenon

    International Nuclear Information System (INIS)

    Shilkin, N.S.; Dudin, S.V.; Gryaznov, V.K.; Mintsev, V.B.; Fortov, V.E.

    2003-01-01

    The first data on the measurement of the electron concentration (10 16 -10 20 cm -3 ) of the low-temperature (0.5-1 eV) non-ideal (0.01 -6 -10 -1 ) inert gases plasma are presented. The measurements of the Hall constant and electric conductivity in the non-ideal partially ionized plasma of argon and xenon are carried out through the sounding methods. The plasma generation was accomplished behind the shock waves front through the linear explosive generators. The obtained results are compared with a number of the plasma models [ru

  7. Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas

    International Nuclear Information System (INIS)

    Zhelyazkov, I

    2010-01-01

    It is well established now that the solar atmosphere, from the photosphere to the corona and the solar wind, is a highly structured medium. Satellite observations have confirmed the presence of steady flows there. Here, we investigate the propagation of magnetohydrodynamic (MHD) eigenmodes (kink and sausage surface waves) travelling along an ideal incompressible flowing plasma cylinder (flux tube) surrounded by a flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation characteristics of the waves are studied in a reference frame moving with the mass flow outside the tube. In general, the flows change the waves' phase velocities compared with their magnitudes in a static MHD flux tube and the Hall effect extends the number of the possible wave dispersion curves. It turns out that while the kink waves, considered in the context of the standard magnetohydrodynamics, are unstable against the Kelvin-Helmholtz instability, they become stable when the Hall term in the generalized Ohm's law is taken into account. The sausage waves are stable in both considerations. All results concerning the waves' propagation and their stability/instability status are obtained on the basis of the linearized Hall-magnetohydrodynamic equations and are applicable mainly to the solar wind plasmas.

  8. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  9. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    Energy Technology Data Exchange (ETDEWEB)

    Urpin, V., E-mail: Vadim.urpin@uv.es [Ioffe Institute of Physics and Technology (Russian Federation)

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  10. Qualitative models of magnetic field accelerated propagation in a plasma due to the Hall effect

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Cherepanov, K.V.

    2000-01-01

    Two qualitatively new models of accelerated magnetic field propagation (relative to normal diffusion) in a plasma due to the Hall effect are developed within the frames of the electron magnetic hydrodynamics. The first model is based on a simple hydrodynamic approach, which, in particular, reproduces the number of known theoretical results. The second one makes it possible to obtain exact analytical description of the basic characteristics of the magnetic field accelerated propagation in a inhomogeneous iso-thermic plasma, namely, the magnetic field front and its effective width [ru

  11. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  12. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  13. Modulational instability and associated rogue structures of slow magnetosonic wave in Hall magnetohydrodynamic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Anuraj; Ryu, Chang-Mo [Department of Physics, POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang 790-784 (Korea, Republic of)

    2014-06-15

    The modulational instability and associated rogue structures of a slow magnetosonic wave are investigated for a Hall magnetohydrodynamic plasma. Nonlinear Schrodinger equation is obtained by using the multiple scale method, which shows a modulationally unstable slow magnetosonic mode evolving into bright wavepackets. The dispersive effects induced by the Hall electron current increase with the increase in plasma β and become weaker as the angle of propagation increases. The growth rate of the modulational instability also increases with the increase in plasma β. The growth rate is greatest for the parallel propagation and drops to zero for perpendicular propagation. The envelope wavepacket of a slow magnetosonic is widened with less oscillations as plasma β increases. But the wavepacket becomes slightly narrower and more oscillatory as the angle of propagation increases. Further a non-stationary envelope solution of the Peregrine soliton is analyzed for rogue waves. The Peregrine soliton contracts temporally and expands spatially with increase in plasma β. However, the width of a slow magnetosonic Peregrine soliton decreases both temporally and spatially with increase of the propagation angle.

  14. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    International Nuclear Information System (INIS)

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-01-01

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case

  15. Nonthermal fusion reactor concept based on Hall-effect magnetohydrodynamics plasma theory

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1988-01-01

    The failure of magnetic confinement controlled thermonuclear fusion research to achieve its goal is attributed to its foundation on the incomplete MHD plasma description instead of the more general HMHD (Hall-effect magnetohydrodynamics) theory. The latter allows for a certain magnetic plasma self-confinement under described stringent conditions. A reactor concept based on the formation, acceleration, and forced disintegration of magnetized whirl structures, plasmoids, is proposed. The four conventional MHD theory objections, i.e., absence of dynamo action, fast decay caused by resistivity, non-existence of magnetic self-confinement, and negligible non-thermal fusion yield, are shown not to apply. Support for the scheme from dense plasma focus research is pointed out. (orig.) [de

  16. Surface wave propagation in an ideal Hall-magnetohydrodynamic plasma jet in flowing environment

    International Nuclear Information System (INIS)

    Sikka, Himanshu; Kumar, Nagendra; Zhelyazkov, Ivan

    2004-01-01

    The behavior of the Hall-magnetohydrodynamic (Hall-MHD) sausage and kink waves is studied in the presence of steady flow. The influence of the flow both inside and outside the plasma slab is taken into account. The plasma in the environment is considered to be cold and moves with the different flow velocity outside the slab. In the limit of parallel propagation, dispersion relation is derived to discuss the propagation of both the modes. Numerical results for the propagation characteristics are obtained for different Alfvenic Mach number ratios inside and outside the slab. It is found that the dispersion curves for both surface modes, namely, the sausage and kink ones in cold plasma show complexities in their behavior in terms of multivalued portions of the curves. These multivalued portions correspond to the different normalized phase velocities for the same value of Alfvenic Mach number. In contrast to the conventional MHD surface waves which are assumed to be pure surface waves or pseudosurface waves, surface waves are obtained which are bulk waves for very small dimensionless wave numbers, then turn to leaky waves and finally transform to pure surface waves for values of dimensionless wave number greater than one

  17. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  18. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  19. Magnetoacoustic Waves and Instabilities in a Hall-Effect-Dominated Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Palmgren, S

    1970-05-15

    The dispersion equation is studied for small-amplitude plane harmonic waves in a compressible plasma moving perpendicular to a magnetic field with a constant fractional ionization. The modes of propagation are analysed mainly from a qualitative point of view and one of them is shown to be unstable due to the Hall effect. This mode has been previously analysed by other authors in connection with MHD power generators but in a more restricted and isolated sense. The present work not only generalizes and modifies their results on this special mode, but also makes it possible to picture the whole spectrum of propagation modes in a simple and physically intelligible way.

  20. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  1. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    International Nuclear Information System (INIS)

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  2. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2013-01-28

    An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

  3. Measurement of sheath thickness by lining out grooves in the Hall-type stationary plasma thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Wu Zhiwen; Ning Zhongxi; Wang Xiaogang

    2007-01-01

    Using grooves created along the axial direction of the discharge channel, a method for measuring sheath thickness in Hall-type stationary plasma thrusters has been developed. By distorting the wall surface using these grooves, it is possible to numerically study the effect of the wall surface on the sheath and near wall conductivity. Monte Carlo method is applied to calculate the electron temperature variation with different groove depths. The electron dynamic process in the plasma is described by a test particle method with the electron randomly entering the sheath from the discharge channel and being reflected back. Numerical results show that the reflected electron temperature is hardly affected by the wall surface if the groove depth is much less than the sheath thickness. On the other hand, the reflected electron temperature increases if the groove depth is much greater than the sheath thickness. The reflected electron temperature has a sharp jump when the depth of groove is on the order of the sheath thickness. The simulation is repeated with different sheath thicknesses and the results are the same. Therefore, a diagnosis mean of the sheath thickness can be developed based on the method. Also the simulation results are in accord with the experimental data. Besides, the measurement method may be applicable to other plasma device with similar orthogonal steady state electrical and magnetic fields

  4. Improved derivation of the modified BGK collision term and applications to the Hall effect and cold plasma dispersion relation

    International Nuclear Information System (INIS)

    Nagata, M.

    1983-01-01

    A derived addition to the BGK collision term,is improved and expressed in simple form. The collision frequency for scattering depends anisotropically on the velocity vector. The improved macroscopic equation of momentum flow is applied to the Hall effect, the cold plasma dispersion relation and the cyclotron resonance. The Hall coefficient which is constant in the case of the BGK collision term now depends on the magnetic field. It is also shown that, compared with the almost symmetric classical curves of cyclotron resonance, the new curves are considerably asymmetric and their half-widths are about 3/2 times the classical ones. (autho)

  5. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    Science.gov (United States)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  6. Hall C

    Data.gov (United States)

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  7. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  8. Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma

    International Nuclear Information System (INIS)

    Yang Ren; Masaaki Yamada; Stefan Gerhardt; Hantao Ji; Russell Kulsrud; Aleksey Kuritsyn

    2005-01-01

    In this letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the Magnetic Reconnection Experiment (MRX). Measurements show that the Hall effect is large in collisionless regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collisionless reconnection

  9. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  10. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  11. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    M. Nawaz

    Full Text Available In this article, we developed a computer code of Galerikan Finite Element method (GFEM for three dimensional flow equations of nano-plasma fluid (blood in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm’s law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8. Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood are influenced significantly by the inclusion of nano-particles of Copper (Cu and Silver (Ag. Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid. Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field. Keywords: Nanofluid, Grid independent study, Convergence, Error analysis, Skin friction, Joule heating, Viscous dissipation, Hall and ion currents

  12. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  13. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  14. Plasma Cell Neoplasms (Including Multiple Myeloma)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells form cancerous tumors. When there is only one tumor, the disease is called a plasmacytoma. When there are multiple tumors, it is called multiple myeloma. Start here to find information on plasma cell neoplasms treatment, research, and statistics.

  15. 77 FR 6463 - Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma...

    Science.gov (United States)

    2012-02-08

    ... Blood Components, Including Source Plasma; Correction AGENCY: Food and Drug Administration, HHS. ACTION..., Including Source Plasma,'' which provided incorrect publication information regarding a 60-day notice that...

  16. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    Science.gov (United States)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  17. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... cancer treatment is also called biotherapy or immunotherapy. Immunomodulators are a type of biologic therapy. Thalidomide , lenalidomide , and pomalidomide are immunomodulators used to treat multiple myeloma and other plasma ...

  18. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... cancer treatment is also called biotherapy or immunotherapy. Immunomodulators are a type of biologic therapy. Thalidomide , lenalidomide , and pomalidomide are immunomodulators used to treat multiple myeloma and other plasma ...

  19. Plasma processes including electron beam for off-gases purification

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Witman, S.; Licki, J.

    2011-01-01

    Complete text of publication follows. Non-thermal plasma technologies based on different methods of plasma generation are being applied for ozone generation for different applications, waste water and off-gases treatment. Plasmas create reactive species, in particular ions, radicals or other reactive compounds, which can decompose pollutant molecules, organic particulate matter or soot. Electron beam flue gas treatment is another plasma-based technology which has been successfully demonstrated on industrial scale coal fired power plants. High efficiency of SO 2 (> 95%) and NO x (> 70%) has been obtained and industrial plant applying this process has been built in Poland. The further investigations carried out all over the world have illustrated that the process can be applied for poly-aromatic hydrocarbons (PAH) destruction as well, and just recently research laboratories in the US and South Korea have reported in the feasibility of the process for mercury removal from the flue gas. The recent studies concern a new type of accelerators implementation in the industrial scale, application of the process in the high sulfur oil fired boilers and Diesel off - gases purification. The treatment of the flue gases with the high NOx concentration is a special challenge for the technology since the main energy consumption (and applied accelerators power) is related to this pollutant content in the processed off gases. The pulse beams and scavenger application can be a solution to reduce investment and operational costs. The further development of the technology is directly connected with high power accelerators development. Acknowledgement: The R and D activities are supported by the European Regional Development Found in the frame of the project PlasTEP 'Dissemination and fostering of plasma based technological innovation for environment protection in the Baltic Sea Region'.

  20. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    cyclotron one, in extended turbulent zones are a promising alternative in place of the usual parallel electric fields invoked in the macro-reconnection scenarios. Further cascading towards electron scales is supposed to be due to unstable parallel electron currents, which neutralize the potential differences, either resulted from the ion- burst interactions or from the inertial drift. The complicated MP shape suggests its systematic velocity departure from the local normal towards the average one, inferring domination for the MP movement of the non-local processes over the small-scale local ones. The measured Poynting vector indicates energy transmission from the MP into the upstream region with the waves triggering impulsive downstream flows, providing an input into the local flow balance and the outward movement of the MP. Equating the transverse electric field inside the MP TCS by the Hall term in the Ohm's law implies a separation of the different plasmas primarily by the Hall current, driven by the respective part of the TCS surface charge. The Hall dynamics of TCS can operate either without or as a part of a macro-reconnection with the magnetic field annihilation.

  1. Experimental study of the Hall effect and electron diffusion region during magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    Ren Yang; Yamada, Masaaki; Ji Hantao; Dorfman, Seth; Gerhardt, Stefan P.; Kulsrud, Russel

    2008-01-01

    The Hall effect during magnetic reconnection without an external guide field has been extensively studied in the laboratory plasma of the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] by measuring its key signature, an out-of-plane quadrupole magnetic field, with magnetic probe arrays whose spatial resolution is on the order of the electron skin depth. The in-plane electron flow is deduced from out-of-plane magnetic field measurements. The measured in-plane electron flow and numerical results are in good agreement. The electron diffusion region is identified by measuring the electron outflow channel. The width of the electron diffusion region scales with the electron skin depth (∼5.5-7.5c/ω pe ) and the peak electron outflow velocity scales with the electron Alfven velocity (∼0.12-0.16V eA ), independent of ion mass. The measured width of the electron diffusion region is much wider and the observed electron outflow is much slower than those obtained in 2D numerical simulations. It is found that the classical and anomalous dissipation present in the experiment can broaden the electron diffusion region and slow the electron outflow. As a consequence, the electron outflow flux remains consistent with numerical simulations. The ions, as measured by a Mach probe, have a much wider outflow channel than the electrons, and their outflow is much slower than the electron outflow everywhere in the electron diffusion region

  2. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  3. Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster

    Science.gov (United States)

    2011-09-01

    atmospheric pressure to 80 mtorr, is accomplished by a Leybold-Trivac rotary van vacuum pump and the second stage is completed by four 20 in CVI...Thruster”. Physics of Plasmas, 13, 2006. 3. Albarede, Luc, Vanessa Vial, Alexey Lazurenko, Andre Bouchoule, and Michel Dudeck. “Low Frequency Dynamical...Force Research Laboratory Space and Missile Division (AFRL/RZS) 5 Pollux Drive Edwards AFB, CA 93524 DSN 525-5230 AFRL/RZS Approval for public release

  4. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Science.gov (United States)

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  5. Correction to the paper “a simple model to determine the interrelation between the integral characteristics of hall thrusters” [Plasma Physics Reports 40, 229 (2014)

    International Nuclear Information System (INIS)

    Shumilin, V. P.; Shumilin, A. V.; Shumilin, N. V.

    2015-01-01

    The paper is devoted to comparison of experimental data with theoretical predictions concerning the dependence of the current of accelerated ions on the operating voltage of a Hall thruster with an anode layer. The error made in the paper published by the authors in Plasma Phys. Rep. 40, 229 (2014) occurred because of a misprint in the Encyclopedia of Low-Temperature Plasma. In the present paper, this error is corrected. It is shown that the simple model proposed in the above-mentioned paper is in qualitative and quantitative agreement with experimental results

  6. Predicting Hall Thruster Operational Lifetime Using a Kinetic Plasma Model and a Molecular Dynamics Simulation Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...

  7. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  8. Magnetohydrodynamic simulations of Gamble I POS with Hall effect

    International Nuclear Information System (INIS)

    Roderick, N.F.; Frese, M.H.; Peterkin, R.E.; Payne, S.S.

    1989-01-01

    Two dimensional single fluid magnetohydrodynamic simulations have been conducted to investigate the effects of the Hall electric field on magnetic field transport in plasma opening switches of the type used on Gamble I. The Hall terms were included in the magnetic field transport equation in the two dimensional simulation code MACH2 through the use of a generalized Ohm's law. Calculations show the Hall terms augment the field transport previously observed to occur through ion fluid motion and diffusion. For modest values of microturbulent collision frequency, board current channels were observed . Results also show the magnetic field transport to be affected by the cathode boundary conditions with the Hall terms included. In all cases center of mass motion was slight

  9. Hall A

    Data.gov (United States)

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  10. Hall viscosity of hierarchical quantum Hall states

    Science.gov (United States)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  11. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  12. EFFECT OF FINITE LARMOR RADIUS CORRECTIONS ON THE THERMAL INSTABILITY OF THERMALLY CONDUCTING VISCOUS PLASMA WITH HALL CURRENT AND ELECTRON INERTIA

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)

    2016-10-01

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.

  13. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  14. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  15. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2015-01-01

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  16. Neutralization of an ion beam from the end-Hall ion source by a plasma electron source based on a discharge in crossed E × H fields

    Science.gov (United States)

    Dostanko, A. P.; Golosov, D. A.

    2009-10-01

    The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the

  17. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  18. Laurance David Hall.

    Science.gov (United States)

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    A brief discussion is given of: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti p p, and other options; (3) hall for the lepton detector; and, (4) hall for the hadron spectrometer

  20. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  1. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  2. MHD model including small-scale perturbations in a plasma with temperature variations

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhailovskii, A.B.

    1996-01-01

    The possibility is studied of using a hydrodynamic model to describe a magnetized plasma with density and temperature variations on scales that are arbitrary with respect to the ion Larmor radius. It is shown that the inertial component of the transverse ion thermal flux should be taken into account. This component is found from the collisionless kinetic equation. It can also be obtained from the equations of the Grad type. A set of two-dimensional hydrodynamic equations for ions is obtained with this component taken into account. These equations are used to derive model hydrodynamic expressions for the density and temperature variations. It is shown that, for large-scale perturbations (when the wavelengths are longer than the ion Larmor radius), the expressions derived coincide with the corresponding kinetic expressions and, for perturbations on sub-Larmor scales (when the wavelengths are shorter than the Larmor radius), they agree qualitatively. Hydrodynamic dispersion relations are derived for several types of drift waves with arbitrary wavenumbers. The range of applicability of the MHD model is determined from a comparison of these dispersion relations with the kinetic ones. It is noted that, on the basis of results obtained, drift effects can be included in numerical MHD codes for studying plasma instabilities in high-temperature regimes in tokamaks

  3. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    On May 26 and 27, 1976, approximately 50 people met for an informal workshop on plans for experimental halls for ISABELLE. Plans as they exist in the May 1976 version of the ISABELLE proposal were presented. Discussions were held on the following four general topics by separate working groups: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti pp, and other options; (3) hall for the lepton detector; and (4) hall for the hadron spectrometer. The planning for experimental halls at PEP, the hall for the lepton detector, the hadron spectrometer, and open areas are discussed

  4. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  5. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    At the experimental halls workshop, discussions were held on: (1) open areas as compared with enclosed halls; (2) the needs of ep, anti pp, and other options; (3) the hall for the lepton detector; and (4) the hall for the hadron spectrometer. The value of different possibilities for the future experimental program was explored. A number of suggestions emerged which will be used as the design of the experimental halls progresses

  6. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    Science.gov (United States)

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  7. Influence of plasma background including neutrals on scrape-off layer filaments using 3D simulations

    Directory of Open Access Journals (Sweden)

    D. Schwörer

    2017-08-01

    Full Text Available This paper investigates the effect of the plasma background, including neutrals in a self-consistent way, on filaments in the scrape-off layer (SOL of fusion devices. A strong dependency of filament motion on background density and temperature is observed. The radial filament motion shows an increase in velocity with decreasing background density and increasing background temperature. In the simulations presented here, three neutral-filament interaction models have been compared, one with a static neutral background, one with no interaction between filaments and neutrals, and one co-evolving the neutrals self consistently with the filaments. With the background conditions employed here, which do not show detachment, there are no significant effects of neutrals on filaments, as by the time the filament reaches maximum velocity, the neutral density has not changed significantly.

