WorldWideScience

Sample records for plasmalogens

  1. Identification of plasmalogen in the gut of silkworm (Bombyx mori).

    Science.gov (United States)

    Aboshi, Takako; Nishida, Ritsuo; Mori, Naoki

    2012-08-01

    Herbivorous insect species are constantly challenged with endogenous and exogenous oxidative stress. Consequently, they possess an array of antioxidant enzymes and small molecular weight antioxidants. Lipid-soluble small molecular antioxidants, such as tocopherols, have not been well studied in insects but may play important antioxidant roles. In this study, we identified plasmalogen phosphatidylethanolamines (pPEs) as well as α-, β/γ-, δ-tocopherol in the larvae of the silkworm Bombyx mori by LCMS analyses and examined their distribution. Plasmalogen are reported to inhibit the metal ion induced oxidation. The composition of tocopherols was the same among gut contents, gut tissues, and the other tissues. However, plasmalogens, a unique class of glycerophospholipids rich in polyunsaturated fatty acids and containing a vinyl ether bond at the sn-1 position, were mainly distributed in gut tissues. Plasmalogens might protect gut tissues from oxidation stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Plasmalogens Inhibit APP Processing by Directly Affecting γ-Secretase Activity in Alzheimer's Disease

    Science.gov (United States)

    Rothhaar, Tatjana L.; Grösgen, Sven; Haupenthal, Viola J.; Burg, Verena K.; Hundsdörfer, Benjamin; Mett, Janine; Riemenschneider, Matthias; Grimm, Heike S.; Hartmann, Tobias; Grimm, Marcus O. W.

    2012-01-01

    Lipids play an important role as risk or protective factors in Alzheimer's disease (AD). Previously it has been shown that plasmalogens, the major brain phospholipids, are altered in AD. However, it remained unclear whether plasmalogens themselves are able to modulate amyloid precursor protein (APP) processing or if the reduced plasmalogen level is a consequence of AD. Here we identify the plasmalogens which are altered in human AD postmortem brains and investigate their impact on APP processing resulting in Aβ production. All tested plasmalogen species showed a reduction in γ-secretase activity whereas β- and α-secretase activity mainly remained unchanged. Plasmalogens directly affected γ-secretase activity, protein and RNA level of the secretases were unaffected, pointing towards a direct influence of plasmalogens on γ-secretase activity. Plasmalogens were also able to decrease γ-secretase activity in human postmortem AD brains emphasizing the impact of plasmalogens in AD. In summary our findings show that decreased plasmalogen levels are not only a consequence of AD but that plasmalogens also decrease APP processing by directly affecting γ-secretase activity, resulting in a vicious cycle: Aβ reduces plasmalogen levels and reduced plasmalogen levels directly increase γ-secretase activity leading to an even stronger production of Aβ peptides. PMID:22547976

  3. Human and great ape red blood cells differ in plasmalogen levels and composition.

    Science.gov (United States)

    Moser, Ann B; Steinberg, Steven J; Watkins, Paul A; Moser, Hugo W; Ramaswamy, Krishna; Siegmund, Kimberly D; Lee, D Rick; Ely, John J; Ryder, Oliver A; Hacia, Joseph G

    2011-06-17

    Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross

  4. Human and great ape red blood cells differ in plasmalogen levels and composition

    Directory of Open Access Journals (Sweden)

    Ely John J

    2011-06-01

    Full Text Available Abstract Background Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. Results In a human and great ape cohort, we measured the red blood cell (RBC levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. Conclusion We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and

  5. Deuterium nuclear magnetic resonance studies on the plasmalogens and the glycerol acetals of plasmalogens of Clostridium butyricum and Clostridium beijerinckii

    International Nuclear Information System (INIS)

    Malthaner, M.; Seelig, J.; Johnston, N.C.; Goldfine, H.

    1987-01-01

    Deuterium nuclear magnetic resonance was used to investigate the structure of different lipid fractions isolated from the anaerobic bacteria Clostridium butyricum and Clostridium beijerinckii. The fractions isolated from C. butyricum were (1) phosphatidylethanolamine/plasmenylethanolamine and (2) the glycerol acetal of plasmenylethanolamine, and from C. beijerinckii similar fractions containing principally (1) phosphatidyl-N-monomethylethanolamine, along with its plasmalogen, and (2) the glycerol acetal of this plasmalogen were isolated. The third fraction from both species consisted largely of the acidic lipids phosphatidylglycerol and cardiolipin along with plasmalogen forms of these lipids. Palmitic acid with deuterium labels at C-2, C-3, or C-4 or oleic acid with deuterium labels at C-2 and C-9,10 was added to the growth medium and incorporated to various extents in the lipid fractions. Biochemical analysis showed that palmitic acid and oleic acid were preferentially bound to the sn-2 and sn-1 positions, respectively, of the glycerol backbone when both fatty acids were added to the medium. From the 2 H NMR spectra, the hydrocarbon chain ordering near the lipid-water interface could be determined and appeared to be similar for all three lipid fractions. The deuterium quadrupole splitting and order parameter were low at the C-2 segment and increased by almost a factor of 2 at positions C-3 and C-4 for cells fed with deuteriated palmitic acid along with unlabeled oleic acid. These results agree with previous findings on pure diacyl lipids in which the sn-2 chain was found to adopt a bent conformation at the carbon segment C-2. However, two unusual quadrupole splittings could be detected for the plasmalogens. By comparison with other model systems it could be concluded that the double bond is aligned essentially parallel with the long axis of the hydrocarbon chains

  6. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-10-01

    Full Text Available Abstract Background Childhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011 to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1 and rhizomelic chrondrodysplasia punctata type 2 (RCDP2 lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD lymphocytes which possess a proteolipid protein-1 (PLP1 missense mutation that results in abnormal PLP1 folding and it's accumulation in the endoplasmic reticulum (ER, the cellular site of the last steps in plasmalogen synthesis. In vivo incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency. Results In both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6 in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver. Conclusions Our data demonstrate that PPI-1011 is activated

  7. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  8. Gaucher disease: plasmalogen levels in relation to primary lipid abnormalities and oxidative stress.

    Science.gov (United States)

    Moraitou, Marina; Dimitriou, Evangelia; Dekker, Nick; Monopolis, Ioannis; Aerts, Johannes; Michelakakis, Helen

    2014-01-01

    Plasmalogens represent a unique class of phospholipids. Reduced red blood cell plasmalogen levels in Gaucher disease patients were reported, correlating to total disease burden. The relation between plasmalogen abnormalities in Gaucher disease patients and primary glycosphingolipid abnormalities, malonyldialdehyde levels, an indicator of lipid peroxidation, and the total antioxidant status was further investigated. Significant reduction of C16:0 and C18:0 plasmalogens in red blood cells of Gaucher disease patients was confirmed. In parallel, a significant increase in the glucosylceramide/ceramide ratio in red blood cell membranes, as well as an average 200-fold increase in plasma glucosylsphingosine levels was observed. Red blood cell malonyldialdehyde levels were significantly increased in patients, whereas their total antioxidant status was significantly reduced. A negative correlation between plasmalogen species and glucosylceramide, ceramide, glucosylceramide/ceramide ratio, glucosylsphingosine and malonyldialdehyde, significant for the C16:0 species and all the above parameters with the exception of malonyldialdehyde levels, was found along with a positive non-significant correlation with the total antioxidant status. Our results indicate that increased lipid peroxidation and reduced total antioxidant status exist in Gaucher disease patients. They demonstrate a clear link between plasmalogen levels and the primary glycolipid abnormalities characterizing the disorder and an association with the increased oxidative stress observed in Gaucher disease patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Possible role for plasmalogens in protecting animal cells against photosensitized killing

    International Nuclear Information System (INIS)

    Zoeller, R.A.; Morand, O.H.; Raetz, C.R.

    1988-01-01

    Chinese hamster ovary (CHO) cells incorporate 12-(1'-pyrene) dodecanoic acid (P12) into membrane lipids. Exposure of P12-labeled cells to long wavelength ultraviolet light causes cell killing, presumably because excitation of the pyrene moiety (a photosensitizer) leads to the generation of reactive oxygen species. Cytotoxicity is dependent upon the concentration of P12 used to label the cells, and time of UV exposure, and the presence of oxygen during irradiation. CHO mutant cells deficient in plasmalogen biosynthesis and peroxisome assembly are several orders of magnitude more sensitive to P12/UV treatment than wild-type cells, permitting direct selection of one wild-type cell in 1 X 10(4) mutant cells. A major factor responsible for the P12/UV hypersensitivity of these mutants appears to be the absence of plasmalogens. Supplementation of the mutants with 1-O-hexadecyl-sn-glycerol restores plasmalogen levels and nearly normal resistance to P12/UV treatment, whereas the biogenesis of peroxisomes is not restored. The P12/UV hypersensitivity of the plasmalogen-deficient mutants, together with the selective, P12/UV-induced decomposition of plasmalogens in wild-type cells, documented in the accompanying manuscript, suggest that the vinyl ether linkage of plasmalogens plays a direct role in protecting animal cell membranes against certain oxidative stresses

  10. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    OpenAIRE

    ?llen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, G?nter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl? system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood?brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phlo...

  11. Effect of ethanol amine plasmalogens on Fe-induced peroxidation of arachidonic acid in dipalmitoylphosphatidylcholine vesicles.