  8. Guild Hall retrofit

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report demonstrates the economic viability of an exterior rewrap retrofit performed on a public community facility for the performing arts. This facility originally consisted of two mess halls built by the American army. The exterior retrofit consisted of constructing a super-insulated passageway to link the two halls as well as completely wrapping the facility with six millimetre polyethylene to provide an airtight barrier. The roofs and walls were reinsulated and insulation levels were increased to RSI 10.5 in the ceilings and RSI 7.7 in the walls. The installation of a propane fuelled furnace was also included in the retrofit package. Prior to the renovations and retrofitting, the Guild Hall facility was almost unusable. The demonstration project transformed the cold, drafty buildings into an attractive, comfortable and functional centre for the performing arts. Heating requirements have been reduced to 500 MJ/m {sup 2} of floor space annually compared to a predicted 1,760 MJ/m{sup 2} of floor space based on HOTCAN analysis of the heating requirements without the energy conservation measures. 9 figs., 10 tabs.

  9. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  10. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  11. Fluorogenic MMP activity assay for plasma including MMPs complexed to α2-macroglobulin

    NARCIS (Netherlands)

    Beekman, B.; Drijfhout, J.W.; Ronday, H.K.; TeKoppele, J.M.

    1999-01-01

    Elevated MMP activities are implicated in tissue degradation in, e.g., arthritis and cancer. The present study was designed to measure MMP enzyme activity in plasma. Free active MMP is unlikely to be present in plasma: upon entering the circulation, active MMP is expected to be captured by the

  12. A simple model of the plasma deflagration gun including self-consistent electric and magnetic fields

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    At the Air Force Weapons Laboratory, interest has continued for some time in energetic plasma injectors. A possible scheme for such a device is the plasma deflagration gun. When the question arose whether it would be possible to scale a deflagration gun to the multi-megajoule energy level, it became clear that a scaling law which described the fun as a circuit element and allowed one to confidently scale gun parameters would be required. The authors sought to develop a scaling law which self-consistently described the current, magnetic field, and velocity profiles in the gun. They based this scaling law on plasma parameters exclusively, abandoning the fluid approach

  13. Nonlinear evolution of a three dimensional longitudinal plasma wavepacket in a hot plasma including the effect of its interaction with an ion-acoustic wave

    International Nuclear Information System (INIS)

    Das, K.P.; Sihi, S.

    1979-01-01

    Assuming amplitudes as slowly varying functions of space and time and using perturbation method three coupled nonlinear partial differential equations are obtained for the nonlinear evolution of a three dimensional longitudinal plasma wave packet in a hot plasma including the effect of its interaction with a long wavelength ion-acoustic wave. These three equations are used to derive the instability conditions of a uniform longitudinal plasma wave train including the effect of its interaction both at resonance and nonresonance, with a long wavelength ion-acoustic wave. (author)

  14. Hall MHD reconnection in cometary magnetotail

    International Nuclear Information System (INIS)

    Jovanovic, Dusan; Shukla, Padma Kant; Morfill, Gregor

    2005-01-01

    The fine structure of cometary tails (swirls, loops and blobs) is studied in the framework of resistive magnetic reconnection without a guide field in a dusty plasma. For a high-beta plasma (β ∼ 1) consisting of electrons, ions, and immobile dust grains, a two-fluid description is used to study electromagnetic perturbations with the frequency below Ωi, propagating at an arbitrary angle, and including the effects of Hall current. A zero-order current associated with the anti-parallel magnetic configuration may exist even in the limit of zero plasma temperature in a dusty plasma due to a symmetry breaking between electrons and ions by dust grains that yields an E-vector x B-vector current. In the perturbed state, a new linear electromagnetic mode is found in dusty plasma which is evanescent below the Rao cut-off frequency and has the characteristic wavelength comparable to the ion skin depth, which enables the reconnection at short spatial scales. The role of the dust is found to be twofold, yielding a new mode outside of the current sheet and altering the continuity conditions at its edge by an inhomogeneous Doppler shift associated with the E-vector x B-vector current

  15. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  16. Evolution of α-particle distribution in burning plasmas including energy dependent α-transport effects

    International Nuclear Information System (INIS)

    Kamelander, G.; Sigmar, D.; Woloch, F.

    1991-09-01

    This report resumes the essential results of a common OEFZS/MIT (Plasma Fusion Center) project to investigate fusion alpha transport. A computer code has been developed going beyond standard FOKKER-PLANCK-codes assuming that the fusion products give their energy to the plasma on the place of their birth. The present transport code admits the calculation of the α-distribution function. By means of the distribution function the energy deposition rates are calculated. The time-evolution of the α-distribution function has been evaluated for an ignited plasma. A description of the transport code, of the subroutines and of the input data as well as a listing is enclosed to this report. (Authors)

  17. Hall magnetohydrodynamics of neutral layers

    International Nuclear Information System (INIS)

    Huba, J.D.; Rudakov, L.I.

    2003-01-01

    New analytical and numerical results of the dynamics of inhomogeneous, reversed field current layers in the Hall limit (i.e., characteristic length scales < or approx. the ion inertial length) are presented. Specifically, the two- and three-dimensional evolution of a current layer that supports a reversed field plasma configuration and has a density gradient along the current direction is studied. The two-dimensional study demonstrates that a density inhomogeneity along the current direction can dramatically redistribute the magnetic field and plasma via magnetic shock-like or rarefaction waves. The relative direction between the density gradient and current flow plays a critical role in the evolution of the current sheet. One important result is that the current sheet can become very thin rapidly when the density gradient is directed opposite to the current. The three-dimensional study uses the same plasma and field configuration as the two-dimensional study but is also initialized with a magnetic field perturbation localized along the current channel upstream of the plasma inhomogeneity. The perturbation induces a magnetic wave structure that propagates in the direction of the electron drift (i.e., opposite to the current). The propagating wave structure is a Hall phenomenon associated with magnetic field curvature. The interaction between the propagating wave structure and the evolving current layer can lead to rapid magnetic field line reconnection. The results are applied to laboratory and space plasma processes

  18. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  19. Plasma and oscillations with contributions in memoriam including a complete bibliography of his works

    CERN Document Server

    Suits, C Guy

    1961-01-01

    The Collected Works of Irving Langmuir, Volume 5: Plasma and Oscillations is an 11-chapter text covers the extensive research study of Langmuir in the field of gas discharges. This book specifically tackles oscillations in ionized gases. The opening chapters describe the plasma-boundary phenomena and the use of a probe to separate the primary electron beam from the scattered electrons. The succeeding chapters deal with the collisions between electrons and gas molecules, oscillations in ionized gases, and the interaction of electron and positive ion space charges in cathode sheaths. These t

  20. Properties of the plasma of the scrape-off layer including the effects of polarization drift

    International Nuclear Information System (INIS)

    Petrov, V.G.

    1987-01-01

    The plasma of the scrape-off layer of a tokamak is analyzed. The toroidal electric drift and the polarization drift of the charged particles are taken into account. The buildup of electric charge in the shadow of the poloidal limiter which results from toroidal drift is offset by a current to the limiter. The radial electric current associated with the polarization drift of ions is important near the inner boundary of the scrape-off layer. The distributions of the electric potential and the plasma density in the scrape-off layer are derived

  1. The Hall-induced stability of gravitating fluids

    Science.gov (United States)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  2. Views of Prospective Science Teachers on Including the Concept of Plasma in Science Curricula

    Science.gov (United States)

    Balbag, Mustafa Zafer

    2018-01-01

    States of matter are structures that we may easily encounter in the universe as well as our close environment. The plasma state is the fourth state of matter, and it has much different properties in comparison to the solid, liquid and gas states of matter. In order to understand the universe and the environment we live in better, one needs to have…

  3. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gardiner, Thomas Anthony

    2010-01-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  4. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  5. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  6. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  7. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  8. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  9. Nonlinear waves in electron-positron-ion plasmas including charge separation

    Science.gov (United States)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  10. Report of experimental hall subworking group

    International Nuclear Information System (INIS)

    Miyake, K.; Ohama, T.; Takahashi, K.

    1982-01-01

    The general plan of constructing the TRISTAN e + e - colliding beam experimental halls may be divided into two parts. The first step is to construct two test-experimental halls associated with the 6.5 GeV x 6.5 GeV e + e - accumulator ring, and the second step is to build four experimental halls at the 30 GeV x 30 GeV e + e - TRISTAN main ring. At this workshop, extensive discussions on the detailed design of the four main ring experimental halls have been made. Four experimental areas will be built at the main ring, and two test-experimental halls at the accumulating ring. Among the four areas at the main ring, two will be used for electron-proton possible as well as electron-positron colliding beam experiment. The other two will be used exclusively for e + e - colliding experiments. Only a preliminary design has been made for these four experimental areas. A tentative plan of a larger experimental hall includes a counting and data processing room, a utility room, and a radiation safety control room. Two smaller halls have simpler structure. The figures of the experimental halls are presented. The two test-experimental halls at the accumulator ring will be used to test the detectors for e + e - colliding experiments before the final installation. The utility rooms designed for the halls are used to supply coolant and electric power of superconducting magnets. At the workshop, various ideas concerning the preliminary plan are presented. (Kato, T.)

  11. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  12. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  13. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  14. The quantum hall effect

    International Nuclear Information System (INIS)

    El-Arabi, N. M.

    1993-01-01

    Transport phenomena in two dimensional semiconductors have revealed unusual properties. In this thesis these systems are considered and discussed. The theories explain the Integral Quantum Hall Effect (IQHE) and the Fractional Quantum Hall Effect (FQHE). The thesis is composed of five chapters. The first and the second chapters lay down the theory of the IQHE, the third and fourth consider the theory of the FQHE. Chapter five deals with the statistics of particles in two dimension. (author). Refs

  15. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  16. Sheldon-Hall syndrome

    Directory of Open Access Journals (Sweden)

    Bamshad Michael J

    2009-03-01

    Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.

  17. Commemorative Symposium on the Hall Effect and its Applications

    CERN Document Server

    Westgate, C

    1980-01-01

    In 1879, while a graduate student under Henry Rowland at the Physics Department of The Johns Hopkins University, Edwin Herbert Hall discovered what is now universally known as the Hall effect. A symposium was held at The Johns Hopkins University on November 13, 1979 to commemorate the lOOth anniversary of the discovery. Over 170 participants attended the symposium which included eleven in­ vited lectures and three speeches during the luncheon. During the past one hundred years, we have witnessed ever ex­ panding activities in the field of the Hall effect. The Hall effect is now an indispensable tool in the studies of many branches of condensed matter physics, especially in metals, semiconductors, and magnetic solids. Various components (over 200 million!) that utilize the Hall effect have been successfully incorporated into such devices as keyboards, automobile ignitions, gaussmeters, and satellites. This volume attempts to capture the important aspects of the Hall effect and its applications. It includes t...

  18. The quantized Hall effect

    International Nuclear Information System (INIS)

    Klitzing von, K.

    1989-01-01

    The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs

  19. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  20. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  1. Hall effect in hopping regime

    International Nuclear Information System (INIS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  2. Hall effect in hopping regime

    Energy Technology Data Exchange (ETDEWEB)

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  3. The Monty Hall Dilemma.

    Science.gov (United States)

    Granberg, Donald; Brown, Thad A.

    1995-01-01

    Examines people's behavior in the Monty Hall Dilemma (MHD), in which a person must make two decisions to win a prize. In a series of five studies, found that people misapprehend probabilities in the MHD. Discusses the MHD's relation to illusion of control, belief perseverance, and the status quo bias. (RJM)

  4. The Isolde experimental hall

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    General view of the Isotope-Separator On-Line (ISOLDE) hall. ISOLDE is dedicated to the production of a large variety of radioactive ion beams for many different experiments. Rare isotopes can be produced allowing the study of spectra for neutrino beam production.

  5. Hall Sweet Home

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  6. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  7. Dr. Hall and the work cure.

    Science.gov (United States)

    Reed, Kathlyn L

    2005-01-01

    Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.

  8. Composite fermions in the quantum Hall effect

    International Nuclear Information System (INIS)

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  9. Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid model

    International Nuclear Information System (INIS)

    Sotnikov, V.I.; Paraschiv, I.; Makhin, V.; Bauer, B.S.; Leboeuf, J.N.; Dawson, J.M.

    2002-01-01

    A systematic study of the linear stage of sheared flow stabilization of Z-pinch plasmas based on the Hall fluid model with equilibrium that contains sheared flow and an axial magnetic field is presented. In the study we begin with the derivation of a general set of equations that permits the evaluation of the combined effect of sheared flow and axial magnetic field on the development of the azimuthal mode number m=0 sausage and m=1 kink magnetohydrodynamic (MHD) instabilities, with the Hall term included in the model. The incorporation of sheared flow, axial magnetic field, and the Hall term allows the Z-pinch system to be taken away from the region in parameter space where ideal MHD is applicable to a regime where nonideal effects tend to govern stability. The problem is then treated numerically by following the linear development in time of an initial perturbation. The numerical results for linear growth rates as a function of axial sheared flow, an axial magnetic field, and the Hall term are reported

  10. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  11. Measurement of Safety Factor Using Hall Probes on CASTOR Tokamak

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Karel; Ďuran, Ivan; Bolshakova, I.; Holyaka, R.; Erashok, V.

    2006-01-01

    Roč. 56, suppl.B (2006), s. 104-110 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA AV ČR(CZ) KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * tokamak * safety factor * hall probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  12. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  13. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression.

    Science.gov (United States)

    Pavlatou, M G; Remaley, A T; Gold, P W

    2016-08-30

    Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.

  14. Hall current effects in dynamic magnetic reconnection solutions

    International Nuclear Information System (INIS)

    Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.

    2003-01-01

    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

  15. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  16. Developments in Scanning Hall Probe Microscopy

    Science.gov (United States)

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  17. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...

  18. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    International Nuclear Information System (INIS)

    Holm, D.D.

    1987-01-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions

  19. Transit-time instability in Hall thrusters

    International Nuclear Information System (INIS)

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  20. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    OpenAIRE

    N'diaye, P. B.; Akosa, C. A.; Manchon, A.

    2016-01-01

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-B\\"uttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic a...

  1. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  2. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  3. Quantum hall effect. A perspective

    International Nuclear Information System (INIS)

    Aoki, Hideo

    2006-01-01

    Novel concepts and phenomena are emerging recently in the physics of quantum Hall effect. This article gives an overview, which starts from the fractional quantum Hall system viewed as an extremely strongly correlated system, and move on to present various phenomena involving internal degrees of freedom (spin and layer), non-equilibrium and optical properties, and finally the spinoff to anomalous Hall effect and the rotating Bose-Einstein condensate. (author)

  4. Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Damiano, P. A.; Wright, A. N.; McKenzie, J. F.

    2009-01-01

    The linear wave equation (sixth order in space and time) and the corresponding dispersion relation is derived for Hall magnetohydrodynamic (MHD) waves including electron inertial and finite Larmor radius effects together with several limiting cases for a homogeneous plasma. We contrast these limits with the solution of the full dispersion relation in terms of wave normal (k perpendicular ,k || ) diagrams to clearly illustrate the range of applicability of the individual approximations. We analyze the solutions in terms of all three MHD wave modes (fast, slow, and Alfven), with particular attention given to how the Alfven branch (including the cold ideal field line resonance (FLR) [D. J. Southwood, Planet. Space Sci. 22, 483 (1974)]) is modified by the Hall term and electron inertial and finite Larmor radius effects. The inclusion of these terms breaks the degeneracy of the Alfven branch in the cold plasma limit and displaces the asymptote position for the FLR to a line defined by the electron thermal speed rather than the Alfven speed. For a driven system, the break in this degeneracy implies that a resonance would form at one field line for small k perpendicular and then shift to another as k perpendicular →∞. However for very large ωk perpendicular /V A , Hall term effects lead to a coupling to the whistler mode, which would then transport energy away from the resonant layer. The inclusion of the Hall term also significantly effects the characteristics of the slow mode. This analysis reveals an interesting 'swapping' of the perpendicular root behavior between the slow and Alfven branches.

  5. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  6. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  7. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    Science.gov (United States)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  8. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  9. The ISOLDE hall

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...

  10. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  11. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...

  12. Energy consumption of sport halls

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The energy consumption of Finland's sports halls (ball games halls, ice hockey halls and swimming halls) represent approximately 1% of that of the country's whole building stock. In the light of the facts revealed by the energy study the potential energy saving rate in sports halls is 15-25%. The total savings would be something like FIM 30-40 million per annum, of which about a half would be achieved without energy-economic investments only by changing utilization habits and by automatic control measures. The energy-economic investments are for the most part connected with ventilation and their repayment period is from one to five years. On the basis of the energy study the following specific consumption are presented as target values: swimming halls: heat (kWh/m*H3/a)100, electricity (kWh/m*H3/a)35, water (l/m*H3/a)1000 icehockey halls (warm): heat (kWh/m*H3/a)25, electricity (kWh/m*H3/a)15, water (l/m*H3/a)200, ball games halls (multi-purpose halls): heat (kWh/m*H3/a)30, electricity (kWh/m*H3/a)25, water (l/m*H3/a)130. In the study the following points proved to be the central areas of energy saving in sports halls: 1. Flexible regulation of the temperature in sports spaces on the basis of the sport in question. 2. The ventilation of swimming halls should be adjusted in such a way that the humidity of the hall air would comply with the limit humidity curve determined by the quality of structures and the temperature of the outdoor air. 3. An ice skating hall is an establishment producing condensing energy from 8 to 9 months a year worth of approx. 100.000-150.000 Finnmarks. The development of the recovery of condensing energy has become more important. 4. The ventilation of ball games halls may account for over 50% of the energy consumption of the whole building. Therefore special attention should be paid to the optimatization of ventilation as a whole.

  13. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  14. Scanning vector Hall probe microscopy

    International Nuclear Information System (INIS)

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  15. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  16. Pragmatic data fusion uncertainty concerns: Tribute to Dave L. Hall

    CSIR Research Space (South Africa)

    Blasch, E

    2016-07-01

    Full Text Available Over the course of Dave Hall's career, he highlighted various concerns associated with the implementation of data fusion methods. Many of the issues included the role of uncertainty in data fusion, practical implementation of sensor fusion systems...

  17. On Hall current fluid

    International Nuclear Information System (INIS)

    Shen, M.C.; Ebel, D.

    1987-01-01

    In this paper some new results concerning magnetohydrodynamic (MHD) equations with the Hall current (HC) term in the Ohm's law are presented. For the cylindrical pinch of a compressible HC fluid, it is found that for large time and long wave length the solution to the governing equations exhibits the behavior of solitons as in the case of an ideal MHD model. In some special cases, the HC model appears to be better posed. An open question is whether a simple toroidal equilibrium of an HC fluid with resistivity and viscosity exists. The answer to this question is affirmative if the prescribed velocity on the boundary has a small norm. Furthermore, the equilibrium is also linearly and nonlinearly stable

  18. Farm Hall: The Play

    Science.gov (United States)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  19. Quantum Hall effect

    International Nuclear Information System (INIS)

    Joynt, R.J.

    1982-01-01

    A general investigation of the electronic structure of two dimensional systems is undertaken with a view towards understanding the quantum Hall effect. The work is limited to the case of a strong perpendicular magnetic field, with a disordered potential and an externally applied electric field. The electrons are treated as noninteracting. First, the scattering theory of the system is worked out. The surprising result is found that a wavepacket will reform after scattering from an isolated potential. Also it will tend to be accelerated in the neighborhood of the scatterer if the potential has bound states. Fredholm theory can then be used to show that the extended states carry an additional current which compensates for the zero current of the bound states. Together, these give the quantized conductance. The complementary case of a smooth random potential is treated by a path-integral approach which exploits the analogies to the classical equations of motion. The Green's function can be calculated approximately, which gives the general character of both the bound and extended states. Also the ratio of these two types of states can be computed for a given potential. The charge density is uniform in first approximation, and the Hall conductance is quantized. Higher-order corrections for more rapidly fluctuating potential are calculated. The most general conditions under which the conductance is quantized are discussed. Because of the peculiar scattering properties of the system, numerical solution of the Schroedinger equation is of interest, both to confirm the analytical results, and for pedagogical reasons. The stability and convergence problems inherent in the computer solution of the problem are analyzed. Results for some model scattering potentials are presented

  20. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.; Zhang, Bei; Liu, Z. X.; Wang, Z.; Li, W.; Wu, Z. B.; Yu, R. H.; Zhang, Xixiang

    2010-01-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  1. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  2. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  3. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-01-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  4. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Manchon, Aurelien

    2017-01-01

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  5. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  6. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. Y.; Yang, G. [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S. G., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, J. L. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang, R. M. [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Amsellem, E.; Kohn, A. [Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yu, G. H., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  7. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode

    International Nuclear Information System (INIS)

    Brochard, M.

    2009-06-01

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  8. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  9. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    Science.gov (United States)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods

  10. High-Power Hall Propulsion Development at NASA Glenn Research Center

    Science.gov (United States)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  11. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2009-01-01

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  12. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  13. Gauge invariance and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references

  14. "Hall mees" Linnateatris / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    1999-01-01

    Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt

  15. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  16. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  17. Not your grandfather's concert hall

    Science.gov (United States)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  18. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...... are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands....

  19. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  20. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  1. Familial Pallister-Hall in adulthood.

    Science.gov (United States)

    Talsania, Mitali; Sharma, Rohan; Sughrue, Michael E; Scofield, R Hal; Lim, Jonea

    2017-10-01

    Pallister Hall syndrome is autosomal dominant disorder usually diagnosed in infants and children. Current diagnostic criteria include presence of hypothalamic hamartoma, post axial polydactyly and positive family history, but the disease has variable manifestations. Herein we report Pallister Hall syndrome diagnosed in a family where both patients were adults. A 59 year old man developed seizures 4 years prior to our evaluation of him, at which time imaging showed a hypothalamic hamartoma. The seizures were controlled medically. He did well until he had visual changes after a traumatic head injury. Repeat MRI showed slight expansion of the mass with formal visual field testing demonstrating bitemporal hemianopsia. There was no evidence of pituitary dysfunction except for large urine volume. He underwent surgery to debulk the hamartoma and the visual field defects improved. There was no hypopituitarism post-operatively, and the polydyspia resolved. His 29 year old daughter also had seizures and hypothalamic hamartoma. Both patients had had polydactyly with prior surgical correction in childhood. The daughter underwent genetic testing, which revealed a previously undescribed heterozygous single base pair deletion in exon 13 of the GLI3 gene causing a frameshift mutation. Further investigation into family history revealed multiple members in previous generations with polydactyly and/or seizures. Pallister-Hall syndrome is caused by an inherited autosomal dominant or de novo mutation in GLI3 gene. This rare syndrome has not had prevalence defined, however. Generally, diagnoses are made in the pediatric population. Our report adds to the few cases detected in adulthood.

  2. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  3. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  4. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  5. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  6. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1.

    Directory of Open Access Journals (Sweden)

    Ewa A Jankowska

    Full Text Available OBJECTIVES: We hypothesised that assessment of plasma C-terminal pro-endothelin-1 (CT-proET-1, a stable endothelin-1 precursor fragment, is of prognostic value in patients with chronic heart failure (CHF, beyond other prognosticators, including N-terminal pro-B-type natriuretic peptide (NT-proBNP. METHODS: We examined 491 patients with systolic CHF (age: 63±11 years, 91% men, New York Heart Association [NYHA] class [I/II/III/IV]: 9%/45%/38%/8%, 69% ischemic etiology. Plasma CT-proET-1 was detected using a chemiluminescence immunoassay. RESULTS: Increasing CT-proET-1 was a predictor of increased cardiovascular mortality at 12-months of follow-up (standardized hazard ratio 1.42, 95% confidence interval [CI] 1.04-1.95, p = 0.03 after adjusting for NT-proBNP, left ventricular ejection fraction (LVEF, age, creatinine, NYHA class. In receiver operating characteristic curve analysis, areas under curve for 12-month follow-up were similar for CT-proET-1 and NT-proBNP (p = 0.40. Both NT-proBNP and CT-proET-1 added prognostic value to a base model that included LVEF, age, creatinine, and NYHA class. Adding CT-proET-1 to the base model had stronger prognostic power (p<0.01 than adding NT-proBNP (p<0.01. Adding CT-proET-1 to NT-proBNP in this model yielded further prognostic information (p = 0.02. CONCLUSIONS: Plasma CT-proET-1 constitutes a novel predictor of increased 12-month cardiovascular mortality in patients with CHF. High CT-proET-1 together with high NT-proBNP enable to identify patients with CHF and particularly unfavourable outcomes.

  7. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels

    Directory of Open Access Journals (Sweden)

    Kirsten K. Ahring

    2018-01-01

    Full Text Available Introduction. Management of phenylketonuria (PKU is achieved through low-phenylalanine (Phe diet, supplemented with low-protein food and mixture of free-synthetic (FS amino acid (AA. Casein glycomacropeptide (CGMP is a natural peptide released in whey during cheese-making and does not contain Phe. Lacprodan® CGMP-20 used in this study contained a small amount of Phe due to minor presence of other proteins/peptides. Objective. The purpose of this study was to compare absorption of CGMP-20 to FSAA with the aim of evaluating short-term effects on plasma AAs as well as biomarkers related to food intake. Methods. This study included 8 patients, who had four visits and tested four drink mixtures (DM1–4, consisting of CGMP, FSAA, or a combination. Plasma blood samples were collected at baseline, 15, 30, 60, 120, and 240 minutes (min after the meal. AA profiles and ghrelin were determined 6 times, while surrogate biomarkers were determined at baseline and 240 min. A visual analogue scale (VAS was used for evaluation of taste and satiety. Results. The surrogate biomarker concentrations and VAS scores for satiety and taste were nonsignificant between the four DMs, and there were only few significant results for AA profiles (not Phe. Conclusion. CGMP and FSAA had the overall same nonsignificant short-term effect on biomarkers, including Phe. This combination of FSAA and CGMP is a suitable supplement for PKU patients.

  8. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  9. Universal intrinsic spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  10. Spin Hall effect for anyons

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Ghosh, Subir

    2007-01-01

    We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis

  11. The Other Hall Effect: College Board Physics

    Science.gov (United States)

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  12. A Compton polarimeter for CEBAF Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G; Cavata, C; Frois, B; Juillard, M; Kerhoas, S; Languillat, J C; Legoff, J M; Mangeot, P; Martino, J; Platchkov, S; Rebourgeard, P; Vernin, P; Veyssiere, C; CEBAF Hall A Collaboration

    1994-09-01

    The physic program at CEBAF Hall A includes several experiments using 4 GeV polarized electron beam: parity violation in electron elastic scattering from proton and {sup 4}He, electric form factor of the proton by recoil polarization, neutron spin structure function at low Q{sup 2}. Some of these experiments will need beam polarization measurement and monitoring with an accuracy close to 4%, for beam currents ranging from 100 nA to 100 microA. A project of a Compton Polarimeter that will meet these requirements is presented. It will comprise four dipoles and a symmetric cavity consisting of two identical mirrors. 1 fig., 10 refs.

  13. Radiation protection design of the APPA experimental hall at the FAIR facility; Strahlenschutzplanung fuer die APPA-Experimentierhalle bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.; Braeuning-Demian, A.; Conrad, I.; Evdokimov, A.; Lang, R.; Radon, T.; Zieser, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Belousov, A. [NASA, Pasadena, CA (United States). Jet Propulsion Lab.; Fehrenbacher, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); FAIR - Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt (Germany)

    2016-07-01

    The APPA-research program (Atomic, Plasma Physics and Applications) comprises experiments for fundamental research in atomic and plasma physics, biophysics and materials research. A dedicated building for the experimental areas including a technical supply annex is planned. In the hall are located four different experimental setups for the four APPA collaborations. Two beamlines for protons and heavy ions, both from the SIS18 and SIS100 synchrotrons are designed. The demands for beam energies, intensities and time structure differ significantly among the experiments. Consequently, different types of beams will be used, for example uranium beams with energies of 2 GeV/nucleon and an intensity of 3 x 10{sup 11} ions/pulse (pulse length of the order of hundred nanoseconds, repetition period 180 seconds). Another experiment requires a proton beam with energies of around 10 GeV and a primary intensity of 5 x 10{sup 10} protons/second. The highest interaction rate is expected by the plasma physics experiments with about 50 % of the primary intensity. The remaining beam will be stopped in a so called beam dump producing further radiation, especially neutron radiation which must be shielded. For the design of the shielding it is necessary to know the spatial distribution of the dose rate for uranium beams and for proton beams with different energies and intensities in the experimental hall. The aim for the shielding layout is to achieve a dose rate below 0,5 μSv/hour at the premises.

  14. "Are You as Hard as 50 Cent? Negotiating Race and Masculinity in the Residence Halls

    Science.gov (United States)

    Jaggers, Dametraus; Iverson, Susan V.

    2012-01-01

    In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…

  15. "Are You as Hard as 50 Cent?" Negotiating Race and Masculinity in the Residence Halls

    Science.gov (United States)

    Jaggers, Dametraus; Iverson, Susan V.

    2012-01-01

    In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…

  16. Parametric studies of the Hall Thruster at Soreq

    International Nuclear Information System (INIS)

    Ashkenazy, J.; Rattses, Y.; Appelbaum, G.

    1997-01-01

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm 2 ) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  17. Hall effect in noncommutative coordinates

    International Nuclear Information System (INIS)

    Dayi, Oemer F.; Jellal, Ahmed

    2002-01-01

    We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates

  18. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  19. Scanning vector Hall probe microscope

    Czech Academy of Sciences Publication Activity Database

    Fedor, J.; Cambel, V.; Gregušová, D.; Hanzelka, Pavel; Dérer, J.; Volko, J.

    2003-01-01

    Roč. 74, č. 12 (2003), s. 5105 - 5110 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z2065902 Keywords : VHPM * Hall sensor * Helium cryostat Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.343, year: 2003 http://web. ebscohost .com/ehost/pdf?vid=8&hid=115&sid=a7c0555a-21f4-4932-b1c6-a308ac4dd50b%40sessionmgr2

  20. Can ensemble condition in a hall be improved and measured?

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1988-01-01

    of the ceiling reflectors; and (c) changing the position of the orchestra on the platform. These variables were then tested in full scale experiments in the hall including subjective evaluation by the orchestra in order to verify their effects under practical conditions. New objective parameters, which showed......In collaboration with the Danish Broadcasting Corporation an extensive series of experiments has been carried out in The Danish Radio Concert Hall with the practical purpose of trying to improve the ensemble conditions on the platform for the resident symphony orchestra. First, a series...... very high correlations with the subjective data, also made it possible to compare the improvements with conditions as recently measured in famous European Halls. Besides providing the needed results, the experiments also shed some light on how musicians change their criteria for judging acoustic...

  1. Modeling of the near field plume of a Hall thruster

    International Nuclear Information System (INIS)

    Boyd, Iain D.; Yim, John T.

    2004-01-01

    In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach

  2. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  3. L'effet Hall Quantique

    Science.gov (United States)

    Samson, Thomas

    Nous proposons une methode permettant d'obtenir une expression pour la conductivite de Hall de structures electroniques bidimensionnelles et nous examinons celle -ci a la limite d'une temperature nulle dans le but de verifier l'effet Hall quantique. Nous allons nous interesser essentiellement a l'effet Hall quantique entier et aux effets fractionnaires inferieurs a un. Le systeme considere est forme d'un gaz d'electrons en interaction faible avec les impuretes de l'echantillon. Le modele du gaz d'electrons consiste en un gaz bidimensionnel d'electrons sans spin expose perpendiculairement a un champ magnetique uniforme. Ce dernier est decrit par le potentiel vecteur vec{rm A} defini dans la jauge de Dingle ou jauge symetrique. Conformement au formalisme de la seconde quantification, l'hamiltonien de ce gaz est represente dans la base des etats a un-corps de Dingle |n,m> et exprime ainsi en terme des operateurs de creation et d'annihilation correspondants a_sp{ rm n m}{dag} et a _{rm n m}. Nous supposons de plus que les electrons du niveau fondamental de Dingle interagissent entre eux via le potentiel coulombien. La methode utilisee fait appel a une equation mai tresse a N-corps, de nature quantique et statistique, et verifiant le second principe de la thermodynamique. A partir de celle-ci, nous obtenons un systeme d'equations differentielles appele hierarchie d'equations quantique dont la resolution nous permet de determiner une equation a un-corps, dite de Boltzmann quantique, et dictant l'evolution de la moyenne statistique de l'operateur non-diagonal a _sp{rm n m}{dag } a_{rm n}, _{rm m}, sous l'action du champ electrique applique vec{rm E}(t). C'est sa solution Tr(p(t) a _sp{rm n m}{dag} a_{rm n},_ {rm m}), qui definit la relation de convolution entre la densite courant de Hall vec{rm J}_{rm H }(t) et le champ electrique vec {rm E}(t) dont la transformee de Laplace-Fourier du noyau nous fournit l'expression de la conductivite de Hall desiree. Pour une valeur de

  4. Composite fermions a unified view of the quantum Hall regime

    CERN Document Server

    1998-01-01

    One of the most exciting recent developments to have emerged from the quantum Hall effect is the subject of composite fermions. This important volume gives a self-contained, comprehensive description of the subject, including fundamentals, more advanced theoretical work, and results from experimental observations of composite fermions.

  5. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  6. Three-Dimensional Simulation of Plasma Deformation During Contact Opening in a Circuit Breaker, Including the Analysis of Kink Instability and Sausage Instability

    International Nuclear Information System (INIS)

    Abbasi, Vahid; Gholami, Ahmad; Niayesh, Kaveh

    2012-01-01

    A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for analyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the framework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-ε turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related to pinch effects and electromagnetic fields). The 3-D simulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations. (plasma technology)

  7. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  8. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  9. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  10. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  11. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  12. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  13. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  14. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  15. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  16. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    International Nuclear Information System (INIS)

    Mani, Arjun; Benjamin, Colin

    2016-01-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin–orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case. (paper)

  17. Some results of a numerical calculation of plasma dispersion curves including collisions; Quelques resultats de calcul de courbes de dispersion avec collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Parlange, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Dispersion curves including the effect of collisions have been calculated with a 7090 IBM computer for several types of laboratory hydrogen plasmas; Te = Ti = 1 eV; Te = 1 eV, Ti = 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti 10 eV, with neutral gas pressures of 10{sup -1}, 10{sup -3} and 10{sup -4} mmHg and electron densities of 10{sup 10}, 10{sup 13} and eventually 10{sup 15} el/cc. The corresponding collision frequencies with neutrals and between electrons and ions have been derived using appropriate relationships The dispersion equations used correspond to the macroscopic treatment. The real and imaginary parts of the wave number K are presented as a function of real values of the frequency {omega}, for electrostatic and electromagnetic waves and for e.m. waves propagating parallel to a permanent magnetic field of 500 gauss and 12.5 Kgauss. (authors) [French] Des courbes de dispersion tenant compte de l'effet des collisions ont ete calculees a l'aide d'un ordinateur IBM 7090 pour differents types de plasmas d'hydrogene se presentant au laboratoire; les temperatures electroniques et ioniques envisagees ont ete les suivantes: Te = Ti = 1 Ev; Te = 1 eV, Ti 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti = 10 eV; les pressions de neutres - de 10{sup -1}, 10{sup -3} et 10{sup -4} mmHg; les densites electroniques - de 10{sup 10}, 10{sup 13} et eventuellement de 10{sup 15} el/cc. Les frequences de collision avec les neutres et entre electrons et ions ont ete evaluees en fonction de ces donnees. Les equations, de dispersion utilisees correspondant au traitement macroscopique. On presente les valeurs des parties reelle et imaginaire du nombre d'ondes K en fonction de valeurs reelles de la frequence {omega} pour les ondes electrostatiques et electromagnetiques et pour les ondes e.m. se propageant parallelement a un champ magnetique permanent de 500 gauss et de 12,5 kgauss. (auteurs)

  18. 75 FR 7467 - Gary E. Hall and Rita C. Hall; Notice of Application Accepted for Filing With the Commision...

    Science.gov (United States)

    2010-02-19

    ... Rita C. Hall; Notice of Application Accepted for Filing With the Commision, Soliciting Motions To.... Project No.: 13652-000. c. Date filed: January 11, 2010. d. Applicant: Gary E. Hall and Rita C. Hall. e... Policies Act of 1978, 16 U.S.C. 2705, 2708. h. Applicant Contact: Mr. Gary E. Hall and Ms. Rita C. Hall, P...

  19. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  20. Numerical investigation of closed-loop control for Hall accelerators

    International Nuclear Information System (INIS)

    Barral, S.; Miedzik, J.

    2011-01-01

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  1. Planar Hall Effect Sensors for Biodetection

    DEFF Research Database (Denmark)

    Rizzi, Giovanni

    . In the second geometry (dPHEB) half of the sensor is used as a local negative reference to subtract the background signal from magnetic beads in suspension. In all applications below, the magnetic beads are magnetised using the magnetic field due to the bias current passed through the sensor, i.e., no external...... as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field...... hybridisation in real-time, in a background of suspended magnetic beads. This characteristic is employed in single nucleotide polymorphism (SNP) genotyping, where the denaturation of DNA is monitored in real-time upon washing with a stringency buffer. The sensor setup includes temperature control and a fluidic...

  2. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  3. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements

  4. Quantum Hall effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Penin, Alexander A.

    2009-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted

  5. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  6. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  7. Field theory of anyons and the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Viefers, S.F.

    1997-11-01

    The thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyons gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low-energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effects

  8. The quantum Hall effect helicity

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Keshav N., E-mail: keshav1001@yahoo.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  9. Stuart Hall: An Organic Intellectual

    Directory of Open Access Journals (Sweden)

    Johanna Fernández Castro

    2017-01-01

    Full Text Available Stuart Hall (3 February 1932 – 10 February 2014 is acknowledged as one of the founding figures of British Cultural Studies. His extensive academic work on topics such as race, ethnicity and identity reflects his own position as a diasporic intellectual. His contribution to the study of popular culture is determined by the importance of his political character in every social act, his non-deterministic view of Marxism, and is especially determined by his insistence on playing an active role beyond academia in order to contribute to the transformation of hegemonic structures. The following biography aims to give a focused view of his personal history and its direct influence on his key theoretical reflections.