    Science.gov (United States)

    Omodeo Salè, M F; Rizzo, A M; Masserini, M

    2000-12-01

    We have investigated the influence of ethanolamine plasmalogens on iron-induced oxidation of arachidonic acid in dipalmitoylphosphatidylcholine (DPPC) vesicles. Lipoperoxidation was induced by the addition of 50 microM FeSO4 and studied above (50 degrees C) and below (15 degrees C) the gel-to liquid transition temperature of the vesicles, at two different pH values (7.4 or 6.4). The extent of peroxidation was measured as thiobarbituric reactive product formed and the influence exerted by ethanolamine plasmalogens (PEPL) in this process was compared to that of dipalmitoylphosphatidylethanolamine (DPPE) and diacylphosphatidylethanolamines (DAPE). The extent of peroxidation of arachidonic acid embedded in DPPC vesicles was similar at the two temperatures and greater at 50 degrees C under acidic conditions. However, the peroxidative process was significantly decreased at 50 degrees C in the presence of PEPL, but not of DPPE or DAPE and the inhibitory effect was enhanced at pH 6.4. The possibility that a different phase distribution of the phospholipids, namely a transition from a lamellar to a hexagonal phase, may play a role in the scavenger effect of ethanolamine plasmalogens is discussed.

  12. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-12-01

    Full Text Available Abstract Introduction Docosahexaenoic acid (DHA and DHA-containing ethanolamine plasmalogens (PlsEtn are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn. Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3

  13. Identification of Plasmalogen Cardiolipins from Pectinatus by Liquid Chromatography-High Resolution Electrospray Ionization Tandem Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Matoulková, D.; Kyselová, I.; Sigler, Karel

    2013-01-01

    Roč. 48, č. 12 (2013), s. 1237-1251 ISSN 0024-4201 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Pectinatus * Plasmalogens * Cardiolipins Subject RIV: EE - Microbiology, Virology Impact factor: 2.353, year: 2013

  14. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Brites, Pedro

    2010-01-01

    Ether-phospholipids represent an important subclass of phospholipids in animal cell membranes characterized by the presence of an ether bond at the sn-I position and the enrichment of PUFAs at the sn-2 position. Of the different ether-phospholipids, plasmalogens are the most abundant form and their

  15. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    Science.gov (United States)

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  16. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available Neuronal cells are susceptible to many stresses, which will cause the apoptosis and neurodegenerative diseases. The precise molecular mechanism behind the neuronal protection against these apoptotic stimuli is necessary for drug discovery. In the present study, we have found that plasmalogens (Pls, which are glycerophospholipids containing vinyl ether linkage at sn-1 position, can protect the neuronal cell death upon serum deprivation. Interestingly, caspse-9, but not caspase-8 and caspase-12, was cleaved upon the serum starvation in Neuro-2A cells. Pls treatments effectively reduced the activation of caspase-9. Furthermore, cellular signaling experiments showed that Pls enhanced phosphorylation of the phosphoinositide 3-kinase (PI3K-dependent serine/threonine-specific protein kinase AKT and extracellular-signal-regulated kinases ERK1/2. PI3K/AKT inhibitor LY294002 and MAPK/ERK kinase (MEK inhibitor U0126 treatments study clearly indicated that Pls-mediated cell survival was dependent on the activation of these kinases. In addition, Pls also inhibited primary mouse hippocampal neuronal cell death induced by nutrient deprivation, which was associated with the inhibition of caspase-9 and caspase-3 cleavages. It was reported that Pls content decreased in the brain of the Alzheimer's patients, which indicated that the reduction of Pls content could endanger neurons. The present findings, taken together, suggest that Pls have an anti-apoptotic action in the brain. Further studies on precise mechanisms of Pls-mediated protection against cell death may lead us to establish a novel therapeutic approach to cure neurodegenerative disorders.

  17. Gas chromatography/mass spectrometry analysis of very long chain fatty acids, docosahexaenoic acid, phytanic acid and plasmalogen for the screening of peroxisomal disorders

    NARCIS (Netherlands)

    Takemoto, Yasuhiko; Suzuki, Yasuyuki; Horibe, Ryoko; Shimozawa, Nobuyuki; Wanders, Ronald J. A.; Kondo, Naomi

    2003-01-01

    Very long chain fatty acids (VLCFAs) and docosahexaenoic acid (DHA), phytanic acid, and plasmalogens are usually measured individually. A novel method for the screening of peroxisomal disorders, using gas chromatography/mass spectrometry (GC/MS), was developed. Saturated and unsaturated fatty acids,

  18. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  19. A comprehensive lipidomic screen of pancreatic β-cells using mass spectroscopy defines novel features of glucose-stimulated turnover of neutral lipids, sphingolipids and plasmalogens

    Directory of Open Access Journals (Sweden)

    Gemma L. Pearson

    2016-06-01

    Full Text Available Objective: Glucose promotes lipid remodelling in pancreatic β-cells, and this is thought to contribute to the regulation of insulin secretion, but the metabolic pathways and potential signalling intermediates have not been fully elaborated. Methods: Using mass spectrometry (MS we quantified changes in approximately 300 lipid metabolites in MIN6 β-cells and isolated mouse islets following 1 h stimulation with glucose. Flux through sphingolipid pathways was also assessed in 3H-sphinganine-labelled cells using TLC. Results: Glucose specifically activates the conversion of triacylglycerol (TAG to diacylglycerol (DAG. This leads indirectly to the formation of 18:1 monoacylglycerol (MAG, via degradation of saturated/monounsaturated DAG species, such as 16:0_18:1 DAG, which are the most abundant, immediate products of glucose-stimulated TAG hydrolysis. However, 16:0-containing, di-saturated DAG species are a better direct marker of TAG hydrolysis since, unlike the 18:1-containing DAGs, they are predominately formed via this route. Using multiple reaction monitoring, we confirmed that in islets under basal conditions, 18:1 MAG is the most abundant species. We further demonstrated a novel site of glucose to enhance the conversion of ceramide to sphingomyelin (SM and galactosylceramide (GalCer. Flux and product:precursor analyses suggest regulation of the enzyme SM synthase, which would constitute a separate mechanism for localized generation of DAG in response to glucose. Phosphatidylcholine (PC plasmalogen (P species, specifically those containing 20:4, 22:5 and 22:6 side chains, were also diminished in the presence of glucose, whereas the more abundant phosphatidylethanolamine plasmalogens were unchanged. Conclusion: Our results highlight 18:1 MAG, GalCer, PC(P and DAG/SM as potential contributors to metabolic stimulus-secretion coupling. Author Video: Author Video Watch what authors say about their articles Keywords: Pancreatic β-cell, Insulin

  20. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology

    Directory of Open Access Journals (Sweden)

    Fabio Simbari

    2016-07-01

    Full Text Available Extracellular vesicles (EVs mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of

  1. Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia

    Science.gov (United States)

    Tan, Ricardo; Giral, Philippe; Robillard, Paul; Kontush, Anatol; Chapman, M. John

    2016-01-01

    Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (−41%) and LDL-cholesterol (−38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3. PMID:27581680

  2. Impact of a Standard Rodent Chow Diet on Tissue n-6 Fatty Acids, Δ9-Desaturation Index, and Plasmalogen Mass in Rats Fed for One Year.

    Science.gov (United States)

    Pédrono, F; Boulier-Monthéan, N; Catheline, D; Legrand, P

    2015-11-01

    Although many studies focus on senescence mechanisms, few habitually consider age as a biological parameter. Considering the effect of interactions between food and age on metabolism, here we depict the lipid framework of 12 tissues isolated from Sprague-Dawley rats fed standard rodent chow over 1 year, an age below which animals are commonly studied. The aim is to define relevant markers of lipid metabolism influenced by age in performing a fatty acid (FA) and dimethylacetal profile from total lipids. First, our results confirm impregnation of adipose and muscular tissues with medium-chain FA derived from maternal milk during early infancy. Secondly, when animals were switched to standard croquettes, tissues were remarkably enriched in n-6 FA and especially 18:2n-6. This impregnation over time was coupled with a decrease of the desaturation index and correlated with lower activities of hepatic Δ5- and Δ6-desaturases. In parallel, we emphasize the singular status of testis, where 22:5n-6, 24:4n-6, and 24:5n-6 were exceptionally accumulated with growth. Thirdly, 18:1n-7, usually found as a discrete FA, greatly accrued over the course of time, mostly in liver and coupled with Δ9-desaturase expression. Fourthly, skeletal muscle was characterized by a surprising enrichment of 22:6n-3 in adults, which tended to decline in older rats. Finally, plasmalogen-derived dimethylacetals were specifically abundant in brain, erythrocytes, lung, and heart. Most notably, a shift in the fatty aldehyde moiety was observed, especially in brain and erythrocytes, implying that red blood cell analysis could be a good indicator of brain plasmalogens.

  3. Targeted metabolomics reveals reduced levels of polyunsaturated choline plasmalogens and a smaller dimethylarginine/arginine ratio in the follicular fluid of patients with a diminished ovarian reserve.

    Science.gov (United States)

    de la Barca, J M Chao; Boueilh, T; Simard, G; Boucret, L; Ferré-L'Hotellier, V; Tessier, L; Gadras, C; Bouet, P E; Descamps, P; Procaccio, V; Reynier, P; May-Panloup, P

    2017-11-01

    Does the metabolomic profile of the follicular fluid (FF) of patients with a diminished ovarian reserve (DOR) differ from that of patients with a normal ovarian reserve (NOR)? The metabolomic signature of the FF reveals a significant decrease in polyunsaturated choline plasmalogens and methyl arginine transferase activity in DOR patients compared to NOR patients. The composition of the FF reflects the exchanges between the oocyte and its microenvironment during its acquisition of gametic competence. Studies of the FF have allowed identification of biomarkers and metabolic pathways involved in various pathologies affecting oocyte quality, but no large metabolomic analysis in the context of ovarian ageing and DOR has been undertaken so far. This was an observational study of the FF retrieved from 57 women undergoing in vitro fertilization at the University Hospital of Angers, France, from November 2015 to September 2016. The women were classified in two groups: one including 28 DOR patients, and the other including 29 NOR patients, serving as controls. Patients were enrolled in the morning of oocyte retrieval after ovarian stimulation. Once the oocytes were isolated for fertilization and culture, the FF was pooled and centrifuged for analysis. A targeted quantitative metabolomic analysis was performed using high-performance liquid chromatography coupled with tandem mass spectrometry, and the Biocrates Absolute IDQ p180 kit. The FF levels of 188 metabolites and several sums and ratios of metabolic significance were assessed by multivariate and univariate analyses. A total of 136 metabolites were accurately quantified and used for calculating 23 sums and ratios. Samples were randomly divided into training and validation sets. The training set, allowed the construction of multivariate statistical models with a projection-supervised method, i.e. orthogonal partial least squares discriminant analysis (OPLS-DA), applied to the full set of metabolites, or the penalized

  4. Identification of long and very long chain fatty acids, plasmalogen-C16:0 and phytanic acid as new lipid biomarkers in Tunisian coronary artery disease patients.

    Science.gov (United States)

    Hadj Ahmed, Samia; Koubaa, Nadia; Kharroubi, Wafa; Zarrouk, Amira; Mnari, Amira; Batbout, Fethi; Gamra, Habib; Hammami, Sonia; Lizard, Gérard; Hammami, Mohamed

    2017-07-01

    Long and very long chain fatty acids (LCFAs and VLCFAs) may play an active role in coronary artery diseases (CAD) etiology. Our aim was to evaluate the associations between LCPUFAs (C20:4n-6; C20:5n-3 and C22:6n-3) and VLCSFAs (C22:0, C24:0; and C26:0), as well as markers of peroxisomal integrity evaluated by phytanic acid and plasmalogen-C16:0 (PL-C16:0) in addition to the markers of lipid peroxidation (malondialdehyde [MDA] and conjugated dienes [CD]) and inflammation (high sensitivity C-reactive protein [hs-CRP]) with vascular severity evaluated by Gensini score in order to determine their possible effects on CAD in Tunisian population. Lipidomic strategy based on GC/MS-SIM was used to quantify LCPUFAs, VLCSFAs, and PL-C16:0 in red blood cells of CAD patients, non-CAD patients, and controls. We observed a significant increase in phytanic acid, PL-C16:0 and VLCFAs, particularly C26:0, in CAD group compared to controls. Further our findings showed positive correlations of C26:0 with MDA and with vascular severity score (Gensini score). In addition, a significant negative correlation was shown between hs-CRP and C22:6 n-3 (r=-0.297; p=0.002) and a significant positive association was observed between hs-CRP and C20:4 n-6 levels (r=0.196; p=0.039). Our results show changes in LCPUFAs and VLCSFAs concentrations in RBC among study groups, and suggest alterations in fatty acids metabolism regulated by elongase and desaturase enzymes. The positive correlations of C20:4n-6 and the negative correlations of C22:6n-3, simultaneously with Gensini score and hs-CRP, suggest a link of both inflammation and vascular severity complication of CAD with LCPUFAs and VLCSFAs. Induction of lipid oxidation, can be one of the outcomes of LCFAs and VLCFAs accumulation in vascular tissues and, thus, playing an important role in the pathogenesis of atherosclerosis. Quantification of LCPUFAs and VLCSFAs, phytanic acid and PL-C16:0 simultaneously, would be of great value for the screening of

  5. Biosynthesis of plasmalogens by the microsomal fraction of Fischer R-3259 sarcoma. Influence of specific 2-acyl chains on the desaturation of 1-alkyl-2-acyl-sn-gycero-3-phosphoethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Wykle, R.L.; Schremmer, J.M.

    1979-08-07

    In the Fischer R-3259 sarcoma, ethanolamine plasmalogens are synthesized from 1-akyl-2-acyl-sn-glycero-3-phosphoethanolamine by a microsomal desaturase that inserts a ..delta../sup 1/ double bond in the alkyl chain. In the present study, a series of 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE substrates containing specific acyl groups ranging from C/sub 2/ /sub 0/ to C/sub 20/ /sub 4/ at the 2 position were prepared and tested as substrates for the microsomal ..delta../sup 1/-alkyl desaturase. The microsomal preparations contained an acyl hydrolase that removed the C/sub 2/ /sub 0/, C/sub 4/ /sub 0/, and C/sub 7/ /sub 0/ acyl groups from the 2 position. By inhibiting the hydrolase with diisopropyl fluorophosphate, it was possible to test conversion of the unaltered substrates to plasmalogens. The alkyl desaturase exhibited little discrimination among the specific acyl derivatives tested. The highest rate of desaturation was obtained with 1-(1-/sup 14/C)-hexadecyl-2-acyl-GPE synthesized in situ in the microsomes via acylation of 1-(1-/sup 14/C)hexadecyl-GPE; this rate was threefold that observed with exogenously acylated substrates. The 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE synthesized in situ contained highly unsaturated acyl groups; no selectivity of the desaturase for specific acyl chains was detected when the different molecular species of 1-(1-/sup 14/C)alkyl-2-acyl-GPE and 1-(1-/sup 14/C)alk-1'-eyl-2-acyl-GPE were compared. The short-chain substrates, being moe hydrophilic, mimicked the chromatographic behavior of 1-alkyl-GPE, yet they did not resemble the lyso compound in its higher conversion to plasmalogens. Thus, despite their similar R/sub f/ values, the packing of the short-chain acyl homologues in the membrane may be quite different from that of the lyso compound. Binding of 1-hexadecyl-2-acyl-GPE and 1-hexadecyl-GPE to microsomal membranes was similar.

  6. Lipidomic analysis of bacterial plasmalogens

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Křesinová, Zdena; Kolouchová, I.; Sigler, Karel

    2012-01-01

    Roč. 57, č. 5 (2012), s. 463-472 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GAP503/11/0215; GA MŠk 2B06156 Institutional support: RVO:61388971 Keywords : plasmogens * lipids * liquid chromatography Subject RIV: EE - Microbiology, Virology Impact factor: 0.791, year: 2012

  7. Changes in Membrane Plasmalogens of Clostridium pasteurianum during Butanol Fermentation as Determined by Lipidomic Analysis

    Czech Academy of Sciences Publication Activity Database

    Kolek, J.; Patáková, P.; Melzoch, K.; Sigler, Karel; Řezanka, Tomáš

    2015-01-01

    Roč. 10, č. 3 (2015) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : FATTY-ACIDS * ACETOBUTYLICUM ATCC-824 * STREPTOMYCES -FRADIAE Subject RIV: EE - Microbiology, Virology Impact factor: 3.057, year: 2015

  8. Mutation of Bacillus firmus OF4 to duramycin resistance result in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form

    International Nuclear Information System (INIS)

    Clejan, S.; Guffanti, A.A.; Cohen, M.A.; Krulwich, T.A.

    1989-01-01

    Mutant strains of alkalophilic Bacillus firms OF4 that were selected for resistance to duramycin had greatly reduced levels of membrane diacylphosphatidylethanolamine, as had been found in studies of such mutants of Bacillus subtilis. In the B. firmus strains, however, substantial levels of plasmenylethanolamine were found. This is an unusual membrane component for an aerobic eubacterium, but the presence of trace amounts even in the wild type was confirmed in experiments with 32P i -labeled growth medium. The membrane lipid composition of the duramycin-resistant strains had several other changes that also left alkalophilic growth unimpaired

  9. Deficiency of acyl-CoA: Dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome

    NARCIS (Netherlands)

    Bosch, H. van den; Schutgens, R.B.H.; Romeyn, G.J.; Wanders, R.J.A.; Schrakamp, G.; Heymans, H.S.A.