  10. The fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Stormer, H.L.

    1988-01-01

    The fractional quantum Hall effect (FQHE), is the manifestation of a new, highly correlated, many-particle ground state that forms in a two-dimensional electron system at low temperatures and in high magnetic fields. It is an example of the new physics that has grown out of the tremendous recent advances in semiconductor material science, which has provided us with high-quality, lower-dimensional carrier systems. The novel electronic state exposes itself in transport experiments through quantization of the Hall resistance to an exact rational fraction of h/e, and concomitantly vanishing longitudinal resistivity. Its relevant energy scale is only a few degrees kelvin. The quantization is a consequence of the spontaneous formation of an energy gap separating the condensed ground state from its rather elusive quasiparticle excitations. The theoretical understanding of the novel quantum liquids which underlie the FQHE has predominantly emerged from an ingenious many-particle wave function strongly supported by numerous few-particle simulations. Theory has now constructed a complex model for ideal two-dimensional electron systems in the presence of high magnetic fields and makes definitive, often fascinating predictions. Experiments have successively uncovered odd-denominator fractional states reaching presently to 7/13. The application of new experimental tools to the FQHE, such as optics, microwaves, and phonon techniques promises the direct observation of such parameters as the gap energy and possibly even some of the more elusive quantities in the future. While theory and experiment in the FQHE appear to be converging, there remains considerable room for challenging surprises. This paper provides a concise overview of the FQHE. It focuses on the experimental aspects and states, but does not expand on the theoretical advances. 70 refs., 11 figs

  11. Analysis of 6-mercaptopurine in human plasma with a high-performance liquid chromatographic method including post-column derivatization and fluorimetric detection

    NARCIS (Netherlands)

    Jonkers, R. E.; Oosterhuis, B.; ten Berge, R. J.; van Boxtel, C. J.

    1982-01-01

    A relatively simple assay with improved reliability and sensitivity for measuring levels of 6-mercaptopurine in human plasma is presented. After extraction of the compound and the added internal standard with phenyl mercury acetate, samples were separated by ion-pair reversed-phase high-performance

  12. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Science.gov (United States)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  13. Bounds on the growth of the magnetic energy for the Hall kinematic dynamo equation

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico Universidad de Valladolid 47005 Valladolid (Spain)

    2005-09-09

    While the magnetic induction equation in plasmas, governing kinematic dynamos, is a linear one admitting exponential growth of the magnetic energy for certain velocity fields, the addition of the Hall term turns it into a nonlinear parabolic equation. Local existence of solutions may be proved, but in contrast with the magnetohydrodynamics case, for a number of boundary conditions the magnetic energy grows at most linearly in time for stationary velocity fields, and like the square of the time in the general case. It appears that the Hall effect enhances diffusivity in some way to compensate for the positive contribution of the transport of the magnetic field by the flow occurring in fast dynamos.

  14. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  15. Analysis of 6-mercaptopurine in human plasma with a high-performance liquid chromatographic method including post-column derivatization and fluorimetric detection.

    Science.gov (United States)

    Jonkers, R E; Oosterhuis, B; ten Berge, R J; van Boxtel, C J

    1982-12-10

    A relatively simple assay with improved reliability and sensitivity for measuring levels of 6-mercaptopurine in human plasma is presented. After extraction of the compound and the added internal standard with phenyl mercury acetate, samples were separated by ion-pair reversed-phase high-performance liquid chromatography. On-line the analytes were oxidized to fluorescent products and detected in a flow-fluorimeter. The within-day coefficient of variation was 3.8% at a concentration of 25 ng/ml. The lower detection limit was 2 ng/ml when 1.0 ml of plasma was used. Mercaptopurine concentration versus time curves of two subjects after a single oral dose of azathioprine are shown.

  16. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  17. Quantized Hall conductance as a topological invariant

    International Nuclear Information System (INIS)

    Niu, Q.; Thouless, Ds.J.; Wu, Y.S.

    1984-10-01

    Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by TKNN to the situation where many body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect we draw the conclusion that there must be a symmetry breaking in the many body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also carefully discussed. 19 references

  18. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  19. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    the number of participants 7.5 persons higher pr. activity compared to club activities. This implies that clubs during peak hours could include more participants. Another possibility to increase utilization is if the management of sport facilities forced sport clubs and other organisers to adapt...... their activities to a smaller amount of floor space, which would make it possible to have more than one activity on the floor at the same time. Hence, to achieve better utilization during prime time, further analysis and research could focus on how activities in sport halls can be adapted to include more......BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...

  20. Contribution of the study of the Hall Effect. Hall Effect of powder products

    International Nuclear Information System (INIS)

    Cherville, Jean

    1961-01-01

    This research thesis reports the development of an apparatus aimed at measuring the Hall Effect and the magneto-resistance of powders at room temperature and at the liquid nitrogen temperature. The author also proposes a theoretical contribution to the Hall Effect and reports the calculation of conditions to be met to obtain a correct value for the Hall constant. Results are experimentally verified. The method is then applied to the study of a set of powdered pre-graphitic graphites. The author shows that their Hall coefficient confirms the model already proposed by Mrozowski. The study of the Hall Effect of any kind of powders can thus be performed, and the Hall Effect can therefore be a mean to study mineral and organic compounds, and notably powdered biological molecules [fr

  1. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  2. High magneticfield test of Bismuth Hall sensors for ITER steady state magnetic diagnostic

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Entler, Slavomír; Kohout, Michal; Kocan, M.; Vayakis, G.

    2016-01-01

    Roč. 87, č. 11 (2016), č. článku 11D446. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics (HTPD2016) /21./. Madison, Wisconsin, 05.06.2016-09.06.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Hall sensors * ITER * Hall effect * magnetic diagnostic Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4964435

  3. Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2

    Science.gov (United States)

    Firoz Islam, SK; Benjamin, Colin

    2016-09-01

    The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.

  4. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang

    2015-01-01

    induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  5. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    . When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance ...

  6. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  7. A system for pulse Hall effect measurements

    International Nuclear Information System (INIS)

    Orzechowski, T.; Kupczak, R.

    1975-01-01

    Measuring system for fast Hall-voltage changes in an n-type germanium sample irradiated at liquid nitrogen temperature with a high-energy electron-beam from the Van de Graaff accelerator is described. (author)

  8. Novel optical probe for quantum Hall system

    Indian Academy of Sciences (India)

    to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped ... Keywords. Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. ... An optical fibre carries light from tunable diode laser.

  9. AA under construction in its hall

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  10. Elementary theory of quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2008-04-01

    Full Text Available The Hall effect is the generation of a current perpendicular to both the direction of the applied electric as well as magnetic field in a metal or in a semiconductor. It is used to determine the concentration of electrons. The quantum Hall effect with integer quantization was discovered by von Klitzing and fractionally charged states were found by Tsui, Stormer and Gossard. Robert Laughlin explained the quantization of Hall current by using “flux quantization” and introduced incompressibility to obtain the fractional charge. We have developed the theory of the quantum Hall effect by using the theory of angular momentum. Our predicted fractions are in accord with those measured. We emphasize our explanation of the observed phenomena. We use spin to explain the fractional charge and hence we discover spin-charge locking.

  11. Hall effect upon small wavelength kink instabilities near an elliptic magnetic stagnation line

    International Nuclear Information System (INIS)

    Spies, G.O.; Faghihi, M.

    1985-12-01

    To explore the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting unstable small wavelenght kinks near any elliptic magnetic stagnation line, a spectral analysis is performed of the motion of an incompressible plasma about cylindrical Z-pinch equilibria with circular sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. These show that every particular mode becomes stable as the Hall parameter exceeds a critical value. However, this critical value is a decreasing function of the ideal growth rate and has a pole at the origin, implying that there always remains an infinite reservoir of slowly growing instabilities. Correspondingly, for equilibiria with arbitrary current distributions, the stability criterion is unaffected by the Hall term. (author)

  12. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  13. Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment

    International Nuclear Information System (INIS)

    Lukin, V.S.; Jardin, S.C.

    2003-01-01

    Two-dimensional resistive Hall magnetohydrodynamics (MHD) code is used to investigate the dynamical evolution of driven reconnection in the Magnetic Reconnection Experiment (MRX). The initial conditions and dimensionless parameters of the simulation are set to be similar to the experimental values. We successfully reproduce many features of the time evolution of magnetic configurations for both co- and counter-helicity reconnection in MRX. The Hall effect is shown to be important during the early dynamic X-phase of MRX reconnection, while effectively negligible during the late ''steady-state'' Y-phase, when plasma heating takes place. Based on simple symmetry considerations, an experiment to directly measure the Hall effect in MRX configuration is proposed and numerical evidence for the expected outcome is given

  14. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  15. NAS Decadal Review Town Hall

    Science.gov (United States)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  16. Public relations activities of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kono, T.

    1998-01-01

    This article includes information of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station. About 30% of the total electricity production in Japan is due to 16 power stations and 52 reactors. The service hall is a kind of atomic power pavilion for public relations. In Japan, each nuclear power station has such a pavilion, which acts a a center of public relations activities for the atomic power. (S. Grainger)

  17. Status of the MIT-Bates South Hall Ring commissioning

    International Nuclear Information System (INIS)

    Flanz, J.B.; Jacobs, K.D.; McAllister, B.; Averill, R.; Bradley, S.; Carter, A.; Dow, K.; Farkondeh, M.; Ihloff, E.; Kowalski, S.

    1993-01-01

    The MIT-Bates South Hall Ring construction project is now nearly complete. At this time the Energy Compression System, the SHR Injection Line and the South Hall Ring itself are complete. The SHR Extraction Line is complete but has not been connected to the ring. Commissioning with beam of the completed beam lines has been started. The MIT-Bates South Hall Ring (SHR) is an electron storage ring used with the 1 GeV Bates electron accelerator to increase the effective duty factor and luminosity. A beam can be stored for use with an internal target, thus allowing for high duty factor, high luminosity experiments. External beams with high duty factor can be obtained using resonant extraction. The new systems associated with the SHR include the Energy Compression System (ECS), the Injection line, and the Extraction line. The authors have commissioned the ECS, the new injection line and the SHR without RF. This includes transporting beam, measuring beam phase space parameters using critical injection elements including a high voltage electrostatic septum, a fast beam kicker, and storing a beam in the SHR

  18. Are tent halls subject to property tax?

    Directory of Open Access Journals (Sweden)

    Mariusz Macudziński

    2016-12-01

    Full Text Available The presented publication is a response to currently asked questions and interpretative doubts of taxpayers and tax authorities, namely whether tent halls are subject to property tax. General issues connected with an entity and a subject of taxation of this tax are presented herein. The answer to the question asked is then provided through the qualification of constructions works and the allocation of tent halls in the proper category of the works, with the use of the current law.

  19. Fractional statistics and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1985-01-01

    The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  20. Hall effect in organic layered conductors

    Directory of Open Access Journals (Sweden)

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  1. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  2. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  3. Quantum Hall Valley Nematics: From Field Theories to Microscopic Models

    Science.gov (United States)

    Parameswaran, Siddharth

    The interplay between quantum Hall ordering and spontaneously broken ``internal'' symmetries in two-dimensional electron systems with spin or pseudospin degrees of freedom gives rise to a variety of interesting phenomena, including novel phases, phase transitions, and topological excitations. I will discuss a theory of broken-symmetry quantum Hall states, applicable to a class of multivalley systems, where the symmetry at issue is a point-group element that combines a spatial rotation with a permutation of valley indices. I will explore its ramifications for the phase diagram of a variety of experimental systems, such as AlAs and Si quantum wells and the surface states of bismuth. I will also discuss unconventional transport phenomena in these phases in the presence of quenched randomness, and the possible mechanisms of selection between degenerate broken-symmetry phases in clean systems. I acknowledge support from NSF DMR-1455366.

  4. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  5. Theory of anomalous Hall effect in europium chalcogenides

    International Nuclear Information System (INIS)

    Sinkkonen, J.

    1976-04-01

    Considering the exchange interaction between the conduction electrons in a broad 5d-type band and the magnetic electrons in the localized 4f-shells, it is shown that in addition to the ordinary d-f exchange diagonal in band index, there is also a non-diagonal interaction representing a one particle transfer between the conduction and magnetic electrons. Including the spin-orbit coupling, an effective Hamiltonian for the conductionelectrons is obtained, which contains additional asymmetric scattering terms. The ordinary d-f exchange is treated as the dominating scattering interaction. The anomatous Hall effect results by skew scattering and side jump mechanisms. The density matrix method is used to derive the transport properties. The effect of the correlation of spins at different lattice sites is discussed. The model indicates that the anomatous Hall effect can be seen in heavily doped samples. (author)

  6. Anomalous Hall effect in ZrTe5

    Science.gov (United States)

    Liang, Tian; Lin, Jingjing; Gibson, Quinn; Kushwaha, Satya; Liu, Minhao; Wang, Wudi; Xiong, Hongyu; Sobota, Jonathan A.; Hashimoto, Makoto; Kirchmann, Patrick S.; Shen, Zhi-Xun; Cava, R. J.; Ong, N. P.

    2018-05-01

    Research in topological matter has expanded to include the Dirac and Weyl semimetals1-10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

  7. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  8. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  9. Effect of dust on tilted electrostatic resistive instability in a Hall thruster

    Science.gov (United States)

    Tyagi, Jasvendra; Singh, Sukhmander; Malik, Hitendra K.

    2018-03-01

    Effect of negatively charged dust on resistive instability corresponding to the electrostatic wave is investigated in a Hall thruster plasma when this purely azimuthal wave is tilted and strong axial component of wave vector is developed. Analytical calculations are done to obtain the relevant dispersion equation, which is solved numerically to investigate the growth rate of the instability. The magnitude of the growth rate in the plasma having dust particles is found to be much smaller than the case of pure plasma. However, the instability grows faster for the increasing dust density and the higher charge on the dust particles. The higher magnetic field is also found to support the instability.

  10. Wendelstein 7-X Torus Hall Layout and System Integration

    International Nuclear Information System (INIS)

    Hartmann, D.; Damiani, C.; Hartfuss, H.-J.; Krampitz, R.; Neuner, U.

    2006-01-01

    Wendelstein 7-X is an experimental fusion device presently under construction in Greifswald, Germany, to study the stellarator concept at reactor relevant parameters und steady-state conditions. The heart of the machine consists of the torus that houses the superconducting coils and the plasma vacuum vessel. It is located nearly in the center of a 30 m x 30 m x 20 m hall. A large number of components need to be placed in close proximity of the torus to provide the system with the required means, e.g. cryogenic gases, cooling water, electricity, and to integrate it with the peripheral diagnostic and heating components. The arrangement of these components has to be supported by suitable structures, and has to be optimized to allow for installation, maintenance, and repair. In addition, space has to be provided for escape routes and for sufficient distance between components that could negatively influence each other's performance, etc. The layout of the components has been done over many years using 3D CAD software. It was based on simple geometric models of the components and of the additionally required space. Presently the layout design is being detailed and updated by replacing the original coarse models with more refined estimates or - in some cases - with as-built models. All interface requirements are carefully taken into account. Detailed routing was specified for the cryo and cooling water supply lines whose design and installation is outsourced. Due to the limited space available and severely restricted access during experimental campaigns, the requirement to put auxiliary components like electronic racks into the torus hall is being queried. The paper summarizes the present state of the component layout in the torus hall, and how the peripheral supply, diagnostics, and heating systems are integrated into the machine. (author)

  11. Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Maria-Alexandra, E-mail: map65@cam.ac.uk

    2015-10-01

    The main objective of the present work is to make a comparison between Hall devices integrated in regular bulk and Silicon-on-Insulator (SOI) CMOS technology. A three-dimensional model based on numerical estimation is provided for a particular XL Hall structure in two different technologies (the first one is XFAB XH 0.35 µm regular bulk CMOS and the second one is XFAB SOI XI10 1 µm non-fully depleted). In assessing the performance of the Hall Effect sensors included in the comparison, both three-dimensional physical simulations and measurements results will be used. In order to discriminate which category of sensors has the highest performance, their main characteristic parameters, including input resistance, Hall voltage, absolute sensitivity and their temperature drift, will be extracted and compared. Electrostatic potential and current density distribution are important aspects that are also investigated. The particular technology offering the highest sensor performance is identified. - Highlights: • A comparison between Hall devices integrated in regular bulk and SOI CMOS technologies is made. • A three-dimensional model for the XL Hall structure, in the two technologies, is provided. • The main characteristic parameters and the temperature drift are investigated. • The sensors performance is evaluated using 3D physical simulations and measurements data.

  12. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  13. Hall effect in the coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Huang, Z.; Tóth, G.; Gombosi, T. I.; Jia, X.; Combi, M. R.; Hansen, K. C.; Fougere, N.; Shou, Y.; Tenishev, V.; Altwegg, K.; Rubin, M.

    2018-04-01

    Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic field regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.

  14. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  15. ADHM and the 4d quantum Hall effect

    Science.gov (United States)

    Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl

    2018-04-01

    Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.

  16. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  17. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  18. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  19. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  20. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  1. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  2. The role of the men's hall in the development of the Anglo-Saxon superego.

    Science.gov (United States)

    Earl, J W

    1983-05-01

    This paper is a historical study of ritual space--a bit of psychoanalytic anthropology applied to a particular case, the evolution of the men's hall among the early Anglo-Saxons. I focus particularly on the ritual functions of poetry in the hall, the same poetry which is our major evidence regarding the hall, especially the epic Beowulf. I define the hall as a cultural institution, and redefine the native poetic tradition in relation to the hall's varied ritual life, with which the poetry is so occupied. Though my argument is focused on the hall, it includes a framework of theoretical concerns. Early Anglo-Saxon culture is of anthropological interest chiefly because of its rapid and dramatic emergence from Germanic tribal prehistory into a leading role in the civilization of Christian Europe. The conquest of Britain by the Anglo-Saxons in the fifth and sixth centuries, and their conversion soon afterward, is a case history of the transformations of a tribal society suddenly introduced to the special forces of civilization and the higher religions that control them. The Anglo-Saxons are fascinating in this regard because of the fortuitous developments that prepared for this transformation and made it so successful.

  3. Perfluoroalkyl substances (PFAS) including structural PFOS isomers in plasma from elderly men and women from Sweden: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS).

    Science.gov (United States)

    Salihovic, Samira; Kärrman, Anna; Lind, Lars; Lind, P Monica; Lindström, Gunilla; van Bavel, Bert

    2015-09-01

    Per- and polyfluoroalkyl substances (PFASs) are a class of compounds with unique chemical properties that have been shown useful in a wide variety of applications because they provide materials with reduced surface tension and exceptional non-stick properties. PFASs are commonly found in impregnation materials, coatings of papers and textiles, fire-fighting foams, pesticides, and cleaning agents. The potential for human exposure to PFASs is high because of their widespread distribution. The aim of this study was to investigate levels of PFASs in men and women from Sweden and to assess the influence of gender and parity among women. Levels of 13 PFASs were determined in plasma samples collected during 2001-2004 from 1016 (507 women) 70year-old participants from the population-based Prospective Study of the Vasculature in Uppsala Seniors (PIVUS). The PFASs studied were nine perfluorinated carboxylic acids (PFCAs), four perfluorinated sulfonic acids (PFSAs) and perfluorooctane sulfonamide (PFOSA). In addition, structural isomers of perfluorooctane sulfonic acid (PFOS) were determined in a subset of 398 individuals. The detection rates were high and the majority of the studied compounds were detected in more than 75% of the participants. Levels of the selected analytes were found to be similar to other studies of non-occupationally exposed populations. Gender differences were observed in levels of PFHpA which was higher in men, while PFHxS was higher in women. Parity among women was shown to have a minor effect on PFAS concentrations and we found primi- and multiparous women to have slightly lower levels of PFUnDA when compared to nulliparous women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An experimental investigation of the internal magnetic field topography of an operating Hall thruster

    International Nuclear Information System (INIS)

    Peterson, Peter Y.; Gallimore, Alec D.; Haas, James M.