    1984-01-01

    We have recently reported on plasmalogen deficiency in tissues and fibroblasts from patients with Zellweger syndrome. In this paper we have analyzed the activity of the first enzyme in the pathway leading to plasmalogen biosynthesis, i.e. acyl-CoA: dihydroxyacetone phosphate acyltransferase in

  10. Rhizomelic chondrodysplasia punctata and cardiac pathology

    NARCIS (Netherlands)

    Huffnagel, Irene C.; Clur, Sally-Ann B.; Bams-Mengerink, Annemieke M.; Blom, Nico A.; Wanders, Ronald J. A.; Waterham, Hans R.; Poll-The, Bwee Tien

    2013-01-01

    Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive peroxisomal disorder characterised by rhizomelia, contractures, congenital cataracts, facial dysmorphia, severe psychomotor defects and growth retardation. Biochemically, the levels of plasmalogens (major constituents of cellular

  11. Lipidomics as an important key for the identification of beer-spoilage bacteria.

    Science.gov (United States)

    Řezanka, T; Matoulková, D; Benada, O; Sigler, K

    2015-06-01

    Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was used for characterizing intact plasmalogen phospholipid molecules in beer-spoilage bacteria. Identification of intact plasmalogens was carried out using collision-induced dissociation and the presence of suitable marker molecular species, both qualitative and quantitative, was determined in samples containing the anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method had a limit of detection at 1 pg for the standard, i.e. 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and be linear in the range of four orders of magnitude from 2 pg to 20 ng. This technique was applied to intact plasmalogen extracts from the samples of contaminated and uncontaminated beer without derivatization and resulted in the identification of contamination of beer by Megasphaera and Pectinatus bacteria. The limit of detection was about 830 cells of anaerobic bacteria, i.e. bacteria containing natural cyclopropane plasmalogenes (c-p-19:0/15:0), which is the majority plasmalogen located in both Megasphaera and Pectinatus. The SIM ESI-MS method has been shown to be useful for the analysis of low concentration of plasmalogens in all biological samples, which were contaminated with anaerobic bacteria, e.g. juice, not only in beer. Significance and impact of the study: Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) using collision-induced dissociation was used to characterize intact plasmalogen phospholipid molecules in beer-spoilage anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method has a detection limit of 1 pg for the standard 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and is linear within four orders of magnitude (2 pg to 20 ng). The limit of detection was about 830 cells of bacteria containing natural cyclopropane plasmalogen (c-p-19:0/15:0). SIM ESI-MS method is useful for analyzing low

  12. Variation in myelin lipid composition induced by change in environmental temperature of goldfish (Carassius auratus L. )

    Energy Technology Data Exchange (ETDEWEB)

    Selivonchick, D.P.; Roots, B.I.

    1976-04-01

    Goldfish (Carassius auratus L.) were acclimated to 5, 15, and 30/sup 0/C, and the lipid and protein composition of brain and spinal cord myelin was determined. Goldfish myelin contains less galactolipid, but more protein and phospholipid than mammalian and bird myelin. Phosphatidyl choline was the predominant phospholipid in both brain and spinal cord myelin. Fish myelin also showed a greater plasmalogen content with an average ethanolamine plasmalogen/total phosphatidyl ethanolamine ratio of 0.84. Total brain and myelin lipids, with the exception of plasmalogens, showed a resistance to change with thermal acclimation. Differences between brain and spinal cord myelin protein and phospholipids were not observed. It is suggested that temperature acclimation in poikilotherms may be used as a tool in the study of membrane adaptability.

  13. Peroxisomal localization of the immunoreactive beta-oxidation enzymes in a neonate with a beta-oxidation defect. Pathological observations in liver, adrenal cortex and kidney

    NARCIS (Netherlands)

    Espeel, M.; Roels, F.; van Maldergem, L.; de Craemer, D.; Dacremont, G.; Wanders, R. J.; Hashimoto, T.

    1991-01-01

    A boy born to healthy, unrelated parents, presented at birth with hypotonia and seizures. Very long chain fatty acids in the plasma were strongly elevated; bile acid intermediates and plasmalogen biosynthesis were normal. Acyl-CoA oxidase activity was normal. The patient died at the age of 3 months.

  14. LC-ESI-MS/MS Identification of Polar Lipids of Two Thermophilic Anoxybacillus Bacteria Containing a Unique Lipid Pattern

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kambourova, M.; Derekova, A.; Kolouchová, I.; Sigler, Karel

    2012-01-01

    Roč. 47, č. 7 (2012), s. 729-739 ISSN 0024-4201 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Anoxybacillus * Plasmalogens * O-Aminoacylphosphatidylglycerols Subject RIV: CE - Biochemistry Impact factor: 2.557, year: 2012

  15. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    Science.gov (United States)

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously reported strains, the nine new strains did not require cholesterol and an alkenyl ether lipid (e.g., plasmalogen) for growth; however, only two strains reduced cholesterol in the absence of the plasmalogen. These two strains also produced succinate as an end product. Carbohydrate fermentation was variable; some strains produced weak acid (pH 5.5 to 6.0) from only a few carbohydrates, whereas other strains produced strong acid reactions (pH less than or equal to 5.5) from a wide variety of carbohydrates.

  16. High Density Lipoprotein Structural Changes and Drug Response in Lipidomic Profiles following the Long-Term Fenofibrate Therapy in the FIELD Substudy

    DEFF Research Database (Denmark)

    Yetukuri, L.; Huopaniemi, I.; Koivuniemi, A.

    2011-01-01

    In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular...... of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number...

  17. 2-Chlorohexadecanal and 2-chlorohexadecanoic acid induce COX-2 expression in human coronary artery endothelial cells

    OpenAIRE

    Messner, Maria C.; Albert, Carolyn J.; Ford, David A.

    2008-01-01

    2-Chlorohexadecanal (2-ClHDA), a 16-carbon chain chlorinated fatty aldehyde that is produced by reactive chlorinating species attack of plasmalogens, is elevated in atherosclerotic plaques, infarcted myocardium, and activated leukocytes. We tested the hypothesis that 2-ClHDA and its metabolites, 2-chlorohexadecanoic acid (2-ClHA) and 2-chlorohexadecanol (2-ClHOH), induce COX-2 expression in human coronary artery endothelial cells (HCAEC). COX-2 protein expression increased in response to 2-Cl...

  18. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    Science.gov (United States)

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  19. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    OpenAIRE

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-l...

  20. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans.

    Directory of Open Access Journals (Sweden)

    Kirsi H Pietiläinen

    2011-06-01

    Full Text Available Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.

  1. Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Zemski Berry, Karin A; Gordon, William C; Murphy, Robert C; Bazan, Nicolas G

    2014-03-01

    MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.

  2. Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans

    DEFF Research Database (Denmark)

    Pietilainen, K. H.; Rog, T.; Seppanen-Laakso, T.

    2011-01-01

    Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved...... of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested...... also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy...

  3. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  4. Lipidomic analysis of immune activation in equine leptospirosis and Leptospira-vaccinated horses.

    Science.gov (United States)

    Wood, Paul L; Steinman, Margaret; Erol, Erdal; Carter, Craig; Christmann, Undine; Verma, Ashutosh

    2018-01-01

    Currently available diagnostic assays for leptospirosis cannot differentiate vaccine from infection serum antibody. Several leptospiral proteins that are upregulated during infection have been described, but their utility as a diagnostic marker is still unclear. In this study, we undertook a lipidomics approach to determine if there are any differences in the serum lipid profiles of horses naturally infected with pathogenic Leptospira spp. and horses vaccinated against a commercially available bacterin. Utilizing a high-resolution mass spectrometry serum lipidomics analytical platform, we demonstrate that cyclic phosphatidic acids, diacylglycerols, and hydroperoxide oxidation products of choline plasmalogens are elevated in the serum of naturally infected as well as vaccinated horses. Other lipids of interest were triacylglycerols that were only elevated in the serum of infected horses and sphingomyelins that were increased only in the serum of vaccinated horses. This is the first report looking at the equine serum lipidome during leptospiral infection and vaccination.

  5. Lipidomic analysis of immune activation in equine leptospirosis and Leptospira-vaccinated horses.

    Directory of Open Access Journals (Sweden)

    Paul L Wood

    Full Text Available Currently available diagnostic assays for leptospirosis cannot differentiate vaccine from infection serum antibody. Several leptospiral proteins that are upregulated during infection have been described, but their utility as a diagnostic marker is still unclear. In this study, we undertook a lipidomics approach to determine if there are any differences in the serum lipid profiles of horses naturally infected with pathogenic Leptospira spp. and horses vaccinated against a commercially available bacterin. Utilizing a high-resolution mass spectrometry serum lipidomics analytical platform, we demonstrate that cyclic phosphatidic acids, diacylglycerols, and hydroperoxide oxidation products of choline plasmalogens are elevated in the serum of naturally infected as well as vaccinated horses. Other lipids of interest were triacylglycerols that were only elevated in the serum of infected horses and sphingomyelins that were increased only in the serum of vaccinated horses. This is the first report looking at the equine serum lipidome during leptospiral infection and vaccination.

  6. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  7. Using neurolipidomics to identify phospholipid mediators of synaptic (dysfunction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Steffany A L Bennett

    2013-07-01

    Full Text Available Not all of the mysteries of life lie in our genetic code. Some can be found buried in our membranes. These shells of fat, sculpted in the central nervous system into the cellular (and subcellular boundaries of neurons and glia, are themselves complex systems of information. The diversity of neural phospholipids, coupled with their chameleon-like capacity to transmute into bioactive molecules, provides a vast repertoire of immediate response second messengers. The effects of compositional changes on synaptic function have only begun to be appreciated. Here, we mined 29 different neurolipidomic datasets for changes in neuronal membrane phospholipid metabolism in Alzheimer’s Disease. Three overarching metabolic disturbances were detected. We found that an increase in the hydrolysis of platelet activating factor precursors and ethanolamine-containing plasmalogens, coupled with a failure to regenerate relatively rare alkyl-acyl and alkenyl-acyl structural phospholipids, correlated with disease severity. Accumulation of specific bioactive metabolites (i.e., PC(O-16:0/2:0 and PE(P-16:0/0:0 was associated with aggravating tau pathology, enhancing vesicular release, and signaling neuronal loss. Finally, depletion of PI(16:0/20:4, PI(16:0/22:6, and PI(18:0/22:6 was implicated in accelerating Aβ42 biogenesis. Our analysis further suggested that converging disruptions in platelet activating factor, plasmalogen, phosphoinositol and phosphoethanolamine, and docosahexaenoic acid metabolism may contribute mechanistically to catastrophic vesicular depletion, impaired receptor trafficking, and morphological dendritic deformation. Together, this analysis supports an emerging hypothesis that aberrant phospholipid metabolism may be one of multiple critical determinants required for Alzheimer disease conversion.