    2002-01-01

    Magnetic field measurements were made in the discharge channel of the 5 kW-class P5 laboratory-model Hall thruster to investigate what effect the Hall current has on the static, applied magnetic field topography. The P5 was operated at 1.6 and 3.0 kW with a discharge voltage of 300 V. A miniature inductive loop probe (B-Dot probe) was employed to measure the radial magnetic field profile inside the discharge channel of the P5 with and without the plasma discharge. These measurements are accomplished with minimal disturbance to thruster operation with the High-speed Axial Reciprocating Probe system. The results of the B-Dot probe measurements indicate a change in the magnetic field topography from that of the vacuum field measurements. The measured magnetic field profiles are then examined to determine the possible nature and source of the difference between the vacuum and plasma magnetic field profiles

  5. Localization in a quantum spin Hall system.

    Science.gov (United States)

    Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto

    2007-02-16

    The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.

  6. Hall probe magnetometer for SSC magnet cables

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The authors of this paper constructed a Hall probe magnetometer to measure the magnetization hysteresis loops of Superconducting Super Collider magnet cables. The instrument uses two Hall-effect field sensors to measure the applied field H and the magnetic induction B. Magnetization M is calculated from the difference of the two quantities. The Hall probes are centered coaxially in the bore of a superconducting solenoid with the B probe against the sample's broad surface. An alternative probe arrangement, in which M is measured directly, aligns the sample probe parallel to the field. The authors measured M as a function of H and field cycle rate both with and without a dc transport current. Flux creep as a function of current was measured from the dependence of ac loss on the cycling rate and from the decay of magnetization with time. Transport currents up to 20% of the critical current have minimal effect on magnetization and flux creep

  7. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  8. Derivation of the Hall and extended magnetohydrodynamics brackets

    Energy Technology Data Exchange (ETDEWEB)

    D' Avignon, Eric C., E-mail: cavell@physics.utexas.edu; Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-06-15

    There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this paper, we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process, we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.

  9. Shielding consideration for the SSCL experimental halls

    International Nuclear Information System (INIS)

    Bull, J.; Coyne, J.; Mokhov, N.; Stapleton, G.

    1994-03-01

    The Superconducting Super Collider which is being designed and built in Waxahachie, Texas consists Of series of proton accelerators, culminating in a 20 Te proton on proton collider. The collider will be in a tunnel which will be 87 km in circumference and. on average about 30 meters underground. The present design calls for two large interaction halls on the east side of the ring. The shielding for these halls is being designed for an interaction rate of 10 9 Hz or 10 16 interactions per year, based on 10 7 seconds per operational year. SSC guidelines require that the shielding be designed to meet the criterion of 1mSv per year for open areas off site 2mSv per year for open areas on site, and 2mSv per year for controlled areas. Only radiation workers will be routinely allowed to work in controlled areas. It should be pointed that there is a potential for an accidental full beam loss in either of the experimental halls, and this event would consist of the loss of the full circulating beam up to 4 x 10 14 protons. With the present design. the calculated dose equivalent for this event is about 10% of the annual dose equivalent for the normal p-p interactions, so that die accident condition does not control the shielding. If, for instance, local shielding within the experimental hall is introduced into the calculations, this could change. The shielding requirements presented here are controlled by the normal p-p interactions. Three important questions were addressed in the present calculations. They are (1) the thickness of the roof over the experimental halls, (2) the configuration of the shafts and adits which give access to the halls, and (3) the problem of ground water and air activation

  10. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  11. Prototype dining hall energy efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  12. Proton knock-out in Hall A

    International Nuclear Information System (INIS)

    Jager, K. de

    2003-01-01

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the 16 O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from 2 H to 16 O. In this review the accomplishments of this program will be summarized and an outlook given of expected future results. (orig.)

  13. Theory of fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1984-09-01

    A theory of the fractional quantum Hall effect is constructed by introducing 3-particle interactions breaking the symmetry for ν=1/3 according to a degeneracy theorem proved here. An order parameter is introduced and a gap in the single particle spectrum is found. The critical temperature, critical filling number and critical behaviour are determined as well as the Ginzburg-Landau equation coefficients. A first principle calculation of the Hall current is given. 3, 5, 7 electron tunneling and Josephson interference effects are predicted. (author)

  14. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  15. Experimental Evaluation of MHD Generators Operating at High Hall Coefficients

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Stephan, B.G.; Cooper, R.F.

    1966-01-01

    The experimental evaluation of such open-cycle MHD generator operation, particularly at large values of the Hall parameter and Mach number, is scarce. A flexible combustion-driven MHD generator test facility is being constructed to investigate various generator-operating parameters, generator configurations and designs, and component materials. The plasma source is a combustion chamber in which toluene, or another suitable fuel, is burned with gaseous oxygen diluted with nitrogen. Potassium hydroxide seed is injected with the fuel to produce the necessary plasma conductivity. The gas stream is accelerated in a supersonic nozzle and then flows through the channel. The Hall channel is constructed of water-cooled Inconel rings suitably grooved for the zirconia electrode material. The rings are insulated from each other with Teflon spacers which are shielded from the high temperature gas by a layer of alumina refractory. The channel consists of 54 water-cooled rings assembled in three independent sections. Provisions for instrumentation consist of 15 points for static pressure measurement along the nozzle, channel and diffuser; 20 thermocouple measurements; 3 split rings for transverse current measurements; a voltmeter panel for all 54 electrodes; and all necessary fluid and electrical monitoring instruments. The channel is followed by a diffuser in which some of the dynamic pressure of the gas stream is recovered. The magnet is an iron core design with coils wound of hollow conductor to permit of water-cooling for high power operation. The magnet can operate at field strengths of up to 23 kG. Details of the test programme planned for the generator (commissioning at the end of 1966) are given. (author)

  16. Hall effect thruster with an AlN chamber

    International Nuclear Information System (INIS)

    Barral, S.; Jayet, Y.; Mazouffre, S.; Veron, E.; Echegut, P.; Dudeck, M.

    2005-01-01

    The plasma discharge of a Hall-effect thruster (SPT) is strongly depending of the plasma-insulated wall interactions. These interactions are mainly related to the energy deposition, potential sheath effect and electron secondary emission rate (e.s.e.). In usual SPT, the annular channel is made of BN-SiO 2 . The SPT100-ML (laboratory model will be tested with an AlN chamber in the French test facility Pivoine in the laboratoire d'Aerothermique (Orleans-France). The different parameters such as discharge current, thrust, plasma oscillations and wall temperature will studied for several operating conditions. The results will be compared with a fluid model developed in IPPT (Warsaw-Poland) taking into account electron emission from the internal and external walls and using previous experimental measurements of e.s.e. for AlN from ONERA (Toulouse-France). The surface state of AlN will be analysed before and after experiments by an Environmental Scanning Electron Microscope and by a Strength Electron Microscope. (author)

  17. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  18. A Hall-current model of electron loss after POS opening into high-impedance loads

    International Nuclear Information System (INIS)

    Greenly, J.B.

    1989-01-01

    The author discusses how a self-consistent relativistic model of laminar Hall (E x B) electron flow across a POS plasma allows a loss mechanism after opening even in a strongly magnetically-insulated line, downstream of the remaining POS plasma. Opening is assumed to occur at the cathode, either by erosion or push-back. The loss results only when a large voltage appears after opening into a high impedance load. Then the difference in potential between the plasma, which is near anode potential, and the cathode results in an axial component of E at the load end of the plasma, which supports an E x B drift of electrons across the gap. The analytic model predicts that this loss should increase with higher voltage after opening, and could be eliminated only by removing the plasma from the gap, or eliminating cathode electron emission (both difficult), or by confining this downstream electron flow with an applied magnetic field

  19. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    - ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...

  20. Magnetic Measuring Instrumentation with Radiation-Resistant Hall Sensors for Fusion Reactors: Experience of Testing at JET

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Quercia, A.; Coccorese, V.; Murari, A.; Holyaka, R.; Ďuran, Ivan; Viererbl, L.; Konopleva, R.; Yerashok, V.

    2012-01-01

    Roč. 59, č. 4 (2012), s. 1224-1231 ISSN 0018-9499. [International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. Ghent, 06.06.2011-09.06.2011] R&D Projects: GA ČR GAP205/10/2055 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma * tokamak * JET * Hall probes * radiation resistance Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.219, year: 2012

  1. June 1992 Hall B collaboation meeting

    International Nuclear Information System (INIS)

    Dennis, L.

    1992-01-01

    The Hall B collaboration meeting at the CEBAF 1992 Summer Workshop consisted of technical and physics working group meetings, a special beam line devices working group meeting the first meeting of the membership committee, a technical representatives meeting and a full collaboration meeting. Highlights of these meetings are presented in this report

  2. Chapin Hall Projects and Publications. Autumn 1999.

    Science.gov (United States)

    Chicago Univ., IL. Chapin Hall Center for Children.

    This guide chronicles the ongoing work and writings of the Chapin Hall Center for Children at the University of Chicago, a policy research center dedicated to bringing sound information, rigorous analyses, innovative ideas, and an independent, multidisciplinary perspective to bear on policies and programs affecting children. This guide, organized…

  3. Quantum Hall Conductivity and Topological Invariants

    Science.gov (United States)

    Reyes, Andres

    2001-04-01

    A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.

  4. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  5. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  6. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  7. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  8. Quantization and hall effect: necessities and difficulties

    International Nuclear Information System (INIS)

    Ahmed Bouketir; Hishamuddin Zainuddin

    1999-01-01

    The quantization procedure is a necessary tool for a proper understanding of many interesting quantum phenomena in modern physics. In this note, we focus on geometrical framework for such procedures, particularly the group-theoretic approach and their difficulties. Finally we look through the example of Hall effect as a quantized macroscopic phenomenon with group-theoretic quantization approach. (author)

  9. Spin Hall effect on a noncommutative space

    International Nuclear Information System (INIS)

    Ma Kai; Dulat, Sayipjamal

    2011-01-01

    We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.

  10. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  11. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  12. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Indian Academy of Sciences (India)

    Abstract. We derive the trial Hall resistance formula for the quantum Hall metals to address both the integer and fractional quantum Hall effects. Within the degenerate (and crossed) Landau levels, and in the presence of changing magnetic field strength, one can invoke two physical processes responsible for the electron ...

  13. Destruction of the fractional quantum Hall effect by disorder

    International Nuclear Information System (INIS)

    Laughlin, R.B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs

  14. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  15. Spin-singlet hierarchy in the fractional quantum Hall effect

    OpenAIRE

    Ino, Kazusumi

    1999-01-01

    We show that the so-called permanent quantum Hall states are formed by the integer quantum Hall effects on the Haldane-Rezayi quantum Hall state. Novel conformal field theory description along with this picture is deduced. The odd denominator plateaux observed around $\

  16. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  17. Characterisation of plasma in a rail gun

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  18. A general long wavelength instability for Z-pinches and for Extrap within the Hall model

    International Nuclear Information System (INIS)

    Aagren, O.

    1987-01-01

    The stability of long wavelength perturbations is analyzed within the framework of the Hall model. Free boundary modes with m=1 and ksub(z) /arrow/ 0 are shown to be unstable for all pressure profiles which goes to zero at the plasma surface. The growth rate of the instability increases with decreasing plasma radius. Similar results are found for Extrap. Nonlinearities in combination with losses at the X-points are possibly responsible for the stability of free boundary modes in Extrap. (author)

  19. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  20. Complex scattering dynamics and the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Trugman, S.A.; Waugh, F.R.

    1987-01-01

    The effect of a magnetic field on potential scattering is investigated microscopically. A magnetic field renders the scattering of a classical charged particle far more complex than previously suspected. Consequences include possible 1/f noise and an explanation of the observed breakdown of the quantum Hall effect at large currents. A particular scatterer is described by a discontinuous one dimensional Hamiltonian map, a class of maps that has not previously been studied. A renormalization group analysis indicates that singular behavior arises from the interplay of electron orbits that are periodic and orbits that are quasiperiodic

  1. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  2. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode; Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage a l'arc TIG

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, M.

    2009-06-15

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  3. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)

    2015-01-22

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  4. Current drive for rotamak plasmas

    Indian Academy of Sciences (India)

    Abstract. Experiments which have been undertaken over a number of years have shown that a rotating magnetic field can drive a significant non-linear Hall current in a plasma. Successful experiments of this concept have been made with a device called rotamak. In its original configuration this device was a field reversed ...

  5. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  6. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  7. Shopping Mall to Study Hall.

    Science.gov (United States)

    Rittner-Heir, Robbin M.

    1999-01-01

    Discusses how the Burnsville (Minnesota) expanded its high school classroom space by buying a shopping mall and converting it into classrooms. Renovation costs and classroom layout are briefly discussed; a floor plan is included. (GR)

  8. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  9. AdS/QHE: towards a holographic description of quantum Hall experiments

    International Nuclear Information System (INIS)

    Bayntun, Allan; Burgess, C P; Lee, Sung-Sik; Dolan, Brian P

    2011-01-01

    Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semicircle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the dc ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero dc conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semicircle transitions between them. The model can be regarded as a strongly coupled analogue of the old 'composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model. In particular, the model indicates the value 2/5 for low-temperature scaling exponents for transitions among quantum Hall plateaux, in agreement with the measured value 0.42±0.01.

  10. Giant photonic Hall effect in magnetophotonic crystals.

    Science.gov (United States)

    Merzlikin, A M; Vinogradov, A P; Inoue, M; Granovsky, A B

    2005-10-01

    We have considered a simple, square, two-dimensional (2D) PC built of a magneto-optic matrix with square holes. It is shown that using such a magnetophotonic crystal it is possible to deflect a light beam at very large angles by applying a nonzero external magnetic field. The effect is called the giant photonic Hall effect (GPHE) or the magnetic superprism effect. The GPHE is based on magneto-optical properties, as is the photonic Hall effect [B. A. van Tiggelen and G. L. J. A. Rikken, in, edited by V. M. Shalaev (Springer-Verlag, Berlin, 2002), p. 275]; however GPHE is not caused by asymmetrical light scattering but rather by the influence of an external magnetic field on the photonic band structure.

  11. Assessment of elevator rope using Hall Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Lee, Jong Ku [Pukyung National University, Pusan (Korea, Republic of)

    2003-07-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  12. Assesment of elevator rope using hall sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jung Woo; Lee, Jong Ku [Pukyong National University, Pusan (Korea, Republic of)

    2003-05-15

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  13. Infinite symmetry in the quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Lütken C.A.

    2014-04-01

    Full Text Available The new states of matter and concomitant quantum critical phenomena revealed by the quantum Hall effect appear to be accompanied by an emergent modular symmetry. The extreme rigidity of this infinite symmetry makes it easy to falsify, but two decades of experiments have failed to do so, and the location of quantum critical points predicted by the symmetry is in increasingly accurate agreement with scaling experiments. The symmetry severely constrains the structure of the effective quantum field theory that encodes the low energy limit of quantum electrodynamics of 1010 charges in two dirty dimensions. If this is a non-linear σ-model the target space is a torus, rather than the more familiar sphere. One of the simplest toroidal models gives a critical (correlation length exponent that agrees with the value obtained from numerical simulations of the quantum Hall effect.

  14. Stuart Hall and Cultural Studies, circa 1983

    Directory of Open Access Journals (Sweden)

    Ann Curthoys

    2017-11-01

    Full Text Available Stuart Hall sought to internationalise theoretical debates and to create Cultural Studies as interdisciplinary. We chart his theoretical journey through a detailed examination of a series of lectures delivered in 1983 and now published for the first time. In these lectures, he discusses theorists such as E.P. Thompson, Raymond Williams, Louis Althusser, Levi Strauss and Antonio Gramsci, and explores the relationship between ideas and social structure, the specificities of class and race, and the legacies of slavery. We note his turn towards metaphors of divergence and dispersal and highlight how autobiographical and deeply personal Hall is in these lectures, especially in his ego histoire moment of traumatic memory recovery.

  15. Music hall Markneukirchen; Musikhalle in Markneukirchen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-01-01

    The article presents the new building of the music hall Markneukirchen. From the planned use of the building result very high demands on the ventilation system in order to keep to a sound power level of less than 30 dB(A) in the hall. The building services are dealt with using numerous flowsheets and diagrams: Heat supply, ventilation system, sanitary system, building management, instrumentation and control, electric and lighting systems. (BWI) [Deutsch] Der vorliegende Beitrag stellt den Neubau der Musikhalle Markneukirchen vor. Durch das Nutzungskonzept ergeben sich fuer die Einhaltung eines Schalleistungspegels von weniger als 30 dB(A) im Saalbereich an die Lueftungsanlage sehr hohe Ansprueche. Es werden die raumlufttechnischen Anlagen anhand zahlreicher Flussbilder und Abbildungen vorgestellt: Waermeversorgung, Lueftungstechnik, Sanitaertechnik, Gebaeudeleit- und MSR-Technik, Elektro- und Lichttechnik. (BWI)

  16. Theory of fractional quantum hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-08-01

    A theory of the Fractional Quantum Hall Effect is constructed based on magnetic flux fractionization, which lead to instability of the system against selfcompression. A theorem is proved stating that arbitrary potentials fail to lift a specific degeneracy of the Landau level. For the case of 1/3 fractional filling a model 3-particles interaction is constructed breaking the symmetry. The rigid 3-particles wave function plays the role of order parameter. In a BCS type of theory the gap in the single particles spectrum is produced by the 3-particles interaction. The mean field critical behaviour and critical parameters are determined as well as the Ginsburg-Landau equation coefficients. The Hall conductivity is calculated from the first principles and its temperature dependence is found. The simultaneous tunnelling of 3,5,7 etc. electrons and quantum interference effects are predicted. (author)

  17. Coulomb blockade in hierarchical quantum Hall droplets

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Georgiev, Lachezar S; Zemba, Guillermo R

    2009-01-01

    The degeneracy of energy levels in a quantum dot of Hall fluid, leading to conductance peaks, can be readily derived from the partition functions of conformal field theory. Their complete expressions can be found for Hall states with both Abelian and non-Abelian statistics, upon adapting known results for the annulus geometry. We analyze the Abelian states with hierarchical filling fractions, ν = m/(mp ± 1), and find a non-trivial pattern of conductance peaks. In particular, each one of them occurs with a characteristic multiplicity, which is due to the extended symmetry of the m-folded edge. Experimental tests of the multiplicity can shed more light on the dynamics of this composite edge. (fast track communication)

  18. Assessment of elevator rope using Hall Sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  19. Assesment of elevator rope using hall sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  20. Judy Estes Hall (1940-2015).

    Science.gov (United States)

    Sammons, Morgan T; Boucher, Andrew

    2016-01-01

    Presents an obituary for Judy Estes Hall, who passed away on November 24, 2015. Hall served as the Executive Officer of the National Register of Health Service Psychologists until her retirement in 2013. She is a recognized expert in the development of education and training standards for the profession of psychology, she also made significant contributions in the field of international psychology, where she was a renowned expert in cross-national credentialing and an advocate for commonality in licensing standards. She was the coauthor of one edited volume and author of more than 60 journal articles, book chapters, and professional publications. A passionate advocate for the advancement of women in psychology, a devoted mother and grandmother, a connoisseur of wine and international traveler extraordinaire, she touched the personal and professional lives of many. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  2. SPS beam to the West Hall

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  3. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  4. A hall for assembly and cryogenic tests

    International Nuclear Information System (INIS)

    Beaunier, J.; Buhler, S.; Caruette, A.; Chevrollier, R.; Junquera, T.; Le Scornet, J.C.

    1999-01-01

    Cryodrome, an assembly hall and the testing ground for cryogenic equipment and R and D experiments for the superconducting cavities is going to be transformed for its future missions. The cryogenic utilities, especially the He low pressure pumping capacity, was rearranged and extended to a new area. Space was provided to install CRYHOLAB, a new horizontal cryostat for cavity testing. Automatic control and supervision of the utilities and the experimental area are rebuilt and updated. (authors)

  5. Generic superweak chaos induced by Hall effect

    Science.gov (United States)

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  6. Josephson tunneling in bilayer quantum Hall system

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.

    2012-01-01

    A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.

  7. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  8. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  9. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    Science.gov (United States)

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  10. Terahertz optical-Hall effect for multiple valley band materials: n-type silicon

    International Nuclear Information System (INIS)

    Kuehne, P.; Hofmann, T.; Herzinger, C.M.; Schubert, M.

    2011-01-01

    The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters.

  11. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  12. Seville City Hall Chapter Room ceiling decoration

    Directory of Open Access Journals (Sweden)

    Robador, M. D.

    2010-02-01

    Full Text Available The present article describes a chemical and physical study of the colour, chemical composition and mineral phases of the decorative materials in the Seville City Hall Chapter House ceiling. The findings showed that the inner most layer of material, calcite, was covered with white lead, in turn concealed under a layer of gilded bole. The ceiling underwent re-gilding, also over bole, due in all likelihood to wear on the original gold leaf. In the nineteenth century, the entire ceiling with the exception of the inscriptions was whitewashed with calcite and white lead. Silver was employed on King John I’s sword (coffer 27. Gold leaf was used to adorn the royal attributes: crowns, belts, sceptres, swords and rosary beads. The high reliefs were likewise gilded. The pigments identified on the ceiling adornments included azurite, malachite, vermilion and gas black. A lime and ground dolomite mortar was used throughout.

    El objetivo de este trabajo es el estudio de diferentes aspectos, como el color, la composición química y las fases mineralógicas presentes en los diferentes materiales que forman la ornamentación del techo de la Sala Capitular del Ayuntamiento de Sevilla, mediante métodos físicos y químicos. Nuestros resultados muestran que el dorado fue realizado sobre una capa de bol previamente depositada sobre una lámina de blanco de plomo que cubría un estrato de calcita. Posteriormente, y probablemente debido a alteraciones en el dorado original, el techo fue de nuevo dorado usando una técnica similar. En el siglo XIX, casi todo el techo, excepto las zonas con inscripciones, fue blanqueado usando una mezcla de calcita y blanco de plomo. Se empleó plata para cubrir la espada del rey Juan I (casetón 27. Finísimas láminas de oro se usaron para decorar los atributos reales: coronas, cinturones, cetros, espadas y rosarios. En diferentes partes de la decoración fueron detectados pigmentos como azurita, malaquita, bermellón y

  13. An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves

    Science.gov (United States)

    Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.

    2016-12-01

    Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.

  14. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Science.gov (United States)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  15. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  16. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    Science.gov (United States)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  17. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  18. On-chip microwave circulators using quantum Hall plasmonics

    Science.gov (United States)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  19. Beyond Hall: Variables in the Use of Personal Space in Intercultural Transactions.

    Science.gov (United States)

    Dolphin, Carol Zinner

    Edward Hall's long accepted theories of proxemics, developed in the mid-sixties of this century, promoted the idea that culture plays the definitive role in determining how different individuals use personal space. Contact cultures, inhabited by people who are comfortable with touching and close contact, include those of Arabia, Latin America, and…

  20. Students' Perceptions of the Residence Hall Living Environment at Kuwait University

    Science.gov (United States)

    Al Kandari, Nabila

    2007-01-01

    The purpose of this study is to explore students' perceptions of the residence hall living environment at Kuwait University. The researcher developed a questionnaire for this purpose that included 36 items. The sample of the study consisted of 191 residential students, of whom 98 were male and 93 were female. The research findings indicated that:…

  1. Experimental test of 200 W Hall thruster with titanium wall

    Science.gov (United States)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  2. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  3. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  4. The Hall module of an exact category with duality

    OpenAIRE

    Young, Matthew B.

    2012-01-01

    We construct from a finitary exact category with duality a module over its Hall algebra, called the Hall module, encoding the first order self-dual extension structure of the category. We study in detail Hall modules arising from the representation theory of a quiver with involution. In this case we show that the Hall module is naturally a module over the specialized reduced sigma-analogue of the quantum Kac-Moody algebra attached to the quiver. For finite type quivers, we explicitly determin...

  5. DESIGN OF SUBSOIL IMPROVEMENT BELOW HALL FLOORS

    Directory of Open Access Journals (Sweden)

    Peter Turček

    2017-10-01

    Full Text Available The construction of an industrial park is now being prepared near the town of Nitra. The investor fixed very strict conditions for the bearing capacity and, above all, the settlement of halls and their floors. The geological conditions at the construction site are difficult: there are soft clay soils with high compressibility and low bearing capacity. A detailed analysis of soil improvement was made. Stone columns were prepared to be fitted into an approximately 5 m thick layer of soft clay. The paper shows the main steps used in the design of the stone columns.

  6. Optically induced Hall effect in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M; Gray, E Mac A, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-03-01

    We describe an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a Hall voltage resulting from nonequilibrium magnetization induced by the spin-carrier electrons accumulating at the transverse boundaries of the sample as a result of asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are presented by discussing the dominant spin relaxation mechanisms in semiconductors.

  7. Fractional quantization and the quantum hall effect

    International Nuclear Information System (INIS)

    Guerrero, J.; Calixto, M.; Aldaya, V.

    1998-01-01

    Quantization with constrains is considered in a group-theoretical framework, providing a precise characterization of the set of good operators, i.e., those preserving the constrained Hilbert space, in terms of the representation of the subgroup of constraints. This machinery is applied to the quantization of the torus as symplectic manifold, obtaining that fractional quantum numbers are permitted, provided that we allow for vector valued representations. The good operators turn out to be the Wilson loops and, for certain representations of the subgroup of constraints, the modular transformations. These results are applied to the Fractional Quantum Hall Effect, where interesting implications are derived

  8. Excitons in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  9. The fractional quantum Hall effect goes organic

    International Nuclear Information System (INIS)

    Smet, Jurgen

    2000-01-01

    Physicists have been fascinated by the behaviour of two-dimensional electron gases for the past two decades. All of these experiments were performed on inorganic semiconductor devices, most of them based on gallium arsenide. Indeed, until recently it was thought that the subtle effects that arise due to electron-electron interactions in these devices required levels of purity that could not be achieved in other material systems. However, Hendrik Schoen, Christian Kloc and Bertram Batlogg of Bell Laboratories in the US have now observed the fractional quantum Hall effect - the most dramatic signature of electron-electron interactions - in two organic semiconductors. (U.K.)

  10. Hall conductivity for two dimensional magnetic systems

    International Nuclear Information System (INIS)

    Desbois, J.; Ouvry, S.; Texier, C.

    1996-01-01

    A Kubo inspired formalism is proposed to compute the longitudinal and transverse dynamical conductivities of an electron in a plane (or a gas of electrons at zero temperature) coupled to the potential vector of an external local magnetic field, with the additional coupling of the spin degree of freedom of the electron to the local magnetic field (Pauli Hamiltonian). As an example, the homogeneous magnetic field Hall conductivity is rederived. The case of the vortex at the origin is worked out in detail. A perturbative analysis is proposed for the conductivity in the random magnetic impurity problem (Poissonian vortices in the plane). (author)

  11. Surface wave propagation in steady ideal Hall-magnetohydrodynamic magnetic slabs

    International Nuclear Information System (INIS)

    Miteva, Rossitsa; Zhelyazkov, Ivan; Erdelyi, Robert

    2003-01-01

    This paper studies the dispersion characteristics of sausage and kink surface waves traveling along a plasma layer within the framework of Hall magnetohydrodynamics in steady state. While in a static plasma slab these waves are Alfven ones (their phase velocities are close to the Alfven speed in the layer); in a slab with steady flows they may become super Alfvenic waves. Moreover, there exist two types of waves: forward and backward ones bearing in mind that the flow velocity defines the positive (forward) direction. As a typical representative of a magnetic slab in steady state here is considered a solar wind flux rope with a finite β plasma flow (typically β∼1).The forward sausage surface mode exhibits an increased dispersion at small wave numbers while the forward kink waves become practically non-dispersive. Both backward propagating sausage and kink surface modes show an increased dispersion for large wave numbers

  12. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    Science.gov (United States)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  13. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  14. Thermal stability of the krypton Hall effect thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  15. Bimetric Theory of Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Andrey Gromov

    2017-11-01

    Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  16. Hypernuclear Spectroscopy at JLab Hall C

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Chiba, Atsushi; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M.; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S.; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T.; Hiyama, E.; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T.; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C.; Simicevic, Neven; Wells, Stephen; Samanta, Chhanda; Hu, Bitao; Shen, Ji; Wang, W.; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y.; Zhou, Jian; Zhou, S.; Jiang, Yi; Lu, H.; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S.; Achenbach, Carsten; Pochodzalla, J.

    2010-01-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e(prime)K + ) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e(prime)K + ) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the 'Tilt method' was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7 ΛHe and 28 ΛAl together with that of 12 ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7 Li, 9 Be, 10 B, 12 C and 52 Cr as well as with those of CH 2 and H 2 O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  17. Bimetric Theory of Fractional Quantum Hall States

    Science.gov (United States)

    Gromov, Andrey; Son, Dam Thanh

    2017-10-01

    We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  18. Repurposing the Caltech Robinson Hall Coelostat

    Science.gov (United States)

    Treffers, Richard R.; Loisos, G.; Ubbelohde, M.; Douglas, S.; Martinez, M.

    2013-01-01

    We describe the repurposing of the historic coelostat atop Caltech’s Robinson Hall for building lighting, public education and scientific research. The coelostat was originally part of George Ellery Hale’s vision of the Astrophysical Laboratory on the Caltech campus in 1932. The coelostat, designed by Russell Porter, has a 36 inch diameter primary mirror a 30 inch diameter secondary mirror and provides a 24 inch un-vignetted beam of sunlight into the building. Although constructed in the 1930s, due to wartime pressures and other projects, it was used only briefly in the 1970s and never fully realized. Recently Robinson Hall has been fully renovated to house the Ronald and Maxine Linde Center for Global Environmental Science. The coelostat operation was modernized replacing the old motors and automating all the motions. Each morning, if the weather cooperates, the dome slit opens, the mirrors configured and sunlight pours into the building. The beam of sunlight is divided into three parts. One part goes into a refracting telescope which projects a ten inch diameter of the sun onto a ground glass screen visible to the public. A second fraction is distributed to fiber optic fixtures that illuminate some of the basement rooms. The final fraction goes into two laboratories where it is used in experiments monitoring trace constituents of our atmosphere and for solar catalysis experiments. The instrument as originally conceived required at least two human operators. Now it is fully automatic and doing real science

  19. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  20. Exploiting Laboratory and Heliophysics Plasma Synergies

    Directory of Open Access Journals (Sweden)

    Jill Dahlburg

    2010-05-01

    provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior.

  1. Investigation of impact of neutron irradiation on properties of InSb-based hall plates

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Oszwaldowski, M.; Kovařík, Karel; Jankowski, J.; El-Ahmar, S.; Viererbl, L.; Lahodová, Z.

    2011-01-01

    Roč. 417, 1-3 (2011), s. 846-849 ISSN 0022-3115. [International Conference on Fusion Reactor Materials (ICFRM)/14./. Sapporo, 07.09.2009-12.09.2009] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * Hall sensors * magnetic measurements * neutron irradiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.052, year: 2011 http://www.sciencedirect.com/science/article/pii/S0022311510009712

  2. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  3. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  4. Mary E. Hall: Dawn of the Professional School Librarian

    Science.gov (United States)

    Alto, Teresa

    2012-01-01

    A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…

  5. What is the Hallé? | Smith | Philosophical Papers

    African Journals Online (AJOL)

    The bulk of the paper examines the difficulty of reconciling the view that the Hallé is several individuals with two prima facie plausible theses about the manner of its persistence through time. The paper is structured around some remarks made by Peter Simons about groups, and the Hallé in particular, in his Parts.

  6. Spin hall effect associated with SU(2) gauge field

    Science.gov (United States)

    Tao, Y.

    2010-01-01

    In this paper, we focus on the connection between spin Hall effect and spin force. Here we investigate that the spin force due to spin-orbit coupling, which, in two-dimensional system, is equivalent to forces of Hirsch and Chudnovsky besides constant factors 3 and frac{3}{2} respectively, is a part of classic Anandan force, and that the spin Hall effect is an anomalous Hall effect. Furthermore, we develop the method of AC phase to derive the expression for the spin force, and note that the most basic spin Hall effect indeed originate from the AC phase and is therefore an intrinsic quantum mechanical property of spin. This method differs from approach of Berry phase in the study of anomalous Hall effect , which is the intrinsic property of the perfect crystal. On the other hand, we use an elegant skill to show that the Chudnovsky-Drude model is reasonable. Here we have improved the theoretical values of spin Hall conductivity of Chudnovsky. Compared to the theoretical values of spin Hall conductivity in the Chudnovsky-Drude model, ours are in better agreement with experimentation. Finally, we discuss the relation between spin Hall effect and fractional statistics.

  7. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  8. Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar

  9. Stuart Hall on Racism and the Importance of Diasporic Thinking

    Science.gov (United States)

    Rizvi, Fazal

    2015-01-01

    In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…

  10. Theory of the quantum hall effects in lattice systems

    International Nuclear Information System (INIS)

    Kliros, G.S.

    1990-06-01

    The Fractional Quantum Hall Effect is identified as an Integral Quantum Hall Effect of electrons on a lattice with an even number of statistical flux quanta. A variational wavefunction in terms of the Hofstadter lattice eigenstates is proposed. (author). 21 refs

  11. A Residential Paradox?: Residence Hall Attributes and College Student Outcomes

    Science.gov (United States)

    Bronkema, Ryan; Bowman, Nicholas A.

    2017-01-01

    The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…

  12. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  13. Critical current in the Integral Quantum Hall Effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    A multiparticle theory of the Integral Quantum Hall Effect (IQHE) was constructed operating with pairs wave function as an order parameter. The IQHE is described with bosonic macroscopic states while the fractional QHE with fermionic ones. The calculation of the critical current and Hall conductivity temperature dependence is presented. (author)

  14. Useful Pedagogical Applications of the Classical Hall Effect

    Science.gov (United States)

    Houari, Ahmed

    2007-01-01

    One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…

  15. UNIDAD PARA SUPERVISIÓN Y CONTROL DE MEDICIÓN DE EFECTO HALL CON LABVIEW®

    Directory of Open Access Journals (Sweden)

    Hernán Rodríguez

    2008-09-01

    Full Text Available We assembled a Hall effect and electric conductivity measuring unit that allows the determination of transportproperties in semiconductor and metal films, including the type and concentration of majority carriers and theirmobility, from measurements of Hall voltage and current. It is clear that electrons are the charge carrier in metals,however some metals such as aluminum, zinc and cadmium among others exhibit a behavior that, according to theclassical view, should be positive charge carriers (holes. In this paper we discuss Hall effect measurements in twotypes of materials: copper (Cu and zinc (Zn. Results from measurements show that copper has a negative Hallcoefficient RH = - (0.28 ± 0.01×10-10 m3/C and zinc has a positive coefficient RH = + (4.2 ± 0.2×10-11 m3/C. Ourresults agree with those reported in the scientific literature. Most of the textbooks on solid state physics do notmention explicitly the reason why some metals show a positive Hall coefficient. We discuss this fact based on theirband structures.

  16. Attitudes toward the health of men that regularly occupy in a trainer hall.

    Directory of Open Access Journals (Sweden)

    Adamchhuk Ja.

    2012-02-01

    Full Text Available It is accepted to consider that by motivation for people that practice in a trainer hall is an improvement of health and original appearance. The aim of this research was to determine whether there is training by part of forming of positive attitude toward the health of men-sportsmen-amateurs that occupy in a trainer hall. In research took part 100 men that engage in the power training in one of three trainer halls of Warsaw. Investigational divided by two groups: 50 persons that occupy in a trainer hall more than one year, but no more than 3 years (group A and 50 persons that practice more than 3 (group B. It is well-proven that training positively influences on the emotional state of men. It was discovered at the same time, that than greater experience of sportsman-amateur, the considerably more often he used additions (including by a stimulant. There was no medical control in both groups. Positive influence of the power training shows that they can be the important element of prophylaxis and physiotherapy.

  17. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  18. A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method

    Directory of Open Access Journals (Sweden)

    Vlassis N. Petoussis

    2009-01-01

    Full Text Available The Hall effect is caused by a traverse force that is formed in the electrons or holes of metal element or semiconductor when are polarized by current source and simultaneously all the system it is found vertical in external magnetic field. Result is finally the production of difference of potential (Hall voltage in address vertical in that of current and magnetic field directions. In the present work is presented a new Hall sensor exploiting the former operation. In combination with his pioneering form and using dynamic spinning current technique with an elaborate sequence, it leads to satisfactory results of produced Hall voltage with small noise in a presence of external magnetic field. Anyone can see both the spinning current and anti-Hall technique in the same sensor simultaneously.

  19. Migrants and Their Experiences of Time: Edward T. Hall Revisited

    Directory of Open Access Journals (Sweden)

    Elisabeth Schilling

    2009-01-01

    Full Text Available In this paper we reassess the scientific heritage of Edward T. HALL and his contribution to the area of intercultural communication. The key objectives of our study are to demonstrate the applicability of HALL's theory of culture to empirical research and to establish its compatibility with other methods. Specifically, we propose that Alfred SCHÜTZ's phenomenology of sociality be taken as an extension to HALL. The connection between HALL and SCHÜTZ is made possible by the mutual emphases on the temporal dimension of culture and the temporal aspects of migration. With these foci we analyze six narratives by two groups of migrants: German and Russian. By combining HALL's theory of the cultural time with SCHÜTZ's phenomenological perspective on time and the Other and then applying them to empirical data, we show the terms in which different cultures experience time. URN: urn:nbn:de:0114-fqs0901357

  20. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.

    2016-07-27

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  1. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  2. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.; Vasilopoulos, P.; Schwingenschlö gl, Udo

    2016-01-01

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  3. Quantum Hall effect on Riemann surfaces

    Science.gov (United States)

    Tejero Prieto, Carlos

    2009-06-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  4. Quantum Hall effect on Riemann surfaces

    International Nuclear Information System (INIS)

    Tejero Prieto, Carlos

    2009-01-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  5. Frequency spectrum of Calder Hall reactor noise

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1960-01-01

    The frequency spectrum of the noise power of Calder Hall reactor No. 1 has been obtained by analysing a tape recording of the backed off power. The root mean square noise power due to all frequencies above 0.001 cycles per second was found to be 0.13%. The noise power for this reactor, is due mainly to modulations of the power level by reactivity variations caused in turn by gas temperature changes. These gas temperature changes are caused by a Cyclic variation in the feedwater regulator to the heat exchanger. The apparatus and method used to determine the noise power are described in this memorandum. It is shown that for frequencies in the range 0.001 to 0.030 cycles per second the noise spectrum falls at 60 decibels per decade of frequency. (author)

  6. OPTICS. Quantum spin Hall effect of light.

    Science.gov (United States)

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  7. Determination of the Hall Thruster Operating Regimes

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  8. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  9. Concept of Operating Indoor Skiing Halls with

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    Indoor skiing halls are conventionally operated at low temperatures and with either crushed ice as snow substitute or snow made from freezing water in cold air. Both systems have a high energy demand for air cooling, floor freezing and consequently snow harvest. At the same time the snow at the top...... floor cooling/freezing and insulation become obsolete, significant savings in piping and building costs can be achieved. Due to the much higher evaporating temperature for the refrigeration system, the energy demand is kept low. Since the same equipment is used for both snowmaking and air cooling......, the running time of the equipment is high, resulting in a better economy. Using Binary Snow, with its unique qualities such as fluffy, crisp, white and ¿ since made daily ¿ "fresh and hygienic", offers great advantages in operating costs, investment costs and quality....