  8. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  9. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics.

    Science.gov (United States)

    Mitchell, Todd W; Buffenstein, Rochelle; Hulbert, A J

    2007-11-01

    Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

  10. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  11. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys?

    Directory of Open Access Journals (Sweden)

    Guanghou Shui

    Full Text Available BACKGROUND: Non-human primates (NHP are now being considered as models for investigating human metabolic diseases including diabetes. Analyses of cholesterol and triglycerides in plasma derived from NHPs can easily be achieved using methods employed in humans. Information pertaining to other lipid species in monkey plasma, however, is lacking and requires comprehensive experimental analysis. METHODOLOGIES/PRINCIPAL FINDINGS: We examined the plasma lipidome from 16 cynomolgus monkey, Macaca fascicularis, using liquid chromatography coupled with mass spectrometry (LC/MS. We established novel analytical approaches, which are based on a simple gradient elution, to quantify polar lipids in plasma including (i glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG; phosphatidylserine, PS; phosphatidic acid, PA; (ii sphingolipids (sphingomyelin, SM; ceramide, Cer; Glucocyl-ceramide, GluCer; ganglioside mannoside 3, GM3. Lipidomic analysis had revealed that the plasma of human and cynomolgus monkey were of similar compositions, with PC, SM, PE, LPC and PI constituting the major polar lipid species present. Human plasma contained significantly higher levels of plasmalogen PE species (p<0.005 and plasmalogen PC species (p<0.0005, while cynomolgus monkey had higher levels of polyunsaturated fatty acyls (PUFA in PC, PE, PS and PI. Notably, cynomolgus monkey had significantly lower levels of glycosphingolipids, including GluCer (p<0.0005 and GM(3 (p<0.0005, but higher level of Cer (p<0.0005 in plasma than human. We next investigated the biochemical alterations in blood lipids of 8 naturally occurring diabetic cynomolgus monkeys when compared with 8 healthy controls. CONCLUSIONS: For the first time, we demonstrated that the plasma of human and cynomolgus monkey were of similar compositions, but contained different mol distribution of individual molecular species. Diabetic monkeys

  12. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention.

    Science.gov (United States)

    Lankinen, Maria; Schwab, Ursula; Kolehmainen, Marjukka; Paananen, Jussi; Nygren, Heli; Seppänen-Laakso, Tuulikki; Poutanen, Kaisa; Hyötyläinen, Tuulia; Risérus, Ulf; Savolainen, Markku J; Hukkanen, Janne; Brader, Lea; Marklund, Matti; Rosqvist, Fredrik; Hermansen, Kjeld; Cloetens, Lieselotte; Önning, Gunilla; Thorsdottir, Inga; Gunnarsdottir, Ingibjorg; Åkesson, Björn; Dragsted, Lars Ove; Uusitupa, Matti; Orešič, Matej

    2016-03-09

    A healthy Nordic diet is associated with improvements in cardiometabolic risk factors, but the effect on lipidomic profile is not known. The aim was to investigate how a healthy Nordic diet affects the fasting plasma lipidomic profile in subjects with metabolic syndrome. Men and women (n = 200) with features of metabolic syndrome [mean age: 55 y; body mass index (in kg/m 2 ): 31.6] were randomly assigned to either a healthy Nordic (n = 104) or a control (n = 96) diet for 18 or 24 wk at 6 centers. Of the participants, 156 completed the study with plasma lipidomic measurements. The healthy Nordic diet consisted of whole grains, fruits, vegetables, berries, vegetable oils and margarines, fish, low-fat milk products, and low-fat meat. An average Nordic diet served as the control diet and included low-fiber cereal products, dairy fat-based spreads, regular-fat milk products, and a limited amount of fruits, vegetables, and berries. Lipidomic profiles were measured at baseline, week 12, and the end of the intervention (18 or 24 wk) by using ultraperformance liquid chromatography mass spectrometry. The effects of the diets on the lipid variables were analyzed with linear mixed-effects models. Data from centers with 18- or 24-wk duration were also analyzed separately. Changes in 21 plasma lipids differed significantly between the groups at week 12 (false discovery rate P Nordic diet group compared with the control group. At the end of the study, changes in lipidomic profiles did not differ between the groups. However, when the intervention lasted 24 wk, changes in 8 plasma lipids that had been identified at 12 wk, including plasmalogens, were sustained. There were no differences in changes in plasma lipids between groups with an intervention of 18 wk. By the dietary biomarker score, adherence to diet did not explain the difference in the results related to the duration of the study. A healthy Nordic diet transiently modified the plasma lipidomic profile, specifically by

  13. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-01-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  14. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention.

    Science.gov (United States)

    Grimm, Marcus O W; Michaelson, Daniel M; Hartmann, Tobias

    2017-11-01

    In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility.

    Science.gov (United States)

    Houten, Sander M; Chen, Jia; Belpoggi, Fiorella; Manservisi, Fabiana; Sánchez-Guijo, Alberto; Wudy, Stefan A; Teitelbaum, Susan L

    2016-01-01

    The consequences of ubiquitous exposure to environmental chemicals remain poorly defined. Non-targeted metabolomic profiling is an emerging method to identify biomarkers of the physiological response to such exposures. We investigated the effect of three commonly used ingredients in personal care products, diethyl phthalate (DEP), methylparaben (MPB) and triclosan (TCS), on the blood metabolome of female Sprague-Dawley rats. Animals were treated with low levels of these chemicals comparable to human exposures during prepubertal and pubertal windows as well as chronically from birth to adulthood. Non-targeted metabolomic profiling revealed that most of the variation in the metabolites was associated with developmental stage. The low-dose exposure to DEP, MPB and TCS had a relatively small, but detectable impact on the metabolome. Multiple metabolites that were affected by chemical exposure belonged to the same biochemical pathways including phenol sulfonation and metabolism of pyruvate, lyso-plasmalogens, unsaturated fatty acids and serotonin. Changes in phenol sulfonation and pyruvate metabolism were most pronounced in rats exposed to DEP during the prepubertal period. Our metabolomics analysis demonstrates that human level exposure to personal care product ingredients has detectable effects on the rat metabolome. We highlight specific pathways such as sulfonation that warrant further study.

  16. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  17. Chlorinated Phospholipids and Fatty Acids: (Pathophysiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Jenny Schröter

    2016-01-01

    Full Text Available Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl, generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated phospholipids and plasmalogens such as lysophospholipids, (chlorinated free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.

  18. 1-alkenyl-2-acyl glycerol is an intermediate in myocardial plasmenylcholine biosynthesis

    International Nuclear Information System (INIS)

    Ford, D.; Gross, R.

    1987-01-01

    The present study was undertaken to identify the metabolic pathway(s) responsible for myocardial plasmenylcholine biosynthesis. Rabbit myocardium contained .46 +/- .09 nmol/g wet wight of 1-alkenyl-2-acyl glycerol (AAG) which predominantly consisted of 16:0 molecular species at the sn-1 position. Incubation of rabbit myocardial microsomes (RMM) with [ 14 C]CDP-choline ( 14 C-CDPC) resulted in the rapid incorporation of radiolabeled choline into the choline glycerophospholipid pool. RP-HPLC separation of molecular species demonstrated that nearly equal amounts of radiolabel were incorporated into plasmenylcholine and phosphatidylcholine subclasses despite the fact that RMM contained 21 times the mass of diacyl glycerol as compared to AAG. RMM incorporation of 14 C-CDPC into choline glycerophospholipids was substantially greater than incorporation of [ 14 C] phosphorylcholine or [ 14 C] choline. RMM incorporation of 14 C-CDPC into plasmalogen molecular species was stimulated two fold by 500 μM CMP. Taken together, these results demonstrate that rabbit myocardium contains substantial quantities of AAG and that endogenous AAG is an efficient precursor of myocardial plasmenylcholine

  19. 1H Nuclear Magnetic Resonance (NMR) metabonomic study of breast cancer in Indian population

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Arshad, Farah

    2012-01-01

    Breast cancer is the most common cancer diagnosed in women worldwide with over 1.3 million new cases per year. Recently it has been observed that breast cancer is increasing very rapidly in low income countries including India. Lipids not only play very important and vital role of prime structural component in human body they are also important functional components in cellular metabolism. Transformation from benign to malignant tissue involves several biochemical processes and understanding these processes provides very useful insight related to cancer prognosis. Thus study of lipids becomes very important and NMR spectroscopy is one of the techniques which can be utilized to identifying all lipid components simultaneously. The tissue specimens (35, benign 20 and malignant 15; patient age group 47 yrs) were collected after breast surgeries and were snap frozen in liquid nitrogen. Part of all tissues was sent for routine histopathology. Lipid extraction was performed by Folch method (Folch, 1957) using cholesterol and methanol (2:1 ratio). The NMR spectra of the extracted lipids were recorded immediately after the sample preparation. All NMR experiments were performed on a Bruker Avance 800 MHz spectrometer. 1 H NMR analysis of lipid extract of breast tissue in Indian population shows there is significant elevation of phosphotidycholine, plasmalogen and esterified cholesterol with decrease in triacylglycerol in cancer breast compared to benign tissue implying that their metabolism is definitely altered during carcinogenesis. This study analyzes the role of NMR as an additional diagnostic tool on the basis of examination of lipid extract. (author)

  20. Effect of slaughter age and feeding system on the neutral and polar lipid composition of horse meat.

    Science.gov (United States)

    Belaunzaran, X; Lavín, P; Mantecón, A R; Kramer, J K G; Aldai, N

    2018-02-01

    This study was undertaken to provide a thorough analysis of the neutral lipid (NL) and polar lipid (PL) fractions of horse meat that included the content and distribution of acyl and alkenyl moieties in foals under different rearing conditions. Two groups of crossbred horses were studied; the first group was selected from suckling foals produced under grazing conditions and slaughtered at 4 months of age (n=8), and the second group was selected from concentrate-finished foals and slaughtered at 12 months of age (n=7). There were significant differences related to the age and feeding practices of foals which affected the intramuscular (IM) fat content and the fatty acid (FA) composition of NL and PL fractions. Samples from suckling foals were leaner and provided the highest content of methylation products from the plasmalogenic lipids, and total and n-3 polyunsaturated fatty acid (PUFA). By contrast, the meat from concentrate-finished foals had a higher IM fat level resulting in a greater accumulation of 16:0 and total monounsaturated FAs in the NL fraction, whereas the muscle PL fraction retained a similar FA composition between both groups. Linolenic acid was preferentially deposited in the NL fraction, but linoleic acid and the long-chain n-3 and n-6 PUFAs were incorporated into the PL fraction where they served as cell membrane constituents and in eicosanoid formation.

  1. High density lipoprotein structural changes and drug response in lipidomic profiles following the long-term fenofibrate therapy in the FIELD substudy.

    Directory of Open Access Journals (Sweden)

    Laxman Yetukuri

    Full Text Available In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular mechanisms behind this are poorly understood. Herein we investigated HDL lipidomic profiles associated with fenofibrate treatment and the drug-induced Hcy levels in the FIELD substudy. We found that fenofibrate leads to complex HDL compositional changes including increased apoA-II, diminishment of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number of apoA-II excludes neutral lipids from HDL surface and apoA-II is more deeply buried in the lipid matrix than apoA-I. In conclusion, a detailed molecular characterization of HDL may provide surrogates for predictors of drug response and thus help identify the patients who might benefit from fenofibrate treatment.

  2. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney

    International Nuclear Information System (INIS)

    Kako, K.; Kato, M.; Matsuoka, T.; Mustapha, A.

    1988-01-01

    A partially purified, membrane-bound Na + -K + -ATPase fraction, prepared from the outer medulla of porcine kidney, was incubated in the presence of 0.1-100 mM H 2 O 2 for either 15 or 30 min at 37 degree C. The activity of ouabain-sensitive Na + -K + -ATPase was reduced proportionally to the concentration of H 2 O 2 and the duration of incubation. There were decreases in SH contents and turnover rates of the Na + -K + -ATPase preparation, while malondialdehyde (MDA) and conjugated dienes were generated from the membrane lipids in the course of the incubation. The concentrations of ethanolamine (E) plasmalogen and of arachidonic acid in the E glycerophospholipid molecules were reduced by the free radical reaction. Similarly, a reduction in Na + K + -ATPase activity and the formation of MDA and conjugated dienes, together with a decrease in E glycerophospholipids, were observed when the membrane fraction was exposed to ultraviolet irradiation (254 nm) for 30 min at 4 degree C. Microsomal fractions, prepared from the outer medulla of canine kidney after 1 h of unilateral ischemia and 1 h of reperfusion, showed a decreased Na + -K + -ATPase activity, a reduced amount of SH groups, and an increased MDA. These changes were normalized by the infusion of N-mercaptopropionylglycine. These results support the view (1) that free radical generation affects the enzyme protein as well as membrane lipids, and (2) that free radicals may be formed in the ischemic reperfused kidney

  3. Multiple Beneficial Lipids Including Lecithin Detected in the Edible Invasive Mollusk Crepidula fornicata from the French Northeastern Atlantic Coast

    Science.gov (United States)

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-01-01

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin. PMID:25532566

  4. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Multiple beneficial lipids including lecithin detected in the edible invasive mollusk Crepidula fornicata from the French Northeastern Atlantic coast.

    Science.gov (United States)

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-12-22

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin.

  6. FEATURES OF INTESTINAL MICROBIOTA IN CHILDREN WITH A SYNDROME OF EXCESSIVE BACTERIAL GROWTH IN THE SMALL INTESTINE

    Directory of Open Access Journals (Sweden)

    L. A. Lityaeva

    2018-01-01

    Full Text Available The purpose of the study was to determine the features of the parietal microbiota of the intestine in children with a verified syndrome of excessive bacterial growth in the small intestine. Clinical and laboratory examination of 25 children at risk of intrauterine infection at the age of 8 months — 4 years with a verified syndrome of excess bacterial growth in the small intestine was performed based on the results of the hydrogen breath test. Investigation of the species and quantitative composition of the parietal intestinal microbiota was carried out with the help of the gas chromatography-mass spectrometry method with determination of the concentration of microbial markers by drop of blood (laboratory of bifidobacteria of the Federal Budgetary Institute of Science Moscow Research Institute of Epidemiology and Microbiology name after G.N. Gabrichevsky. It was revealed that all of them recorded a high concentration of microbial markers of gram-negative anaerobic bacteria of the colon and viruses of the Herpes family due to a deficit of representatives of priority genera (Propionibacterium Freunderherii 5-fold, Eubacterium spp. 4.8-fold, Bifidobacterium spp. 4-fold, Lactobacillus spp. 1.5-fold with an excess of endotoxin (by 1.5—2-fold and a decrease in plasmalogen (by 2-fold. These data testify to the inflammatory process of the small intestinal mucosa, which aggravates the disturbances in its functioning and confirm the informative nature of the gas chromatography and spectrometry method.

  7. The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging

    International Nuclear Information System (INIS)

    De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.; Porcellati, G.

    1984-01-01

    Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2- 3 H)glycerol and (Me- 14 C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity content of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas [Gaiti et al, 1982, 1983], was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the ( 14 C)-containing water-soluble metabolites. As a consequence, the ( 3 H)/( 14 C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment

  8. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  9. Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility.

    Directory of Open Access Journals (Sweden)

    Yumi Mizuno

    Full Text Available Peroxisomes are subcellular organelles involved in lipid metabolic processes, including those of very-long-chain fatty acids and branched-chain fatty acids, among others. Peroxisome matrix proteins are synthesized in the cytoplasm. Targeting signals (PTS or peroxisomal targeting signal at the C-terminus (PTS1 or N-terminus (PTS2 of peroxisomal matrix proteins mediate their import into the organelle. In the case of PTS2-containing proteins, the PTS2 signal is cleaved from the protein when transported into peroxisomes. The functional mechanism of PTS2 processing, however, is poorly understood. Previously we identified Tysnd1 (Trypsin domain containing 1 and biochemically characterized it as a peroxisomal cysteine endopeptidase that directly processes PTS2-containing prethiolase Acaa1 and PTS1-containing Acox1, Hsd17b4, and ScpX. The latter three enzymes are crucial components of the very-long-chain fatty acids β-oxidation pathway. To clarify the in vivo functions and physiological role of Tysnd1, we analyzed the phenotype of Tysnd1(-/- mice. Male Tysnd1(-/- mice are infertile, and the epididymal sperms lack the acrosomal cap. These phenotypic features are most likely the result of changes in the molecular species composition of choline and ethanolamine plasmalogens. Tysnd1(-/- mice also developed liver dysfunctions when the phytanic acid precursor phytol was orally administered. Phyh and Agps are known PTS2-containing proteins, but were identified as novel Tysnd1 substrates. Loss of Tysnd1 interferes with the peroxisomal localization of Acaa1, Phyh, and Agps, which might cause the mild Zellweger syndrome spectrum-resembling phenotypes. Our data established that peroxisomal processing protease Tysnd1 is necessary to mediate the physiological functions of PTS2-containing substrates.

  10. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system.

    Science.gov (United States)

    Song, Shuang; Cheong, Ling-Zhi; Man, Qing-Qing; Pang, Shao-Jie; Li, Yue-Qi; Ren, Biao; Zhang, Jian

    2018-05-01

    Early diagnosis of neural changes causing cognitive impairment is critical for development of preventive therapies for dementia. Biomarkers currently characterized cannot be extensively applied due to the invasive sampling of cerebrospinal fluid. The other imaging approaches are either expensive or require a high technique. Phospholipids (PLs), which are basic constituents of neurons, might be a key variable in the pathogenesis of cognitive impairment. Changes in plasma PL provide the possibility for development of novel biomarkers with minimal invasion and high patient acceptance. In this work, a HILIC-ESI-IT-TOF-MS system was introduced for untargeted profiling of plasma PLs to investigate the relationship between changes of plasma PL profiles and cognitive impairment. A total of 272 types of PL molecular structures were characterized in human plasma and quantified through the internal standard method. Univariate analysis shows 29 PLs were significantly different between the control (n = 41) and the cognitive impairment (CI) group (n = 41). Multivariate analysis (PCA and OPLS-DA) was conducted based on these 29 potential PL biomarkers. Both univariate and multivariate analyses show abnormality of PL metabolism in the CI group, and the downregulation of ethanolamine plasmalogen (pPE) supply, especially those with PUFAs, in the circulation system should be strongly associated with neurodegeneration. A discriminative model was established with satisfied fit (R2) and prediction (Q2) abilities, and the classification test showed better recognition of the CI group than the control group indicating that this model of PL biomarkers could be used as indicators for screening of CI. Graphical abstract Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids.

  11. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Calhoon, Elisabeth A; Williams, Joseph B

    2014-07-01

    Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.

  12. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study.

    Science.gov (United States)

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-08-01

    Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients' tumor stage and metabolic profiles was assessed. Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I-IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina's HumanHT-12 Expression BeadChips. Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis-related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients' adipose tissues, which were associated with CRC tumor stage. As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which

  13. Sexual dimorphism in the fetal cardiac response to maternal nutrient restriction

    Energy Technology Data Exchange (ETDEWEB)

    Muralimanoharan, Sribalasubashini; Li, Cun; Nakayasu, Ernesto S.; Casey, Cameron P.; Metz, Thomas O.; Nathanielsz, Peter W.; Maloyan, Alina

    2017-07-01

    Poor maternal nutrition causes intrauterine growth restriction (IUGR); however, its effects on fetal cardiac development are unclear. We have developed a baboon model of moderate maternal undernutrition, leading to IUGR. We hypothesized that IUGR affects fetal cardiac structure and metabolism. Six control pregnant baboons ate ad-libitum (CTRL)) or 70% CTRL from 0.16 of gestation (G). Fetuses were euthanized at C-section at 0.9G under general anesthesia. Male but not female IUGR fetuses showed left ventricular fibrosis inversely correlated with birth weight. Expression of extracellular matrix protein TSP-1 was increased ( SMAD3 and ALK-1 were downregulated in male IUGRs with no difference in females. Autophagy was present in male IUGR evidenced by upregulation of ATG7 expression and lipidation LC3B. Global miRNA expression profiling revealed 56 annotated and novel cardiac miRNAs exclusively dysregulated in female IUGR, and 38 cardiac miRNAs were exclusively dysregulated in males (p<0.05). Fifteen (CTRL) and 23 (IUGR) miRNAs, were differentially expressed between males and. females (p<0.05) suggesting sexual dimorphism, which can be at least partially explained by differential expression of upstream transcription factors (e.g. HNF4α, and NFκB p50). Lipidomics analysis exhibited a net increase in diacylglycerol and plasmalogens, and a decrease in triglycerides and phosphatidylcholines. In summary, IUGR resulting from decreased maternal nutrition is associated with sex-dependent dysregulations in cardiac structure, miRNA expression, and lipid metabolism. If these changes persist postnatally, they may program offspring for higher later life cardiac risk.

  14. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    Directory of Open Access Journals (Sweden)

    Flore Dagorn

    2016-05-01

    Full Text Available Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg on the French Atlantic coast. Total lipid and phospholipid (PL fatty acids (FAs and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight varied from 7.1% (winter to 8.6% (spring. Of this, PLs accounted for 28.1% (spring to 50.4% (winter. Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter. Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter. Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5% and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5% were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter. Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin.

  15. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    Science.gov (United States)

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G.; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-01-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  16. Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quantitative Combinatorial Omics Approach

    Directory of Open Access Journals (Sweden)

    Maciej M. Lalowski

    2018-04-01

    Full Text Available The heart of a newborn mouse has an exceptional capacity to regenerate from myocardial injury that is lost within the first week of its life. In order to elucidate the molecular mechanisms taking place in the mouse heart during this critical period we applied an untargeted combinatory multiomics approach using large-scale mass spectrometry-based quantitative proteomics, metabolomics and mRNA sequencing on hearts from 1-day-old and 7-day-old mice. As a result, we quantified 1.937 proteins (366 differentially expressed, 612 metabolites (263 differentially regulated and revealed 2.586 differentially expressed gene loci (2.175 annotated genes. The analyses pinpointed the fructose-induced glycolysis-pathway to be markedly active in 1-day-old neonatal mice. Integrated analysis of the data convincingly demonstrated cardiac metabolic reprogramming from glycolysis to oxidative phosphorylation in 7-days old mice, with increases of key enzymes and metabolites in fatty acid transport (acylcarnitines and β-oxidation. An upsurge in the formation of reactive oxygen species and an increase in oxidative stress markers, e.g., lipid peroxidation, altered sphingolipid and plasmalogen metabolism were also evident in 7-days mice. In vitro maintenance of physiological fetal hypoxic conditions retained the proliferative capacity of cardiomyocytes isolated from newborn mice hearts. In summary, we provide here a holistic, multiomics view toward early postnatal changes associated with loss of a tissue regenerative capacity in the neonatal mouse heart. These results may provide insight into mechanisms of human cardiac diseases associated with tissue regenerative incapacity at the molecular level, and offer a prospect to discovery of novel therapeutic targets.

  17. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  18. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  19. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    Directory of Open Access Journals (Sweden)

    Han-Sol Park

    2016-04-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH, but underlying mechanisms of this prevention are largely unknown.MethodsSeven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day, for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver.ResultsStatin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels.ConclusionStatins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  20. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    Science.gov (United States)

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. PMID:25814023

  1. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils.

    Science.gov (United States)

    Duerr, Mark A; Aurora, Rajeev; Ford, David A

    2015-05-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    Science.gov (United States)

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  3. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    Science.gov (United States)

    Wang, Xiang; Wei, Fang; Xu, Ji-Qu; Lv, Xin; Dong, Xu-Yan; Han, Xianlin; Quek, Siew-Young; Huang, Feng-Hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  5. Circulating Phospholipid Patterns in NAFLD Patients Associated with a Combination of Metabolic Risk Factors

    Directory of Open Access Journals (Sweden)

    Shilpa Tiwari-Heckler

    2018-05-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is associated with inefficient macro- and micronutrient metabolism, and alteration of circulating phospholipid compositions defines the signature of NAFLD. This current study aimed to assess the pattern of serum phospholipids in the spectrum of NAFLD, and its related comorbidities and genetic modifications. Methods: 97 patients with diagnosed NAFLD were recruited at a single center during 2013–2016. Based on histological and transient elastography assessment, 69 patients were divided into non-alcoholic steatohepatitis (NASH and non-alcoholic fatty liver (NAFL subgroups. 28 patients served as healthy controls. Serum phospholipids were determined by liquid-chromatography mass spectrometry (LC-MS/MS. Results: The total content of phosphatidylcholine (PC and sphingomyelin in the serum was significantly increased in NAFL and NASH patients, compared to healthy controls. In addition, serum lysophospatidylethanolamine levels were significantly decreased in NAFL and NASH individuals. Circulating PC species, containing linoleic and α-linolenic acids, were markedly increased in NAFLD patients with hypertension, compared to NAFLD patients without hypertension. The pattern of phospholipids did not differ between NAFLD patients with diabetes and those without diabetes. However, NAFLD patients with hyperglycemia (blood glucose level (BGL >100 mg/dL exhibited significantly a higher amount of monounsaturated phosphatidylethanolamine than those with low blood glucose levels. In addition, NAFLD patients with proven GG-genotype of PNPLA3, who were at higher risk for the development of progressive disease with fibrosis, showed lower levels of circulating plasmalogens, especially 16:0, compared to those with CC- and CG-allele. Conclusions: Our extended lipidomic study presents a unique metabolic profile of circulating phospholipids associated with the presence of metabolic risk factors or the genetic background

  6. Remodeling of the postsynaptic plasma membrane during neural development.

    Science.gov (United States)

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Depression of membrane-bound Na sup + -K sup + -ATPase activity induced by free radicals and by ischemia of kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kako, K.; Kato, M.; Matsuoka, T.; Mustapha, A. (Univ. of Ottawa, Ontario (Canada))

    1988-02-01

    A partially purified, membrane-bound Na{sup +}-K{sup +}-ATPase fraction, prepared from the outer medulla of porcine kidney, was incubated in the presence of 0.1-100 mM H{sub 2}O{sub 2} for either 15 or 30 min at 37{degree}C. The activity of ouabain-sensitive Na{sup +}-K{sup +}-ATPase was reduced proportionally to the concentration of H{sub 2}O{sub 2} and the duration of incubation. There were decreases in SH contents and turnover rates of the Na{sup +}-K{sup +}-ATPase preparation, while malondialdehyde (MDA) and conjugated dienes were generated from the membrane lipids in the course of the incubation. The concentrations of ethanolamine (E) plasmalogen and of arachidonic acid in the E glycerophospholipid molecules were reduced by the free radical reaction. Similarly, a reduction in Na{sup +}K{sup +}-ATPase activity and the formation of MDA and conjugated dienes, together with a decrease in E glycerophospholipids, were observed when the membrane fraction was exposed to ultraviolet irradiation (254 nm) for 30 min at 4{degree}C. Microsomal fractions, prepared from the outer medulla of canine kidney after 1 h of unilateral ischemia and 1 h of reperfusion, showed a decreased Na{sup +}-K{sup +}-ATPase activity, a reduced amount of SH groups, and an increased MDA. These changes were normalized by the infusion of N-mercaptopropionylglycine. These results support the view (1) that free radical generation affects the enzyme protein as well as membrane lipids, and (2) that free radicals may be formed in the ischemic reperfused kidney.

  8. Effects of low-fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults.

    Science.gov (United States)

    Nestel, Paul J; Mellett, Natalie; Pally, Suzana; Wong, Gerard; Barlow, Chris K; Croft, Kevin; Mori, Trevor A; Meikle, Peter J

    2013-12-01

    The association between consumption of full-fat dairy foods and CVD may depend partly on the nature of products and may not apply to low-fat dairy foods. Increased circulating levels of inflammatory biomarkers after consumption of dairy product-rich meals suggest an association with CVD. In the present study, we tested the effects of low-fat and full-fat dairy diets on biomarkers associated with inflammation, oxidative stress or atherogenesis and on plasma lipid classes. Within full-fat dairy diets, we also compared fermented v. non-fermented products. In a randomised cross-over study, twelve overweight/obese subjects consumed during two 3-week periods two full-fat dairy diets containing either yogurt plus cheese (fermented) or butter, cream and ice cream (non-fermented) or a low-fat milk plus yogurt diet, with the latter being consumed between and at the end of the full-fat dairy dietary periods. The concentrations of six inflammatory and two atherogenic biomarkers known to be raised in CVD were measured as well as those of plasma F2-isoprostanes and lipid classes. The concentrations of six of the eight biomarkers tended to be higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet and the concentrations of two plasmalogen lipid classes reported to be associated with increased oxidisability were also higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet (Pfermented dairy diet than on that of the low-fat dairy diet (Pdairy products did not lead to a more favourable biomarker profile associated with CVD risk compared with the full-fat dairy products, suggesting that full-fat fermented dairy products may be the more favourable.

  9. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology.

    Directory of Open Access Journals (Sweden)

    Steffi Kopprasch

    Full Text Available Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D. We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices.The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33, impaired glucose tolerance (IGT, n = 32 and newly detected T2D (n = 25. Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs, phosphatidylcholine plasmalogen/ether (PC O-s, sphingomyelins (SMs, and lysophosphatidylcholines (LPCs. To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO, Support Vector Regression (SVR and Random Forests (RF for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR, glucose insulin sensitivity index (GSI, insulin sensitivity index (ISI, and disposition index (DI. The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF.After LASSO selection, the plasma lipidome explained 3% (DI to maximal 53% (HOMA-IR variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR, PC O- 32:0 (GSI, and SM 40:3:1 (ISI. The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR, TAG 51:1 (GSI, and TAG 58:6 (ISI.Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These few selected lipids with the closest

  10. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Prabhakar Sripadi

    Full Text Available BACKGROUND: Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. METHODS AND PRINCIPAL FINDINGS: Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3 transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI mass spectrometry (MS. Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1 and PC(O-34:1 plasmalogens were displaced by PC(30:0 and PC(32:0 species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. CONCLUSIONS AND SIGNIFICANCE: We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3

  11. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.

    Directory of Open Access Journals (Sweden)

    Ayşe Demirkan

    Full Text Available Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034 on plasma levels of 24 sphingomyelins (SPM, 9 ceramides (CER, 57 phosphatidylcholines (PC, 20 lysophosphatidylcholines (LPC, 27 phosphatidylethanolamines (PE, and 16 PE-based plasmalogens (PLPE, as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204 and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57. After a correction for multiple comparisons (P-value<2.2×10(-9, we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1 and two with sphingolipids (PLD2 and APOE explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3 suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2 to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our

  12. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Wei, Fang, E-mail: willasa@163.com [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Xu, Ji-qu; Lv, Xin; Dong, Xu-yan [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Han, Xianlin [Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 (United States); College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053 (China); Quek, Siew-young [School of Chemical Science, The University of Auckland, Auckland 1142 (New Zealand); Huang, Feng-hong [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Chen, Hong, E-mail: chenhong@oilcrops.cn [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China)

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d{sub 0}-acetone) and deuterium-labeled acetone (d{sub 6}-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. - Highlights: • A novel isotope reagent acetone was explored for the derivatization of PEs. • The labeling reaction was carried out under mild conditions with high specificity. • Enhanced detection sensitivity of PEs was achieved after derivatization. • The ASID-DNLS-Shotgun MS/MS method was used to relative quantification of PEs.

  13. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry.

    Science.gov (United States)

    Sripadi, Prabhakar; Shrestha, Bindesh; Easley, Rebecca L; Carpio, Lawrence; Kehn-Hall, Kylene; Chevalier, Sebastien; Mahieux, Renaud; Kashanchi, Fatah; Vertes, Akos

    2010-09-07

    Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3) transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC) lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1) and PC(O-34:1) plasmalogens were displaced by PC(30:0) and PC(32:0) species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3), expression-specific (Tax1 vs. Tax3) and cell-type-specific (T lymphocytes vs. kidney

  14. Efecto del enlatado en aceite y salmuera y su posterior almacenamiento sobre los lípidos de la bacoreta (Euthynnus alletteratus

    Directory of Open Access Journals (Sweden)

    Aubourg, Santiago P.

    1995-04-01

    Full Text Available Changes produced in the lipid fraction of Little Tunny during canning in oil and in brine and during its subsequent storage were studied in order to compare the effect of both dipping procedures. The effect of the type of covering medium on both the total lipid composition and on the phospholipid fraction was determined.
    Canning in oil was shown to lead to certain changes in the composition of the final product, there being a decrease in the phospholipid and fatty acid (16:0,18:0, 20:4ω6, 20:5ω3, 24:1ω9 and 22:6ω content of the total lipids. Furthermore, the presence of triglycerides in the oil used for canning leads to increases in some fatty acids (oleic and linoleic in the samples. The lipid content of samples canned in brine were lower than initial values. This difference due to processing was not detected in samples canned in oil.
    The phospholipid study showed the presence of 1-O-alk-1-enyl-ether chains, the qualitative and quantitative composition of which was studied. The thermal treatment Involved in both dipping procedures provoked a sharp decrease in the plasmalogen content, while the polyunsaturated fatty acid composition was significantly lower ¡n the oil canned samples than in the raw samples. This decrease due to processing can be explained as an effect of the heat and of the extraction capacity of the oil.

    Se estudiaron los cambios producidos en la fracción lipídica de la bacoreta como resultado de su enlatado en dos modalidades distintas (aceite vegetal y salmuera y su posterior almacenamiento. El efecto del medio de cobertura se estudió sobre la composición lipídica total y sobre la fracción fosfolipídica.
    La comparación de los dos tipos de enlatado demostró que la presencia del aceite de cobertura puede provocar modificaciones en la composición del producto final como el descenso del contenido de fosfolípidos y de numerosos ácidos grasos (16:0,18:0,20:4ω6, 20:5ω3, 24:ω9 y 22:6ω3

  15. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection

    International Nuclear Information System (INIS)

    Ritchie, Shawn A; Jin, Wei; Sajobi, Tolulope T; Jayasinghe, Dushmanthi; Chitou, Bassirou; Yamazaki, Yasuyo; White, Thayer; Goodenowe, Dayan B; Akita, Hirofumi; Takemasa, Ichiro; Eguchi, Hidetoshi; Pastural, Elodie; Nagano, Hiroaki; Monden, Morito; Doki, Yuichiro; Mori, Masaki

    2013-01-01

    The prognosis of pancreatic cancer (PC) is one of the poorest among all cancers, due largely to the lack of methods for screening and early detection. New biomarkers for identifying high-risk or early-stage subjects could significantly impact PC mortality. The goal of this study was to find metabolic biomarkers associated with PC by using a comprehensive metabolomics technology to compare serum profiles of PC patients to healthy control subjects. A non-targeted metabolomics approach based on high-resolution, flow-injection Fourier transform ion cyclotron resonance mass spectrometry (FI-FTICR-MS) was used to generate comprehensive metabolomic profiles containing 2478 accurate mass measurements from the serum of Japanese PC patients (n=40) and disease-free subjects (n=50). Targeted flow-injection tandem mass spectrometry (FI-MS/MS) assays for specific metabolic systems were developed and used to validate the FI-FTICR-MS results. A FI-MS/MS assay for the most discriminating metabolite discovered by FI-FTICR-MS (PC-594) was further validated in two USA Caucasian populations; one comprised 14 PCs, six intraductal papillary mucinous neoplasims (IPMN) and 40 controls, and a second comprised 1000 reference subjects aged 30 to 80, which was used to create a distribution of PC-594 levels among the general population. FI-FTICR-MS metabolomic analysis showed significant reductions in the serum levels of metabolites belonging to five systems in PC patients compared to controls (all p<0.000025). The metabolic systems included 36-carbon ultra long-chain fatty acids, multiple choline-related systems including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, as well as vinyl ether-containing plasmalogen ethanolamines. ROC-AUCs based on FI-MS/MS of selected markers from each system ranged between 0.93 ±0.03 and 0.97 ±0.02. No significant correlations between any of the systems and disease-stage, gender, or treatment were observed. Biomarker PC-594 (an ultra long

  16. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    constituents at any stage of life, will tend to accelerate ageing. The enzymatic activities of sytivities of synthesis of long-chain polyunsaturated fatty acids from linoleic and alpha-linolenic acids are very limited in the brain: this organ therefore depends on an exogenous supply. Consequently, fatty acids that are essential for the brain are arachidonic acid and cervonic acid, derived from the diet, unless they are synthesized by the liver from linoleic acid and alpha-linolenic acid. The age-related reduction of hepatic desaturase activities (which participate in the synthesis of long chains, together with elongases) can impair turnover of cerebral membranes. In many structures, especially in the frontal cortex, a reduction of cervonic and arachidonic acids is observed during ageing, predominantly associated with a reduction of phosphatidylethanolamines (mainly in the form of plasmalogens). Peroxisomal oxidation of polyunsaturated fatty acids decreases in the brain during ageing, participating in decreased turnover of membrane fatty acids, which are also less effectively protected against peroxidation by free radicals.