  10. Geometrical Description of fractional quantum Hall quasiparticles

    Science.gov (United States)

    Park, Yeje; Yang, Bo; Haldane, F. D. M.

    2012-02-01

    We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.

  11. Mesoscopic spin Hall effect in semiconductor nanostructures

    Science.gov (United States)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  12. 50 KW Class Krypton Hall Thruster Performance

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  13. Magnon Hall effect on the Lieb lattice.

    Science.gov (United States)

    Cao, Xiaodong; Chen, Kai; He, Dahai

    2015-04-29

    Ferromagnetic insulators without inversion symmetry may show magnon Hall effect (MHE) in the presence of a temperature gradient due to the existence of Dzyaloshinskii-Moriya interaction (DMI). In this theoretical study, we investigate MHE on a lattice with inversion symmetry, namely the Lieb lattice, where the DMI is introduced by adding an external electric field. We show the nontrivial topology of this model by examining the existence of edge states and computing the topological phase diagram characterized by the Chern numbers of different bands. Together with the topological phase diagram, we can further determine the sign and magnitude of the transverse thermal conductivity. The impact of the flat band possessed by this model on the thermal conductivity is discussed by computing the Berry curvature analytically.

  14. Photonic spin Hall effect at metasurfaces.

    Science.gov (United States)

    Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang

    2013-03-22

    The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.

  15. The quantum Hall effect at 5/2 filling factor

    International Nuclear Information System (INIS)

    Willett, R L

    2013-01-01

    Experimental discovery of a quantized Hall state at 5/2 filling factor presented an enigmatic finding in an established field of study that has remained an open issue for more than twenty years. In this review we first examine the experimental requirements for observing this state and outline the initial theoretical implications and predictions. We will then follow the chronology of experimental studies over the years and present the theoretical developments as they pertain to experiments, directed at sets of issues. These topics will include theoretical and experimental examination of the spin properties at 5/2; is the state spin polarized? What properties of the higher Landau levels promote development of the 5/2 state, what other correlation effects are observed there, and what are their interactions with the 5/2 state? The 5/2 state is not a robust example of the fractional quantum Hall effect: what experimental and material developments have allowed enhancement of the effect? Theoretical developments from initial pictures have promoted the possibility that 5/2 excitations are exceptional; do they obey non-abelian statistics? The proposed experiments to determine this and their executions in various forms will be presented: this is the heart of this review. Experimental examination of the 5/2 excitations through interference measurements will be reviewed in some detail, focusing on recent results that demonstrate consistency with the picture of non-abelian charges. The implications of this in the more general physics picture is that the 5/2 excitations, shown to be non-abelian, should exhibit the properties of Majorana operators. This will be the topic of the last review section. (review article)

  16. Residencia hall del Obispado, en Gescher, Alemania

    Directory of Open Access Journals (Sweden)

    Deilmann, Harald

    1969-02-01

    Full Text Available This Hall has four lecture rooms, each with a capacity for twenty students. They all face north, have lateral and cenithal illumination and cross ventilation. The workshop training halls face south, and there is a gymnasium. Each classroom is also connected with a protected open air space, so that in suitable weather, teaching can be practised out of doors. As the school is devoted to mentally retarded boys and youths, over 2 m2 of floor area has been allowed for each student in the classrooms, since it was estimated that many students would be of the nervous type and would need more room to work freely. Most of the construction is made with unfaced brick and concrete, which are long lasting materials, requiring little maintenance.Comprende cuatro clases propiamente dichas, con una capacidad total de 80 alumnos, a razón de 20 por cada clase, y orientadas al norte, con iluminación cenital y lateral y ventilación cruzada. Los locales donde se imparten las enseñanzas de taller tienen orientación sur. Se ha previsto, además, un gimnasio. Cada clase dispone de un recinto protegido para que, cuando las condiciones atmosféricas lo permitan, se pueda desarrollar en él la enseñanza al aire libre. Como la escuela está destinada a niños y adolescentes retrasados mentales, se partió de un espacio superior a los 2 m2 por alumno, pensando en que parte de ellos iban a ser niños nerviosos y, como consecuencia, la necesidad que tendrían de amplitud suficiente para desenvolverse adecuadamente. La construcción se ha desarrollado, en general, a base de fábrica de ladrillo a cara vista y hormigón visto, materiales de gran duración y prácticamente exentos de entretenimiento.

  17. Nonadiabatic effects in the Quantum Hall regime

    International Nuclear Information System (INIS)

    Page, D.A.; Brown, E.

    1993-01-01

    The authors consider the effect of a finite electric field on the states of a Bloch electron in two dimensions, with a uniform magnetic field present. They make use of the concept of electric time translation symmetry and treat the electric and magnetic fields symmetrically in a time dependent formalism. In addition to a wave vector k, the states are characterized by a frequency specifying the behavior under electric time translations. An effective Hamiltonian is employed to obtain the splitting of an isolated Bloch band into open-quotes frequencyclose quotes subbands. The time-averaged velocity and energy of the states are expressed in terms of the frequency dispersion. The relationship to the Stark ladder eigenstates in a scalar potential representation of the electric field is examined. This is seen to justify the use of the averaged energy in determining occupation of the states. In the weak electric field (adiabatic) limit, an expression is recovered for the quantized Hall conductivity of a magnetic subband as a topological invariant. A numerical procedure is outlined and results obtained over a range of electric field strengths. A transition between strong and weak field regimes is seen, with level repulsions between the frequencies playing an important role. The numerical results show how the magnetic subband structure and quantized Hall conductivity emerge as the electric field becomes weaker. In this regime, the behavior can be understood by comparison to the predictions of the adiabatic approximation. The latter predicts crossings in the frequencies at certain locations in wave vector space. Nonadiabatic effects are seen to produce gaps in the frequency spectrum at these locations. 35 refs., 14 figs

  18. Incompressible LFR MHD. A fluid model for stability analysis of a fusion plasma

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1986-10-01

    A fluid model including FLR effects, named Incompressible Finite Larmor Radius MagnetoHydroDynamics, is presented and derived in this paper. It is an extension of ordinary, incompressible MHD to include the Larmor radius effects due to ion gyroviscosity, Hall current and electron diamagnetism. It is intended to use the model for stability analysis, on the Alfven wave time scale, of a fusion plasma and it is consequently based on transport coefficients in the collisionless limit. It will be demonstrated that for a fairly dense and cool plasma, such as for the EXTRAP z-pinch, all three Larmor radius effects may become important, that for a JET-type plasma no FLR effect is pronounced, and that in a reactor plasma the Hall and electron diamagnetism term may play a role. For scaling lengths signigicantly smaller than the plasma radius the effect of the FLR terms becomes enhanced. To study the importance of the choice of equations of state for the model the m=1 and k 2 r 2 towards infinity instability in cylindrical geometry is given special attention for zero Larmor radius. The full stability criterion of the double adiabatic model, including pressure anisotropy, is presented for what we believe to be the first time. It is found that when perpendicular p > parallel p stability can be reached for very high plasma perpendicular β-values. We demonstrate that no less complicated energy conserving fluid model, which takes into account pressure anisotropy, other than the double adiabativ model can be obtained. Since pressure anisotropy generally only weakly affects stability, we can assume isotropy in the Incompressible FLR MHD model. Also, the energy equation is replaced by the incompressibility condition, making FLR terms appearing in the energy equation irrelevant. (authors)

  19. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  20. General topological features and instanton vacuum in quantum Hall and spin liquids

    International Nuclear Information System (INIS)

    Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen

    2005-01-01

    We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid

  1. Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials

  2. Some applications of the field theory to condensed matter physics: the different sides of the quantum Hall effect

    International Nuclear Information System (INIS)

    Chandelier, F.

    2003-12-01

    The quantum Hall effect appears in low temperature electron systems submitted to intense magnetic fields. Electrons are trapped in a thin layer (∼ 100.10 -8 cm thick) at the interface between 2 semiconductors or between a semiconductor and an insulating material. This thesis presents 3 personal contributions to the physics of plane systems and particularly to quantum Hall effect systems. The first contribution is a topological approach, it involves the study of Landau's problem in a geometry nearing that of Hall effect experiments. A mathematical formalism has been defined and by using the Kubo's formula, the quantification of the Hall conductivity can be linked to the Chern class of threaded holes. The second contribution represents a phenomenological approach based on dual symmetries and particularly on modular symmetries. This contribution uses visibility diagrams that have already produced right predictions concerning resistivity curves or band structures. The introduction of a physical equivalence has allowed us to build a phase diagram for the quantum Hall effect at zero temperature. This phase diagram agrees with the experimental facts concerning : -) the existence of 2 insulating phases, -) direct transitions between an insulating phase and any Hall phase through integer or fractionary values of the filling factor (ν), -) selection rules, and -) classification of the Hall states and their distribution around a metal state. The third contribution concerns another phenomenological approach based on duality symmetries. We have considered a class of (2+1)-dimensional effective models with a Maxwell-Chern-Simons part that includes a non-locality. This non-locality implies the existence of a hidden duality symmetry with a Z 2 component: z → 1/z. This symmetry has allowed us to meet the results of the Fisher's law concerning the components of the resistivity tensor. (A.C.)

  3. Temperature dependence of collapse of quantized hall resistance

    International Nuclear Information System (INIS)

    Tanaka, Hiroyasu; Kawashima, Hironori; Iizuka, Hisamitsu; Fukuda, Hideaki; Kawaji, Shinji

    2006-01-01

    Similarity is observed in the deviation of Hall resistance from the quantized value with the increase in the source-drain current I SD in our butterfly-type Hall bars and in the Hall bars used by Jeanneret et al., while changes in the diagonal resistivity ρ xx with I SD are significantly different between these Hall bars. The temperature dependence of the critical Hall electric field F cr (T) for the collapse of R H (4) measured in these Hall bars is approximated using F cr (T) = F cr (0)(1 - (T/T cr ) 2 ). Here, the critical Hall electric field at zero temperature depends on the magnetic field B as F cr (0) ∝ B 3/2 . Theoretical considerations are given on F cr (T) on the basis of a temperature-dependent mobility edge model and a schema of temperature-dependent inter-Landau level tunneling probability arising from the Fermi distribution function. The former does not fit in with the I SD dependence of activation energy in ρ xx . (author)

  4. Spontaneous Hall effect in a chiral p-wave superconductor

    Science.gov (United States)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  5. Graphene and the universality of the quantum Hall effect

    DEFF Research Database (Denmark)

    Tzalenchuk, A.; Janssen, T. J.B.M.; Kazakova, O.

    2013-01-01

    The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... the unconventional quantum Hall effect and then present in detail the route, which led to the most precise quantum Hall resistance universality test ever performed.......The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show...

  6. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  7. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  8. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  9. A general long wavelength instability for Z-pinches and for Extrap within the Hall model

    International Nuclear Information System (INIS)

    Aagren, O.

    1988-01-01

    The stability of long wavelength perturbations is analysed within the framework of the Hall model. Free boundary modes with m = 1 and ksub(z) → O are shown to be unstable for all pressure profiles which go to zero at the plasma surface, if feedback from the wall can be neglected. The growth rate of the instability increases with decreasing plasma radius. Similar results are found for Extrap. Nonlinearities in combination with losses at the X-points are possibly responsible for the gross stability of free boundary modes in some Extrap discharges. In recent Extrap experiments, where an axial field (Bsub(T) = 0.5 Bsub(p)) is added, the improved stability might instead be due to passive feedback. (author)

  10. Effects of facility backpressure on the performance and plume of a Hall thruster

    Science.gov (United States)

    Walker, Mitchell Louis Ronald

    2005-07-01

    This dissertation presents research aimed at understanding the relationship between facility background pressure, Hall thruster performance, and plume characteristics. Due to the wide range of facilities used in Hall thruster testing, it is difficult for researchers to make adequate comparisons between data sets because of both dissimilar instrumentation and backpressures. The differences in the data sets are due to the ingestion of background gas into the Hall thruster discharge channel and charge-exchange collisions in the plume. Thus, this research aims to understand facility effects and to develop the tools needed to allow researchers to obtain relevant plume and performance data for a variety of chambers and backpressures. The first portion of this work develops a technique for calibrating a vacuum chamber in terms of pressure to account for elevated backpressures while testing Hall thrusters. Neutral gas background pressure maps of the Large Vacuum Test Facility are created at a series of cold anode flow rates and one hot flow rate at two UM/AFRL P5 5 kW Hall thruster operating conditions. These data show that a cold flow pressure map can be used to approximate the neutral background pressure in the chamber with the thruster in operation. In addition, the data are used to calibrate a numerical model that accurately predicts facility backpressure within a vacuum chamber of specified geometry and pumping speed. The second portion of this work investigates how facility backpressure influences the plume, plume diagnostics, and performance of the P5 Hall thruster. Measurements of the plume and performance characteristics over a wide range of pressures show that ingestion, a decrease in the downstream plasma potential, and broadening of the ion energy distribution function cause the increase in thrust with backpressure. Furthermore, a magnetically-filtered Faraday probe accurately measures ion current density at elevated operating pressures. The third portion of

  11. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  12. Signal conditioning and processing for metallic Hall sensors.

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Ďuran, Ivan; Sládek, P.; Vayakis, G.; Kočan, M.

    2017-01-01

    Roč. 123, November (2017), s. 783-786 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 Keywords : Hall sensor * Lock-in * Synchronous detection * Current spinning * Hall effect * Planar hall effect suppression Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617305070

  13. Hall conductance and topological invariant for open systems.

    Science.gov (United States)

    Shen, H Z; Wang, W; Yi, X X

    2014-09-24

    The Hall conductivity given by the Kubo formula is a linear response of quantum transverse transport to a weak electric field. It has been intensively studied for quantum systems without decoherence, but it is barely explored for systems subject to decoherence. In this paper, we develop a formulism to deal with this issue for topological insulators. The Hall conductance of a topological insulator coupled to an environment is derived, the derivation is based on a linear response theory developed for open systems in this paper. As an application, the Hall conductance of a two-band topological insulator and a two-dimensional lattice is presented and discussed.

  14. Acoustic investigations of concert halls for rock music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Objective measurement data and subjective evaluations have been collected from 20 small-/medium-sized halls in Denmark used for amplified rhythmic music concerts (pop, rock, jazz). The purpose of the study was to obtain knowledge about optimum acoustic conditions for this type of hall. The study...... is motivated by the fact that most concert tickets sold in Denmark relate to concerts within these genres in this kind of venue. The subjective evaluations were carried out by professional musicians and sound engineers who responded on the basis of their experiences working in these (and other) halls. From...

  15. All Optical Measurement Proposed for the Photovoltaic Hall Effect

    International Nuclear Information System (INIS)

    Oka, Takashi; Aoki, Hideo

    2011-01-01

    We propose an all optical way to measure the recently proposed p hotovoltaic Hall effect , i.e., a Hall effect induced by a circularly polarized light in the absence of static magnetic fields. This is done in a pump-probe experiment with the Faraday rotation angle being the probe. The Floquet extended Kubo formula for photo-induced optical response is formulated and the ac-Hall conductivity is calculated. We also point out the possibility of observing the effect in two layered graphene, three-dimensional graphite, and more generally in multi-band systems such as materials described by the dp-model.

  16. Determination of intrinsic spin Hall angle in Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  17. Determination of intrinsic spin Hall angle in Pt

    International Nuclear Information System (INIS)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  18. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  19. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume

    Science.gov (United States)

    Tichý, M.; Pétin, A.; Kudrna, P.; Horký, M.; Mazouffre, S.

    2018-06-01

    Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

  20. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    Science.gov (United States)

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  1. Eden Mills Community Hall energy audit prepared for Eden Mills going carbon neutral

    Energy Technology Data Exchange (ETDEWEB)

    Lay, R.; Aussant, C. [Enermodal Engineering Ltd., Kitchener, ON (Canada)

    2009-04-22

    This paper described an energy audit conducted as part of the Eden Mills going carbon neutral project during the spring and summer of 2008. The audit included an inspection of the Eden Mills community hall with a special focus on the building's mechanical system and building envelope. A blower door test was performed to depressurize the building and to measure the airtightness of the building envelope. An energy simulation model was then used to estimate energy use according to the buildings functions and components. Recommendations included the addition of wall insulation, the replacement of some windows, and improved return air ducting and warm air distribution systems. Various new thermostat control systems were also recommended, as well as the use of wood pellets in one of the hall's 2 furnaces. 20 tabs., 28 figs.

  2. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  3. Properties of Nonabelian Quantum Hall States

    Science.gov (United States)

    Simon, Steven H.

    2004-03-01

    The quantum statistics of particles refers to the behavior of a multiparticle wavefunction under adiabatic interchange of two identical particles. While a three dimensional world affords the possibilities of Bosons or Fermions, the two dimensional world has more exotic possibilities such as Fractional and Nonabelian statistics (J. Frölich, in ``Nonperturbative Quantum Field Theory", ed, G. t'Hooft. 1988). The latter is perhaps the most interesting where the wavefunction obeys a ``nonabelian'' representation of the braid group - meaning that braiding A around B then B around C is not the same as braiding B around C then A around B. This property enables one to think about using these exotic systems for robust topological quantum computation (M. Freedman, A. Kitaev, et al, Bull Am Math Soc 40, 31 (2003)). Surprisingly, it is thought that quasiparticles excitations with such nonabelian statistics may actually exist in certain quantum Hall states that have already been observed. The most likely such candidate is the quantum Hall ν=5/2 state(R. L. Willett et al, Phys. Rev. Lett. 59, 1776-1779 (1987)), thought to be a so-called Moore-Read Pfaffian state(G. Moore and N. Read, Nucl Phys. B360 362 (1991)), which can be thought of as a p-wave paired superconducting state of composite fermions(M. Greiter, X. G. Wen, and F. Wilczek, PRL 66, 3205 (1991)). Using this superconducting analogy, we use a Chern-Simons field theory approach to make a number of predictions as to what experimental signatures one should expect for this state if it really is this Moore-Read state(K. Foster, N. Bonesteel, and S. H. Simon, PRL 91 046804 (2003)). We will then discuss how the nonabelian statistics can be explored in detail using a quantum monte-carlo approach (Y. Tserkovnyak and S. H. Simon, PRL 90 106802 (2003)), (I. Finkler, Y. Tserkovnyak, and S. H. Simon, work in progress.) that allows one to explicitly drag one particle around another and observe the change in the wavefunctions

  4. An exploratory digital analysis of the early years of G. Stanley Hall's American Journal of Psychology and Pedagogical Seminary.

    Science.gov (United States)

    Young, Jacy L; Green, Christopher D

    2013-11-01

    In this article, we present the results of an exploratory digital analysis of the contents of the two journals founded in the late 19th century by American psychologist G. Stanley Hall. Using the methods of the increasingly popular digital humanities, some key attributes of the American Journal of Psychology (AJP) and the Pedagogical Seminary (PS) are identified. Our analysis reaffirms some of Hall's explicit aims for the two periodicals, while also revealing a number of other features of the journals, as well as of the people who published within their pages, the methodologies they employed, and the institutions at which they worked. Notably, despite Hall's intent that his psychological journal be strictly an outlet for scientific research, the journal-like its sister pedagogically focused publication-included an array of methodologically diverse research. The multiplicity of research styles that characterize the content of Hall's journals in their initial years is, in part, a consequence of individual researchers at times crossing methodological lines and producing a diverse body of research. Along with such variety within each periodical, it is evident that the line between content appropriate to one periodical rather than the other was fluid rather than absolute. The full results of this digitally informed analysis of Hall's two journals suggest a number of novel avenues for future research and demonstrate the utility of digital methods as applied to the history of psychology. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  5. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  6. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  7. Habitat Restoration/Enhancement Fort Hall Reservation : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Hunter [Shoshone Bannock Tribes

    2009-07-23

    Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2008. Enhancement and protection included sloping, fencing and planting wetlands plugs at sites on Spring Creek (Head-waters). Many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). Physical sampling during 2008 included sediment and depth measurements (SADMS) in Spring Creek at the Car Removal site. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for 5 strata on Spring Creek. Water temperature and chemistry were monitored monthly on Spring Creek, Clear Creek, Diggie Creek, and Portneuf (Jimmy Drinks) and Blackfoot rivers. Fish population densities and biomass were sampled in five reservation streams which included nine sites. Sampling protocols were identical to methods used in past years. Numbers of fish in Spring Creek series remained relatively low, however, there was an increase of biomass overall since 1993. Salmonid fry densities were monitored near Broncho Bridge and were similar to 2006, and 2007, however, as in years past, high densities of macrophytes make it very difficult to see fry in addition to lack of field technicians. Mean catch rate by anglers on Bottoms streams stayed the same as 2007 at 1.5/hr. Numbers of fish larger than 18-inches caught by anglers increased from 2007 at .20 to .26/hr.

  8. Magnesium Hall Thruster for Solar System Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  9. W∞ gauge theory and the quantum Hall effect

    International Nuclear Information System (INIS)

    Shizuya, K.

    1994-05-01

    It is shown that a planar system of Hall electrons coupled to an applied electromagnetic field is written in the form of a W ∞ gauge theory. The associated W ∞ gauge field is expressed nonlinearly in terms of an infinite set of multipoles of the electromagnetic field. The W ∞ transformations generate mixing among the Landau levels. They provide a systematic way to classify the electromagnetic characteristics of the Hall system according to the resolution of external probes. In particular, an exact long-wavelength connection is derived between the carrier density and the Hall conductance in the presence of electron-electron interactions. Our approach is complementary to an earlier one and reveals a dual role the W ∞ gauge symmetry plays in the Hall dynamics. (author)

  10. The Dream Comes True in the Golden Hall

    Institute of Scientific and Technical Information of China (English)

    JianZhong; ChenJianguo

    2004-01-01

    Nanjing Traditional Music Ensemble has long dreamed of performing in Vienna's Golden Hall.Now the dream has come true.the whole troupe felt so exciting that they did not even sleep well during the flight.

  11. Observation of the anomalous Hall effect in GaAs

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2007-01-01

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect

  12. Observation of the anomalous Hall effect in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre, School of Science, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2007-03-21

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect.

  13. Nobel Prize in physics 1985: Quantum Hall effect

    International Nuclear Information System (INIS)

    Herrmann, R.

    1986-01-01

    The conditions (like very strong magnetic fields, ultralow temperatures, and occurrence of a two-dimensional electron gas in microelectronic structures) for the measurement of the quantum Hall effect are explained. Two possible measuring methods are described. Measuring results for p-Si-MOSFET, GaAs/AlGaAs heterojuntions and grain boundaries in InSb crystals are reported. Differences between normal (integer) and fractional quantum Hall effect are discussed. One of the important consequences is that by means of the quantum Hall effect the value h/e 2 can be determined with very high accuracy. In 1985 Klaus von Klitzing was awarded the Nobel Prize for his work on the quantum Hall effect

  14. Quantum Computing With Quasiparticles of the Fractional Quantum Hall Effect

    National Research Council Canada - National Science Library

    Averin, Dmitri

    2001-01-01

    The focus of this project was the theoretical study of quantum computation based on controlled transfer of individual quasiparticles in systems of quantum antidots in the regime of the Fractional Quantum Hall Effect (FQHE...

  15. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Science.gov (United States)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  16. Hall effects and related phenomena in disordered Rashba 2DEG

    International Nuclear Information System (INIS)

    Inoue, Jun-ichiro; Kato, Takashi; Bauer, Gerrit E W; Molenkamp, Laurens W

    2009-01-01

    We review our recent work on the spin and anomalous Hall effects and other related phenomena caused by the intrinsic spin–orbit interaction. We focus our attention on disorder effects on these transport properties by adopting a model of a two-dimensional electron gas with a Rashba-type spin–orbit interaction. A spin-polarized model is adopted to calculate the anomalous Hall effect and anisotropic magnetoresistance. It is shown that the spin Hall conductivity in the ballistic transport regime is cancelled by the so-called vertex corrections for the disorder scattering, and that the anomalous Hall conductivity and anisotropic magnetoresistance vanish unless the lifetime is spin dependent. We further present results on spin accumulation under an electric field

  17. Dual Mode Low Power Hall Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  18. Analysis of Hall Probe Precise Positioning with Cylindrical Permanent Magnet

    International Nuclear Information System (INIS)

    Belicev, P.; Vorozhtsov, A.S.; Vorozhtsov, S.B.

    2007-01-01

    Precise positioning of a Hall probe for cyclotron magnetic field mapping, using cylindrical permanent magnets, was analyzed. The necessary permanent magnet parameters in order to achieve ±20 μm position precision, were determined. (author)

  19. High Input Voltage Hall Thruster Discharge Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  20. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    National Research Council Canada - National Science Library

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  1. Precision of single-engage micro Hall effect measurements

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Hansen, Ole; Kjær, Daniel

    2014-01-01

    Recently a novel microscale Hall effect measurement technique has been developed to extract sheet resistance (RS), Hall sheet carrier density (NHS) and Hall mobility (μH) from collinear micro 4-point probe measurements in the vicinity of an insulating boundary [1]. The technique measures in less...... than a minute directly the local transport properties, which enables in-line production monitoring on scribe line test pads [2]. To increase measurement speed and reliability, a method in which 4-point measurements are performed using two different electrode pitches has been developed [3......]. In this study we calculate the measurement error on RS, NHS and μH resulting from electrode position errors, probe placement, sample size and Hall signal magnitude. We show the relationship between measurement precision and electrode pitch, which is important when down-scaling the micro 4-point probe to fit...

  2. The integer quantum hall effect revisited

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hastings, Matthew [Q STATION, CALIFORNIA

    2009-01-01

    For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.

  3. Brand new hall in the main building

    CERN Multimedia

    Corinne Pralavorio

    2014-01-01

    The renovation of the UNIQA and post office premises is getting under way, with their reopening scheduled for the spring.   The renovation of the large hall in the main building (Building 500) has finally reached the home straight. As of this week, building contractors will get to work on the last part – the offices of UNIQA and La Poste. In the last week of November, the two concessions moved their offices across Route Scherrer to the same part of Building 510 where UBS was temporarily housed during the bank’s refurbishment. Their services were therefore unavailable for one day. The renovation work will last until the spring, with the new offices expected to open in May 2015. Between now and then, the windows and insulation will be completely refitted, with a view to reducing heat loss considerably, and, above all, the premises will be modernised to improve customer reception and service. For example, UNIQA’s new premises will feature a confidential area, guarantee...

  4. Acoustics in Halls for Speech and Music

    Science.gov (United States)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  5. Development of an access control system for the LHD experimental hall

    International Nuclear Information System (INIS)

    Kawano, T.; Inoue, N.; Sakuma, Y.; Uda, T.; Yamanishi, H.; Miyake, H.; Tanahashi, S.; Motozima, O.

    2000-01-01

    An access control system for the LHD (Large Helical Device) experimental hall had been constructed and its practical operation started in March 1998. Continuously, the system has been improved. The present system keeps watch on involved entrance and exit for the use of persons at four entrances by using five turnstile gates while watching on eight shielding doors at eight positions (four entrances, three carriage entrances and a hall overview) and a stairway connecting the LHD main hall with the LHD basement. Besides, for the security of safety operation of the LHD, fifteen kinds of interlock signals are exchanged between the access control system and the LHD control system. Seven of the interlock signals are properly sent as the occasional demands from the access control system to the LHD control system, in which three staple signals are B Personnel Access to Controlled Area, D Shielding Door Closed, and E No Entrance. It is important that any plasma experiments of the LHD are not permitted while the signal B being sent or D being not sent. The signal E is sent to inform the LHD control system that the turnstile gates are locked. All the plasma experiments should not be done unless the lock procedure of the turnstile is confirmed. When the turnstile gates are locked, any persons cannot enter into the LHD controlled area, but are permissible to exit only. Six of the interlock signals are used to send the information of the working at that time in the LHD controlled area to the access control system. When one signal of the operation mode is sent to the access control system from the LHD, the access control system sets the turnstile gate in situation corresponding to the operation mode, A Equipment Operation, B Vacuum Pumping, C Coil Cooling, D Coil Excitation, and E Plasma Experiment. If the access control system receives, for example, the signal B, this system sets the turnstile gate in the condition of control such that only persons assigned to the work of vacuum

  6. Hall effect in the two-dimensional Luttinger liquid

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1991-01-01

    The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong

  7. Thermoelectric and Hall-effect studies in hydrogenerated nickel foils

    International Nuclear Information System (INIS)

    Rani, R.; Nigam, A.N.

    1978-01-01

    Thermo e.m.f. and Hall constant of hydrogenerated nickel foils have been measured. Termo e.m.f. shows a sign reversal which is not due to the change in sign of the charge carriers, as indicated by the Hall-effect measurements. To account for the sign reversal of thermo e.m.f., it is found necessary to take into account the surface states of chemisorbed hydrogen on nickel

  8. Fractional statistics and fractional quantized Hall effect. Revision

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  9. Hall probe for measuring high currents in superconducting coils

    International Nuclear Information System (INIS)

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  10. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  11. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)

  12. The quantum Hall's effect: A quantum electrodynamic phenomenon

    International Nuclear Information System (INIS)

    Arbab, A. I.

    2012-01-01

    We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, V H = 2πħ 2 n s /em, where n s is the electron number density, for a 2-dimensional system, and h = 2πħ is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with L H = 2π m/e 2 n s and C H = me 2 /2πħ 2 n s satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time, τ s . The Hall's resistance is found to be R H = √L H /C H . The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimensional gas. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Signatures of lattice geometry in quantum and topological Hall effect

    International Nuclear Information System (INIS)

    Göbel, Börge; Mook, Alexander; Mertig, Ingrid; Henk, Jürgen

    2017-01-01

    The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE features by discussing band structures, Hall conductivities, and topological edge states for square and triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced back to the band structure without magnetic field whose properties are dictated by the lattice geometry. Based on these findings, we derive an approximation that allows us to determine the energy dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for experiments to validate our findings for the THE and—indirectly—the QHE. (paper)

  14. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  15. A holographic model for the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, Matthew [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, 1090GL Amsterdam (Netherlands); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa, Chiba 277-8568 (Japan); Taliotis, Anastasios [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-01-08

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ{sub 0}(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,ℤ)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,ℤ) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  16. A holographic model for the fractional quantum Hall effect

    Science.gov (United States)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  17. Effect of Magnetic Mirror on the Asymmetry of the Radial Profile of Near-Wall Conductivity in Hall Thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Liu Hui; Fu Haiyang

    2009-01-01

    Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.

  18. Angular Magnetoresistance and Hall Measurements in New Dirac Material, ZrSiS

    Science.gov (United States)

    Ali, Mazhar; Schoop, Leslie; Lotsch, Bettina; Parkin, Stuart

    Dirac and Weyl materials have shot to the forefront of condensed matter research in the last few years. Recently, the square-net material, ZrSiS, was theorized and experimentally shown (via ARPES) to host several highly dispersive Dirac cones, including the first Dirac cone demanded by non-symmorphic symmetry in a Si square net. Here we report the magnetoresistance and Hall Effect measurements in this compound. ZrSiS samples with RRR = 40 were found to have MR values up to 6000% at 2 K, be predominantly p-type with a carrier concentration of ~8 x 1019 cm-3 and mobility ~8500 cm2/Vs. Angular magnetoresistance measurements reveal a peculiar behavior with multiple local maxima, depending on field strength, indicating of a sensitive and sensitive Fermi surface. SdH oscillations analysis confirms Hall and angular magnetoresistance measurements. These results, in the context of the theoretical and ARPES results, will be discussed.

  19. Entrances and entrance halls of residential buildings in Belgrade: 1918-1941

    Directory of Open Access Journals (Sweden)

    Putnik Vladana

    2015-01-01

    Full Text Available Between the two world wars Belgrade saw a surge in housing construction, including many rental apartment buildings, so-called 'luxury city palaces'. In addition to richly decorated street façades in the style of academism, eclecticism and Art Deco, architects paid much attention to the design of entrances and entrance halls. The entrance frequently was the main element of the façade even in buildings in a moderate modernist style. Since this aspect of architectural design is scantily documented, this paper seeks to identify its main trends in the 1920s and 1930s and to establish a typology of entrances and entrance halls of residential buildings. It also outlines the parameters and social circumstances that played a role in giving special attention to this element of residential buildings, and examines whether Belgrade architects pursued a sort of total design inspired by European models.

  20. Turbulence effect on Ohm's law in partially ionized plasmas

    International Nuclear Information System (INIS)

    Numano, M.

    1977-01-01

    An investigation of the effect of nonuniformity on electric current flow in partially ionized plasmas is made. An Ohm's law for a nonuniform plasma was derived, from which Rosa's equation is obtained as a special case. Making use of this new Ohm's law, the effective electrical conductivity and Hall coefficient are determined for isotropically turbulent plasmas. They are found to be in good agreement with the results obtained previously. (author)

  1. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  2. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  3. DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT

    International Nuclear Information System (INIS)

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun

    2011-01-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.

  4. Cross-field Mobility in a Pure Electron Plasma

    International Nuclear Information System (INIS)

    Fossum, E.C.; King, L.B.

    2006-01-01

    An electron trapping apparatus was constructed in order to study electron dynamics in the defining electric and magnetic field of a Hall-effect thruster. The approach presented here decouples the cross-field mobility from plasma effects by conducting measurements on a pure electron plasma in a highly controlled environment. Dielectric walls are removed completely eliminating all wall effect; thus, electrons are confined solely by a radial magnetic field and a crossed, independently-controlled, axial electric field that induces the closed-drift azimuthal Hall current. Electron trajectories and cross-field mobility were examined in response to electric and magnetic field strength and background neutral density

  5. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  6. Magnetic field propagation in a two ion species planar plasma opening switch

    International Nuclear Information System (INIS)

    Strauss, H. R.; Doron, R.; Arad, R.; Rubinstein, B.; Maron, Y.; Fruchtman, A.

    2007-01-01

    Three fluid plasma evolution equations are applied to the problem of magnetic field propagation in a planar plasma opening switch. For certain initial conditions in which Hall parameter H∼1, magnetic field penetration due to the Hall field, initially, as expected, either opposes or adds to the hydromagnetic pushing, depending on the polarity of the magnetic field relative to the density gradient. Later, however, the plasma pushing by the magnetic field is found in the case studied here to modify the plasma density in a way that the density gradient tends to align with the magnetic field gradient, effectively turning off the Hall effect. The penetration of the magnetic field then ceases and plasma pushing becomes the dominant process

  7. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  8. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  9. A study on evacuation time from lecture halls in Faculty of Engineering, Universiti Putra Malaysia

    Science.gov (United States)

    Othman, W. N. A. W.; Tohir, M. Z. M.

    2018-04-01

    An evacuation situation in any building involves many risks. The geometry of building and high potential of occupant load may affect the efficiency of evacuation process. Although fire safety rules and regulations exist, they remain insufficient to guarantee the safety of all building occupants and do not prevent the dramatic events to be repeated. The main objective of this project is to investigate the relationship between the movement time, travel speed and occupant density during a series of evacuation drills specifically for lecture halls. Generally, this study emphasizes on the movement of crowd within a limited space and includes the aspects of human behaviour. A series of trial evacuations were conducted in selected lecture halls at Faculty of Engineering, Universiti Putra Malaysia with the aim of collecting actual data for numerical analysis. The numerical data obtained during trial evacuations were used to determine the evacuation time, crowd movement and behaviour during evacuation process particularly for lecture halls. The evacuation time and number of occupants exiting from each exit were recorded. Video camera was used to record and observe the movement behaviour of occupants during evacuations. EvacuatioNZ was used to simulate the trials evacuations of DK 5 and the results predicted were compared with experimental data. EvacuatioNZ was also used to predict the evacuation time and the flow of occupants exiting from each door for DK 4 and DK 8.

  10. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  11. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    Science.gov (United States)

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  12. Prediction of giant intrinsic spin-Hall effect in strained p-GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph; Kubis, Tillmann; Vogl, Peter [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2009-07-01

    We present a systematic study of the intrinsic spin-Hall effect and its inverse effect in various two dimensional nanostructures using the non-equilibrium Green's function technique. We include elastic impurity scattering as well as inelastic acoustical phonon scattering. The parameters for the Dresselhaus and Rashba spin-orbit coupling are obtained from an atomistic tight binding calculation. We predict exceptionally large spin polarization effects in specially band engineered and geometrically designed nanostructures. In strained p-GasAs, we find a k-linear spin splitting that is enhanced by a factor of 50 compared to the unstrained case. We propose a T shaped three-terminal device that acts as a spin polarizer without external magnetic field. Optimizing the geometry with respect to the spin-precession length results in a spin accumulation at the drain contacts of up to 25%. We also study the inverse intrinsic spin-Hall effect. In a four-terminal ''H'' shaped structure it can be used to measure the direct spin-Hall effect by simply applying a gate voltage. For such a measurement, we predict a threshold value for the spin-orbit coupling strength that cannot be met by simple n-GaAs systems.

  13. Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, A; Behr, G; Griessmann, H; Teichert, S; Lange, H

    1997-07-01

    The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

  14. The effect of magnetic mirror on near wall conductivity in Hall thrusters

    International Nuclear Information System (INIS)

    Yu, D.; Liu, H.; Fu, H.; Cao, Y.

    2008-01-01

    The effect of magnetic mirror on near wall conductivity is studied in the acceleration region of Hall thrusters. The electron dynamics process in the plasma is described by test particle method, in which electrons are randomly emitted from the centerline towards the inner wall of the channel. It is found that the effective collision coefficient, i.e. the rate of electrons colliding with the wall, changes dramatically with the magnetic mirror effect being considered; and that it decreases further with the increase of magnetic mirror ratio to enhance the electron mobility accordingly. In particular, under anistropic electron velocity distribution conditions, the magnetic mirror effect becomes even more prominent. Furthermore, due to decrease in magnetic mirror ratio from the exhaust plane to the anode in Hall thrusters, the axial gradient of electron mobility with magnetic mirror effect is greater than without it. The magnetic mirror effects on electron mobility are derived analytically and the results are found in agreement with the simulation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  16. Hamaoka Atomic Energy Hall, Chubu Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Y [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1979-10-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m/sup 2/ surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m/sup 2/ total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979.

  17. Hamaoka Atomic Energy Hall, Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kawasaki, Yukio

    1979-01-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m 2 surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m 2 total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979. (Kako, I.)

  18. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  19. G. Stanley Hall, Child Study, and the American Public.

    Science.gov (United States)

    Young, Jacy L

    2016-01-01

    In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.

  20. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness