WorldWideScience

Sample records for plasma-sheet electron precipitation

  1. Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves

    Science.gov (United States)

    Ni, Binbin; Thorne, Richard M.; Horne, Richard B.; Meredith, Nigel P.; Shprits, Yuri Y.; Chen, Lunjin; Li, Wen

    2011-04-01

    Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000-0600 MLT sector. The results show that ECH wave scattering of plasma sheet electrons varies from near the strong diffusion rate (timescale of an hour or less) during active times with peak wave amplitudes of an order of 1 mV/m to very weak scattering (on the timescale of >1 day) during quiet conditions with typical wave amplitudes of tenths of mV/m. However, for the low-energy (˜100 eV to below 2 keV) electron population mainly associated with the diffuse auroral emission, ECH waves are only responsible for rapid pitch angle diffusion (occasionally near the limit of strong diffusion) for a small portion of the electron population with pitch angles αeq 70°. Computations of the bounce-averaged coefficients of momentum diffusion and (pitch angle, momentum) mixed diffusion indicate that both mixed diffusion and energy diffusion of plasma sheet electrons due to ECH waves are very small compared to pitch angle diffusion and that ECH waves have little effect on local electron acceleration. Consequently, the multiple harmonic ECH emissions cannot play a dominant role in the occurrence of diffuse auroral precipitation near L = 6, and other wave-particle interaction mechanisms, such as whistler mode chorus-driven resonant scattering, are required to explain the global distribution of diffuse auroral precipitation and the formation of the pancake distribution in the inner magnetosphere.

  2. Energetic electron spectra in Saturn's plasma sheet

    Science.gov (United States)

    Carbary, J. F.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.

    2011-07-01

    The differential spectra of energetic electrons (27-400 keV) in Saturn's plasma sheet can be characterized by power law or kappa distributions. Using all available fluxes from 2005 to 2010, fits to these distributions reveal a striking and consistent pattern of radial dependence in Saturn's plasma sheet (∣z∣ constant throughout the Cassini mission. Inward of about 10 RS, the presence of the electron radiation belts and losses of lower-energy electrons to the gas and grain environment give rise to the very hard spectra in the inner magnetosphere, while the hard spectra in the outer magnetosphere may derive from auroral acceleration at high latitudes. The gradual softening of the spectra from 20 to 10 RS is explained by inward radial diffusion.

  3. Collective dynamics of bursty particle precipitation initiating in the inner and outer plasma sheet

    Science.gov (United States)

    Uritsky, V. M.; Donovan, E.; Klimas, A. J.; Spanswick, E.

    2009-02-01

    Using multiscale spatiotemporal analysis of bursty precipitation events in the nighttime aurora as seen by the POLAR UVI instrument, we report a set of new statistical signatures of high- and low-latitude auroral activity, signaling a strongly non-uniform distribution of dissipation mechanism in the plasma sheet. We show that small-scale electron emission events that initiate in the equatorward portion of the nighttime auroral oval (scaling mode A1) have systematically steeper power-law slopes of energy, power, area, and lifetime probability distributions compared to the events that initiate at higher latitudes (mode B). The low-latitude group of events also contain a small but energetically important subpopulation of substorm-scale disturbances (mode A2) described by anomalously low distribution exponents characteristic of barely stable thermodynamic systems that are prone to large-scale sporadic reorganization. The high latitude events (mode organized critical (SOC) behavior. The low- and high latitude events have distinct inter-trigger time statistics, and are characterized by significantly different MLT distributions. Based on these results we conjecture that the inner and outer portions of the plasma sheet are associated with two (or more) mechanisms of collective dynamics that may represent an interplay between current disruption and magnetic reconnection scenarios of bursty energy conversion in the magnetotail.

  4. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    Science.gov (United States)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field

  5. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  6. Energetic electron bursts in the plasma sheet and their relation with BBFs

    Science.gov (United States)

    Duan, A. Y.; Cao, J. B.; Dunlop, M.; Wang, Z. Q.

    2014-11-01

    We studied energetic electron bursts (EEBs) (40-250 keV) in the plasma sheet (PS) and their relation to bursty bulk flows (BBFs) using the data recorded by Cluster from 2001 to 2009. The EEBs in the PS can be classified into four types. Three types of EEBs are dispersionless, including EEBs accompanied with BBFs (V > 250 km/s) but without dipolarization front (DF); EEBs accompanied with both dipolarization front (DF) and BBF; and EEBs accompanied with DF and fast flow with V EEB, i.e., EEBs not accompanied with BBFs and DFs, is dispersed. The energetic electrons (40-130 keV) can be easily transported earthward by BBFs due to the strong dawn-dusk electric field embedded in BBFs. The DFs in BBFs can produce energetic electrons (40 to 250 keV). For the EEBs with DF and BBFs, the superposed epoch analyses show that the increase of energetic electron flux has two phases: gradual increase phase before DF and rapid increase phase concurrent with DF. In the PS around x = -18 RE, 60%-70% of EEBs are accompanied with BBFs, indicating that although hitherto there have been various acceleration mechanisms of energetic electrons, most of the energetic electrons in the PS are related with magnetic reconnection, and they are produced either directly by magnetic reconnection or indirectly by the DFs within BBFs. In the BBF's braking region of -12 RE EEBs are accompanied with BBFs. The corresponding ratio between EEBs and BBFs shows a dawn-dusk asymmetry.

  7. Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet

    Science.gov (United States)

    Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.

    2016-10-01

    We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of 6.0. However, in many PS intervals Tp/Te varies over a wide range from a few units to several tens of units. In 86 PS intervals the Tp/Te decreases below 3.5. Generally, the decreases of Tp/Te are due to some increase of Te while Tp either decreases or remains unchanged. In the majority of these intervals the Tp/Te drops are observed during magnetotail dipolarizations. A superposed epoch analysis applied to these events shows that the minimum value of Tp/Te is observed after the dipolarization onset during the "turbulent phase" of dipolarization, when a number of transient BZ pulses are reduced, but the value of BZ is still large and an intensification of wave activity is observed. The Tp/Te drops, and associated increases of Te often coincide either with bursts of broadband electrostatic emissions, which may include electron cyclotron harmonics, or with broadband electromagnetic emission in a frequency range from proton plasma frequency (fpp) up to the electron gyrofrequency (fce). These findings show that the wave activity developing in the current sheet after dipolarization onset may play a role in the additional electron heating and the associated Tp/Te decrease.

  8. Effects of solar wind ultralow-frequency fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine

    Science.gov (United States)

    Wang, Chih-Ping; Kim, Hee-Jeong; Yue, Chao; Weygand, James M.; Hsu, Tung-Shin; Chu, Xiangning

    2017-04-01

    To investigate whether ultralow-frequency (ULF) fluctuations from 0.5 to 8.3 mHz in the solar wind and interplanetary magnetic field (IMF) can affect the plasma sheet electron temperature (Te) near geosynchronous distances, we use a support vector regression machine technique to decouple the effects from different solar wind parameters and their ULF fluctuation power. Te in this region varies from 0.1 to 10 keV with a median of 1.3 keV. We find that when the solar wind ULF power is weak, Te increases with increasing southward IMF Bz and solar wind speed, while it varies weakly with solar wind density. As the ULF power becomes stronger during weak IMF Bz ( 0) or northward IMF, Te becomes significantly enhanced, by a factor of up to 10. We also find that mesoscale disturbances in a time scale of a few to tens of minutes as indicated by AE during substorm expansion and recovery phases are more enhanced when the ULF power is stronger. The effect of ULF powers may be explained by stronger inward radial diffusion resulting from stronger mesoscale disturbances under higher ULF powers, which can bring high-energy plasma sheet electrons further toward geosynchronous distance. This effect of ULF powers is particularly important during weak southward IMF or northward IMF when convection electric drift is weak.

  9. Observations of energetic electrons /E no less than about 200 keV/ in the earth's magnetotail - Plasma sheet and fireball observations

    Science.gov (United States)

    Baker, D. N.; Stone, E. C.

    1977-01-01

    An earlier paper by the authors (1976) has reported on energetic electron anisotropies observed in conjunction with the acceleration regions identified by Frank et al., (1976). The present paper gives more detailed analyses of observations in the distant plasma sheet, including specific features of intensities, energy spectra, and pitch angle distributions of the very energetic electrons associated with intense plasma particle events, with energies ranging between 50 eV and 45 keV, detected with an electron/isotope spectrometer aboard the earth-orbiting spacecraft Imp 8. Two domains are considered: the plasma sheet and the regions near and within the localized magnetotail acceleration regions known as the fireball regions. The instrumentation used offered a number of observational advantages over many previous studies, including inherently low background, large geometric factors, excellent species identification, good angular distribution measurement capability, and availability of high resolution of differential intensities.

  10. Studying the Important Relationship Between Earth's Plasma Sheet and the Outer Radiation Belt Electrons Using Newly Calibrated and Corrected Themis-Sst Data

    Science.gov (United States)

    Cruce, P. R.; Turner, D. L.; Angelopoulos, V.; Larson, D. E.; Shprits, Y.; Huang, C.; Ukhorskiy, A. Y.

    2011-12-01

    Most recently, the solid-state telescope (SST) data from the THEMIS mission, which consisted of 5 spacecraft in highly elliptic, equatorial orbits that have traversed the outer radiation belt and sampled the plasma sheet for more than 4 years, have been characterized, calibrated, and decontaminated. Here, we present a brief introduction on this corrected dataset and go into detail on the valuable resource it provides to address science questions concerning the important relationship between ~1 keV-10's keV electrons in the plasma sheet and 100's keV-MeV electrons in Earth's outer radiation belt. We demonstrate this by presenting preliminary results on: studying phase space density (PSD) radial gradients for fixed first and second adiabatic invariants from the radiation belt into the plasma sheet, examining pitch angle distributions near the boundary between these two regions, and studying the boundary region itself around the last closed drift shell and the role of magnetopause shadowing losses. We examine the dependence of PSD radial gradients on the first and second invariants to test previous results [e.g., Turner et al., GRL, 2008; Kim et al., JGR, 2010] that reveal mostly positive radial gradients for lower energy electrons (10's - couple hundred keV) but negative gradients for relativistic electrons beyond geosynchronous orbit. This directly relates to the current theory that lower energy electrons have a source in the plasma sheet and are introduced to the ring current and radiation belt via substorm injections and enhanced convection, and these particles then generate the waves necessary to accelerate a fraction of this seed population to relativistic energies, providing a source of the outer radiation belt. Next, we take advantage of the pitch angle resolved differential energy fluxes to examine variations in pitch angle distributions to establish the role that Shabansky drift orbits, which break electrons' second adiabatic invariant, play on outer belt

  11. Energy distribution of precipitating electrons estimated from optical and cosmic noise absorption measurements

    Directory of Open Access Journals (Sweden)

    H. Mori

    2004-04-01

    Full Text Available This study is a statistical analysis on energy distribution of precipitating electrons, based on CNA (cosmic noise absorption data obtained from the 256-element imaging riometer in Poker Flat, Alaska (65.11° N, 147.42° W, and optical data measured with an MSP (Meridian Scanning Photometer over 79 days during the winter periods from 1996 to 1998. On the assumption that energy distributions of precipitating electrons represent Maxwellian distributions, CNA is estimated based on the observation data of auroral 427.8-nm and 630.0-nm emissions, as well as the average atmospheric model, and compared with the actual observation data. Although the observation data have a broad distribution, they show systematically larger CNA than the model estimate. CNA determination using kappa or double Maxwellian distributions, instead of Maxwellian distributions, better explains the distribution of observed CNA data. Kappa distributions represent a typical energy distribution of electrons in the plasma sheet of the magnetosphere, the source region of precipitating electrons. Pure kappas are more likely during quiet times – and quiet times are more likely than active times. This result suggests that the energy distribution of precipitating electrons reflects the energy distribution of electrons in the plasma sheet.

    Key words. Ionosphere (auroral ionosphere; particle precipitation; polar ionosphere

  12. Central Plasma Sheet Ion Properties as Inferred from Ionospheric Observations

    Science.gov (United States)

    Wing, Simon; Newell, Patrick T.

    1998-01-01

    A method of inferring central plasma sheet (CPS) temperature, density, and pressure from ionospheric observations is developed. The advantage of this method over in situ measurements is that the CPS can be studied in its entirely, rather than only in fragments. As a result, for the first time, comprehensive two-dimensional equatorial maps of CPS pressure, density, and temperature within the isotropic plasma sheet are produced. These particle properties are calculated from data taken by the Special Sensor for Precipitating Particles, version 4 (SSJ4) particle instruments onboard DMSP F8, F9, F10, and F11 satellites during the entire year of 1992. Ion spectra occurring in conjunction with electron acceleration events are specifically excluded. Because of the variability of magnetotail stretching, the mapping to the plasma sheet is done using a modified Tsyganenko [1989] magnetic field model (T89) adjusted to agree with the actual magnetotail stretch at observation time. The latter is inferred with a high degree of accuracy (correlation coefficient -0.9) from the latitude of the DMSP b2i boundary (equivalent to the ion isotropy boundary). The results show that temperature, pressure, and density all exhibit dawn-dusk asymmetries unresolved with previous measurements. The ion temperature peaks near the midnight meridian. This peak, which has been associated with bursty bulk flow events, widens in the Y direction with increased activity. The temperature is higher at dusk than at dawn, and this asymmetry increases with decreasing distance from the Earth. In contrast, the density is higher at dawn than at dusk, and there appears to be a density enhancement in the low-latitude boundary layer regions which increases with decreasing magnetic activity. In the near-Earth regions, the pressure is higher at dusk than at dawn, but this asymmetry weakens with increasing distance from the Earth and may even reverse so that at distances X less than approx. 10 to -12 R(sub E

  13. Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms

    Science.gov (United States)

    Tsurutani, B. T.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J. U.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, R. V.; Gonzalez, W. D.

    2016-10-01

    A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T⊥/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 × 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed.

  14. Energy spectra of plasma sheet ions and electrons from about 50 eV/e to about 1 MeV during plamsa temperature transitions

    Science.gov (United States)

    Christon, S. P.; Mitchell, D. G.; Williams, D. J.; Frank, L. A.; Huang, C. Y.; Eastman, T. E.

    1988-01-01

    ISEE-1 charged-particle measurements obtained during eight plasma temperature transitions (PTTs) in 1978-1979 are compiled in tables and graphs and analyzed in detail, comparing the ion and electron differential energy spectra with the predictions of theoretical models. PTTs are defined as approximately 1-h periods of low bulk plasma velocity and steadily increasing or decreasing thermal energy. A Maxwellian distribution is found to be inadequate in describing the PTT energy spectra, but velocity-exponential and kappa distributions are both successful, the latter especially at higher energies. The power-law index kappa varies from PTT to PTT, but the high-energy spectral index and overall shape of the distribution remain constant during a PTT; both spatial and temporal effects are observed.

  15. MAXIS Balloon Observations of Electron Microburst Precipitation

    Science.gov (United States)

    Millan, R. M.; Hunter, A. E.; McCarthy, M. P.; Lin, R. P.; Smith, D. M.

    2003-12-01

    Quantifying and understanding losses is an integral part of understanding relativistic electron variability in the radiation belts. SAMPEX observations indicate that electron microburst precipitation is a major loss mechanism during active periods; the loss of relativistic electrons during a six hour period due to microburst precipitation was recently estimated to be comparable to the total number of trapped electrons in the outer zone (Lorentzen et al., 2001). Microburst precipitation was first observed from a balloon (Anderson and Milton, 1964), but these early measurements were only sensitive to MAXIS 2000 long duration balloon campaign. MAXIS was launched from McMurdo Station in Antarctica carrying a germanium spectrometer, a BGO scintillator and two X-ray imagers designed to measure the bremsstrahlung produced by precipitating electrons. The balloon circumnavigated the south pole in 18 days covering magnetic latitudes ranging from 58o-90o South. During the week following a moderate geomagnetic storm (with Dst reaching -91 nT), MAXIS detected a total of over 16 hours of microburst precipitation. We present high resolution spectra obtained with the MAXIS germanium spectrometer which allow us to determine the precipitating electron energy distribution. The precipitating distribution will then be compared to the trapped distribution measured by the GPS and LANL satellites. We also examine the spatial distribution of the precipitation.

  16. Improved Electronic Control for Electrostatic Precipitators

    Science.gov (United States)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  17. Energy-dispersed ions in the plasma sheet boundary layer and associated phenomena: Ion heating, electron acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions

    Directory of Open Access Journals (Sweden)

    A. Keiling

    2006-10-01

    Full Text Available Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the plasma sheet boundary layer (PSBL that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b. Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several plasma-field characteristics: (a bimodal ion conics (<1 keV, (b field-aligned electron flow (<1 keV, (c perpendicular electric field spikes (~20 mV/m, (d broadband electrostatic ELF wave packets (<12.5 Hz, and (e enhanced broadband electromagnetic waves (<4 kHz. The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1–2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f electrostatic waves (BEN (up to 4 kHz, (g traveling and standing ULF Alfvén waves, (h field-aligned currents (FAC, and (i auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines

  18. Energy spectra in relativistic electron precipitation events.

    Science.gov (United States)

    Rosenberg, T. J.; Lanzerotti, L. J.; Bailey, D. K.; Pierson, J. D.

    1972-01-01

    Two events in August 1967, categorized as relativistic electron precipitation (REP) events by their effect on VHF transmissions propagated via the forward-scatter mode, have been examined with regard to the energy spectra of trapped and precipitated electrons. These two substorm-associated events August 11 and August 25 differ with respect to the relativistic, trapped electron population at synchronous altitude; in the August 25 event there was a nonadiabatic enhancement of relativistic (greater than 400 keV) electrons, while in the August 11 event no relativistic electrons were produced. In both events electron spectra deduced from bremsstrahlung measurements (made on a field line close to that of the satellite) had approximately the same e-folding energies as the trapped electron enhancements. However, the spectrum of electrons in the August 25 event was significantly harder than the spectrum in the event of August 11.

  19. Magnetic turbulence in the plasma sheet

    CERN Document Server

    Vörös, Z; Nakamura, R; Runov, A; Zhang, T L; Eichelberger, H U; Treumann, R A; Georgescu, E; Balogh, A; Klecker, B; R`eme, H

    2004-01-01

    Small-scale magnetic turbulence observed by the Cluster spacecraft in the plasma sheet is investigated by means of a wavelet estimator suitable for detecting distinct scaling characteristics even in noisy measurements. The spectral estimators used for this purpose are affected by a frequency dependent bias. The variances of the wavelet coefficients, however, match the power-law shaped spectra, which makes the wavelet estimator essentially unbiased. These scaling characteristics of the magnetic field data appear to be essentially non-steady and intermittent. The scaling properties of bursty bulk flow (BBF) and non-BBF associated magnetic fluctuations are analysed with the aim of understanding processes of energy transfer between scales. Small-scale ($\\sim 0.08-0.3$ s) magnetic fluctuations having the same scaling index $\\alpha \\sim 2.6$ as the large-scale ($\\sim 0.7-5$ s) magnetic fluctuations occur during BBF-associated periods. During non-BBF associated periods the energy transfer to small scales is absent, ...

  20. Gyrophase bunched ions in the plasma sheet

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu; Huang, Chaoyan

    2017-01-01

    Gyrophase bunched ions were first detected in the upstream region of the Earth's bow shock in the early 1980s which is formed by the microphysical process associated with reflected solar wind ions at the bow shock. Inside the magnetosphere, the results of computer simulations demonstrated that nonlinear wave-particle interaction can also result in the gyrophase bunching of particles. However, to date direct observations barely exist regarding this issue occurred inside the magnetosphere. In this paper, we report for the first time an event of gyrophase bunched ions observed in the near-Earth plasma sheet. The nongyrotropic distributions of ions were closely accompanied with the electromagnetic waves at the oxygen cyclotron frequency. The phase of bunched ions and the phase of waves mainly have very narrow phase differences (helicity with respect to the propagation direction, which agrees with the characteristic of electromagnetic ion cyclotron waves. The observation of O+ ions composition suggests that the oxygen band waves are excited due to the enhancements of the O+ ion density. This study suggests that the gyrophase bunching is a significant nonlinear effect that exists not only in the bow shock but also in the inner magnetosphere.

  1. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.

    Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  2. On the 3-dimensional structure of plasmoids. [in near-earth plasma sheets

    Science.gov (United States)

    Hughes, W. J.; Sibeck, D. G.

    1987-01-01

    The hypothesis that the IMF penetrates plasmoids causing them to be three- rather than two-dimensional is tested by comparing observations of By within plasmoids and related tail structures to upstream IMF By data. The magnetic topologies that result from the mergings of closed plasma sheet flux tubes and open tail lobe flux tubes at a near-earth neutral line, and merging near the tail flanks are described and studied. The particle signals and isotropic electron distributions are examined. It is observed that the IMF By penetrates plasmoids and that their structure is three-dimensional. In the three-dimensional model of plasmoids the reconnected plasma sheet field lines form a magnetic flux-ropelike structure. The three-dimensional model is utilized to analyze stagnant, slowly moving and earthward moving structures.

  3. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Science.gov (United States)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  4. Cluster multi-point observations of the magnetotail plasma sheet

    Science.gov (United States)

    Henderson, Paul David

    This thesis presents observations of the terrestrial magnetotail plasma sheet made by the European Space Agency Cluster mission. The Cluster mission is composed of four identical spacecraft, the first such multi-spacecraft mission, and enables, for the first time, the disambiguation of time versus space phenomena. Using the data from 2003, when the spacecraft were at their smallest average separation to date, many small-scale processes, both microphysical and macrophysical, are investigated. In the first study presented, two small flux ropes, a possible signature of multiple X-line reconnection, are investigated. By the development and utilisation of various multi-spacecraft methods, the currents and magnetic forces internal and external to the flux ropes, as well as the internal structure of the flux ropes, are investigated. In addition, a theory of their early evolution is suggested. In the second study presented, various terms of the generalised Ohm's law for a plasma are determined, including, for the first time, the divergence of the full electron pressure tensor, during the passage past the spacecraft of an active reconnection X-line. It is found that the electric field contribution from the divergence of the electron pressure tensor is anti-correlated with the contribution from the Hall term in the direction normal to the neutral sheet. In addition, further signatures of reconnection are quantified, such as parallel electric field generation and Hall quadrupolar magnetic field and current systems. In the final study presented, the anti-correlation between the divergence of the electron pressure tensor and Hall terms is investigated further. It is found that the anti-correlation is general, appearing in the direction normal to the neutral sheet because of a cross tail current. In a simple magnetohydrostatic treatment, a force balance argument leads to the conclusion that the gradient of the anti-correlation is a function of the ratio of the electron to ion

  5. Magnetic configuration of the distant plasma sheet - ISEE 3 observations

    Science.gov (United States)

    Slavin, J. A.; Smith, E. J.; Daly, P. W.; Sanderson, T. R.; Wenzel, K.-P.; Lepping, R. P.

    1987-01-01

    The influence of the IMF orientation and magnitude and substorm activity on the magnetic configuration of the central plasma sheet at 20-240 earth radii down the geomagnetic tail is investigated on the basis of ISEE-3 data. The results are presented graphically, and high-speed antisolar bulk flows threaded by southward magnetic fields are shown to be present in the distant plasma sheet after periods of substorm activity and southward IMF Bz. The effective dayside reconnection efficiency is estimated as 25 + or - 4 percent, in good agreement with theoretical models.

  6. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  7. Confirmation of EMIC wave-driven relativistic electron precipitation

    Science.gov (United States)

    Hendry, Aaron T.; Rodger, Craig J.; Clilverd, Mark A.; Engebretson, Mark J.; Mann, Ian R.; Lessard, Marc R.; Raita, Tero; Milling, David K.

    2016-06-01

    Electromagnetic ion cyclotron (EMIC) waves are believed to be an important source of pitch angle scattering driven relativistic electron loss from the radiation belts. To date, investigations of this precipitation have been largely theoretical in nature, limited to calculations of precipitation characteristics based on wave observations and small-scale studies. Large-scale investigation of EMIC wave-driven electron precipitation has been hindered by a lack of combined wave and precipitation measurements. Analysis of electron flux data from the POES (Polar Orbiting Environmental Satellites) spacecraft has been suggested as a means of investigating EMIC wave-driven electron precipitation characteristics, using a precipitation signature particular to EMIC waves. Until now the lack of supporting wave measurements for these POES-detected precipitation events has resulted in uncertainty regarding the driver of the precipitation. In this paper we complete a statistical study comparing POES precipitation measurements with wave data from several ground-based search coil magnetometers; we further present a case study examining the global nature of this precipitation. We show that a significant proportion of the precipitation events correspond with EMIC wave detections on the ground; for precipitation events that occur directly over the magnetometers, this detection rate can be as high as 90%. Our results demonstrate that the precipitation region is often stationary in magnetic local time, narrow in L, and close to the expected plasmapause position. Predominantly, the precipitation is associated with helium band rising tone Pc1 waves on the ground. The success of this study proves the viability of POES precipitation data for investigating EMIC wave-driven electron precipitation.

  8. Energy distribution asymmetry of electron precipitation signatures at Mars

    Science.gov (United States)

    Soobiah, Y. I. J.; Barabash, S.; Nilsson, H.; Stenberg, G.; Lundin, R.; Coates, A. J.; Winningham, J. D.; Frahm, R. A.

    2013-02-01

    The different types of asymmetry observed in the energy distributions of electrons and heavy-ions (M/Q=16-44) during signatures of electron precipitation in the Martian ionosphere have been classified. This has been achieved using the space plasma instrumentation of MEX ASPERA-3 from peri-centre altitude to 2200 km. ASPERA-3 ELS observes signatures of electron precipitation on 43.0% of MEX orbits. Unaccelerated electrons in the form of sudden electron flux enhancements are the most common type of electron precipitation signature at Mars and account for ∼70% of the events observed in this study. Electrons that form unaccelerated electron precipitation signatures are either local ionospheric electrons with enhanced density, or electrons transported from another region of ionosphere, solar wind or tail, or a combination of local and transported electrons. The heating of electrons has a strong influence on the shape of most electron energy spectra from accelerated precipitation signatures. On most occasions the general flow of heavy-ions away from Mars is unchanged during the precipitation of electrons, which is thought to be the result of the finite gyroradius effect of the heavy-ions on crustal magnetic field lines. Only ∼17% of events show some form of heavy-ion acceleration that is either concurrent or at the periphery of an electron precipitation signature. The most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation involves electrons that visually have very little asymmetry or are isotropic and heavy-ions that have a upward net flux, and suggest the upward current associated with aurora. Due to a lack of reliable measurements of electrons travelling towards Mars, it is likely we miss further evidence of upward currents. The second most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation, are those distributions of electrons that are asymmetric and

  9. Cluster and TC-1 observation of magnetic holes in the plasma sheet

    Directory of Open Access Journals (Sweden)

    W. J. Sun

    2012-03-01

    Full Text Available Magnetic holes with relatively small scale sizes, detected by Cluster and TC-1 in the magnetotail plasma sheet, are studied in this paper. It is found that these magnetic holes are spatial structures and they are not magnetic depressions generated by the flapping movement of the magnetotail current sheet. Most of the magnetic holes (93% were observed during intervals with Bz larger than Bx, i.e. they are more likely to occur in a dipolarized magnetic field topology. Our results also suggest that the occurrence of these magnetic holes might have a close relationship with the dipolarization process. The magnetic holes typically have a scale size comparable to the local proton Larmor radius and are accompanied by an electron energy flux enhancement at a 90° pitch angle, which is quite different from the previously observed isotropic electron distributions inside magnetic holes in the plasma sheet. It is also shown that most of the magnetic holes occur in marginally mirror-stable environments. Whether the plasma sheet magnetic holes are generated by the mirror instability related to ions or not, however, is unknown. Comparison of ratios, scale sizes and propagation direction of magnetic holes detected by Cluster and TC-1, suggests that magnetic holes observed in the vicinity of the TC-1 orbit (~7–12 RE are likely to be further developed than those observed by Cluster (~7–18 RE.

  10. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    Science.gov (United States)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  11. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  12. Responses of properties in the plasma sheet and at the geosynchronous orbit to interplanetary shock

    Institute of Scientific and Technical Information of China (English)

    YAO Li; LIU ZhenXing; ZUO PingBing; ZHANG LingQian; DUAN SuPing

    2009-01-01

    On July 22,2004,the WIND spacecraft detected a typical interplanetary shock. There was sustaining weak southward magnetic field in the preshock region and the southward field was suddenly enhanced across the shock front (i.e.,southward turning). When the shock impinged on the magnetosphere,the magnetospheric plasma convection was abruptly enhanced in the central plasma sheet,which was directly observed by both the TC-1 and Cluster spacecraft located in different regions. Simultaneously,the Cluster spacecraft observed that the dawn-to-dusk electric field was abruptly enhanced. The variations of the magnetic field observed by TC-1,Cluster,GOES-10 and GOES-12 that were distributed in different regions in the plasma sheet and at the geosynchronous orbit are obviously distinct. TC-1 observations showed that the magnetic intensity kept almost unchanged and the elevation angle decreased,but the Cluster spacecraft,which was also in the plasma sheet and was further from the equator,observed that the magnetic field was obviously enhanced. Simultaneously,GOES-12 located near the midnight observed that the magnetic intensity sharply increased and the elevation angle decreased,but GOES-10 located in the dawn side observed that the magnetic field was merely compressed with its three components all sharply increasing. Furthermore,the energetic proton and electron fluxes at nearly all channels observed by five LANL satellites located at different magnetic local times (MLTs) all showed impulsive enhancements due to the compression of the shock. The responses of the energetic particles were much evident on the dayside than those on the nightside. Especially the responses near the midnight were rather weak. In this paper,the possible reasonable physical explanation to above observations is also discussed. All the shock-induced responses are the joint effects of the solar wind dynamic pressure pulse and the magnetic field southward turning.

  13. ISEE 3 observations during a plasma sheet encounter at 140 earth radii - Evidence for enhancement of reconnection at the distant neutral line

    Science.gov (United States)

    Scholer, M.; Terasawa, T.; Baker, D. N.; Zwickl, R. D.; Gloeckler, G.; Hovestadt, D.; Smith, E. J.; Tsurutani, B. T.

    1986-01-01

    A plasma sheet encounter of the ISEE-3 spacecraft in the distant tail at 140 earth radii on March 20, 1983 is studied using magnetic field, energetic particle, and plasma electron data sets. The H-component magnetograms from auroral magnetometer stations, intensity-time profiles, high resolution magnetic field measurements, and electron and proton angular distributions are analyzed. The dynamics of the plasma sheet displayed by the strong tailward and earthward directed ion beams, large northward and southward magnetic fields excursions, and short tailward and earthward plasma flows are described.

  14. The statistical studies of the inner boundary of plasma sheet

    Directory of Open Access Journals (Sweden)

    J. B. Cao

    2011-02-01

    Full Text Available The penetration of plasma sheet ions into the inner magnetosphere is very important to the inner magnetospheric dynamics since plasma sheet ions are one of the major particle sources of ring current during storm times. However, the direct observations of the inner boundary of the plasma sheet are fairly rare due to the limited number of satellites in near equatorial orbits outside 6.6 RE. In this paper, we used the ion data recorded by TC-1 from 2004 to 2006 to study the distribution of inner boundary of ion plasma sheet (IBIPS and for the first time show the observational distribution of IBIPS in the equatorial plane. The IBIPS has a dawn-dusk asymmetry, being farthest to the Earth in the 06:00 08:00 LT bin and closest to the Earth in the 18:00–20:00 LT bin. Besides, the IBIPS has also a day-night asymmetry, which may be due to the fact that the ions on the dayside are exposed more time to loss mechanisms on their drift paths. The radial distance of IBIPS decrease generally with the increase of Kp index. The mean radial distance of IBIPS is basically larger than 6.6 RE during quiet times and smaller than 6.6 RE during active times. When the strength of convection electric field increases, the inward shift of IBIPS is most significant on the night side (22:00–02:00 LT. For Kp ≤ 0+, only 16% of IBIPSs penetrate inside the geosynchronous orbit. For 2 ≤ Kp < 3+, however, 70% of IBIPSs penetrate inside the geosynchronous orbit. The IBIPS has weak correlations with the AE and Dst indexes. The average correlation coefficient between Ri and Kp is −0.58 while the correlation coefficient between Ri and AE/Dst is only −0.29/0.17. The correlation coefficients are local time dependent. Particularly, Ri and Kp are highly correlated (r=−0.72 in the night sector, meaning that the radial distance of IBIPS

  15. The High Latitude D Region During Electron Precipitation Events

    Science.gov (United States)

    Hargreaves, J. K.; Collis, P. N.; Korth, A.

    1984-01-01

    The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.

  16. High latitude D region during electron precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, J.K.; Collis, P.N.; Korth, A.

    1984-05-01

    The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.

  17. Effects of auroral potential drops on plasma sheet dynamics

    Science.gov (United States)

    Xi, Sheng; Lotko, William; Zhang, Binzheng; Wiltberger, Michael; Lyon, John

    2016-11-01

    The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model including, for the first time in a global simulation, the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the field-aligned current (j||) supplied by nightside reconnection dynamos. The system adapts by forcing the nightside X line closer to Earth, with a corresponding reduction in current lensing (j||/B = constant) at the ionosphere and additional contraction of the plasma sheet during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include (1) an average X line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.

  18. Analysis of radiation performances of plasma sheet antenna

    Science.gov (United States)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  19. Investigating EMIC Waves as a Precipitation Mechanism for Relativistic Electrons

    Science.gov (United States)

    Li, Z.; Millan, R. M.; Woodger, L. A.

    2012-12-01

    Evidence has indicated that EMIC waves may be one of the major causes of relativistic electron precipitation (REP). We solved the pitch-angle diffusion equation for the scattering of relativistic electrons by EMIC waves, and generated flux-energy spectra of the precipitating electrons. After being converted into Bremsstrahlung X-ray counts, these spectra can be directly compared with previous (e.g. MAXIS, MINIS, BARREL test campaigns) and future (e.g. BARREL) balloon spectra measurements to determine if EMIC waves are the causes of the REP events. Parameter studies have also been conducted to investigate the influence of various geomagnetic parameters and environmental conditions on the REP spectra.

  20. Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster

    Science.gov (United States)

    Engebretson, M. J.; Kahlstorf, C. R. G.; Posch, J. L.; Keiling, A.; Walsh, A. P.; Denton, R. E.; Broughton, M. C.; Owen, C. J.; FornaçOn, K.-H.; RèMe, H.

    2010-12-01

    The passage of the Cluster satellites in a polar orbit through Earth's magnetotail has provided numerous observations of harmonically related Pc 1-2 ULF wave events, with the fundamental near the local proton cyclotron frequency Ωcp. Broughton et al. (2008) reported observations by Cluster of three such events in the plasma sheet boundary layer, and used the wave telescope technique to determine that their wave vectors k were nearly perpendicular to B. This paper reports the results of a search for such waves throughout the 2003 Cluster tail passage. During the 4 month period of July-October 2003, 35 multiple-harmonic wave events were observed, all in the plasma sheet boundary layer (PSBL). From the first observed event (22 July) to the last (28 October), 13 of Cluster's 42 tail passes had at least one event. The wave events were rather evenly distributed from XGSE = -7 RE out to the Cluster apogee distance of -18 RE, with one event observed at -4 RE. ZGSE for these events ranged from -10 to -3 RE and +3 to +7 RE (i.e., there were no events for ∣Z∣ elevated fluxes of counterstreaming ions with energies ranging from ˜3 to 30 keV, and elevated fluxes of electrons with energies ranging from 0.25 to ˜5 keV. Analysis of plasma parameters suggests that although waves occurred only when the ion beta exceeded 0.1 (somewhat larger than typical for the PSBL), ion particle pressure may be of more physical importance in controlling wave occurrence. Electron distributions were more isotropic in pitch angles than the ion distributions, but some evidence of counterstreaming electrons was detected in 83% of the events. The ions also showed clear signatures of shell-like or ring-like distributions; i.e., with reduced fluxes below the energy of maximum flux. The suprathermal ion fluxes were asymmetric in all events studied, with more ions streaming earthward (for events both north and south of the central plasma sheet). Good agreement between the observed frequency of the

  1. Investigating Plasmasphere Location during Relativistic Electron Precipitation Events

    Science.gov (United States)

    Woodger, L. A.; Millan, R. M.; Goldstein, J.; McCarthy, M. P.; Smith, D. M.; Sample, J. G.

    2006-12-01

    The plasmasphere plays a crucial role in the generation of different wave modes and their resonance conditions with radiation belt relativistic electrons. Meredith's (et. al., 2003) statistical study of resonant conditions for >2MeV electrons with EMIC waves found that the majority of these events occur in the vicinity of the plasmpause. The MAXIS and MINIS balloon observations found a distinct class of relativistic electron precipitation occurring at dusk, suggesting EMIC waves as a possible precipitation mechanism. We investigate the location of these relativistic electron precipitation events with respect to the plasmapause using data from IMAGE EUV, POLAR EFI, and a plasmapause test particle simulation driven by an electric field model with terms representing solar-wind-driven convection and ring-current-ionospheric coupling.

  2. Precipitation of Relativistic Electrons from the Drift Loss Cone

    Science.gov (United States)

    Lorentzen, K. R.; Looper, M. D.; Blake, J. B.; Millan, R. M.; Smith, D. M.; Lin, R. P.

    2001-12-01

    On Jan. 22, 2000, the MAXIS (MeV Auroral X-ray and Spectroscopy) experiment observed a relativistic electron precipitation event using balloon-borne X-ray detectors. The X-ray spectrum from this event is consistent with atmospheric bremsstrahlung from precipitating electrons peaked between 2 and 3 MeV. This event occurred at L =3.8 in the duskside southern hemisphere, near the western edge of the South Atlantic Anomaly. Several minutes before the start of the balloon event, the SAMPEX satellite observed an intense relativistic electron microburst event in the dawnside northern hemisphere. Tracing the mirror point of electrons observed by SAMPEX indicates that some of these microburst electrons were located in the drift loss cone, and would have precipitated near the location of the balloon measurement. We model the electron drift and scatter in order to examine how the temporal structure and energy spectrum of the precipitating particles change as they drift around the Earth. These observations have implications for quantifying the loss of relativistic electrons from the radiation belts.

  3. Anisotropic Equilibrium and Ballooning Mode Analysis in the Tail Plasma Sheet.

    Science.gov (United States)

    Lee, Dae-Young

    This thesis is a theoretical study about the Earth's tail plasma sheet with regard to two aspects: the equilibrium structure for the anisotropic pressure, and the ideal-MHD ballooning stability. By adopting a stretched magnetotail model where ion motions are generally nonadiabatic, and assuming that the anisotropy resides only in the electron pressure tensor, it is shown that the magnetic field lines with rm p_| > p_| are less stretched than the isotropic cases. As the parallel pressure p_| exceeds the perpendicular pressure p_| approaching the conventional marginal firehose limit, rm p_| = p{_ |} + B^2/ mu_0, the magnetic field lines are more and more stretched. It is also shown that the current density is highly enhanced at the same limit, a situation that might be subject to a microscopic instability. However, we also emphasize that such an enhancement in the current density is heavily localized near the z = 0 plane, and thus it is unclear if such a microscopic instability can significantly alter the global configuration of the tail. It is further argued, in terms of the radius of the field curvature versus the particle's gyroradius, that the conventional adiabatic description of electrons may become questionable, very close to the conventional marginal firehose limit. To study the ideal-MHD ballooning mode, we first adopt a hard ionospheric boundary condition where the perturbation is required to vanish at the ionospheric foot points. For such a hard boundary condition, an "untypical" magnetic field configuration is found to be unstable to a ballooning mode that is antisymmetric about the equatorial plane while most of the "typical" tail plasma-sheet configurations are stable against the ideal-MHD ballooning mode. The unstable magnetic field model, however, does not look like the average observation-based model, but rather resembles some of the characteristics of the steady-state magnetic field models by Hau (1989, 1991). In addition, a physical argument is

  4. EMIC Waves Observed in Conjunction with BARREL Electron Precipitation

    Science.gov (United States)

    Weaver, C.; Engebretson, M. J.; Lessard, M.; Halford, A. J.; Millan, R. M.; Horne, R. B.; Singer, H. J.

    2013-05-01

    Electromagnetic ion-cyclotron (EMIC) waves have been detected at Halley, Antarctica coinciding with observations of electron precipitation on high altitude balloons from the Balloon Array for RBSP Relativistic Electron Losses (BARREL) campaign launched in early 2013 from SANAE IV and Halley Station. The balloons were launched such that both spatial and temporal properties of electron precipitation might be examined. With a magnetic foot point mapped to the radiation belts, Halley is an ideal location to capture ground based signatures that coincide with electron precipitation. EMIC waves have been shown, both theoretically and through statistical surveys, to pitch angle scatter energetic protons and relativistic electrons via cyclotron resonance and contribute to radiation belt dynamics. EMIC waves were detected at Halley Station 23 times from 12 Jan - 4 Feb with 17 of those waves occurring during times when at least one BARREL balloon observed precipitation in one or more energy channels. High resolution magnetometer data from GOES 13 (which has a magnetic foot point near WAIS Divide, Antarctica-located about 2.5 hours, in MLT, west of Halley) show similar EMIC wave structure and frequency to 9 waves observed at Halley, suggesting the source region extended to at least the longitude and L value of GOES 13 during some events. The ground observed waves appeared in all local times and during both quiet and disturbed intervals.

  5. Estimation of the characteristic energy of electron precipitation

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available Data from simultaneous observations (on 13 February 1996, 9 November 1998, and 12 February 1999 with the IRIS, DASI and EISCAT systems are employed in the study of the energy distribution of the electron precipitation during substorm activity. The estimation of the characteristic energy of the electron precipitation over the common field of view of IRIS and DASI is discussed. In particular, we look closely at the physical basis of the correspondence between the characteristic energy, the flux-averaged energy, as defined below, and the logarithm of the ratio of the green-light intensity to the square of absorption. This study expands and corrects results presented in the paper by Kosch et al. (2001. It is noticed, moreover, that acceleration associated with diffusion processes in the magnetosphere long before precipitation may be controlling the shape of the energy spectrum. We propose and test a "mixed" distribution for the energy-flux spectrum, exponential at the lower energies and Maxwellian or modified power-law at the higher energies, with a threshold energy separating these two regimes. The energy-flux spectrum at Tromsø, in the 1–320 keV range, is derived from EISCAT electron density profiles in the 70–140 km altitude range and is applied in the "calibration" of the optical intensity and absorption distributions, in order to extrapolate the flux and characteristic energy maps.

    Key words. Ionosphere (auroral ionosphere; particle precipitation; particle acceleration

  6. Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms

    Directory of Open Access Journals (Sweden)

    M. Stepanova

    2009-04-01

    Full Text Available Study of the plasma turbulence in the central plasma sheet was performed using the Interball-Tail satellite data. Fluctuations of the plasma bulk velocity in the plasma sheet were deduced from the measurements taken by the Corall instrument for different levels of geomagnetic activity and different locations inside the plasma sheet. The events that satisfied the following criteria were selected for analysis: number density 0.1–10 cm−3, ion temperature T≥0.3 keV, and average bulk velocity ≤100 km/s. It was found that the plasma sheet flow generally appears to be strongly turbulent, i.e. is dominated by fluctuations that are unpredictable. Corresponding eddy-diffusion coefficients in Y- and Z-direction in the GSM coordinate system were derived using the autocorrelation time and rms velocity. Statistical studies of variation of the eddy-diffusion coefficients with the location inside the plasma sheet showed a significant increase in these coefficients in the tailward direction. During substorms this dependence shows strong increase of eddy-diffusion in the central part of the plasma sheet at the distances of 10–30 Earth's radii. This effect is much stronger for Y-components of the eddy-diffusion coefficient, which could be related to the geometry of the plasma sheet, allowing more room for development of eddies in this direction.

  7. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  8. Investigation of NWC-induced electron precipitation and theoretical simulation

    CERN Document Server

    Zhang, Zhenxia; Wang, Chenyu; Chen, Lunjin

    2016-01-01

    Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced >100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30--100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100--300-keV precipitated-electron havior, the low energy 30--100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30--100-keV electrons are distributed in the L=1.8--2.1 shell range, in ...

  9. Ion Beams in the Plasma Sheet Boundary Layer

    Science.gov (United States)

    Birn, J.; Hesse, M.; Runov, A.; Zhou, X.

    2015-12-01

    We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population; this beam, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with ``Time History of Events and Macroscale Interactions during Substorms" (THEMIS) observations.

  10. Observation of relativistic electron precipitation during a rapid decrease of trapped relativistic electron flux

    Science.gov (United States)

    Millan, R. M.; Lin, R. P.; Smith, D. M.; McCarthy, M. P.

    2007-05-01

    We present the first quantitative comparison of precipitating and geomagnetically trapped electron flux during a relativistic electron depletion event. Intense bremsstrahlung X-ray emission from relativistic electron precipitation was observed on January 19-20, 2000 (21:20-00:45 UT) by the germanium spectrometer on the MAXIS balloon payload (-7.2 to -9.3 E, 74 S corresponding to IGRF L = 4.7, 1920-2240 MLT). A rapid decrease in the geosynchronous >2 MeV electron flux was simultaneously observed at GOES-8 and GOES-10, and between 0.34-3.6 MeV by GPS ns33 at L = 4.7. The observations show that electrons were lost to the atmosphere early in the flux depletion event, during a period of magnetic field stretching in the tail. The observed X-ray spectrum is well modeled by an exponential distribution of precipitating electrons with an e-folding energy of 290 keV and a lower-energy cut-off of 400 keV. The duration of the event implies precipitation extended over at least 3 hours of MLT, assuming a source fixed in local time. Comparison of the precipitation rate with the flux decrease measured at GPS implies that the loss cone flux was only ~1% of the equatorial flux. However, precipitation is sufficient to account for the rate of flux decrease if it extended over 2-3 hours of local time.

  11. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    Science.gov (United States)

    Lennartsson, O. W.

    1994-01-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  12. Energetic radiation belt electron precipitation showing ULF modulation

    Science.gov (United States)

    Brito, T. V.; Hudson, M. K.; Kress, B. T.

    2012-12-01

    The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 range on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these ˜MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. The simulation results are compared with balloon observations obtained during the January 21, 2005 CME-shock event. Rapid loss of 20~keV to 1.5~MeV electrons was detected by balloon-borne measurements of Bremsstrahlung X-rays during the MINIS balloon campaign following the shock arrival at Earth. The global response of the radiation belts to this particular CME-shock driven storm was investigated focusing on precipitation mechanisms by which ULF waves, seen both in the simulations and observations influence the radiation belt population. A primary cause for the precipitation modulation seen in both the simulation and the MINIS campaign is suggested based on the lowering of mirror points due to compressional magnetic field oscillations.

  13. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  14. Casimir effects for a flat plasma sheet: I. Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2005-04-01

    We study a fluid model of an infinitesimally thin plasma sheet occupying the xy plane, loosely imitating a single base plane from graphite. In terms of the fluid charge e/a{sup 2} and mass m/a{sup 2} per unit area, the crucial parameters are q nsce 2{pi}e{sup 2}/mc{sup 2}a{sup 2}, a Debye-type cutoff K{identical_to}{radical}(4{pi})/a on surface-parallel normal-mode wavenumbers k, and X nsce K/q. The cohesive energy {beta} per unit area is determined from the zero-point energies of the exact normal modes of the plasma coupled to the Maxwell field, namely TE and TM photon modes, plus bound modes decaying exponentially with vertical bar zvertical bar. Odd-parity modes (with E{sub x,y}(z = 0) = 0) are unaffected by the sheet except for their overall phases, and are irrelevant to {beta}, although the following paper shows that they are essential to the fields (e.g. to their vacuum expectation values), and to the stresses on the sheet. Realistically one has X >> 1, the result {beta} {approx} {Dirac_h}cq{sup 1/2}K{sup 5/2} is nonrelativistic, and it comes from the surface modes. By contrast, X << 1 (nearing the limit of perfect reflection) would entail {beta} {approx} -{Dirac_h}cqK{sup 2}log(1/X): contrary to folklore, the surface energy of perfect reflectors is divergent rather than zero. An appendix spells out the relation, for given k, between bound modes and photon phase-shifts. It is very different from Levinson's theorem for 1D potential theory: cursory analogies between TM and potential scattering are apt to mislead.

  15. Using PEACE Data from the four CLUSTER Spacecraft to Measure Compressibility, Vorticity, and the Taylor Microscale in the Magnetosheath and Plasma Sheet

    Science.gov (United States)

    Goldstein, Melvyn L.; Parks, George; Gurgiolo, C.; Fazakerley, Andrew N.

    2008-01-01

    We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.

  16. Temporal Structure of MeV Electron Precipitation

    Science.gov (United States)

    Millan, R. M.; Lorentzen, K. R.; Lin, R. P.; Smith, D. M.

    2001-12-01

    On January 12, 2000, the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) long duration balloon experiment was launched from McMurdo, Antarctica carrying x-ray instrumentation designed to search for MeV electron precipitation similar to the event observed in 1996 over Kiruna, Sweden (L=5.8). MAXIS detected seven x-ray bursts with significant flux extending above 0.8 MeV during the 18 day flight in addition to extended periods of softer X-ray activity. These seven events are characterized by an extremely flat spectrum ( ~E-1.7) indicating that the bulk of precipitating electrons producing the x-rays is at relativistic energies. The bursts were detected between magnetic latitudes 58o-67o (corresponding to L-values between 3.8-6.7) with durations varying from several minutes to several hours. The MeV bursts were found to occur preferentially in the late afternoon/dusk sectors (14:30-00:00 MLT) while softer precipitation was detected at all magnetic local times. Two of the strongest MeV events detected by MAXIS show strong modulation of the x-ray count rate at ULF timescales ( ~150 s) similar to modulations observed during the Kiruna event at 100-200 s. We present results from temporal analysis of the MAXIS germanium spectrometer data and examine ground-based and spacecraft observations for evidence of coincident ULF wave activity.

  17. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis

    Science.gov (United States)

    Denton, R. E.; Engebretson, M. J.; Keiling, A.; Walsh, A. P.; Gary, S. P.; DéCréAu, P. M. E.; Cattell, C. A.; RèMe, H.

    2010-12-01

    Multiple-harmonic electromagnetic waves in the ULF band have occasionally been observed in Earth's magnetosphere, both near the magnetic equator in the outer plasmasphere and in the plasma sheet boundary layer (PSBL) in Earth's magnetotail. Observations by the Cluster spacecraft of multiple-harmonic electromagnetic waves with fundamental frequency near the local proton cyclotron frequency, Ωcp, were recently reported in the plasma sheet boundary layer by Broughton et al. (2008). A companion paper surveys the entire magnetotail passage of Cluster during 2003, and reports 35 such events, all in the PSBL, and all associated with elevated fluxes of counterstreaming ions and electrons. In this study we use observed pitch angle distributions of ions and electrons during a wave event observed by Cluster on 9 September 2003 to perform an instability analysis. We use a semiautomatic procedure for developing model distributions composed of bi-Maxwellian components that minimizes the difference between modeled and observed distribution functions. Analysis of wave instability using the WHAMP electromagnetic plasma wave dispersion code and these model distributions reveals an instability near Ωcp and its harmonics. The observed and model ion distributions exhibit both beam-like and ring-like features which might lead to instability. Further instability analysis with simple beam-like and ring-like model distribution functions indicates that the instability is due to the ring-like feature. Our analysis indicates that this instability persists over an enormous range in the effective ion beta (based on a best fit for the observed distribution function using a single Maxwellian distribution), β', but that the character of the instability changes with β'. For β' of order unity (for instance, the observed case with β' ˜ 0.4), the instability is predominantly electromagnetic; the fluctuating magnetic field has components in both the perpendicular and parallel directions, but the

  18. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    W. K. Peterson

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  19. North west cape-induced electron precipitation and theoretical simulation

    Science.gov (United States)

    Zhang, Zhen-xia; Li, Xin-qiao; Wang, Chen-Yu; Chen, Lun-Jin

    2016-11-01

    Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced > 100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100-300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range, in contrast to the 100-300-keV electrons which are at L = 1.67-1.9. This is consistent with the perspective that the energy of the VLF-wave-induced electron flux enhancement decreases with higher L-shell values. We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model. Finally, we present considerable discussion and show that good agreement exists between the observation of satellites and theory. Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science, Technology, and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project (APSCO-SP/PM-EARTHQUAKE).

  20. Threshold of auroral intensification reduced by electron precipitation effect

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    It has been known that discrete aurora suddenly intensifies and deforms from an arc-like to a variety of wavy/vortex structures, especially during a substorm period. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been analyzed in order to comprehend the ignition process of auroral intensification. It was presented that the prime key is an enhancement of plasma convection, and the convection electric field has a threshold. This study examined effects of auroral electron precipitation, causing the ionization of neutral atmosphere, on the linear instability of Alfv$\\acute{\\rm e}$n waves. It was found that the threshold of convection electric fields is significantly reduced by increasing the ionization rate, the realistic range of which could be estimated from observed electron energy spectra.

  1. Role of magnetic field fluctuations in the Evolution of the kappa Distribution Functions in the Plasma Sheet

    Science.gov (United States)

    Espinoza, Cristobal; Antonova, Elizaveta; Stepanova, Marina; Valdivia, Juan Alejandro

    2016-07-01

    The evolution with the distance to Earth of ion and electron distribution functions in the plasma sheet, approximated by kappa distributions, was studied by Stepanova and Antonova (2015, JGRA 120). Using THEMIS data for 5 events of satellite alignments along the tail, covering between 5 and 30 Earth radii, they found that the kappa parameter increases tailwards, for both ions and electrons. In this work we analyse the magnetic fluctuations present in THEMIS data for the same 5 events. The aim is to explore the hypothesis proposed by Navarro et al. (2014, PRL 112), for solar wind plasmas, that the observed magnetic fluctuations could be closely related to spontaneous fluctuations in the plasma, if this can be described by stable distributions. Here we present our first results on the correlation between the spectral properties of the magnetic fluctuations and the observed parameters of the kappa distributions for different distances from Earth.

  2. Generation of Z mode radiation by diffuse auroral electron precipitation

    Science.gov (United States)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  3. Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available Here, and in a companion paper by Hamrin et al. (2009 [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs as Concentrated Generator Regions (CGRs. We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL. For both CLRs and CGRs, E and J in the GSM y (cross-tail direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.

  4. Observation of relativistic electron precipitation during a rapid decrease of trapped electron flux

    Science.gov (United States)

    Millan, R. M.; Lin, R. P.; Smith, D. M.; McCarthy, M. P.; Sample, J. G.; Shprits, Y.

    2006-12-01

    Rapid depletions of the trapped electron flux are often observed, and illustrate the important role played by losses in controlling electron variability in the radiation belts. The observed decrease may be partly due to adiabatic effects, but some of the electrons are lost either through magnetopause shadowing or through precipitation into Earth's atmosphere. On January 19, 2000, duskside precipitation was observed near the start of a rapid flux depletion event, during a period of magnetic field stretching in the tail. The observations were made with the germanium spectrometer on the MAXIS balloon payload and show that real losses were occurring during the initial decrease which has previously been attributed to purely adiabatic effects. A quantitative comparison of the precipitation rate with the change in electron flux measured at GPS implies that only ~1% of the loss cone was filled, however, precipitation alone is sufficient to account for the flux decrease if it extended over 2-3 hours of local time. We present these results and compare the observed loss rate with the theoretical loss rate expected for pitch-angle scattering by EMIC waves.

  5. Comparison of plasma sheet ion composition with the IMF and solar wind plasma

    Science.gov (United States)

    Lennartsson, W.

    Plasma sheet energetic ion data (0.1- to 16 keV/e) obtained by the Plasma Composition Experiment on ISEE-1 between 10 and 23 earth radii are compared with concurrent IMF and solar wind plasma data. The densities of H(+) and He(++) ions in the plasma sheet are found to be the highest, and the most nearly proportional to the solar wind density, when the IMF B(z) is not northward. The density of terrestrial O(+) ions increases strongly with increasing magnitude of the IMF, in apparent agreement with the notion that the IMF plays a fundamental role in the electric coupling between the solar wind and the ionosphere.

  6. Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales

    Science.gov (United States)

    Cao, Xing; Ni, Binbin; Liang, Jun; Xiang, Zheng; Wang, Qi; Shi, Run; Gu, Xudong; Zhou, Chen; Zhao, Zhengyu; Fu, Song; Liu, Jiang

    2016-02-01

    This is a companion study to Liang et al. (2014) which reported a "reversed" energy-latitude dispersion pattern of ion precipitation in that the lower energy ion precipitation extends to lower latitudes than the higher-energy ion precipitation. Electromagnetic ion cyclotron (EMIC) waves in the central plasma sheet (CPS) have been suggested to account for this reversed-type ion precipitation. To further investigate the association, we perform a comprehensive study of pitch angle diffusion rates induced by EMIC wave and the resultant proton loss timescales at L = 8-12 around the midnight. Comparing the proton scattering rates in the Earth's dipole field and a more realistic quiet time geomagnetic field constructed from the Tsyganenko 2001 (T01) model, we find that use of a realistic, nondipolar magnetic field model not only decreases the minimum resonant energies of CPS protons but also considerably decreases the limit of strong diffusion and changes the proton pitch angle diffusion rates. Adoption of the T01 model increases EMIC wave diffusion rates at > ~ 60° equatorial pitch angles but decreases them at small equatorial pitch angles. Pitch angle scattering coefficients of 1-10 keV protons due to H+ band EMIC waves can exceed the strong diffusion rate for both geomagnetic field models. While He+ and O+ band EMIC waves can only scatter tens of keV protons efficiently to cause a fully filled loss cone at L > 10, in the T01 magnetic field they can also cause efficient scattering of ~ keV protons in the strong diffusion limit at L > 10. The resultant proton loss timescales by EMIC waves with a nominal amplitude of 0.2 nT vary from a few hours to several days, depending on the wave band and L shell. Overall, the results demonstrate that H+ band EMIC waves, once present, can act as a major contributor to the scattering loss of a few keV protons at lower L shells in the CPS, accounting for the reversed energy-latitude dispersion pattern of proton precipitation at low

  7. Survey of 0. 1- to 16-keV/e plasma sheet ion composition

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Shelley, E.G.

    1986-03-01

    A large statistical survey of the 0.1- to 16-keV/e plasma sheet ion composition has been carried out using data obtained by the Plasma Composition Experiment on ISEE 1 between 10 and 23 R/sub E/ during 1978 and 1979. This survey includes more than 10 times the quantity of data used in earlier studies of the same topic and makes it possible to investigate in finer detail the relationship between the ion composition and the substorm activity. The larger data base also makes it possible for the first time to study the spatial distribution of the principal ion species. As found in previous studies, the ion composition has a large variance at any given value of the AE index, but a number of distinct trends emerge when the data are averaged at each activity level. During quiet conditions the plasma sheet is dominated by ions of solar origin (H/sup +/ and He/sup + +/), as found in earlier studies, and these ions are most numerous during extended periods of very low activity (AE< or approx. =30 ..gamma..). The quiet time density of these ions is particularly large in the flanks of the plasma sheet (GSM Yapprox. +- 10 R/sub E/), where it is about twice as large as it is near the central axis of the plasma sheet (Y = Z = 0). In contrast, the energy of these ions peaks near the central axis.

  8. IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth plasma sheet

    Science.gov (United States)

    Luo, Hao; Kronberg, Elena; Nykyri, Katariina; Daly, Patrick; Chen, Gengxiong; Du, Aimin; Ge, Yasong

    2017-04-01

    Energetic ion distributions in the near-Earth plasma sheet can provide important information for understanding the entry of ions into the magnetosphere, and their transportation, acceleration, and losses in the near-Earth region. In this study, 11 years of energetic proton and oxygen observations (> 100 keV) from Cluster/RAPID were used to statistically study the energetic ion distributions in the near-Earth region. The dawn-dusk asymmetries of the distributions in three different regions (dayside magnetosphere, near-Earth nightside plasma sheet, and tail plasma sheet) are examined in northern and southern hemispheres. The results show that the energetic ion distributions are influenced by the dawn-dusk IMF direction. The enhancement of intensity largely correlates with the location of the magnetic reconnection at the magnetopause and the consequent formation of a diamagnetic cavity in the same quadrant of the magnetosphere. The results imply that substorm-related processes in the magnetotail are not the only source of energetic ions in the dayside and the near-Earth plasma sheet. We propose that large-scale cusp diamagnetic cavities can be an additional source and can thus significantly affect the energetic ion population in the magnetosphere. We also believe that the influence of the dawn-dusk IMF direction should not be neglected in models of the particle population in the magnetosphere.

  9. Evidence of sub-MeV EMIC-driven electron precipitation

    Science.gov (United States)

    Hendry, Aaron T.; Rodger, Craig J.; Clilverd, Mark A.

    2017-02-01

    Electromagnetic ion cyclotron (EMIC) waves are potentially important drivers of the loss of energetic electrons from the radiation belts. Numerous theoretical calculations exist with conflicting predictions of one of the key parameters: the minimum resonance energy of electrons precipitated into the atmosphere by EMIC waves. In this study we initially analyze an EMIC electron precipitation event using data from two different spacecraft instruments to investigate the energies involved. Combining observations from these satellites, we find that the electron precipitation has a peak flux at ˜250 keV. Extending the analysis technique to a previously published database of similar scattering events, we find that the peak electron precipitation flux occurs predominantly around 300 keV, with only ˜11% of events peaking in the 1-4 MeV range. Such a significant population of low-energy EMIC-driven electron precipitation events highlights the possibility for EMIC waves to be significant drivers of radiation belt electron losses.

  10. A substorm in midnight auroral precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    Full Text Available DMSP F7 spacecraft observations for the whole of 1986 were used to construct the empirical model of the midnight auroral precipitation during a substorm. The model includes the dynamics of different auroral precipitation boundaries and simultaneous changes in average electron precipitation energy and energy flux in different precipitation regions during all substorm phases, as well as the IMF and solar wind plasma signatures during a substorm. The analysis of the model shows a few important features of precipitation. (1 During the magnetic quietness and just before the beginning of the substorm expansive phase the latitudinal width of the auroral precipitation in the nightside sector is about 5 – 6° CGL, while that of the auroral oval is about 2 – 3° CGL during such periods. (2 For about 5 min before the substorm onset a decrease in the average precipitating electron energy in the equatorward part of auroral zone was observed simultaneously, with an increase in both the average electron energy and energy flux of electron precipitation in the poleward part of the auroral zone. (3 The isotropy boundary position in the beginning of the substorm expansive phase coincides well with the inner edge of the central plasma sheet. The analysis of interplanetary medium parameters shows that, on average, during the substorm development, the solar wind dynamic pressure was about 1.5 times that of the magnetic quietness period. Substorms occurred predominantly during the southward IMF orientation, suggesting that substorm onset often was not associated with the northern turn or decrease in the southward interplanetary Bz . The Northern Hemisphere’s substorms occurred generally during the positive interplanetary By in winter, and they were observed when the interplanetary By was negative in summer.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics

  11. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  12. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  13. NOAA POES Observations of Relativistic Electron Precipitation during a Radiation Belt Depletion Event

    Science.gov (United States)

    Millan, R. M.; Yando, K.; Green, J. C.

    2008-12-01

    We present POES observations of relativistic electron precipitation during an electron depletion event observed by GOES and GPS. On January 19, 2000 NOAA-15 passed very near the MAXIS balloon payload (L=4.7) which detected an intense duskside precipitation event (Millan et al., 2007). Recent work has shown that the NOAA MEPED proton detector responds to electrons above ~700 keV. We combine data from this high energy channel with data from the MEPED electron detector to examine the energy distribution and spatial extent of precipitation during this period. The results are compared with the MAXIS balloon observations.

  14. Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet

    Directory of Open Access Journals (Sweden)

    M. N. Nishino

    2007-03-01

    Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.

  15. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    CERN Document Server

    Kronberg, E A; Haaland, S E; Daly, P W; Delcourt, D C; Luo, H; Kistler, L M; Dandouras, I

    2016-01-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure ($\\mathit{P}_{dyn}$) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW $\\mathit{P}_{dyn}$, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of t...

  16. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  17. Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component

    Institute of Scientific and Technical Information of China (English)

    宋慧敏; 张乔根; 李应红; 贾敏; 吴云; 梁华

    2012-01-01

    A type of electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A three-electrode plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component was used to generate sliding discharge, which can be called nanosecond-pulse sliding discharge. The phenomenology and behaviour of the plasma sheet actuator were investigated experimentally. Discharge morphology shows that the formation of nanosecond-pulse sliding discharge is dependent on the peak value of the repetitive nanosecond pulses and negative DC component applied on the plasma sheet actuator. Compared to dielectric barrier discharge (DBD), the extension of plasma in nanosecond-pulse sliding discharge is quasi-diffusive, stable, longer and more intensive. Test results of particle image velocimetry demonstrate that the negative DC component applied to a third electrode could significantly modify the topology of the flow induced by nanosecond-pulse DBD. Body force induced by the nanosecond-pulse sliding discharge can be approximately in the order of mN. Both the maximum velocity and the body force induced by sliding discharge increase significantly as compared to single DBD. Therefore, nanosecond-pulse sliding discharge is a preferable plasma aerodynamic actuation generation mode, which is very promising in the field of aerodynamics.

  18. Study of the turbulence in the central plasma sheet using the CLUSTER satellite data

    Science.gov (United States)

    Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.

    2008-05-01

    Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.

  19. Thermal Structure and Dynamics in Supra-arcade Downflows and Flare Plasma Sheets

    Science.gov (United States)

    Reeves, K.; Hanneman, W.; Freed, M.; McKenzie, D. E.

    2014-12-01

    During a long duration solar flare, a hot plasma sheet is commonly formed above the flare loops. Often produced within this sheet are down-flowing voids referred to as supra-arcade downflows, thought to be the products of a patchy reconnection process. Models differ on the question of whether the downflows should be hotter than the surrounding plasma or not. We use imaging data from Hinode/XRT and SDO/AIA to determine the thermal structure of the plasma sheet and downflows. We find that the temperatures of the plasma within the downflows are either roughly the same as or lower than the surrounding fan plasma. This result implies that a mechanism for forming the voids that involves a sunward directed hydrodynamic shock pattern combined with perpendicular magnetic shock is unlikely. Additionally, we use the high cadence AIA data to trace the velocity fields in these regions through the use of a local correlation tracking algorithm. Through these measurements, we can determine areas of diverging velocity fields, as well as velocity shear fields and correlate them with temperature changes in order to understand the heating mechanisms in the plasma sheet. This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and NASA grant numbers NNX13AG54G and NNX14AD43G

  20. A Statistical study of plasma sheet oscillations with kinetic ballooning/interchange instability signatures using THEMIS spacecraft

    Science.gov (United States)

    Jurisic, Mirjana; Panov, Evgeny; Nakamura, Rumi; Baumjohann, Wolfgang

    2016-04-01

    We use THEMIS data from 2010-2012 tail seasons to collect observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Over seventy observations with closely located THEMIS probes P3-P5 reveal that BICI-like plasma sheet oscillations may appear at different magnetic local time. For these, we derive background plasma sheet parameters such as BZ, δBZ/δx and plasma beta, and investigate solar wind conditions. We also estimate the proper parameters of BICI-like oscillations such as frequency and amplitude. Based on this, we search for a relation between the background plasma sheet parameters and the proper parameters of BICI-like oscillations.

  1. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, O.W.

    1994-04-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  2. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  3. Simulation of ULF wave-modulated radiation belt electron precipitation during the 17 March 2013 storm

    Science.gov (United States)

    Brito, T.; Hudson, M. K.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.

    2015-05-01

    Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the millihertz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the Balloon Array for Relativistic Radiation belt Electron Losses balloon experiments, have observed this modulation at ULF wave frequencies. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible. Three-dimensional simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the Lyon-Fedder-Mobarry code, during a coronal mass ejection (CME)-shock event on 17 March 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of electromagnetic ion cyclotron waves, which are not resolved in the MHD simulation. The arrival of a strong CME-shock, such as the one simulated, disrupts the electric and magnetic fields in the magnetosphere and causes significant changes in both components of momentum, pitch angle, and L shell of radiation belt electrons, which may cause them to precipitate into the loss cone.

  4. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    Science.gov (United States)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  5. Duskside Relativistic Electron Precipitation in the SAMPEX data set from 1992-2004

    Science.gov (United States)

    Comess, M. D.; Smith, D. M.; Millan, R. M.; Sample, J. G.

    2009-12-01

    Evidence for duskside relativistic electron precipitation (DREP) within the Earth's outer radiation belt has been seen in several sets of high altitude balloon data (MAXIS, MINIS, INTERBOA). The DREP events have a characteristically short timescale. They are the hardest X-ray events seen from balloons with typical energy around 1MeV. They always occur in the evening hemisphere between 12-24 MLT. These events appear to be intense enough that they may represent the dominant loss mechanism in the outer electron belt for relativistic electrons. However, such evidence has rarely been seen in satellite data as DREP have been hard to distinguish from other forms of precipitation such as band precipitation and microbursts. Statistical evidence for duskside relativistic electron precipitations (DREP) is presented based on a survey of data collected by SAMPEX from 1992-2004. Correlations among event duration, intensity, spectral hardness and duskside MLT are observed in this sample.

  6. Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the plasma sheet

    Science.gov (United States)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.

    2013-12-01

    Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically

  7. Diffuse auroral electron scattering by electrostatic electron cyclotron harmonic (ECH) waves and electromagnetic whistler-mode chorus in the inner magnetosphere

    Science.gov (United States)

    Ni, B.; Thorne, R. M.; Horne, R. B.; Meredith, N. P.; Shprits, Y.; Chen, L.

    2009-12-01

    The diffuse aurora constitutes one of the most important loss processes of plasma sheet electrons, supplying the majority of ionizing energy input into the high-latitude region during conditions of both low and high solar wind driving. It is generally agreed that wave-particle interactions, including scattering losses by electrostatic electron cyclotron harmonic (ECH) waves and electromagnetic whistler-mode chorus waves, play an essential role in the occurrence of the diffuse aurora. However, the precise role of each wave mode has remained a source of controversy for many years. To quantify the scattering effects of these two wave modes, we have improved the methodology for computation of quasi-linear diffusion coefficients and adopted statistical wave models based on the survey of ECH waves and chorus using the entire CRRES database. Our results demonstrate that, whistler-mode chorus is the dominant mechanism for loss of injected plasma sheet electrons from the inner magnetosphere (4 1 keV, suggesting rather minor contributions from ECH waves to the diffuse auroral precipitation. Our results also show that the scattering effects on plasma sheet electrons by the waves are strongly dependent on the level of geomagnetic activity.

  8. Comments on the energy selective precipitation of inner zone electrons by Imhof et al

    Science.gov (United States)

    Vampola, A. L.; Kuck, G. A.

    1981-12-01

    This note addresses the interpretation of data from the 1971-89A satellite as published by Imhof et al, in 'The Energy Selective Precipitation of Inner Zone Electrons' in the Journal of Geophysical Research. It discusses the limitations of the data set and demonstrates that the data set is in agreement with the thesis that a source of electron precipitation is colocated with the Soviet VLF transmitter UMS.

  9. RELATIVISTIC ELECTRON LOSSES RELATED TO PROTON PRECIPITATION AND EMIC WAVES

    Science.gov (United States)

    Soraas, F.; Sandanger, M. I.; Aarsnes, K.; Oksavik, K.; Evans, D. S.

    2009-12-01

    Observations of loss of relativistic electrons to the atmosphere is presented and related to SW parameters. It is shown that the L-region of relativistic electron loss matched the anisotropic proton zone. In this zone the pitch angle distribution of the protons are unstable and can generate/amplify EMIC waves which in turn scatter the electrons into the atmosphere. In spatial limited regions, located close to the plasma pause, there can be enhanced losses of protons (sometime completely filling the loss cone). These regions of proton losses (spikes) are shown to give rise to EMIC waves leading to enhance scattering of the relativistic electrons. In the main phase of the storm the proton spikes are located in the midnight/evening sector, but in the storm recovery phase they are located at all MLTs. The anisotropic proton zone and proton spikes are observed in all storms, but not all storms contain an elevated flux of relativistic electrons.

  10. Investigation of EMIC Waves During Balloon Detected Relativistic Electron Precipitation Events

    Science.gov (United States)

    Woodger, L. A.; Millan, R. M.

    2009-12-01

    Multiple relativistic electron precipitation (REP) events were detected by balloon-borne instrumentation during the MAXIS 2000 and MINIS 2005 campaigns. It has been suggested that resonance with EMIC waves caused these precipitation events (Lorentzen et al, 2000 and Millan et al, 2002) due to their location in the dusk sector. We present observations of dusk-side relativistic electron precipitation events, and use supporting satellite and theoretical data to investigate the relationship between EMIC waves and the detected REP. Satellite data can provide direct measurements of not only the waves themselves but also important resonance condition parameters. The data will be presented collectively with each event to showcase similarities and differences between events and the challenges that arise in trying to understand the relationship between dusk-side relativistic electron precipitation and EMIC waves.

  11. Plasma sheet stretching accompanied by field aligned energetic ion fluxes observed by the MUADU instrument aboard TC-2

    Institute of Scientific and Technical Information of China (English)

    Lu Li; S.MCKENNA-LAWLOR; S.BARABASH; LIU ZhenXing; CAO JinBin; J.BALAZ; K.KUDELA; T.L.ZHANG; C.M.CARR

    2007-01-01

    The NUADU(NeUtral Atom Detector Unit)instrument aboard TC-2 recorded 4π solid angle images of charged particles(E>180 keV)spiraling around the magnetic field lines in the near-Earth plasma sheet (at~-7 RE,equatorial dawn-to-night side)during a geomagnetic storm(Dst=-219 nT)on August 24,2005.Energetic ion beam events characterized by symmetrical,ring-like,solid angle distributions around ambient magnetic field lines were observed during a 34-minute traversal of the plasma sheet by the TC-2 spacecraft.Also,observations during these multiple crossings of the plasma sheet were monitored by the magnetometer experiment(FGM)aboard the same spacecraft.During each crossing,a whistler-mode chorus enhancement was observed in the anisotropic area by the TC-2 low frequency electromagnetic wave detector(LFEW/TC-2)at a frequency just above that of the local lower hybrid wave.A comparison of the ion pitch angle distribution(PAD)map with the ambient magnetic field shows that an enhancement in the field aligned energetic ion flux was accompanied by tailward stretching of the magnetic field lines in the plasma sheet.In contrast,the perpendicular ion-flux enhancement was accompanied by a signature indicating the corresponding shrinkage of the magnetic field lines in the plasma sheet.Since both parallel ion-flux and perpendicular ion-flux enhancements occurred intermittently,the data were interpreted to imply a dynamical,oscillatory process of the magnetic field line(stretching and shrinking)in the near-Earth plasma sheet,which might have acted to help establish an interaction region in this area which would support continuous aurora-substorm triggering during the ongoing magnetic storm.The whistler-mode chorus may have been produced due to ion gyro-resonance during particle pitch angle diffusion after the plasma sheet compression.

  12. Updated analytical solutions of continuity equation for electron beams precipitation - II. Mixed energy losses

    Science.gov (United States)

    Zharkova, V. V.; Dobranskis, R. R.

    2016-06-01

    In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.

  13. Plasma sheet ion composition at various levels of geomagnetic and solar activity

    Science.gov (United States)

    Lennartsson, W.

    1987-08-01

    The data obtained in the earth's plasma sheet by the Plasma Composition Experiment on the ISEE-1 spacecraft are briefly reexamined. The data are shown in the form of statistically averaged bulk parameters for the four major ions H(+), He(2+), He(+), and O(+) to illustrate the apparent mixture of solar and terrestrial ions, a mixture that varies with geomagnetic and other conditions. Some major differences in the statistical properties of different ions, which may have a bearing on the physics of the solar wind-magnetosphere interaction, are highlighted.

  14. Sounding of the plasma sheet in the deep geomagnetic tail using energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Daly, P.W.; Wenzel, K.; Sanderson, T.R.

    1984-10-01

    Energetic ions (E>35 keV) at 90/sup 0/ to the magnetic field line are measured on ISEE-3 in the distant geomagnetic tail and are used as tracers of the particle density during two encounters with the plasma sheet at 210 and 128 earth radii from the earth. Because of the finite gyroradius (2400 km) of these (assumed) protons, different orientation about the magnetic field measure the intensity of different locations, allowing a separation of spatial from temporal variations. Density contour maps of the plasma hseet are constructed, demonstrating the wavy nature of this regime, as well as the existence of density layers within it.

  15. Energetic electron precipitation in weak to moderate corotating interaction region-driven storms

    Science.gov (United States)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene

    2017-03-01

    High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.

  16. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoski, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [NOAA, BOULDER; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  17. Evaluating the Role and Effects of Precipitation on Relativistic Electron Losses during Storms

    Science.gov (United States)

    Chen, Y.; Fu, X.

    2016-12-01

    Theoretic studies have suggested that during storm times various waves (e.g., whistler-mode chorus and electromagnetic ion cyclotron waves) can cause significant precipitation of relativistic ( MeV) electrons that are originally trapped inside the outer radiation belt. However, the role of precipitation and its quantitative contribution to the losses of outer-belt electrons remain open questions. In this study, we tackle these questions by systemically examining the latest wave and electron in-situ, simultaneous observations made at different altitudes by Van Allen Probes from near equator, NOAA POES at low Earth orbits near/across electron loss cone, and BARREL under the mesosphere. After calibrating with DEMTER observations, we first confirm and quantify the response of POES MEPED proton channels to MeV electrons. Next, we identify a list of precipitation events from BARREL and POES measurements, examine the temporal adn spatial relation between the two data sets, and estimate the intensities of electron precipitation with ascertained uncertainties. Then, from Van Allen Probes data, we select another list of dropout events during storms. By cross checking the above two lists, we are able to determine the causal relation between precipitation and dropouts through individual case as well as statistical studies so as to quantify the contributions from precipitation. This study mainly focuses on the relatively small L-shells with positive phase space density radial gradient in order to alleviate the impacts from outward radial diffusion and adiabatic effects. Based upon the recent discovery of cross-energy cross-pitch angle coherence, we pay particular attention to the cross-term diffusions which may account for the extra "loss" needed by observed MeV electron dropouts. Results from this observational study will advance our knowledge on the loss mechanism of outer-belt electrons, and thus lay down another stepping stone towards high-fidelity physics-based models for

  18. Fc-mediated immune precipitation. III. Visualization by electron microscopy

    DEFF Research Database (Denmark)

    Møller, NPH; Christiansen, Gunna

    1983-01-01

    Fc-mediated interactions between immune complexes are of major importance for the precipitin reaction. In the present study these interactions were investigated by means of electron microscopy. Keyhole limpet haemocyanin (KLH) was adsorbed to a thin glow charged carbon supporting film and reacted...

  19. Void and precipitate structure in ion- and electron-irradiated ferritic alloys

    Science.gov (United States)

    Ohnuki, Soumei; Takahashi, Heishichiro; Takeyama, Taro

    1984-05-01

    Void formation and precipitation were investigated in Fe10Cr and Fe13Cr base alloys by 200 keV C + ion and 1 MeV electron irradiation. The ferritic alloys exhibited significant resistance to void swelling. In FeCr and FeCr-Si alloys, ion-irradiation produced the precipitates of M 23C 6 type. In the FeCrTi alloy, Ti-rich precipitates were formed with high number density on {100} plane. During electron-irradiation Fe-10Cr alloy, complex dislocation loops were produced with high number density, of which Burgers vector was mostly . EDX analysis showed slightly enrichment of chromium on dislocation loops. These results suggested that the stability of type dislocation structure at high dose is an important factor on good swelling resistance in the ferritic alloys, moreover, titanium addition will intensify the stability of the doslocations through the fine precipitation on dislocations.

  20. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model

    Science.gov (United States)

    Artamonov, A. A.; Mishev, A. L.; Usoskin, I. G.

    2016-11-01

    Results of a comparison of a new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) with a commonly used parametric model of atmospheric ionization is presented. The CRAC:EPII is based on a Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth's atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. Propagation of precipitating electrons and their interactions with air is simulated with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE-00 atmospheric model. Ionization yields are computed and compared with a parametrization model for different energies of incident precipitating energetic electrons, using simulated fluxes of mono-energetic particles. A good agreement between the two models is achieved in the mesosphere but the contribution of Bremsstrahlung in the stratosphere, which is not accounted for in the parametric models, is found significant. As an example, we calculated profiles of the ion production rates in the middle and upper atmosphere (below 100 km) on the basis of balloon-born measured spectra of precipitating electrons for 30-October-2002 and 07-January-2004.

  1. Relative contributions of terrestrial and solar wind ions in the plasma sheet

    Science.gov (United States)

    Lennartsson, W.; Sharp, R. D.

    A major uncertainty concerning the origins of plasma sheet ions is due to the fact that terrestrial H(+) can have similar fluxes and energies as H(+) from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE less than 60 gamma) when H(+) typically contributes more than 90 percent of the plasma sheet ion population. In this study that problem is examined using a large data set obtained by the ISEE-1 Plasma Composition Experiment. The data suggest that one component of the H(+) increases in energy with increasing activity, roughly in proportion to 1/4 the energy of the He(++), whereas the other H(+) component has about the same energy at all activity levels, as do the O(+) and the He(+). If it is assumed that the H(+) of solar wind origin on the average has about the same energy-per-nucleon as the He(++), which is presumably almost entirely from the solar wind, then the data imply that as much as 20-30 percent of the H(+) can be of terrestrial origin even during quiet conditions.

  2. Relative contributions of terrestrial and solar wind ions in the plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Sharp, R.D.

    1985-01-01

    A major uncertainty concerning the origins of plasma sheet ions is due to the fact that terrestrial H(+) can have similar fluxes and energies as H(+) from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE less than 60 gamma) when H(+) typically contributes more than 90 percent of the plasma sheet ion population. In this study that problem is examined using a large data set obtained by the ISEE-1 Plasma Composition Experiment. The data suggest that one component of the H(+) increases in energy with increasing activity, roughly in proportion to 1/4 the energy of the He(++), whereas the other H(+) component has about the same energy at all activity levels, as do the O(+) and the He(+). If it is assumed that the H(+) of solar wind origin on the average has about the same energy-per-nucleon as the He(++), which is presumably almost entirely from the solar wind, then the data imply that as much as 20-30 percent of the H(+) can be of terrestrial origin even during quiet conditions.

  3. Survey of 0.1- to 16-keV/e plasma sheet ion composition

    Science.gov (United States)

    Lennartsson, W.; Shelley, E. G.

    1986-03-01

    An analysis is performed of all plasma sheet data collected in 1978-79 in order to discern statistical trends in the data. Attention is focused on the bulk parameters of 0.1-16 keV/e plasma sheet ions detected by the Plasma Composition Experiment on the ISEE 1 satellite. The data were collected at 10-23 earth radii, and are averaged for various levels of activity in the AE index. Solar H(+) and He(2+) ions dominate during quiet periods and possess energies similar to those of the solar wind when the quiet period lasts several hours. Increasing AE index values eventually lead to a replacement of the solar ions with terrestrial ions, particularly O(+), which can have an average energy density of 3-4 keV/e at every activity level. The solar ions, however, increase in energy as their density decreases. The O(+) density is highest near the local midnight and becomes the most numerous during highly disturbed conditions. Finally, the O(+) density was observed to increase by a factor of three over the monitoring period, possibly due to enhanced solar EUV radiation.

  4. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    Science.gov (United States)

    Sabri, M. M.; Möbus, G.

    2017-06-01

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form.

  5. Determining the Effects of EMIC Waves on Precipitating MeV Electrons during Strom Main Phases

    Science.gov (United States)

    Chen, Y.

    2015-12-01

    Theoretic studies have suggested that electromagnetic ion cyclotron (EMIC) waves can cause significant precipitation of ~MeV electrons, supposedly accounting for the fast dropouts of outer-belt electrons during storm main phases. Usually the resonance between left-hand polarized EMIC with electrons with moderate energy is unlikely due to their opposite polarizations, while resonance with highly relativistic electrons do occur and cause electrons to precipitate into the atmosphere through pitch-angle scattering. Several previous studies on observations find a close relation between the two phenomena, e.g., Cliverd et al. [2007], Sandanger et al. [2007], and Miyoshi et al. [2008], while others find otherwise, e.g., Meredith et al. [2011]; recently, more observational evidence supporting the connection has been reported (e.g., Li et al. [2014] and Blum et al. [2015]). However, whether and under what favoring conditions EMIC waves cause rapid dropouts of relativistic electrons during storm main phases remain unresolved questions. Here, using latest wave and electron data from multiple missions including Van Allen Probes, BARREL, and NOAA POES, we systemically examine the relation between EMIC waves and MeV electron precipitation. We first construct two independent event lists for intensified EMIC waves and enhancements of MeV electron precipitation, respectively. Then we cross check the two lists to identify if any significant correlation exists in between, and further characterize the wave effectiveness in terms of L-shell, MLT, resonance energy, as well as the background plasma conditions. Results from this study will advance our knowledge about the loss mechanism of outer-belt electrons, thus laying down another stepping stone towards high-fidelity physics-based models for radiation belts.

  6. Cluster view of the plasma sheet boundary layer and bursty bulk flow connection

    Directory of Open Access Journals (Sweden)

    O. W. Lennartsson

    2009-04-01

    Full Text Available The high-latitude boundaries of the plasma sheet (PSBL are dynamic latitude zones of recurring and transient (minutes to tens of minutes earthward and magnetic field-aligned bursts of plasma, each being more or less confined in longitude as well, whose ionic component is dominated by protons with flux, energies and density that are consistent with a central plasma sheet (CPS source at varying distance (varying rates of energy time dispersion, sometimes as close as the ~19 RE Cluster apogees, or closer still. The arguably most plausible source consists of so called "bursty bulk flows" (BBFs, i.e. proton bulk flow events with large, positive and bursty GSE vx. Known mainly from CPS observations made at GSE x>−30 RE, the BBF type events probably take place much further downtail as well. What makes the BBFs an especially plausible source are (1 their earthward bulk flow, which helps explain the lack of distinctive latitudinal PSBL energy dispersion, and (2 their association with a transient strong increase of the local tail Bz component ("local dipolarization". The enhanced Bz provides intermittent access to higher latitudes for the CPS plasma, resulting in local density reductions in the tail midplane, as illustrated here by proton data from the Cluster CIS CODIF instruments. Another sign of kinship between the PSBL bursts and the BBFs is their similar spatial fine structure. The PSBL bursts have prominent filaments aligned along the magnetic field with transverse flux gradients that are often characterized by local ~10 keV proton gyroradii scale size (or even smaller, as evidenced by Cluster measurements. The same kind of fine structure is also found during Cluster near-apogee traversals of the tail midplane, as illustrated here and implied by recently published statistics on BBFs obtained with Cluster multipoint observations at varying satellite

  7. Investigation of S3-2 satellite data for local time variation of energetic electron precipitation

    Science.gov (United States)

    Robbe, S.; Sheldon, W. R.; Benbrook, J. R.; Bering, E. A.; Vampola, A. L.

    1994-01-01

    Data on precipitating electrons from the S3-2 satellite were investigated for local time variation at four L = 4 stations in the southern hemisphere. The equatorial pitch angles of electrons mirroring at 100 km, assumed to be the edge of the bounce loss cone, are calculated for L = 4 using the International Geomagnetic Reference Field for the epoch of the S3-2 data, along with the variation in mirror altitude per degree of equatorial pitch angle. The largest obstacle to the investigation was uneven sampling in terms of local time for all of the stations. However, this situation was improved upon by the use of S3-2 measurements at the conjugate locations of the four stations which provided additional data on electrons in the southern hemisphere bounce loss cone. Evidence for an effect of the dawn-to-dusk geoelectric field was found at two of the stations, Halley Bay and Siple, in the form of a minimum in electron precipitation at dusk. However, the present study does not completely resolve the question of local time modulation of electron precipitation at L = 4 in the southern hemisphere. Furthermore, while the average precipitation was lowest at the Kerguelen site, as would be expected on the basis of drift loss cone (DLC) theories, the intensity at that site exceeds the level that is expected on the basis of these DLC theories.

  8. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang

    2007-01-01

    We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.

  9. Contribution of proton and electron precipitation to the observed electron concentration in October-November 2003 and September 2005

    Energy Technology Data Exchange (ETDEWEB)

    Verronen, P.T.; Andersson, M.E.; Kauristie, K.; Palmroth, M. [Finnish Meteorological Institute, Helsinki (Finland). Earth Observation; Kero, A. [Oulu Univ., Sodankylae (Finland). Sodankylae Geophysical Observatory; Enell, C.F. [EISCAT Scientific Association, Kiruna (Sweden); Wissing, J.M. [Osnabrueck Univ. (Germany). Inst. of Environmental Systems Research; Talaat, E.R. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.; Sarris, T.E. [Democritus Univ. of Thrace, Xanthi (Greece). Space Research Lab.; Armandillo, E. [European Space Agency, Nordwijk (Netherlands). ESTEC

    2015-01-01

    Understanding the altitude distribution of particle precipitation forcing is vital for the assessment of its atmospheric and climate impacts. However, the proportion of electron and proton forcing around the mesopause region during solar proton events is not always clear due to uncertainties in satellite-based flux observations. Here we use electron concentration observations of the European Incoherent Scatter Scientific Association (EISCAT) incoherent scatter radars located at Tromsoe (69.58 N, 19.23 E) to investigate the contribution of proton and electron precipitation to the changes taking place during two solar proton events. The EISCAT measurements are compared to the results from the SodankylaeIon and Neutral Chemistry Model (SIC). The proton ionization rates are calculated by two different methods - a simple energy deposition calculation and the Atmospheric Ionization Model Osnabrueck (AIMOS v1.2), the latter providing also the electron ionization rates. Our results show that in general the combination of AIMOS and SIC is able to reproduce the observed electron concentration within 50% when both electron and proton forcing is included. Electron contribution is dominant above 90 km, and can contribute significantly also in the upper mesosphere especially during low or moderate proton forcing. In the case of strong proton forcing, the AIMOS electron ionization rates seem to suffer from proton contamination of satellite-based flux data. This leads to overestimation of modelled electron concentrations by up to 90% between 75-90 km and up to 100-150% at 70-75 km. Above 90 km, the model bias varies significantly between the events. Although we cannot completely rule out EISCAT data issues, the difference is most likely a result of the spatio-temporal fine structure of electron precipitation during individual events that cannot be fully captured by sparse in situ flux (point) measurements, nor by the statistical AIMOS model which is based upon these observations

  10. Observation of an Extremely Large-Density Heliospheric Plasma Sheet Compressed by an Interplanetary Shock at 1 AU

    Science.gov (United States)

    Wu, Chin-Chun; Liou, Kan; Lepping, R. P.; Vourlidas, Angelos; Plunkett, Simon; Socker, Dennis; Wu, S. T.

    2017-08-01

    At 11:46 UT on 9 September 2011, the Wind spacecraft encountered an interplanetary (IP) fast-forward shock. The shock was followed almost immediately by a short-duration (˜ 35 minutes) extremely dense pulse (with a peak ˜ 94 cm-3). The pulse induced an extremely large positive impulse (SYM-H = 74 nT and Dst = 48 nT) on the ground. A close examination of other in situ parameters from Wind shows that the density pulse was associated with i) a spike in the plasma β (ratio of thermal to magnetic pressure), ii) multiple sign changes in the azimuthal component of the magnetic field (B_{φ}), iii) a depressed magnetic field magnitude, iv) a small radial component of the magnetic field, and v) a large (> 90°) change in the suprathermal (˜ 255 eV) electron pitch angle across the density pulse. We conclude that the density pulse is associated with the heliospheric plasma sheet (HPS). The thickness of the HPS is estimated to be {˜} 8.2×105 km. The HPS density peak is about five times the value of a medium-sized density peak inside the HPS (˜ 18 cm-3) at 1 AU. Our global three-dimensional magnetohydrodynamic simulation results (Wu et al. in J. Geophys. Res. 212, 1839, 2016) suggest that the extremely large density pulse may be the result of the compression of the HPS by an IP shock crossing or an interaction between an interplanetary shock and a corotating interaction region.

  11. Diffuse auroral precipitation by resonant interaction with electron cyclotron harmonic and whistler mode waves

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2013-05-01

    Bounce-averaged pitch angle diffusion coefficients of electrons due to resonant interaction with electrostatic electron cyclotron harmonic (ECH) and whistler mode waves have been calculated. Temporal growth rates obtained by solving the appropriate dispersion relation have been used to represent the distribution of wave energy with frequency. Calculations have been performed at two spatial locations L=4.6 and L=6.8. The results obtained suggest that ECH waves can put electrons on strong pitch angle diffusion at both spatial locations. However, at L=4.6, electrons with energy <100 eV and at L=6.8 electrons with energy up to ∼500 eV can be put on strong diffusion contributing to diffuse auroral precipitation. Whistler mode waves can put electrons of energy ≤5 keV on strong pitch angle diffusion at L=6.8 whereas at L=4.6 observed wave fields are insufficient to put electrons on strong diffusion. ECH waves contribute up to 17% of the total electron energy precipitation flux due to both ECH and whistler mode waves. A case study has been performed to calculate pitch angle diffusion coefficients using Gaussian function to represent wave energy distribution with frequency. It is found that, for electron energy <500 eV, the calculated diffusion coefficients using Gaussian function to represent ECH wave energy distribution are several orders of magnitude smaller or negligible as compared to diffusion coefficients calculated by temporal growth rates. However, the calculated pitch angle diffusion coefficients using Gaussian function for whistler mode wave energy distribution are in very good agreement with diffusion coefficients calculated by temporal growth rates. It is concluded that representing the ECH wave energy distribution with frequency by a Gaussian function grossly underestimates the low energy (<500 eV) electron precipitation flux due to ECH waves.

  12. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoshi, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [SEC/NOAA; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  13. Application of The Alfvén-Assisted Precipitation Model to Field-Aligned Electron Bursts

    Science.gov (United States)

    Lee, J. H.; Clemmons, J. H.; Angelopoulos, V.; Pfaff, R. F.; Wallis, D. D.; Knudsen, D. J.

    2009-12-01

    A close relationship between field-aligned electron bursts and Alfvén waves has been identified by numerous sounding rocket and satellite missions. While previous work has demonstrated the ability of inertial Alfvén waves to accelerate electrons along the geomagnetic field lines in the dayside cusp, the nightside signatures of Alfvén wave interactions with cold electrons in the auroral ionosphere have yet to be explained in a reasonable manner. The Alfvén-assisted precipitation model and new analyses of observations supporting its validity are presented. High time resolution electron flux data from the GEODESIC sounding rocket flight of 2000, taken during an active auroral breakup, show dozens of field-aligned electron bursts; the bursts display energy-time dispersion with higher energy electrons appearing earlier in time and have peak energies with a range up to—but not exceeding—the energy of a nearby inverted-V peak, up to about 20 keV. Several of these bursts occur separately from inverted-V electron distributions and an instance of a burst occurring near the edge of an auroral arc with fluxes higher than the accompanying inverted-V electron distribution is also present. The observations not only suggest separate source locations for the burst electrons and the quasistatic, isotropic inverted-V electrons, but also support the existence of a quasistatic potential structure without simultaneous inverted-V electron precipitation. The model incorporates the aforementioned attributes displayed by the observations and provides a set of physical parameters which help characterize individual phenomena. Energy-time dispersion signatures are derived and shown for each of the individual bursts; model fits to these signatures demonstrate agreement with the model. Examples from Freja and FAST satellite data are also discussed.

  14. Prompt precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere

    Science.gov (United States)

    Brito, T.; Hudson, M. K.; Kress, B. T.

    2011-12-01

    The energization and loss processes for energetic radiation belt electrons are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool to study the dynamics of these ~MeV energetic particles. We use satellite measurements of the solar wind as the boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields which then drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. Wave-particle interaction can cause both energization and pitch-angle scattering loss. Ultra Low Frequency (ULF) waves resolved by the MHD code have been correlated with both enhancement in outer zone radiation belt electron flux1 and modulation of precipitation loss to the atmosphere2. The time scales seen in several studies linking ULF waves with radiation belt flux increases are usually several hours to a few days1,3, but few studies consider the effects of ULF waves in the Pc-4 to Pc-5 range on electron loss to the atmosphere on a time scale of tens of minutes. We investigate such rapid loss, using measured solar wind input to MHD-test particle simulations for a CME-shock event that occurred on January 21, 2005. We focus on mechanisms by which ULF waves, seen both in the simulations and observations, especially ones driven by pressure variations in the solar wind, influence the radiation belts. ULF modulation was seen in precipitation detected by the MINIS balloon campaign measurements of atmospheric Bremsstrahlung from MeV electron precipitation4. We propose a coherent energization and precipitation mechanism due to trapped electron drift resonance with azimuthally propagating poloidal mode ULF waves during the CME-shock compression of the magnetosphere4; depending on the drift phase, some electrons are energized by the azimuthal electric field pulse and some are de-energized in the perpendicular direction causing them to pitch

  15. Energetic electron precipitation into the middle atmosphere - Constructing the loss cone fluxes from MEPED POES

    CERN Document Server

    Tyssøy, H Nesse; Ødegaard, L -K G; Stadsnes, J; Aasnes, A; Zawedde, A E

    2016-01-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites(POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith ($0\\,^{\\circ}$) and in the horizontal plane ($90\\,^{\\circ}$). Using measurements from either the $0\\,^{\\circ}$ or $90\\,^{\\circ}$ telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss ...

  16. Long-term variations in the plasma sheet ion composition and substorm occurrence over 23 years

    Science.gov (United States)

    Nosé, Masahito

    2016-12-01

    The Geotail satellite has been operating for almost two solar cycles (~23 years) since its launch in July 1992. The satellite carries the energetic particle and ion composition (EPIC) instrument that measures the energetic ion flux (9.4-212 keV/e) and enables the investigation of long-term variations of the ion composition in the plasma sheet for solar cycles 22-24. From the statistical analysis of the EPIC data, we find that (1) the plasma ion mass ( M) is approximately 1.1 amu during the solar minimum, whereas it increases to 1.5-2.7 amu during the solar maximum; (2) the increases in M seem to have two components: a raising of the baseline levels (~1.5 amu) and a large transient enhancement (~1.8-2.7 amu); (3) the baseline level change of M correlates well with the Mg II index, which is a good proxy for the solar extreme ultraviolet (EUV) or far ultraviolet (FUV) irradiance; and (4) the large transient enhancement of M is caused by strong magnetic storms. We also study the long-term variations of substorm occurrences in 1992-2015 that are evaluated with the number of Pi2 pulsations detected at the Kakioka observatory. The results suggest no clear correlation between the substorm occurrence and the Mg II index. Instead, when the substorms are classified into externally triggered events and non-triggered events, the number of the non-triggered events and the Mg II index are negatively correlated. We interpret these results that the increase in the solar EUV/FUV radiation enhances the supply of ionospheric ions (He+ and O+ ions) into the plasma sheet to increase M, and the large M may suppress spontaneous plasma instabilities initiating substorms and decrease the number of the non-triggered substorms. The present analysis using the unprecedentedly long-term dataset covering ~23 years provides additional observational evidence that heavy ions work to prevent the occurrence of substorms.

  17. Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes

    Directory of Open Access Journals (Sweden)

    N. F. Sidiropoulos

    2011-07-01

    Full Text Available We examined (peak-to-background flux ratio p/b > 20 energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km. Our statistical analysis of measurements during two 6-month periods suggests that: (a the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008, (c VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.

  18. Energetic electron precipitation into the middle atmosphere -- Constructing the loss cone fluxes from MEPED POES

    Science.gov (United States)

    Nesse Tyssøy, H.; Sandanger, M. I.; Ødegaard, L.-K. G.; Stadsnes, J.; Aasnes, A.; Zawedde, A. E.

    2016-06-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith (0°) and in the horizontal plane (90°). Using measurements from either the 0° or 90° telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss cone flux is constructed for each of the electron energy channels >50 keV, >100 keV, and >300 keV. We apply a correction method to remove proton contamination in the electron counts. We also account for the relativistic (>1000 keV) electrons contaminating the proton detector at subauroral latitudes. This gives us full range coverage of electron energies that will be deposited in the middle atmosphere. Finally, we demonstrate the method's applicability on strongly anisotropic pitch angle distributions during a weak geomagnetic storm in February 2008. We compare the electron fluxes and subsequent energy deposition estimates to OH observations from the Microwave Limb Sounder on the Aura satellite substantiating that the estimated fluxes are representative for the true precipitating fluxes impacting the atmosphere.

  19. Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Stozhkov, Yu. I.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.

    2016-11-01

    Since the International Geophysical Year (1957), the Lebedev Physical Institute performs the regular measurements of charged particle fluxes in the Earth's atmosphere (from the ground level up to 30-35 km) at several latitudes. The unique experimental data base obtained during 58 years of cosmic rays observations in the atmosphere allows to investigate temporal, spatial and energetic characteristics of galactic and solar cosmic rays as well as the role of charged particles in the atmospheric processes. Analysis of this data base also revealed a special class of numerous events caused by energetic electron precipitation recorded in the atmosphere at polar latitudes. In this paper we present Catalogue of electron precipitation events observed in the polar atmosphere during 1961-2014 and briefly outline the previous results of this data set analysis.

  20. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    Science.gov (United States)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Albert, Jay M.; Horne, Richard B.; Jeffery, Christopher A.

    2016-09-01

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25-26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients Dαα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as "diffusion coefficient method") and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as "lifetime method"). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. However, for the

  1. Recovering of Precipitating Electrons Spectra on the Incoherent Scattering Radar Data.

    Science.gov (United States)

    Lyakhov, A.; Smirnova, N.; Osepian, A.

    2001-12-01

    Precipitating electrons are the main ionization source in the polar ionosphere. They determine practically all important electrodynamical properties of an ionosphere. So, the form of the spectrum and its time history allows to identify the zone of the precipitating particles source in magnitosphere in different substorm phases. It's worthwhile to note that quantitative estimations of the full energy flow is important for estimation of energy balance in atmosphere, and effects, caused by invasions of the high-energy particles must be taken into account in the study of the middle atmosphere chemistry. Incoherent radars are unique and powerful source for the observation and measurements of an ionosphere electrodynamic parameters. In principle, it is possible to determine the energy spectrum of precipitating electrons on their data. From mathematical point of view the problem of spectrum recovering is a linear integral Fredholm equation of the 1st kind, which is the classical ill-posed problem. The kernel of this integral equation defines the function of the electron energy losses in the atmosphere. Up to date a number of methods have been developed for the reconstruction of spectrum with energies Erestore effectively the precipitating spectra even when altitude electron density profile is noisy. The comparison of least-squares, Tikhonov regularization and adaptive optimal algorithms is presented for model problems and for satellite data as well. New model is given for α eff(h) determination in various geophysical conditions. The possibility of real-time spectra recovering, which, in turn, is based on the concept of dynamical regularization, is discussed.

  2. Global and Seasonal Assessments of Magnetosphere / Ionosphere Coupling via Lightning-Induced Electron Precipitation

    Science.gov (United States)

    Sousa, Austin; Marshall, Robert; Close, Sigrid

    2016-07-01

    Pitch-angle scattering by radio waves in the VLF (~3-30kHz) band is thought to be a major loss mechanism for energetic radiation-belt electrons. Resonant interactions with Whistler-mode VLF waves can alter the reflection altitude of trapped electrons ~100keV - 1MeV; when a particle reflects at a low enough altitude, it can be removed from the magnetosphere through collisions with ionospheric constituents. Terrestrial lightning provides a natural and constantly-occurring source of VLF waves. Here we present a global assessment of lightning-induced electron precipitation (LEP) due to resonant pitch-angle scattering from whistler-mode waves, which represent a coupling process between the magnetosphere and ionosphere. We combine an end-to-end model of the LEP process with terrestrial lightning activity data from the GLD360 sensor network to construct a realtime geospatial model of LEP-driven energy deposition into the ionosphere. We explore global and seasonal statistics, provide precipitation estimates across a variety of magnetospheric conditions, and compare the total impact to other magnetospheric loss processes. Additionally, we use our model to optimize event selection from the energetic-particle detectors on board the FIREBIRD CubeSats, in order to download data over the satellite's low-bandwidth downlink. Ultimately, FIREBIRD data will be used to validate our model, and to provide one-to-one correlative measurements of lightning strokes and subsequent precipitation.

  3. In-situ observation of electron kappa distributions associated with discrete auroral arcs

    Science.gov (United States)

    Ogasawara, Keiichi; Livadiotis, George; Samara, Marilia; Michell, Robert; Grubbs, Guy

    2016-04-01

    The Medium-energy Electron SPectrometer (MESP) sensor aboard a NASA sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. GREECE targeted to discover convergent E-field structures at low altitude ionosphere to find their contribution to the rapid fluid-like structures of aurora, and MESP successfully measured the precipitating electrons from 2 to 200 keV within multiple discrete auroral arcs with the apogee of 350 km. MESP's unprecedented electron energy acceptance and high geometric factor made it possible to investigate precise populations of the suprathermal components measured in the inverted-V type electron energy distributions. The feature of these suprathermal electrons are explained by the kappa distribution functions with the parameters (densty, temperature, and kappa) consistent with the near-Earth tail plasma sheet, suggesting the source population of the auroral electrons. The kappa-values are different between each arc observed as a function of latitude, but are almost stable within one discrete arc. We suggest that this transition of kappa reflects the probagation history of source electrons through the plasma sheet by changing its state from non-equilibrium electron distributions to thermal ones.

  4. Study of kinetic Alfven wave (KAW) in plasma - sheet-boundary- layer

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Varma, P; Tiwari, M S, E-mail: tiwarims@rediffmail.co, E-mail: poornimavarma@yahoo.co, E-mail: nidhiphy.shukla@gmail.co [Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.), 470003 (India)

    2010-02-01

    The effect of parallel electric field with general loss-cone distribution function on the dispersion relation and damping rate/growth rate of the kinetic Alfven wave (KAW) is evaluated by kinetic approach. The generation of KAW by the combined effect of parallel electric field and loss-cone distribution indices (J) at a particular range of k{sub p}erpendicular{rho}{sub i} (k{sub p}erpendicular{rho}{sub i} <1 and k{sub p}erpendicular{rho}{sub i} >1) is noticed, where k{sub p}erpendicular is perpendicular wave number and {rho}{sub i} is the ion-gyro radius. Thus the propagation of KAW and loss of the Poynting flux from plasma sheet boundary layer (PSBL) to the ionosphere can be explained on the basis of present investigation. It is found that the present study also shows that the loss-cone distribution index is an important parameter to study KAW in the PSBL.

  5. Formation and evolution of flapping and ballooning waves in magnetospheric plasma sheet

    Science.gov (United States)

    Ma, J. Z. G.; Hirose, A.

    2016-05-01

    By adopting Lembége & Pellat's 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor-Goldstein equation of magnetic perturbations. Fourier spectral method and Runge-Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, the flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1-7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.

  6. Fractal Structure of the Heliospheric Plasma Sheet at the Earth's Orbit

    Institute of Scientific and Technical Information of China (English)

    M. V. Eselevich; V. G. Eselevich

    2005-01-01

    An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind,flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density(N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from2°-3° (at the Earth's orbit, it is equivalent to 3.6-5.4 h, or(5.4-8.0) × 106 km) to the minimum about0.025°, i.e. the angular siz.e of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift)current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore,the value of β = 8π[N(Te + Tp)]/B2 within the tube exceeds the value of β outside the tube. In many cases total pressure P = N(Te + Tp) + B2/8π is almost constant within and outside the tubes at any one of the aforementioned scales.

  7. The causes of the hardest electron precipitation events seen with SAMPEX

    Science.gov (United States)

    Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.

    2016-09-01

    We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0750 keV near dusk (1400 500 keV ("hard REP"), we estimate that roughly 45% of the whole population has the distributions of geomagnetic and solar wind parameters associated with EMIC waves, while 55% does not. We hypothesize that the latter events may be caused by current sheet scattering (CSS), which can be mistaken for EMIC wave scattering in that both simultaneously precipitate MeV electrons and keV protons. Since a large number of MeV electrons are lost in the near-midnight hard REP events, and in the large number of E0< 400 keV events that show no dusk-like peak at all, we conclude that CSS should be studied further as a possibly important loss channel for MeV electrons.

  8. Average and worst-case specifications of precipitating auroral electron environment

    Science.gov (United States)

    Hardy, D. A.; Burke, W. J.; Gussenhoven, M. S.; Holeman, E.; Yeh, H. C.

    1985-01-01

    The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts.

  9. Simultaneous equatorial measurements of waves and precipitating electrons in the outer radiation belt

    Science.gov (United States)

    Imhof, W. L.; Robinson, R. M.; Collin, H. L.; Wygant, J. R.; Anderson, R. R.

    1992-01-01

    Simultaneous wave and precipitating electron measurements near the equator in the outer radiation belt have been made from the CRRES satellite. The electron data of principal concern here were acquired in and about the loss cone with narrow angular resolution spectrometers covering the energy range 340 eV to 5 MeV. The wave data included electric field measurements spanning frequencies from 5 Hz to 400 kHz and magnetic field measurements from 5 Hz to 10 kHz. This paper presents examples in which the variations in electron fluxes in the loss cone and the wave intensities were correlated. These variations in electron flux were confined to pitch angles less than about 30 deg. The association between the flux enhancements and the waves is consistent with wave-induced pitch angle diffusion processes.

  10. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Directory of Open Access Journals (Sweden)

    R. T. Mist

    Full Text Available A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

    Key words. Magnetospheric physics (magnetotail boundary layers; plasma convection; plasma sheet

  11. Field-aligned currents observed by MMS in the near-Earth plasma sheet during large-scale substorm dipolarizations.

    Science.gov (United States)

    Nakamura, Rumi; Nagai, Tsugunobu; Giles, Barbara; Le Contel, Olivier; Stawarz, Julia; Khotyaintsev, Yuri; Artemyev, Anton

    2017-04-01

    During substorms significant energy conversion has been reported to take place at the sharp dipolarization front in the flow braking region where the probability of observing bursty bulk flows (BBFs) significantly drops. On 10 August 2016, MMS traversed the pre-midnight near-Earth plasma sheet when dipolarization disturbances were detected in an extended nightside local time region by Cluster, Geotail, GOES 13, 14 and 15, and the Van Allen Probes. In an expanding plasma sheet during the dipolarization, MMS detected sub-ion scale field-aligned current layers that are propagating both Earthward (equatorward) as well as tailward (outward). These multi-scale multi-point observations enable a unique investigation of both the meso-scale evolution of the disturbances and the detailed kinetic structures of the fronts and boundaries relevant to the dipolarizations.

  12. The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

    Science.gov (United States)

    Putro, Triswantoro; Endarko

    2016-04-01

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  13. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz in...

  14. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmh...

  15. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-04-01

    Full Text Available We investigate the effects of a strengthened Brewer-Dobson circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, low-energy-electron precipitation is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation, the enhancements of NOx concentrations are expected to be transported to lower altitudes in extra-tropical regions, becoming even more significant in the ozone budget. We use simulations with the chemistry climate model system ECHAM5/MESSy to compare present day effects of low-energy-electron precipitation with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.5 μmol/mol at 5 hPa is found. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations.

  16. The impact of energetic electron precipitation on mesospheric hydroxyl during a year of solar minimum

    Science.gov (United States)

    Zawedde, Annet Eva; Nesse Tyssøy, Hilde; Hibbins, Robert; Espy, Patrick J.; Ødegaard, Linn-Kristine Glesnes; Sandanger, Marit Irene; Stadsnes, Johan

    2016-06-01

    In 2008 a sequence of geomagnetic storms occurred triggered by high-speed solar wind streams from coronal holes. Improved estimates of precipitating fluxes of energetic electrons are derived from measurements on board the NOAA/POES 18 satellite using a new analysis technique. These fluxes are used to quantify the direct impact of energetic electron precipitation (EEP) during solar minimum on middle atmospheric hydroxyl (OH) measured from the Aura satellite. During winter, localized longitudinal density enhancements in the OH are observed over northern Russia and North America at corrected geomagnetic latitudes poleward of 55°. Although the northern Russia OH enhancement is closely associated with increased EEP at these longitudes, the strength and location of the North America enhancement appear to be unrelated to EEP. This OH density enhancement is likely due to vertical motion induced by atmospheric wave dynamics that transports air rich in atomic oxygen and atomic hydrogen downward into the middle atmosphere, where it plays a role in the formation of OH. In the Southern Hemisphere, localized enhancements of the OH density over West Antarctica can be explained by a combination of enhanced EEP due to the local minimum in Earth's magnetic field strength and atmospheric dynamics. Our findings suggest that even during solar minimum, there is substantial EEP-driven OH production. However, to quantify this effect, a detailed knowledge of where and when the precipitation occurs is required in the context of the background atmospheric dynamics.

  17. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Science.gov (United States)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  18. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.; Webster, James [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Grubbs, Guy [University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States); Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Michell, Robert G.; Samara, Marilia [Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Jahn, Jörg-Micha [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States)

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  19. Substorm effects on the plasma sheet on composition on March 22, 1979 (CDAW 6)

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, W.; Sharp, R.D.; Zwickl, R.D.

    1985-02-01

    Data from the Plasma Composition Experiment on ISSE 1, covering the energy range 0.1--16 keV/e, show that a dramatic change took place in the plasma sheet ion composition in conjunction with the magnetic substorm activity on March 22, 1979. Beginning about 1124 UT the ion population at the ISEE 1 location changed from what appeared to be predominantly ions from the solar wind to a mixture of comparable numbers of solar wind and terrestrial ions. ISEE 1 was inbound in the predawn sector during this time, and the plasma composition experiment provided data from Rapprox. =21 R/sub E/ and LTapprox. =0130, down to Rapprox. =3 R/sub E/ and LTapprox. =0530. Prior to the substorm activity about 90--95% of the ion density was due to H/sup +/ and He/sup + +/ ions, which appeared to be mostly of solar wind origin. The H/sup +/ and He/sup + +/ components, each approximated by a Maxwell-Boltzmann distribution, had a temperature ratio T(He/sup + +/)/T(H/sup +/)approx. =4 and a density ratio n(He/sup + +/)/n(H/sup +/)approx. =1.5--3%. Both values are consistent with measurements made concurrently in the solar wind by the plasma experiment on ISSE 3. The remaining 5--10% of the density was due mainly to O/sup +/ and He/sup +/ ions of ionospheric origin. All four ion populations had broad energy spectra with mean energies of several keV/e.

  20. Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alex; Uritsky, Vadim; Baker, Daniel

    2006-01-01

    Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  1. Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alexander J.

    2006-01-01

    Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  2. Shock wave interaction with a thermal layer produced by a plasma sheet actuator

    Science.gov (United States)

    Koroteeva, E.; Znamenskaya, I.; Orlov, D.; Sysoev, N.

    2017-03-01

    This paper explores the phenomena associated with pulsed discharge energy deposition in the near-surface gas layer in front of a shock wave from the flow control perspective. The energy is deposited in 200 ns by a high-current distributed sliding discharge of a ‘plasma sheet’ type. The discharge, covering an area of 100× 30 mm2, is mounted on the top or bottom wall of a shock tube channel. In order to analyse the time scales of the pulsed discharge effect on an unsteady supersonic flow, we consider the propagation of a planar shock wave along the discharge surface area 50–500 μs after the discharge pulse. The processes in the discharge chamber are visualized experimentally using the shadowgraph method and modelled numerically using 2D/3D CFD simulations. The interaction between the planar shock wave and the discharge-induced thermal layer results in the formation of a lambda-shock configuration and the generation of vorticity in the flow behind the shock front. We determine the amount and spatial distribution of the electric energy rapidly transforming into heat by comparing the calculated flow patterns and the experimental shadow images. It is shown that the uniformity of the discharge energy distribution strongly affects the resulting flow dynamics. Regions of turbulent mixing in the near-surface gas are detected when the discharge energy is deposited non-uniformly along the plasma sheet. They account for the increase in the cooling rate of the discharge-induced thermal layer and significantly influence its interaction with an incident shock wave.

  3. Pathways of F region thermospheric mass density enhancement via soft electron precipitation

    Science.gov (United States)

    Zhang, B.; Varney, R. H.; Lotko, W.; Brambles, O. J.; Wang, W.; Lei, J.; Wiltberger, M.; Lyon, J. G.

    2015-07-01

    The efficiencies of pathways of thermospheric heating via soft electron precipitation in the dayside cusp region are investigated using the coupled magnetosphere-ionosphere-thermosphere model (CMIT). Event-based data-model comparisons show that the CMIT model is capable of reproducing the thermospheric mass density variations measured by the CHAMP satellite during both quite and active periods. During the 24 August 2005 storm event (Kp = 6-) while intense Joule heating rate occurs in the polar cusp region, including soft electron precipitation is important for accurately modeling the F region thermospheric mass density distribution near the cusp region. During the 27 July 2007 event (Kp = 2-) while little Joule heating rate occurs in the polar cusp region, the controlled CMIT simulations suggest that the direct pathway through the energy exchange between soft electrons and thermospheric neutrals is the dominant process during this event, which only has a small effect on the neutral temperature and mass density at 400 km altitude. Comparisons between the two case studies show that the indirect pathway via increasing the F region Joule heating rate is a dominant process during the 24 August 2005 storm event, which is much more efficient than the direct heating process.

  4. Radiation belt electron precipitation in the upper ionosphere at middle latitudes before strong earthquakes

    CERN Document Server

    Anagnostopoulos, G; Vassiliadis, E

    2010-01-01

    In this article we present examples of a wider study of space-time correlation of electron precipitation event of the Van Allen belts with the position and time of occurrence of strong (M>6.5) earthquakes. The study is based on the analysis of observations of electron bursts (EBs) with energies 70 - 2350 keV at middle geographic latitudes, which were detected by DEMETER satellite (at an altitude of ~700 km). The EBs show a relative peak-to-background increase usually < 100, they have a time duration ~0.5 - 3 min, energy spectrum with peaks moving in higher energies as the satellite moves towards the equator, and highest energy limit <~500 keV. The EBs are observed in the presence of VLF waves. The flux-time profile of the EBs varies in East Asia and Mediterranean Sea at the similar geographic latitudes, due to the differentiation of the magnitude of the earth's magnetic field. The most important result of our study is the characteristic temporal variation of electron precipitation variation which begins...

  5. On the effect of electron precipitation on the fair-weather electric field

    Science.gov (United States)

    Pinto, O.; Pinto, I. R. C. A.; Gonzalez, W. D.

    1990-01-01

    In this short paper we have estimated the influence of the diurnal modulation of the electron precipitation at low and middle latitudes of the South Atlantic Magnetic Anomaly (SAMA) on the fair-weather electric field. We have used simple exponential atmospheric conductivity models, together with the ion production rates determined from balloon and rocket measurements in the SAMA. An upper limit to this influence was also calculated and compared with the normal diurnal variation of the fair-weather electric field due to the diurnal variation of the global thunderstorm activity.

  6. EXAFS study on solute precipitation in FeCu alloy induced by energetic electron bombardments and thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Y., E-mail: su110030@edu.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Yoshizaki, H.; Nakagawa, Shou [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Okamoto, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ishikawa, N. [Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gumma 370-1292 (Japan); Hori, F.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-07-01

    The extended X-ray absorption fine structure (EXAFS) measurement is a useful tool for the observation of local atomic arrangements around selected atoms. We performed EXAFS measurements for the electron-irradiated and the thermally-aged Fe–0.6 wt.% Cu alloy and compared the experimental result with that of the simulation by the FEFF simulation code in order to investigate the local atomic structure around Cu atoms. Cu precipitates which were produced by the thermal aging at 773 K transformed from the bcc structure to the fcc structure as the precipitates grow large enough. However, for electron-irradiated specimens, although the hardness greatly increased, the transformation of Cu precipitates from the bcc to the fcc structure was not clearly confirmed. This result indicates that small sized Cu precipitates which had the bcc structure were produced by the electron irradiation and they could hardly coarsen during the irradiation.

  7. EXAFS study on solute precipitation in FeCu alloy induced by energetic electron bombardments and thermal aging

    Science.gov (United States)

    Fujimura, Y.; Yoshizaki, H.; Nakagawa, Shou; Okamoto, Y.; Ishikawa, N.; Saitoh, Y.; Hori, F.; Iwase, A.

    2015-07-01

    The extended X-ray absorption fine structure (EXAFS) measurement is a useful tool for the observation of local atomic arrangements around selected atoms. We performed EXAFS measurements for the electron-irradiated and the thermally-aged Fe-0.6 wt.% Cu alloy and compared the experimental result with that of the simulation by the FEFF simulation code in order to investigate the local atomic structure around Cu atoms. Cu precipitates which were produced by the thermal aging at 773 K transformed from the bcc structure to the fcc structure as the precipitates grow large enough. However, for electron-irradiated specimens, although the hardness greatly increased, the transformation of Cu precipitates from the bcc to the fcc structure was not clearly confirmed. This result indicates that small sized Cu precipitates which had the bcc structure were produced by the electron irradiation and they could hardly coarsen during the irradiation.

  8. Observation of Long Ionospheric Recoveries from Lightning-induced Electron Precipitation Events

    Science.gov (United States)

    Mohammadpour Salut, M.; Cohen, M.

    2015-12-01

    Lightning strokes induces lower ionospheric nighttime disturbances which can be detected through Very Low Frequency (VLF) remote sensing via at least two means: (1) direct heating and ionization, known as an Early event, and (2) triggered precipitation of energetic electrons from the radiation belts, known as Lightning-induced Electron Precipitation (LEP). For each, the ionospheric recover time is typically a few minutes or less. A small class of Early events have been identified as having unusually long ionospheric recoveries (10s of minutes), with the underlying mechanism still in question. Our study shows for the first time that some LEP events also demonstrate unusually long recovery. The VLF events were detected by visual inspection of the recorded data in both the North-South and East-West magnetic fields. Data from the National Lightning Detection Network (NLDN) are used to determine the location and peak current of the lightning responsible for each lightning-associated VLF perturbation. LEP or Early VLF events are determined by measuring the time delay between the causative lightning discharges and the onset of all lightning-associated perturbations. LEP events typically possess an onset delay greater than ~ 200 msec following the causative lightning discharges, while the onset of Early VLF events is time-aligned (events are distinguished from ducted events based on the location of the causative lightning relative to the precipitation region. From 15 March to 20 April and 15 October to 15 November 2011, a total of 385 LEP events observed at Indiana, Montana, Colorado and Oklahoma VLF sites, on the NAA, NLK and NML transmitter signals. 46 of these events exhibited a long recovery. It has been found that the occurrence rate of ducted long recovery LEP events is higher than nonducted. Of the 46 long recovery LEP events, 33 events were induced by ducted whistlers, and 13 events were associated with nonducted obliquely propagating whistler waves. The occurrence

  9. Duskside relativistic electron precipitation as measured by SAMPEX: A statistical survey

    Science.gov (United States)

    Comess, Max D.; Smith, David M.; Selesnick, Richard S.; Millan, Robyn M.; Sample, John G.

    2013-08-01

    Evidence for duskside relativistic electron precipitation (DREP) within the Earth's outer radiation belt has historically been seen in a few sets of high altitude balloon data (MAXIS, MINIS, INTERBOA), and in satellite data. We present statistical evidence that the relativistic electron precipitation events from the outer radiation belt with e-folding energies > 0.5 MeV are concentrated in the dusk-to-midnight sector, based on a survey of data collected by the SAMPEX satellite from 1992 to 2004. A correlation between spectral hardness and duskside MLT is observed in our sample, the largest studied to date. Out of 9380 precipitation events within the bounce loss cone, 1048 are observed to have exponentially falling spectra with e-folding energies above 0.5 MeV ("hard events") and 1648 events below 0.2 MeV. Of the hard events, 81% occur within 12 h to 24 h MLT, compared to only 37% of events having e-folding energies below 0.2 MeV. With microbursts removed from this softer population the percentage of duskside events rises to 46%. The hard events occur at slightly elevated levels of geomagnetic activity (Ap and Dst) relative to softer nonmicroburst events, but these correlations are much weaker than for microbursts. The hard events are observed to peak in occurrence at L ~ 5.5, significantly higher than nonmicroburst softer events, even though the opposite might be expected from compression of the magnetosphere due to the more negative average Dst of the hard events. The hard events are most prevalent during the declining phase of the 11 year solar cycle.

  10. X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer

    Science.gov (United States)

    Millan, R. M.; Lin, R. P.; Smith, D. M.; Lorentzen, K. R.; McCarthy, M. P.

    2002-12-01

    The high-resolution germanium detector aboard the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) balloon payload detected nine X-ray bursts with significant flux extending above 0.5 MeV during an 18 day flight over Antarctica. These minutes-to-hours-long events are characterized by an extremely flat spectrum (~E-2) similar to the first MeV event discovered in 1996, indicating that the bulk of parent precipitating electrons is at relativistic energies. The MeV bursts were detected between magnetic latitudes 58°-68° (L-values of 3.8-6.7) but only in the late afternoon/dusk sectors (14:30-00:00 MLT), suggesting scattering by EMIC (electromagnetic ion cyclotron) waves as a precipitation mechanism. We estimate the average flux of precipitating E >= 0.5 MeV electrons to be ~360 cm-2s-1, corresponding to about 5 × 1025 such electrons precipitated during the eight days at L = 3.8-6.7, compared to ~2 × 1025 trapped 0.5-3.6 MeV electrons estimated from dosimeter measurements on a GPS spacecraft. These observations show that MeV electron precipitation events are a primary loss mechanism for outer zone relativistic electrons.

  11. Investigating the Relationship of EMIC Waves and Relativistic Electron Precipitation Events

    Science.gov (United States)

    Woodger, L. A.; Millan, R. M.; Goldstein, J.; McCarthy, M. P.; Smith, D. M.; Sample, J. G.

    2007-05-01

    EMIC waves are generated and driven by anisotropic ring current protons. These unstable protons are injected into the inner magnetosphere by increased earthward convection during periods of elevated geomagnetic activity. A study by Meredith et al. (2003) showed EMIC wave events resonant with radiation belt electrons of energies less then 2MeV were located near the plasmapause in high density regions typical of the plasmaspheric plume. This study seeks to investigate the theory of relativistic electron precipitation (REP) due to wave particle interaction with EMIC waves. REP events were detected by balloon borne instrumentation during the MAXIS and MINIS balloon campaigns conducted in Jan. of 2000 and 2005 respectively. The location of these events with respect to the plasmapause will be explored using a plasmapause test particle simulation code and IMAGE EUV data. Also, data provided by the LANL satellite MPA instrument will be used to investigate the temperature anisotropy of ring current protons that may drive EMIC waves in the region of detected REP.

  12. Comparison between CNA and energetic electron precipitation: simultaneous observation by Poker Flat Imaging Riometer and NOAA satellite

    Directory of Open Access Journals (Sweden)

    Y.-M. Tanaka

    2005-07-01

    Full Text Available The cosmic noise absorption (CNA is compared with the precipitating electron flux for 19 events observed in the morning sector, using the high-resolution data obtained during the conjugate observations with the imaging riometer at Poker Flat Research Range (PFRR; 65.11° N, 147.42° W, Alaska, and the low-altitude satellite, NOAA 12. We estimate the CNA, using the precipitating electron flux measured by NOAA 12, based on a theoretical model assuming an isotropic pitch angle distribution, and quantitatively compare them with the observed CNA. Focusing on the eight events with a range of variation larger than 0.4dB, three events show high correlation between the observed and estimated CNA (correlation coefficient (r0>0.7 and five events show low correlation (r0<0.5. The estimated CNA is often smaller than the observed CNA (72% of all data for 19 events, which appears to be the main reason for the low-correlation events. We examine the assumption of isotropic pitch angle distribution by using the trapped electron flux measured at 80° zenith angle. It is shown that the CNA estimated from the trapped electron flux, assuming an isotropic pitch angle distribution, is highly correlated with the observed CNA and is often overestimated (87% of all data. The underestimate (overestimate of CNA derived from the precipitating (trapped electron flux can be interpreted in terms of the anisotropic pitch angle distribution similar to the loss cone distribution. These results indicate that the CNA observed with the riometer may be quantitatively explained with a model based on energetic electron precipitation, provided that the pitch angle distribution and the loss cone angle of the electrons are taken into account.

    Keywords. Energetic particles, precipitating – Energetic particles, trapped – Ionosphere-magnetosphere interactions

  13. Electron diffraction and high resolution transmission electron microscopy in the characterization of calcium phosphate precipitation from aqueous solutions under biomineralization conditions

    Directory of Open Access Journals (Sweden)

    Suvorova E. I.

    2001-01-01

    Full Text Available Calcium phosphate precipitation obtained from aqueous solutions at room and body temperature and pH 5.5-7.5 were investigated by high-resolution transmission electron microscopy (HRTEM, transmission electron diffraction, scanning electron microscopy (SEM and X-ray diffraction (XRD. Supersaturated solutions of calcium phosphates were prepared by different methods of mixing of the stock solutions: diffusion-controlled mixing in space, convection-controlled mixing on earth and forced mixing on earth and with typical physiological parameters (pH and temperature. Concentrations of the stock solutions, rate of solution mixing and duration of precipitation influence very strongly the chemical composition of the precipitation, the phase composition of individual crystals, their sizes, morphology and structure. Microdiffraction and HRTEM techniques showed an incontestable advantage on other techniques like SEM and XRD in the investigation of small particles and mixtures of calcium phosphates (hydroxyapatite and octacalcium phosphate with different proportions.

  14. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-10-01

    Full Text Available We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.

  15. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Science.gov (United States)

    Mist, R. T.; Owen, C. J.

    2002-05-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

  16. Observation of a planetward ion beam in the plasma sheet boundary layer at Saturn following tail reconnection

    Science.gov (United States)

    Jackman, C. M.

    2014-04-01

    We present an interval of data from 2006 when the Cassini spacecraft was located 32 RS (1 RS = 60268km) downtail, at a local time of 22:00 hrs and a latitude of 13.8°. The interval in question displayed a range of dynamic behaviour, including a southward turning of the tail magnetic field, indicative of a dipolarization, and an energetic, fast, planetward beam of ions. Preliminary interpretation of this event suggests that it represents a reconnection-driven ion beam in Saturn's magnetotail plasma sheet boundary layer. This event is explored using several of the Cassini instruments to build up a picture of the reconfiguration of the tail in terms of local and global effects.

  17. Relationship between FAC at plasma sheet boundary layers and AE index during storms from August to October,2001

    Institute of Scientific and Technical Information of China (English)

    DUNLOP; M

    2008-01-01

    Unlike the previous single (dual) satellite observation, the four ClusterII satellites make it possible to directly compute the continuous field-aligned current (FAC) density according to the magnetic data from them and to enable the investigation of the relationship between the FAC and geomagnetic activity. This paper analyzes the observation data when the Cluster satellites crossed the plasma sheet bound- ary layer (PSBL) in the magnetotail during the two magnetic storms in August to October 2001. According to the data, during the magnetic storms the relationship between the variations of FAC and AE index turned out to be: 1) FAC was obviously increasing during the storms; 2) FAC density was approximately negatively corre- lated with AE index from the sudden commencement to the early main phase of the storm; 3) they were approximately positively correlated during the late main phase and early recovery phase; 4) they were no apparent correlation during the late re- covery phase.

  18. Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenchao, E-mail: wenchaoyang@csu.edu.cn [EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Huang Lanping [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zhang Ruirong [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Wang Mingpu; Li Zhou; Jia Yanlin; Lei Ruoshan; Sheng Xiaofei [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer TEM and HREM are used to elucidate an anti overaged softening behavior in Al-0.65Mg-0.73Si-0.13Cu alloy. Black-Right-Pointing-Pointer The {beta} Double-Prime precipitate not only has a 2-dimensions coherency strain-field, but also has the smaller size and a high density. Black-Right-Pointing-Pointer The strengthening of three main precipitates on alloy can be summarized as: {beta} Double-Prime > Q Prime > {beta} Prime . Black-Right-Pointing-Pointer The {beta} Double-Prime , {beta} Prime and Q Prime precipitates have 12 orientation variants with Al matrix, respectively. Black-Right-Pointing-Pointer Moire fringes are used to verify the lattice parameters and orientation variants of precipitates. - Abstract: High-resolution electron microscopy was used to research the age-hardening behaviors in 6005A alloy and the microstructural characterizations of precipitates. It was found that {beta} Double-Prime , {beta} Prime and Q Prime precipitates had 12 orientation variants, respectively, the smaller size and a high-density {beta} Prime Prime precipitates existed in alloy for a long time, which played a very important role in controlling an anti-overaged softening behavior in 6005A alloy. Further, by the crystallographic interface and morphology analysis, a main reason was that a 2-dimensions coherency strain-field not only had the high-density {beta} Prime Prime precipitates become the biggest obstacle of dislocations movement, but also made them transform into {beta} Prime and Q Prime precipitates with more difficulty. Moreover, it was also found that {beta} Prime and Q Prime precipitates had weaker relatively strain-fields, the larger size and a lower density, which were largely associated with the reduction in hardness that occurred upon overaging. Further, the strengthening of precipitates on alloys could be summarized as: {beta} Double-Prime > Q Prime > {beta} Prime . Based on the structural information, the quantitative Moire

  19. On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    2012-09-01

    Full Text Available The problem of identification of the interface region between the lobe and the Plasma Sheet (PS – the Plasma Sheet Boundary Layer (PSBL – using ion moments and magnetic field data often arises in works devoted to statistical studies of various PSBL phenomena. Our experience in the identification of this region based on the analysis of ion velocity distribution functions demonstrated that plasma parameters, such as the ion density and bulk velocity, the plasma beta or the dynamic pressure vary widely depending on the state of magnetotail activity. For example, while field-aligned beams of accelerated ions are often observed propagating along the lobeward edge of the PSBL there are times when no signatures of these beams could be observed. In the last case, a spacecraft moving from the lobe region to the PS registers almost isotropic PS-like ion velocity distribution. Such events may be classified as observations of the outer PS region. In this paper, we attempt to identify ion parameter ranges or their combinations that result in a clear distinction between the lobe, the PSBL and the adjacent PS or the outer PS regions. For this we used 100 crossings of the lobe-PSBL-PS regions by Cluster spacecraft (s/c made in different periods of magnetotail activity. By eye inspection of the ion distribution functions we first identify and separate the lobe, the PSBL and the adjacent PS or outer PS regions and then perform a statistical study of plasma and magnetic field parameters in these regions. We found that the best results in the identification of the lobe-PSBL boundary are reached when one uses plasma moments, namely the ion bulk velocity and density calculated not for the entire energy range, but for the energies higher than 2 keV. In addition, we demonstrate that in many cases the plasma beta fails to correctly identify and separate the PSBL and the adjacent PS or the outer PS regions.

  20. Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause

    Science.gov (United States)

    Kubota, Yuko; Omura, Yoshiharu

    2017-01-01

    By performing test particle simulations of relativistic electrons scattered by electromagnetic ion cyclotron (EMIC) rising tone emissions, we find a nonlinear scattering process named SLPA (Scattering at Low Pitch Angle) totally different from the nonlinear wave trapping. The nonlinear wave trapping, occurring for high pitch angles away from the loss cone, scatters some of resonant electrons to lower pitch angles, and a fraction of the electrons is further transported into the loss cone by SLPA after being released from the wave trapping. SLPA as well as the nonlinear wave trapping can work in any cases with proton band or helium band and inside or outside the plasmapause. We clarify that the combined scattering process causes significant depletion of the outer radiation belt. In the time evolution of an electron distribution observed locally in longitude, we find echoes of the electron depletion by the localized EMIC emissions. Monitoring fluxes of electrons being lost into the atmosphere in the wave generation region, we also find that efficient relativistic electron precipitation in several seconds. The characteristics of the precipitating electron flux as a function of kinetic energy vary significantly depending on the wave frequency range and the plasma density.

  1. Echo 2 - Observations at Fort Churchill of a 4-keV peak in low-level electron precipitation

    Science.gov (United States)

    Arnoldy, R. L.; Hendrickson, R. A.; Winckler, J. R.

    1975-01-01

    The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically associated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events.

  2. Lighting-induced Electron Precipitation (LEP) Events versus Geomagnetic Activity: A Probe Tool to Re-Evaluate the Electron Radiation Belt Loss Mechanisms (P16)

    Science.gov (United States)

    Fernandez, J. H.; Raulin, J.-P.; Correia, E.; Brum, C. G. M.

    2006-11-01

    We present the first results of an incipient attempt to re-model the Van Allen electron radiation belts equilibrium mechanisms. During the 23rd cycle solar minimum period (1995-1997) the Lightning- induced Electron Precipitation (LEP) events (electron precipitation from the geo-space to the upper Earth atmosphere) occurrence at the Antarctica Peninsula region was collected and studied. With statistical techniques we have reproduced the pattern of the events incidence during that period. The year 1998 was also analyzed and two well-defined geomagnetic storms (01-07 May and 26-31 Aug) were studied in association with the Trimpi events data. We have confirmed the narrow relationship between events occurrence rate and geomagnetic activity. The next step, in order to carry on the model, will be the modeling of the solar maximum LEP occurrence and to compute these results in the present radiation belts population models.

  3. Precipitation of radiation belt electrons by man-made waves A comparison between theory and measurement

    Science.gov (United States)

    Inan, U. S.; Chang, H. C.; Helliwell, R. A.; Imhof, W. L.; Reagan, J. B.; Walt, M.

    1985-01-01

    The temporal and spectral shape and the absolute flux level of particle pulses precipitated by a VLF transmitter are examined from a theoretical point of view. A test-particle model of the gyroresonant wave-particle interaction is applied to the parameters of the observed cases for calculating the precipitation characteristics. The temporal shapes of the precipitation pulses are found to be controlled (1) by the pitch angle dependence of the particle distribution near the edge of the loss cone and (2) by the multiple interaction of the particles with the waves due to significant atmospheric backscatter.

  4. Ku/Ka/W-band Antenna for Electronically-Scanned Cloud and Precipitation Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of the key antenna technologies for Tri-band (Ku/Ka/W), scanning precipitation and cloud radar is a required milestone in preparation for one or more...

  5. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  6. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  7. pTC-1 observation of ion high-speed flow reversal in the near-Earth plasma sheet during substorm

    Institute of Scientific and Technical Information of China (English)

    H.; RME; I.; DANDOURAS; C.; M.; CARR

    2008-01-01

    Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailward high-speed flows (Vx ~ -350 km/s) were first seen at about X ~ -13.2 RE in near-Earth magnetotail, one minute later the flows reversed from tailward to earthward. The reversal process occurred quickly after the substorm expansion onset. The near-Earth magnetotail plasma sheet was one of key regions for substorm onset. Our analysis showed that the ion flow reversal from tailward to earthward was likely to be in close relation with the substorm expansion initiation and might play an important role in trigger-ing the substorm expansion onset.

  8. Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere

    Science.gov (United States)

    Ni, B.; Liang, J.; Thorne, R. M.; Angelopoulos, V.; Horne, R. B.; Kubyshkina, M.; Spanswick, E. L.; Donovan, E.; Lummerzheim, D.

    2011-12-01

    We report a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler-mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8 - 9 UT on February 5, 2009. We use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of > 10-4 s-1 for equatorial pitch angles < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of < ~ 5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-second interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim [1987] produced an intensity of ~ 2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ~ 2.6 kR. This is in good agreement with the ~2.4 kR green-line auroral intensity observed simultaneously at the magnetic footpoint (as inferred using the event-adaptive model of Kubyshkina et al. [2009, 2011]) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH emissions in the central plasma sheet (CPS) can be an important or even dominant

  9. The bainite transformation and the carbide precipitation of 4.88% aluminium austempered ductile iron investigated using electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kiani-Rashid, A.R. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: fkiana@yahoo.com

    2009-04-17

    The transformation to a bainitic microstructure during austempering under different conditions was examined for the most successful of the experimental casts. Austenitising temperature of 920 deg. C and austempering temperature of 350 deg. C for different holding times have been used. Microstructures have been examined by SEM and transmission electron microscopy (TEM). It was found that isothermal transformation at 350 deg. C for different soaking times gave a typical bainitic microstructure that increased with increasing austempering time. Extension of isothermal transformation time leads to precipitation of carbides which also depended on the bainitic phase transformation.

  10. O+ ion conic and plasma sheet dynamics observed by Van Allen Probe satellites during the 1 June 2013 magnetic storm

    Science.gov (United States)

    Burke, W. J.; Erickson, P. J.; Yang, J.; Foster, J.; Wygant, J.; Reeves, G.; Kletzing, C.

    2016-05-01

    The Van Allen Probe satellites were near apogee in the late evening local time sector during the 1 June 2013 magnetic storm's main phase. About an hour after crossing the ring current's "nose structure" into the plasma sheet, the satellites encountered a quasiperiodic sequence of 0.08-3 keV O+ ions. Pitch angle distributions of this population consistently peaked nearly antiparallel to the local magnetic field. We interpret this population as O+ conics originating in the northern ionosphere. Sequences began as fairly steady state conic fluxes with energies in the ~ 80 to 100 eV range. Over about a half hour buildup phase, O+ energies peaked near 1 keV. During subsequent release phases lasting ~ 20 min, O+ energies returned to low-energy starting points. We argue these observations reflect repeated formations and dissolutions of downward, magnetically aligned electric fields (ɛ||) layers trapping O+ conics between mirror points within heating layers below and electrostatic barriers above. Nearly identical variations were observed at the locations of both satellites during 9 of these 13 conic cycles. Phase differences between cycles were observed at both spacecraft during the remaining events. Most "buildup" to "release" phase transitions coincided with AL index minima. However, in situ magnetometer measurements indicate only weak dipolarizations of tail-like magnetic fields. The lack of field-aligned reflected O+ and tail-like magnetic fields suggest that both ionospheres may be active. However, Southern Hemisphere origin conics cannot be observed since they would be isotropized and accelerated during neutral sheet crossings.

  11. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  12. Precipitation of Trapped Relativistic Electrons by Amplified Whistler Waves in the Magnetosphere

    Science.gov (United States)

    2007-06-01

    1974). an initial pitch angle of 86.50 to a pitch angle អ by a 5H. D. Voss, W. L. Imhof , J. Mobilia, E. E. Gaines, M. Walt, U. S. Inan, R...background energetic 8W. L. Imhof , R. M. Robinson, H. L. Colin, J. R. Wygant, and R. R. electrons (e.g., ə 00 keV electrons) can amplify injected Anderson, J

  13. Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express

    Science.gov (United States)

    Gérard, J.-C.; Soret, L.; Libert, L.; Lundin, R.; Stiepen, A.; Radioti, A.; Bertaux, J.-L.

    2015-08-01

    The database of the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument between late January 2004 and Mars 2014 has been searched to identify signatures of CO Cameron and CO2+ doublet ultraviolet auroral emissions. This study has almost doubled the number of auroral detections based on SPICAM spectra. Auroral emissions are located in the vicinity of the statistical boundary between open and closed field lines. From a total of 113 nightside orbits with SPICAM pointing to the nadir in the region of residual magnetic field, only nine nightside orbits show confirmed auroral signatures, some with multiple detections along the orbital track, leading to a total of 16 detections. The mean energy of the electron energy spectra measured during concurrent Analyzer of Space Plasma and Energetic Atoms/Electron Spectrometer observations ranges from 150 to 280 eV. The ultraviolet aurora may be displaced poleward or equatorward of the region of enhanced downward electron energy flux by several tens of seconds and shows no proportionality with the electron flux at the spacecraft altitude. The absence of further UV auroral detection in regions located along crustal magnetic field structures where occasional aurora has been observed indicates that the Mars aurora is a time-dependent feature. These results are consistent with the scenario of acceleration of electrons by transient parallel electric field along semiopen magnetic field lines.

  14. Analysis of propagation prop erties of electromagnetic waves through large planar plasma sheets%电磁波在大面积等离子体片中传播特性的分析∗

    Institute of Scientific and Technical Information of China (English)

    夏俊明; 徐跃民; 孙越强; 霍文青; 孙海龙; 白伟华; 柳聪亮; 孟祥广

    2015-01-01

    Large planar plasma sheets, generated by a linear hollow cathode in pulse discharge mode under magnetic con-finement, can be used in the field of plasma antenna, plasma stealth, and simulation of a plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth’s atmosphere. Firstly, to investigate the propagation prop-erties of electromagnetic waves at different frequencies and polarization, the transverse field transfer matrix method is introduced. Secondly, the measured electron density temporal and spatial distribution and the transverse field transfer matrix method are utilized to calculate the reflection, transmission and absorption of electromagnetic waves by large planar plasma sheets with different currents. Finally, 1 GHz (less than the critical cut-off frequency) electromagnetic waves and 4 GHz (greater than the critical frequency) electromagnetic waves are chosen to investigate the evolution of propagation properties during the pulsed discharge period. Results show that both the reflection and absorption of the electromagnetic waves are greater for their polarization direction parallel to that of magnetic field, and their frequencies lower than the critical cut-off frequency, and as the discharge currents rise, the reflection increases while the absorption decreases. However both the reflection and absorption of the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction and their frequency greater than the critical cut-off frequency become less, and as the discharge currents rise, both the reflection and absorption will increase. For the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction, there is an upper hybrid resonance absorption band near the upper hybrid resonance frequencies, in which the absorption is significant but the absorption peak value is not affected by the discharge current. The propagation characteristics of the

  15. Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study

    Science.gov (United States)

    Ni, Binbin; Liang, Jun; Thorne, Richard M.; Angelopoulos, Vassilis; Horne, Richard B.; Kubyshkina, Marina; Spanswick, Emma; Donovan, Eric F.; Lummerzheim, Dirk

    2012-01-01

    This paper is a companion to a paper by Liang et al. (2011) which reports a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8-9 UT on February 5, 2009. In this paper, we use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of >10-4 s-1 for equatorial pitch angles αeq < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of <˜5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-s interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim (1987) produced an intensity of ˜2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ˜2.6 kR. This is in good agreement with the ˜2.4 kR green-line auroral intensity observed simultaneously at the magnetic foot point (as inferred using the event-adaptive model of Kubyshkina et al. (2009, 2011)) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH

  16. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  17. On the solution of the continuity equation for precipitating electrons in solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Emslie, A. Gordon [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Holman, Gordon D. [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Litvinenko, Yuri E., E-mail: emslieg@wku.edu, E-mail: gordon.d.holman@nasa.gov [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand)

    2014-09-01

    Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis and Zharkova claim to have found an 'updated exact analytical solution' to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii and Shmeleva, and many others is invalid. We show that the solution of Dobranskis and Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the 'new' analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result. We conclude that Dobranskis and Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii and Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.

  18. Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    De Temmerman Pieter-Jan

    2012-06-01

    Full Text Available Abstract Background The interaction of a nanomaterial (NM with a biological system depends not only on the size of its primary particles but also on the size, shape and surface topology of its aggregates and agglomerates. A method based on transmission electron microscopy (TEM, to visualize the NM and on image analysis, to measure detected features quantitatively, was assessed for its capacity to characterize the aggregates and agglomerates of precipitated and pyrogenic synthetic amorphous silicon dioxide (SAS, or silica, NM. Results Bright field (BF TEM combined with systematic random imaging and semi-automatic image analysis allows measuring the properties of SAS NM quantitatively. Automation allows measuring multiple and arithmetically complex parameters simultaneously on high numbers of detected particles. This reduces operator-induced bias and assures a statistically relevant number of measurements, avoiding the tedious repetitive task of manual measurements. Access to multiple parameters further allows selecting the optimal parameter in function of a specific purpose. Using principle component analysis (PCA, twenty-three measured parameters were classified into three classes containing measures for size, shape and surface topology of the NM. Conclusion The presented method allows a detailed quantitative characterization of NM, like dispersions of precipitated and pyrogenic SAS based on the number-based distributions of their mean diameter, sphericity and shape factor.

  19. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  20. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    Science.gov (United States)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  1. Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Batista, L., E-mail: leonardo.batista@izfp.fraunhofer.de [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Rabe, U. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); University of the Saarland, LZPQ, 66123 Saarbrücken (Germany); Hirsekorn, S. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany)

    2014-11-15

    A method to determine the magnetic easy axes of micro- and nanoscopic ferromagnetic precipitates embedded in a bulk material is proposed and applied to globular cementite (Fe{sub 3}C) embedded in a ferrite matrix. The method combines magnetic force microscopy (MFM) with electron backscattered diffraction (EBSD) measurements. Magnetic domain structures in globular and in lamellar cementite precipitates in unalloyed pearlitic steels were imaged using MFM. The domain structure of the precipitates was analyzed in dependency of their size, shape and crystallographic orientation. It was found that the magnetic moments of the cementite precipitates are highly geared to their crystalline axes. The combined MFM and EBSD studies allow the conclusion that the cementite easy direction of magnetization is the long [010] axis. For fine lamellae cementite the determination of their crystallographic orientations using electron diffraction techniques is very difficult. With the previous knowledge of the behavior of the domain structure in globular cementite, the crystalline orientations of the fine lamellae cementite can be estimated by simply observing the magnetic microstructures and the topographic profiles. - Highlights: • We develop a method to determine the easy axes of nanoscopic ferromagnetic precipitates in a matrix. • We combine the magnetic force microscopy and the electron backscatter diffraction techniques. • Globular and lamellar cementite (Fe{sub 3}C) precipitates are taken as examples. • MFM images revealed different orientations of the magnetic moments in cementite. • The cementite easy direction of magnetization is the long [010] axis.

  2. Relationships between the precipitation of α2 ordered phase and alloying elements/electron concentration in α+α2 titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Yu Zhang; Li Li; Chunli Wang; Qingjiang Wang; Yuyin Liu

    2005-01-01

    Some experimental α+α2 alloys were prepared by the addition of tin or aluminum elements into Ti-55 alloy. These alloys were designed with varied electron concentration values and named as Sn-rich alloys and Al-rich alloys, respectively. The precipitation and growth of α2 ordered phase in the tested alloys under various heat treatment conditions were investigated. Some comparisons among the experimental results were performed and discussed in detail. Stronger precipitation and growth of α2 ordered phase were caused in Al-rich alloys but relatively weak change in Sn-rich alloys with increasing the electron concentration. The precipitation of α2 ordered phase in Al-rich alloys is stronger than that in Sn-rich alloys when the electron concentration value is the same for the two alloys.

  3. Overview of the relativistic electron precipitations (REP) observed on LEO satellites and ISS by Bulgarian build instruments

    Science.gov (United States)

    Dachev, Tsvetan

    Relativistic electron precipitation (REP) are observed by the R3D B2/B3 and RD3-B3 instruments during the flights of the Foton M2/M3 and “BION-M” № 1 satellite in 2005, 2007 and 2013, and by the R3DE/R instruments at the EXPOSE-E facility of the European Columbus module and at the EXPOSE-R facility of the Russian Zvezda module of the International Space Station (ISS) in the period from February 2008 till August 2010. The obtained dose rates strongly depend by the external and internal shielding of the detectors in the instruments. The highest dose rate reaching more than 20 mGy h (-1) was observed outside the ISS Zvezda module during the REP in April 2010 being the second largest in GOES history with a >2 MeV electron fluence event. REP doses behind relatively thick shielding are too small but may play considerable role during extra vehicular activity (EVA) when the cosmonauts/astronauts body is shielded only by the space suit.

  4. Comparison of the structural, magnetic, electronic, and optical properties for ZnCoO and Co-precipitation samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Jin; Cho, Yong-Chan; Kim, Su-Jae; Lee, Seung-Hun; Kim, Won-Kyung; Jeong, Se-Young; Cho, Chae Ryong [Pusan National University, Miryang (Korea, Republic of); Bae, Jong-Seong [Korea Basic Science Institute, Busan Center, Busan (Korea, Republic of); Park, Sung-Kyun; Jeong, Il-Kyoung [Pusan National University, Busan (Korea, Republic of)

    2010-04-15

    In order to investigate the ferromagnetism of Co-doped ZnO, we systematically fabricated Zn{sub 1-x}Co{sub x}O (x = 0, 0.05, 0.1, 0.2, 0.4) thin films on (0001) Al{sub 2}O{sub 3} substrates by rf-sputtering and measured their structural, electronic, optical, and magnetic properties. Below 20 mol% of Co, the Co ion could be successfully substituted at Zn site and showed clear paramagnetism in superconducting quantum interference devices (SQUID) and magnetic circular dichroism (MCD) measurements. However, secondary phases, including Co metal clustering, were found in the ZnO matrix at a 40-mol% Co concentration, showing a strong ferromagnetism due to the contributes of microscopic precipitates of Co ions. Consequently, the clear paramagnetic behaviors of all the fabricated ZnCoO thin films in the magneto-optic MCD results revealed that the spin-polarized band structure, an intrinsic property of ferromagnetism diluted ferromagnetic semiconductors (DMSs), could not be induced by the substituted Co ions themselves. Importantly, these results indicate that any intrinsic ferromagnetism in ZnCoO cannot be induced without the contribution of hydrogen.

  5. A multievent study of broadband electrons observed by the DMSP satellites and their relation to red aurora observed at midlatitude stations

    Science.gov (United States)

    Shiokawa, K.; Meng, C.-I.; Reeves, G. D.; Rich, F. J.; Yumoto, K.

    1997-07-01

    Broadband electrons during magnetic storms are characterized by an unusually intense flux of precipitating electrons in the broadband energy range from 30 eV to 30 keV near the equatorward edge of the auroral oval (47°-66° magnetic latitude). Broadband electrons were first reported by Shiokawa et al. [1996]. In this paper, we report a multievent study of broadband electrons, using particle data obtained by the Defense Meteorological Satellite Program (DMSP) satellites during 23 magnetic storms from January 1989 through May 1992. Twelve broadband electron events are identified. Most of them are observed in the night sector, but some are observed in the morning sector. Particle data for successive polar passes of the DMSP multisatellites are used to show that broadband electrons generally last for less than 30 min and that for some events, they precipitate over a wide range of local times simultaneously. On the basis of a quantitative calculation of optical emissions from electrons in the neutral atmosphere, we conclude that broadband electrons are a possible cause of red auroras observed at midlatitude ground stations. We suggest that broadband electrons are associated with certain substorms during the main phase of magnetic storms. This conjecture comes from observations of H component positive bays and Pi 2 pulsations observed at low-latitude magnetic stations and from magnetic field variations observed at geosynchronous satellites. We conclude that the magnetospheric source of broadband electrons lies within the inner part of the plasma sheet. This conclusion is based on the facts that broadband electrons appear in latitudes where plasma sheet particles were observed before the event and that broadband electrons are observed poleward of the subauroral ion drifts, a position that corresponds to the inner edge of the injected particle layer during storms. High-energy particle data obtained at geosynchronous satellites show that both strong magnetopause

  6. Energetic electrons in Jupiter's dawn magnetodisc

    Science.gov (United States)

    Van Allen, J. A.

    1979-01-01

    The paper presents and analyzes absolute energy density data on electrons from the University of Iowa instrument on Pioneer 10 for one example of a plasma sheet traversal in Jupiter's dawn magnetodisk on 6-7 December 1973. The absolute integral omnidirectional intensity spectrum of electrons is based on a full and accurate reduction of the counting rate data. The main finding is that electrons of energy greater than 0.060 MeV provide only about 3% of the charged particle pressure required to explain the observed depression in the magnetic field at the center of the plasma sheet, in spite of the fact that the intensity of such electrons is well correlated with the depression of the magnetic pressure throughout the sheet.

  7. The effects of mesoscale regions of precipitation on the ionospheric dynamics, electrodynamics and electron density in the presence of strong ambient electric fields

    Directory of Open Access Journals (Sweden)

    J. D. de Boer

    2010-06-01

    Full Text Available We have developed a new high resolution two-dimensional model of the high latitude ionosphere in which nonlinear advection terms are closely coupled with the electrodynamics. The model provides a self-consistent description of the ionospheric feedback on the electrodynamical perturbations produced by auroral arc-related particle precipitation in regions with strong ambient electric fields. We find in particular that a heretofore neglected ion Pedersen advection term can introduce considerable changes in the electron density profile, the current density distribution, the conductivities and the electron temperatures. We find that the convective effects can carry the ionisation more than 150 km outside the precipitation region in a few minutes, with attendant large changes in the current distribution and E-region densities that become enhanced outside the region of particle precipitation. The production of a tongue of ionisation that slowly decays outside the auroral boundaries contrasts with the sharp geometric cut-off and associated stronger current densities found in previous studies.

  8. Comment on 'Observations of Low-Latitude Electron Precipitation' by R. Lieu, J. Watermann, K. Wilhelm, J. J. Quenby, and W. I. Axford

    Science.gov (United States)

    Rassoul, H. K.; Hanson, W. B.

    1989-01-01

    Observations made by an electron spectrometer aboard Spacelab 1 and presented by Lieu et al. (1988) are examined critically. The precipitation of electrons in the energy range of 0.1-12.5 keV was measured on December 6 and 7, 1983. Data for 16 passes near 240 km altitude, between + and - 30 deg geographic latitude, outside the South Atlantic Anomaly were included. It is argued that there is no geophysical confirmation of the large electron fluxes reported by Lieu et al. In their response, Lieu et al. discuss the sampling bias in the Spacelab 1 data and the magnetic shielding deficiencies of the calibration facility below about 500 eV.

  9. Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes

    Directory of Open Access Journals (Sweden)

    Sergey Pulinets

    2012-04-01

    Full Text Available

    The analysis of energetic electron observations made by the DEMETER satellite reveals that radiation belt electron precipitation (RBEP bursts are observed in general several (~1-6 days before a large (M > 6.5 earthquake (EQ in the presence of broad band (~1-20 kHz VLF waves. The EBs show in general a relative peak-to-background flux increase usually < 100, they have a time duration of ~0.5 – 3 min, and their energy spectrum reach up to energies <~500 keV. The RBEP activity is observed as one, two or three EBs throughout a semi-orbit, depended on the magnetic field structure above the EQ epicenter. A statistical analysis has been made for earthquakes in Japan, which reveals a standard temporal variation of the number of EBs, which begins with an incremental rate several days before major earthquakes, and after a maximum, decreases so that the electron precipitation ceases above the epicenter. Some earthquake induced EBs were observed not only in the nightside ionosphere, but also in the dayside ionosphere.

     

  10. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    electrons and isotropic ion precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.

    Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  11. Quantitative investigation of precipitate growth during ageing of Al-(Mg,Si) alloys by energy-filtered electron diffraction

    DEFF Research Database (Denmark)

    Wollgarten, M.; Chang, C. S. T.; Duchstein, Linus Daniel Leonhard

    2011-01-01

    LIBRA 200 operated at 200 kV using the in-column omega filter for zero-loss filtered electron diffraction. Recording was on imaging plates (made by Fuji company) which were read out in a scanner of type Ditabis Micron. Scanning resolution was about 7·10-3 nm-1/pixel. Suitable parts of the recorded...

  12. Transmission electron microscopic observation of precipitates in an aged Pb-0.1wt.%Ca-0.3wt.%Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muras, L. [Bradken Consolidated Ltd., Waratah, NSW (Australia); Munroe, P.R. [School of Materials Science and Engineering, Univ. of NSW, Sydney (Australia); Blairs, S. [School of Materials Science and Engineering, Univ. of NSW, Sydney (Australia); Krauklis, P. [School of Materials Science and Engineering, Univ. of NSW, Sydney (Australia); Chen, Z.W. [CSIRO Div. of Mfg. Technology, Brisbane Lab., Kenmore, Qld. (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia)

    1995-05-01

    Samples of a Pb-0.1wt.%Ca-0.3wt.%Sn alloy were cast and either air-cooled or ice-water-quenched. They were then age-hardened for 400 days at ambient temperature and examined by thin foil transmission electron microscopy. In the air-cooled and aged condition, the alloy exhibits a sluggish ageing response, while a rapid ageing response occurs in the water-quenched and aged samples. In both types of sample, precipitate dispersions were observed. These are tentatively identified as Pb{sub 3}Ca with an ordered L1{sub 2} crystal structure. In the air-cooled and aged condition, the particles were about 100 nm in diameter and occurred in planar arrays consistent with precipitation on migrating grain boundaries. In the water-quenched and aged samples, the particles were about 10 nm in diameter and uniformly distributed with a smaller interparticle spacing, which is probably due to nucleation on tangle dislocations. The more rapid ageing kinetics in the water-quenched and aged condition are attributed to the excess vacancy concentration produced by quenching. (orig.)

  13. Respective efficiencies of nuclear collisions and electronic excitations for precipitating Ag clusters in sol-gel films

    CERN Document Server

    Pivin, J C

    2002-01-01

    The growth of silver clusters in co-sputtered SiO sub 2 :Ag films under irradiation with increasing fluences of 1.5 MeV He or 3 MeV Au ions is investigated by recording spectra of optical extinction. The analysis of surface plasmon resonances in these very small clusters on basis of Mie theory permits to estimate more precisely their mean size than TEM images. A linear increase of the mean cluster size with the energy deposited by ions in electronic excitations and little effect of collision cascades are observed. The growth kinetics is ascribed to a process of desorption/re-adsorption of Ag atoms at the surface of clusters.

  14. Pitch angle scattering of diffuse auroral electrons by whistler mode waves

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E. [Northeastern Univ., Boston, MA (United States); Burke, W.J. [Hanscom Air Force Base, MA (United States)

    1995-10-01

    Resonant electron-whistler interactions in the plasma sheet are investigated as possible explanations of the nearly isotropic fluxes of low-energy electrons observed above the diffuse aurora. Whistler mode waves, propagating near the resonance cone with frequencies near or larger than half the equatorial electron cyclotron frequency, can interact with low-energy plasma sheet electrons. A Hamiltonian formulation is developed for test particles interacting with the coherent chorus emission spectra. The authors consider the second-order resonance condition which requires that inhomogeneities in the Earth`s magnetic field be compensated by a finite bandwidth of wave frequencies to maintain resonance for extended distances along field lines. These second-order interactions are very efficient in scattering the electrons toward the atmospheric loss cone. Numerical calculations are presented for the magnetic shell L=5.5 for wave amplitudes of {approximately}10{sup {minus}6} V/m, using different frequency and magnetospheric conditions. 34 refs., 7 figs.

  15. Effects of Precipitates in Cu upon Impact Fracture : An Ultra-High-Vacuum Study with Local Probe Scanning Auger/Electron Microscopy

    NARCIS (Netherlands)

    Agterveld, D.T.L. van; Palasantzas, G.; Hosson, J.Th.M. De

    2000-01-01

    In situ fracture under ultra-high vacuum (UHV) conditions of copper-alloys containing copper sulfide precipitates exhibits areas in the form of pits. The wide variety of morphologies depends significantly on the size of the existing precipitate. For large precipitates, the fractured surface reveals

  16. Intensification of dayside diffuse auroral precipitation: contribution of dayside Whistler-mode chorus waves in realistic magnetic fields

    Directory of Open Access Journals (Sweden)

    R. Shi

    2012-09-01

    Full Text Available Compared to the recently improved understanding of nightside diffuse aurora, the mechanism(s responsible for dayside diffuse aurora remains poorly understood. While dayside chorus has been thought as a potential major contributor to dayside diffuse auroral precipitation, quantitative analyses of the role of chorus wave scattering have not been carefully performed. In this study we investigate a dayside diffuse auroral intensification event observed by the Chinese Arctic Yellow River Station (YRS all-sky imagers (ASI on 7 January 2005 and capture a substantial increase in diffuse auroral intensity at the 557.7 nm wavelength that occurred over almost the entire ASI field-of-view near 09:24 UT, i.e., ~12:24 MLT. Computation of bounce-averaged resonant scattering rates by dayside chorus emissions using realistic magnetic field models demonstrates that dayside chorus scattering can produce intense precipitation losses of plasma sheet electrons on timescales of hours (even approaching the strong diffusion limit over a broad range of both energy and pitch angle, specifically, from ~1 keV to 50 keV with equatorial pitch angles from the loss cone to up to ~85° depending on electron energy. Subsequent estimate of loss cone filling index indicates that the loss cone can be substantially filled, due to dayside chorus driven pitch angle scattering, at a rate of ≥0.8 for electrons from ~500 eV to 50 keV that exactly covers the precipitating electrons for the excitation of green-line diffuse aurora. Estimate of electron precipitation flux at different energy levels, based on loss cone filling index profile and typical dayside electron distribution observed by THEMIS spacecraft under similar conditions, gives a total precipitation electron energy flux of the order of 0.1 erg cm−2 s−1 with ~1 keV characteristic energy (especially when using T01s, which can be very likely to cause intense green-line diffuse aurora activity on the

  17. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Montanari Migliavacca, Daniela [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Calesso Teixeira, Elba, E-mail: gerpro.pesquisa@fepam.rs.gov.br [Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Gervasoni, Fernanda; Vieira Conceicao, Rommulo [Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Raya Rodriguez, Maria Teresa [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil)

    2009-11-15

    The purpose of this study is to assess the composition of wet precipitation in three sites of the metropolitan area of Porto Alegre. Besides the variables usually considered, such as pH, conductivity, major ions (Cl{sup -}, NO{sub 3}{sup -}, F{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, K{sup +}, Mg{sup 2+}, NH{sub 4}{sup +} and Ca{sup 2+}) and metallic elements (Cd, Co, Cr, Cu, Fe, Mn and Ni), the suspended matter was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), with energy dispersive system (EDS), for better identification of possible anthropogenic material in this wet precipitation. Results showed an alkaline pH in the samples analyzed and higher concentrations for Na{sup +}, Cl{sup -} and SO{sub 4}{sup 2-}. The acidification and neutralization potential between anions (SO{sub 4}{sup 2-} + NO{sub 3}{sup -}) and cations (Ca{sup 2+} + Mg{sup 2+} + K{sup +} + NH{sub 4}{sup +}) showed a good correlation (0.922). The metallic elements with highest values were Zn, Fe and Mn. Results of XRD identified the presence of some minerals such as quartz, feldspar, mica, clay, carbonates and sulfates. In samples analyzed with SEM, we detected pyroxene, biotite, amphibole and oxides. Cluster analysis (CA) was applied to the data matrix to identify potential pollution sources of metals (natural or anthropogenic) and the association with minerals found in the analysis of SEM.

  18. Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2008-12-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parameterization is discussed, while in the current paper we focus on low energy electrons (LEE that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrization is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parameterization as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements and associated effects on ozone are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parameterization is suitable for simulations of the recent climate.

  19. Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2009-04-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterise particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parametrisation is discussed, while in the current paper we focus on low energy electrons (LEE that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrisation is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parametrisation as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parametrisation is suitable for simulations of the recent climate.

  20. The role of EUV/X-ray solar activity and electron precipitations from radiation belts in the climate changes

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Baranova, Lubov

    The authors associate the recently observed climate warming and carbon dioxide concentration growth in lower atmospheric layers with variations of the solar-geomagnetic activity contribution to global cloud formation and with significant decrease of carbon dioxide accumulation in forests in the process of photosynthesis. The contribution of the greenhouse effect of carbon-bearing gases to global warming turns out to be insignificant. We consider the impact of microwave emissions of the ionosphere disturbed by solar flares and magnetic storms on the troposphere and suggest the radio-optical trigger mechanism of the solar influence on weather and climate of the Earth, which consists of the following three stages: - the ionosphere absorbs the ionizing solar radiation and corpuscles from the radiation belts and transforms these into microwaves through the excitation of Rydberg states by electron impact (ionospheric photoelectron, secondary and Auger electrons); - the rates of formation and destruction of water cluster ions in the troposphere are regulated by the microwave radiation; - the clusters contribute to formation of clouds, which affects the energy flux of solar radiation through the troposphere and the flux of outgoing heat from the underlying surface. All stages of the proposed mechanism were strictly confirmed: amplification of ionospheric microwave radiation during solar flares and magnetic storms was detected; the regulation of humidity at altitude above 2 km by solar microwave emission during solar flares was registered; an influence of solar flares and magnetic storms on the cloudiness is distinctly registered at least in some geographic areas; a direct influence of solar-geomagnetic activity on the global total cloud cover in latest maximum of secular variability (in 1985 - in electromagnetic solar activity, and in 2003 - in geomagnetic activity) was discovered. Basing on analysis of satellite data on global cloud cover and radiation balance the

  1. Electron irradiation of aluminium-zinc alloys. 3. Radiation-enhanced precipitation in an aluminium-4.5 at% zinc alloy

    Science.gov (United States)

    Zhang, Y. G.

    1989-06-01

    An aluminium-4.5 at% zinc alloy was irradiated at temperatures between 25 and 170°C to doses of 7 dpa to 14 dpa at a dose rate of ~3.88 × 10 -3dpa/s. Irradiation produced a very high density of coherent G.P. zones in the temperature range ~80-~130°C, coherent plate shaped precipitates in the temperature range ~130-~160°C and, under some irradiation conditions, large Zn precipitates on the foil surfaces. No precipitates occurred along the grain boundaries in the irradiated area. The matrix precipitation was interpreted in terms of the theory of Cauvin and Martin. The surface precipitation is ascribed to surface segregation of Zn and the non-appearance of precipitates along the grain boundaries in the irradiated area is thought to be due to the high metastability of the precipitates on the boundaries under irradiation.

  2. Ionization of molecular hydrogen and stripping of oxygen atoms and ions in collisions of Oq++H2 (q = 0- 8): Data for secondary electron production from ion precipitation at Jupiter

    Science.gov (United States)

    Schultz, D. R.; Ozak, N.; Cravens, T. E.; Gharibnejad, H.

    2017-01-01

    Energetic oxygen and sulfur ion precipitation into the atmosphere of Jupiter is thought to produce an X-ray aurora as well as to contribute to ionization, heating, and dissociation of the molecules of the atmosphere. At high energy, stripping of electrons from these ions by atmospheric gas molecules results in the production of high charge states throughout a portion of this passage through the atmosphere. Therefore, to enable modeling of the effects of secondary electrons produced by this ion precipitation, from either the solar wind or magnetospheric sources such as the Galilean moons, a large range of ionization and stripping data is calculated and tabulated here that otherwise is not available. The present data are for the abundant precipitating species, oxygen, colliding with the dominant upper atmosphere gas, molecular hydrogen, and cover the principal reaction channels leading to secondary electron production (single and double ionization, transfer ionization, and double capture followed by autoionization, and single and double stripping of electrons from the projectile). Since the ions possess initial energies at the upper atmosphere in the keV to MeV range, and are then slowed as they pass through the atmosphere, results are calculated for 1-2000 keV/u Oq++H2 (q =0-8). In addition to the total cross sections for ionization and stripping processes, models require the distribution in energy and angle of the ejected electrons, so cross sections differential in these parameters are also calculated. The data may be used to model the energy deposited by ion precipitation in Jupiter's atmosphere and thereby contribute to the elucidation of the ionosphere-atmosphere coupling.

  3. In Situ Investigation of Hydride Precipitation and Growth in Zircaloy-4 by Transmission Electron Microscopy%Zr-4合金中氢化物析出长大的透射电镜原位研究

    Institute of Scientific and Technical Information of China (English)

    彭剑超; 李强; 刘仁多; 姚美意; 周邦新

    2011-01-01

    用透射电子显微镜拉伸试样台原位研究了应力、电子束辐照以及第二相对Zr-4合金中氢化物析出和长大的影响.结果表明,在拉应力作用下,裂纹易于沿氢化物扩展,并在裂尖垂直于拉应力方向析出新的氢化物.氢化物在拉应力诱发下的析出、开裂、再析出……过程,导致了氢致延迟开裂.在较强的会聚电子束辐照下,Zr-4合金中的氢化物会分解,新的氢化物会围绕着附近的Zr(Fe,Cr)2第二相粒子析出,新析出的氢化物为面心立方结构的δ相.%The effects of stress, electron beam irradiation and second phase particles on zirconium hydride precipitation and growth in Zircaloy-4 were investigated using in-situ transmission electron microscope observation. Results show that with the tensile stress the cracks are likely to propagate along hydrides and new hydrides are formed at the crack tip along the vertical direction of the applied stress. A process of precipitation, cracking, re-precipitation and so on, induced by tensile stress, causes delayed hydride cracking (DHC). Under the high irradiation of converged electron beam, the hydrides decompose in the Zircaloy-4, and new hydrides prefer to precipitate around the unoxidized Zr(Fe, Cr>2 particles, and the re-precipitated hydrides are fcc-structure 8 phase.

  4. VLF Remote -Sensing of the Lower Ionosphere with AWESOME Receivers: Solar Flares, Lightning-induced Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    Science.gov (United States)

    Inan, U. S.; Cohen, M.; Scherrer, P.; Scherrer, D.

    2006-11-01

    Stanford University Very Low Frequency (VLF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root Hz, in the frequency range of ~300 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on this planet. In recent years, as cost of production, timing accuracy (due to low cost GPS cards), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. These goals can be achieved using the newest version of the Stanford VLF receiver, known as AWESOME: Atmospheric Weather Educational System for Observation and Modeling of Electromagnetics. In the context of the IHY/UNBSS program for 2007, the AWESOME receivers can be used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Drawing on the Stanford experiences from setting up arrays of VLF receivers, including an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, and India, a global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics

  5. Electron Acceleration in Collisionless Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; LU Quan-Ming; WANG Shui; FU Xiang-Rong

    2005-01-01

    @@ A 21/2-dimensional electromagnetic particle-in-cell (PIC) simulation code is used to investigate the electron acceleration in collisionless magnetic reconnection. The results show that the electrons are accelerated in the diffusion region near the X point, and the acceleration process can be roughly divided into two procedures: firstly the electrons are accelerated in the z direction due to the electric field in the negative z direction. Then the electrons gyrate surrounding the magnetic field with the action of the Lorentz force, through this procedure the electrons reach higher velocity in the x direction and then flow out of the diffusion region. After being accelerated away from the diffusion region, part of electrons is trapped near the O point, and the other part of electrons flows into plasma sheet boundary layer along the magnetic field.

  6. Electron micrographic study of precipitates formed by interaction of silicic acid and alkaline phosphatase: contribution to a study of silica urolithiasis in cattle.

    Science.gov (United States)

    Bailey, C B; Cheng, K J; Costerton, J W

    1982-12-01

    Association of alkaline phosphatase with silicic acid in precipitates formed in dilute solution was studied as a model for the nonspecific reaction between silicic acid and protein. Precipitates contained 68-83% of the silicic acid and 52-83% of the enzyme in the original mixture and were in the form of aggregates of roundish particles 150-800 nm in diameter. Enzyme protein formed a tightly bound layer on the surface of particles formed in solutions of freshly prepared silicic acid. The similarity between the ultrastructural features of precipitates from solutions of silicic acid and of internal portions of siliceous urinary calculi from cattle suggests that deposition of silica during development of such calculi is due, at least in part, to the interaction of protein with silicic acid in urine.

  7. VLF Remote Sensing of the Lower Ionosphere: Solar Flares, Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    Science.gov (United States)

    Tan, J. H.; Cohen, M.; Inan, U. S.; Scherrer, P. H.; Scherrer, D.

    2005-12-01

    Stanford University Very Low Frequency (VLF) and Extremely Low Frequency (ELF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via ELF/VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root-Hz, in the frequency range of ~30 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on the planet. In recent years, as cost of production, timing accuracy (due to low cost GPS clocks), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. In the context of the IHY in 2007, the ELF/VLF receiver can used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Stanford University's past experiences setting up arrays of ELF/VLF receivers include an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, Ireland, and India. A global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics, as well as serving as a means for educational outreach. These goals will be achieved using the newest version of the Stanford VLF receiver, known as AWESOME

  8. Electron/ion whistler instabilities and magnetic noise bursts

    Science.gov (United States)

    Akimoto, K.; Gary, S. Peter; Omidi, N.

    1987-01-01

    Two whistler instabilities are investigated by means of the linear Vlasov dispersion equation. They are called the electron/ion parallel and oblique whistler instabilities, and are driven by electron/ion relative drifts along the magnetic field. It is demonstrated that the enhanced fluctuations from these instabilities can explain several properties of magnetic noise bursts in and near the plasma sheet in the presence of ion beams and/or field-aligned currents. At sufficiently high plasma beta, these instabilities may affect the current system in the magnetotail.

  9. Solution uniquity of an inverse VLF problem: A case-study of the polar, ground-based, VLF radio signal disturbances caused by the ultra-energetic relativistic electron precipitations and of their southern boundaries

    Science.gov (United States)

    Remenets, G. F.; Astafiev, A. M.

    2016-09-01

    Here we present the results of a case study of the rare, abnormal, qualitatively specific behavior of Aldra (northern Norway) and GBR (UK) VLF transmitter signals (10-16 kHz) received at Kola Peninsula. The abnormal amplitude and the phase disturbances of signals were used as a proxy for ultra-energetic relativistic (solar?) electron precipitation (URE, ∼100 MeV) into the middle polar atmosphere. The disturbances have been observed under quiet or moderately disturbed geomagnetic activity. Based on bearing results, it was established that the abnormal variations of the electric conductivity of ionized middle atmosphere (of a sporadic Ds layer under the regular ionosphere D layer) were characterized by the following: (i) the time function of height h(t) of an effective spherical waveguide between the Earth surface and the sporadic Ds layer shows a minimum value equal to ∼30 km and (ii) the reflection coefficient R(t) of radio wave with a grazing angle of incidence from a virtual boundary with height h(t) has a minimum value equal to ∼0.4. The southern boundaries of the ultra-energetic relativistic electron precipitations have been found as well. They turned out to be not southerly than 61 degree of magnetic latitude and similar to the ones obtained in our previous study of the events for other dates under the similar geophysical conditions although we do not know anything definite about the rigidity and density of the electron fluxes. A used calculation method of analysis is based on a necessary condition that a number n of input data should be greater than a number m of output parameter-functions. We have stated by numerical testing that a decrease of n from 6 to 4 generates a lack of uniqueness of an inverse VLF problem solution for m = 2. It is important for future VLF ground-based monitoring of the URE precipitation events.

  10. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  11. PRECIPITATION OF PLUTONOUS PEROXIDE

    Science.gov (United States)

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  12. Streaming energetic electrons in earth's magnetotail - Evidence for substorm-associated magnetic reconnection

    Science.gov (United States)

    Bieber, J. W.; Stone, E. C.

    1980-01-01

    This letter reports the results of a systematic study of streaming greater than 200 keV electrons observed in the magnetotail with the Caltech Electron/Isotope Spectrometers aboard IMP-7 and IMP-8. A clear statistical association of streaming events with southward magnetic fields, often of steep inclination, and with substorms as evidenced by the AE index is demonstrated. These results support the interpretation that streaming energetic electrons are indicative of substorm-associated magnetic reconnection in the near-earth plasma sheet.

  13. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  14. Characterization of ammonium polyuranate powders from a continuous precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Oolman, T.

    1979-01-01

    Ammonium polyuranate powders produced in a continuous, well-mixed precipitator were characterized by means of electron microscopy. The powders were qualitatively analyzed with the scanning electron microscope and the elementary crystallites were quantivatively analyzed with the transmission electron microscope. The results were fit to a kinetic theory of continuous precipitation. A phase analysis was also preformed by x-ray powder diffraction.

  15. On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. II. Order-disorder transition of Cr2N during electron irradiation.

    Science.gov (United States)

    Lee, Tae Ho; Kim, Sung Joon; Takaki, Setsuo

    2006-04-01

    The crystal structure and order-disorder transition of Cr2N were investigated utilizing transmission electron microscopy (TEM). Based on the analyses of selected-area diffraction (SAD) patterns, the crystal structure of the ordered Cr2N superstructure was confirmed to be trigonal (P31m), characterized by three sets of superlattice reflections (001), ((11/33)0) and ((11/33)1). During electron irradiation, the superlattice reflections gradually disappeared in the regular sequence (001), ((11/33)0) and ((11/33)1), indicating that the order-disorder phase transition of Cr2N occurred. The convergent-beam electron diffraction (CBED) observation revealed that the space group of disordered Cr2N is P6(3)/mmc, which corresponds to an h.c.p. (hexagonal close packed) sublattice of metal atoms with a random distribution of N atoms in six octahedral interstices. The redistribution model of N atoms through the order-disorder transition is discussed based on the characteristics and disappearing sequence of superlattice reflections.

  16. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  17. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    Science.gov (United States)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  18. Experimental study of brushite precipitation

    Science.gov (United States)

    Arifuzzaman, S. M.; Rohani, S.

    2004-07-01

    A systematic approach was developed for the synthesis of orthophosphates in the laboratory. A set of experiments was designed to investigate the influence of initial calcium and phosphorus concentration on the precipitated phase, nucleation pH and product size distribution at 25°C. Another goal was to characterize the precipitated phase. The investigation was conducted in a batch reactor. The initial molar concentration of calcium chloride and hydrated sodium phosphate solutions was varied from 0.005 to 0.08-mole dm -3 and the solution pH was kept under 7.1. Analysis by powder XRD, FTIR and elemental P/Ca revealed that the crystals precipitated were pure brushite (dicalcium phosphate dihydrate), as expected, except in one experiment in which amorphous calcium phosphate precipitated. The brushite crystals produced had plate-like morphology as investigated by scanning electron microscopy (SEM). The nucleation pH showed a decreasing trend as the concentration of the calcium and phosphorus increased in the reactor, but the volume mean diameter of the crystals and the span of the crystal size distribution did not show any sensitivity to the changes in the initial calcium and phosphorus concentration.

  19. Dissolution of ordered precipitates under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-09-01

    The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

  20. Precipitates in electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Keith [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)], E-mail: keith.jenkins@cogent-power.com; Lindenmo, Magnus [Development and Market Research, Cogent Power Limited, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)

    2008-10-15

    Precipitates heavily influence the magnetic properties of electrical steels, either as a key controlled requirement as part of the manufacturing process or as an unwanted harmful residual in the final product. In this current work copper-manganese sulphides precipitates are the primary inhibitor species in the conventional grain-oriented (CGO) steels examined and grain boundary pinning is effective at a mean precipitate size of 30-70 nm. The growth of CuMnS has been studied and the results show that a precipitate size above {approx}100 nm allows the onset of secondary recrystallisation in the heating conditions applied. The effect of precipitates on the magnetic properties of both grain-oriented and non-oriented steels in their final product form is then examined. Examples of grain-oriented material still containing large numbers of precipitates clearly show the detrimental effects with increases in total power loss of 40% or more. Loss deterioration by about 20% is also seen in samples of high silicon non-oriented material in which titanium carbo-nitride precipitates have been observed. In this case the precipitates are believed to have formed during cooling after final annealing. Finally a grain-oriented steel with a large number of very small precipitates, which do not seem to have any harmful effect on the magnetic properties, is demonstrated.

  1. Analysis of precipitation in a Cu-Cr-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Zhao Mei; Lin Guobiao; Wang Zidong; Zhang Maokui

    2008-01-01

    Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  2. Analysis of precipitation in a Cu-Cr-Zr alloy

    Directory of Open Access Journals (Sweden)

    Wang Zidong

    2008-11-01

    Full Text Available Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM, energy dispersive X-ray spectroscopy (EDXS and transmission electron microscope (TEM. After the solid solution was performed at 980 ℃ for 2 h, water-quenched and aged at 450 ℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr,Mg and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidifi cation and were left undissolved during solid solution. The fi ne precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  3. The Earth's Electron Radiation Belts Modeling: from the Source Population to Relativistic Energies

    Science.gov (United States)

    Aseev, N.; Shprits, Y. Y.; Kellerman, A. C.; Drozdov, A.; Zhu, H.

    2016-12-01

    The dynamics of the Earth's electron radiation belts is characterized by intricate interactions of different particle populations. During the main phase of a geomagnetic storm, electron source (tens keV) and seed (hundreds keV) populations are injected from the plasma sheet to the outer belt region. The source population transfers energy to electromagnetic waves, while the seed population can be accelerated locally by interaction with chorus waves. Electrons can also be lost by scattering into the loss cone due to wave-particle interaction and by magnetopause shadowing due to outward radial motion. In this work, we present results of simulations of the dynamics of electron fluxes in the inner magnetosphere from a few keV to relativistic energies of several MeV using the VERB-4D code. The code includes radial, energy and pitch angle diffusion, convection and adiabatic effects due to compression or expansion of the magnetic field. We extended the spatial outer boundary of the computational domain to 10-15 RE which allow us to study, how the source and seed population particles are convected from the plasma sheet, accelerated to relativistic energies and lost to the atmosphere or the magnetopause. The results of simulations reproduce Van Allen Probes, GOES and THEMIS observations, indicating that magnetospheric convection is the main driver of electron dynamics above the GEO, while radial diffusion and local diffusion are the most important processes in the outer belt region.

  4. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  5. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  6. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  7. Banded electron structures in the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Burke, W.J.; Rubin, A.G.; Hardy, D.A.; Holeman, E.G.

    1995-05-01

    The low-energy plasma analyzer on CRRES has detected significant fluxes of 10-eV to 30-keV electrons trapped on plasmaspheric field lines. On energy versus time spectrograms these electrons appear as banded structures that can span the 2 < L < 6 range of magnetic shells. The authors present an example of banded electron structures, encountered in the nightside plasmasphere during the magnetically quiet January 30, 1991. Empirical analysis suggests that two clouds of low energy electrons were injected from the plasma sheet to L < 4 on January 26 and 27 while the convective electric field was elevated. The energies of electrons in the first cloud were greater than those in the second. DMSP F8 measurements show that after the second injection, the polar cap potential rapidly decreased from >50 to <20 kY. Subsequent encounters with the lower energy cloud on alternating CRRES orbits over the next 2 days showed a progressive, earthward movement of the electrons, inner boundary. Whistler and electron cyclotron harmonic emissions accompanied the most intense manifestations of cloud electrons. The simplest explanation of these measurements is that after initial injection, the AIfven boundary moved Outward, leaving the cloud electrons on closed drift paths. Subsequent fluctuations of the convective electric field penetrated the plasmasphere, transporting cloud elements inward. The magnetic shell distribution of electron temperatures in one of the banded structures suggests that radiative energy losses may be comparable in magnitude to gains due to adiabatic compression.

  8. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  9. Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy

    Science.gov (United States)

    Calvo, Jessica; Penalva, Mariluz; Cabrera, José María

    2016-08-01

    Inconel 718 presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These properties, oriented to satisfy the design requirements of gas turbine components, depend on microstructural features such as grain size and precipitation. In this work, precipitation-temperature-time diagrams have been derived based on a stress relaxation technique and the characterization of precipitates by scanning electron microscopy. By using this methodology, the effect of strain accumulation during processing on the precipitation kinetics can be determined. The results show that the characteristics of precipitation are significantly modified when plastic deformation is applied, and the kinetics are slightly affected by the amount of total plastic deformation.

  10. Relativistic Electron Precipitation: An Observational Study.

    Science.gov (United States)

    1980-01-01

    growth rates 57 for these waves have been accomplished (Young et al., 1973; Karpman et al., 1975; Ashour-Abdalla and Kennel, 1976) and computations of...are determined (see Fig. B-5 b). A triangle which best matches the slopes of the response curve then yields its peak (E), minimum (ERMIN), and maximum...ERMAX) values. Center values of the two triangle slopes determine EMIN and EMAX. Vertical lines are estended through EMIN and EMAX. The vertical

  11. Precipitation in a lead calcium tin anode

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Francisco A., E-mail: fco.aurelio@inbox.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico); Camurri, Carlos G., E-mail: ccamurri@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Carrasco, Claudia A., E-mail: ccarrascoc@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-02-15

    Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 Degree-Sign C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn{sub 3} particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitates and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: Black-Right-Pointing-Pointer The distance between precipitates in a lead alloy is recorded. Black-Right-Pointing-Pointer The relationship between the distance and the cooling rate is established. Black-Right-Pointing-Pointer It is found that the strengthening of the alloy depends on the distance between precipitates.

  12. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  13. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  14. Chemisorption And Precipitation Reactions

    Science.gov (United States)

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  15. Influence of deformation on precipitation in AZ80 magnesium alloy

    Science.gov (United States)

    Yang, Ping; Wang, Li-Na; Xie, Qing-Ge; Li, Ji-Zhong; Ding, Hua; Lu, Lin-Lin

    2011-06-01

    Precipitates in the conventionally processed (solution treatment followed by aging) AZ80 alloy are coarse, cellular, and incoherent. They nucleate and grow on the basal planes of the matrix or distribute discontinuously in the alloy. Their unique morphology and undesired distribution make them ineffective for precipitation strengthening. This condition, however, can be modified by applying selected deformation and heat treatment conditions. The effect of deformation and heat treatment on the morphology and distribution of precipitates has been studied. Deformation was introduced by hot extrusion, cold rolling, or equal channel angular pressing (ECAP). The microstructures were characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that cold deformation improved precipitation more significantly than hot deformation, and twinning promoted precipitation more effectively than slip. When ECAP was applied, the Bc-route induced more precipitates than the A-route.

  16. Precipitation Behavior of V-N Microalloyed Steels during Normalizing

    Institute of Scientific and Technical Information of China (English)

    Tao PAN; Xi-yang CHAI; Jin-guang WANG; Hang SU; Cai-fu YANG

    2015-01-01

    The precipitation behavior of V-N microalloyed steel during normalizing process was studied by physicochemical phase analysis and transmission electron microscopy (TEM). The effect of precipitation behavior on mechanical properties was inves-tigated by theoretical calculations. The results showed that 32.9% of V(C,N) precipitates remained undissolved in the austenite during the soaking step of the normalizing process. These precipitates prevented the growth of the austenite grains. During the subsequent cooling process, the dissolved V(C,N) re-precipitated and played a role in precipitation strengthening. The undissolved V(C,N) induced intragranular ferrite nucleation and reifned the ferrite grains. Consequently, compared with hot-rolled steel, the normalized steel exhibited increased grain-reifning strengthening but diminished precipitation strengthening, leading to an im-provement of the impact energy at the expense of about 40 MPa yield strength.

  17. Electric Fields Associated with Deep Injections of 10s to 100s keV Electrons in the Inner Magnetosphere

    Science.gov (United States)

    Califf, S.; Li, X.; Jaynes, A. N.; Zhao, H.; Malaspina, D.

    2015-12-01

    Recent observations by HOPE and MagEIS onboard the Van Allen Probes show frequent penetration of 10s to 100s keV electrons through the slot region and into the inner belt, resulting in an abundant electron population below L=3. The conventional picture is that the source populations of these 10s to 100s keV electrons originate in the plasma sheet and are injected (along with plasma sheet ions) into the inner magnetosphere either through enhancements in the large-scale convection electric field and/or through earthward propagating dipolarization fronts associated with substorms. In such cases the inward radial limit of the injections should coincide with the plasmapause. However, these electron injections often extend inside the plasmasphere, are observed far earthward of the typically accepted "flow-braking" region for dipolarization fronts, and occur at much lower L shells than injections of ions with similar energies. We investigate the electric fields associated with these deep electron injections using data from the Van Allen Probes and THEMIS in order to shed light on the underlying mechanisms that allow them to penetrate so far into the inner magnetosphere.

  18. as the Strengthening Precipitates

    Science.gov (United States)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2014-12-01

    Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.

  19. Precipitating factors of asthma.

    Science.gov (United States)

    Lee, T H

    1992-01-01

    Asthma is characterised by bronchial hyperresponsiveness. This feature of the asthmatic diathesis predisposes patients to wheezing in response to a number of different factors. These precipitating factors include specific allergen acting via sensitised mediator cells through an IgE-dependent mechanism. There are irritants which may work through a non-specific manner, or stimuli such as exercise and hyperventilation, which probably also act through mediator release via a non-IgE-dependent manner. The mechanism whereby physical stimuli such as exercise induce bronchoconstriction is of interest, because it increases the context in which the mast cell may participate in acute asthmatic bronchoconstriction. Respiratory infections also commonly provoke asthma, especially in infants and may, indeed, precipitate the asthmatic state itself. Finally, drugs can often trigger asthma attacks and the mechanisms of asthma precipitated by non-steroidal anti-inflammatory drugs such as aspirin have been the subject of recent research.

  20. Precipitation-Regulated Feedback

    Science.gov (United States)

    Voit, Mark

    2016-07-01

    Star formation in the central galaxies of galaxy clusters appears to be fueled by precipitation of cold clouds out of hot circumgalactic gas via thermal instability. I will present both observational and theoretical support for the precipitation mode in large galaxies and discuss how it can be implemented in cosmological simulations of galaxy evolution. Galaxy cluster cores are unique laboratories for studying the astrophysics of thermal instability and may be teaching us valuable lessons about how feedback works in galaxies spanning the entire mass spectrum.

  1. Ion and electron kinetic physics associated with magnetotail dipolarization fronts

    Science.gov (United States)

    Eastwood, Jonathan; Goldman, Martin; Newman, David; Zhang, Xiao-Jia; Hietala, Heli; Krupar, Vratislav; Mistry, Rishi; Lapenta, Giovanni; Angelopoulos, Vassilis

    2016-04-01

    Magnetic reconnection plays an important role in controlling the dynamics of the Earth's magnetotail. In particular, a dipolarization front (DF) may form at the leading edge of the reconnection exhaust as a consequence of its interaction with the pre-existing plasma sheet. Earthward moving DFs typically exhibit a rapid increase in the northward component of the magnetic field which divides the pre-existing plasma sheet from the hotter, high speed and lower density reconnection exhaust. Extensive observations have been made of DFs at Earth with multi-point missions such as Cluster, THEMIS/ARTEMIS and now Magnetospheric Multi-Scale (MMS). In this invited contribution we will first review previous work showing that DFs are often relatively thin and locations where significant particle acceleration and heating can occur in a variety of ways. The dynamics and kinematics of ions and electrons at DFs are very different, as a result of their different particle masses. The reflection of ions by DFs leads to acceleration and heating, and we show that via kinetic effects, some part of the pre-existing plasma sheet ion population is entrained and accelerated into the exhaust. This interaction in fact occurs over a macroscopic region, rather than simply being limited to the thin DF interface. This leads to a more general consequence which is that reconnection exhausts are not necessarily simply fed by plasma inflow across the separatrices, but also by plasma from the region into which the jet is propagating; the implications of this finding are discussed. In contrast, electron acceleration and thermalisation is more related to the presence of instabilities in particular associated with temperature anisotropy and the growth of whistler waves. We discuss the observational evidence and also explore the possibility of the role that Cherenkov emission of whistlers by electron holes could play in this process. Finally we will briefly highlight recent new work in this area, and

  2. Thermodynamic Analysis on Precipitated Phases in Low Activation Steel

    OpenAIRE

    PANG Qi-hang; TANG Di; ZHAO Zheng-zhi; WU Hui-bin; Li, Shuo

    2016-01-01

    A type of low-carbon reduced activation ferritic/martensitic (RAFM) steel is designed.The microstructure and mechanical properties of tested steels prepared by different technologies were investigated by means of scanning electron microscope, transmission electron microscope and tensile test. The chemical composition of precipitations of tested steels are inspected by energy dispersive spectroscopy (EDS), meanwhile the law of precipitation phase of low carbon low activation FM steel was studi...

  3. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  4. Reaction systems with precipitation

    Directory of Open Access Journals (Sweden)

    Marek Rogalski

    2015-04-01

    Full Text Available This article proposes expanding Reaction Systems of Ehrenfeucht and Rozenberg by incorporating precipitation reactions into it. This improves the computing power of Reaction Systems by allowing us to implement a stack. This addition enables us to implement a Deterministic Pushdown Automaton.

  5. Statistical study of the location and size of the electron edge of the Low-Latitude Boundary Layer as observed by Cluster at mid-altitudes

    Directory of Open Access Journals (Sweden)

    Y. V. Bogdanova

    2006-10-01

    Full Text Available The nature of particle precipitations at dayside mid-altitudes can be interpreted in terms of the evolution of reconnected field lines. Due to the difference between electron and ion parallel velocities, two distinct boundary layers should be observed at mid-altitudes between the boundary between open and closed field lines and the injections in the cusp proper. At lowest latitudes, the electron-dominated boundary layer, named the "electron edge" of the Low-Latitude Boundary Layer (LLBL, contains soft-magnetosheath electrons but only high-energy ions of plasma sheet origin. A second layer, the LLBL proper, is a mixture of both ions and electrons with characteristic magnetosheath energies. The Cluster spacecraft frequently observe these two boundary layers. We present an illustrative example of a Cluster mid-altitude cusp crossing with an extended electron edge of the LLBL. This electron edge contains 10–200 eV, low-density, isotropic electrons, presumably originating from the solar wind halo population. These are occasionally observed with bursts of parallel and/or anti-parallel-directed electron beams with higher fluxes, which are possibly accelerated near the magnetopause X-line. We then use 3 years of data from mid-altitude cusp crossings (327 events to carry out a statistical study of the location and size of the electron edge of the LLBL. We find that the equatorward boundary of the LLBL electron edge is observed at 10:00–17:00 magnetic local time (MLT and is located typically between 68° and 80° invariant latitude (ILAT. The location of the electron edge shows a weak, but significant, dependence on some of the external parameters (solar wind pressure, and IMF BZ- component, in agreement with expectations from previous studies of the cusp location. The latitudinal extent of the electron edge has been estimated using new multi-spacecraft techniques. The Cluster tetrahedron crosses the electron and ion boundaries of

  6. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  7. Uncertainties in Arctic Precipitation

    Science.gov (United States)

    Majhi, I.; Alexeev, V. A.; Cherry, J. E.; Cohen, J. L.; Groisman, P. Y.

    2012-12-01

    Arctic precipitation is riddled with measurement biases; to address the problem is imperative. Our study focuses on comparison of various datasets and analyzing their biases for the region of Siberia and caution that is needed when using them. Five sources of data were used ranging from NOAA's product (RAW, Bogdanova's correction), Yang's correction technique and two reanalysis products (ERA-Interim and NCEP). The reanalysis dataset performed better for some months in comparison to Yang's product, which tends to overestimate precipitation, and the raw dataset, which tends to underestimate. The sources of bias vary from topography, to wind, to missing data .The final three products chosen show higher biases during the winter and spring season. Emphasis on equations which incorporate blizzards, blowing snow and higher wind speed is necessary for regions which are influenced by any or all of these factors; Bogdanova's correction technique is the most robust of all the datasets analyzed and gives the most reasonable results. One of our future goals is to analyze the impact of precipitation uncertainties on water budget analysis for the Siberian Rivers.

  8. TEM characterization of Ge precipitates in an Al-1.6 at% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)], E-mail: kaneko@zaiko.kyushu-u.ac.jp; Inoke, K. [FEI Company Japan Ltd., 13-34 Kohnan 2, Minato, Tokyo 108-0075 (Japan); Sato, K.; Kitawaki, K.; Higashida, H. [Department of Material Science and Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Arslan, I.; Midgley, P.A. [Department of Material Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2008-02-15

    The growth mechanism and morphology of Ge precipitates in an Al-Ge alloy was characterized by a combination of in-situ transmission electron microscopy, high-resolution transmission electron microscopy and three-dimensional electron tomography. Anisotropic growth of rod-shaped Ge precipitates was observed by in-situ transmission electron microscopy over different time periods, and faceting of the precipitates was clearly seen using high-resolution transmission electron microscopy and three-dimensional electron tomography. This anisotropic growth of rod-shaped Ge precipitates was enhanced by vacancy concentration as proposed previously, but also by surface diffusion as observed during the in-situ experiment. Furthermore, a variety of precipitate morphologies was identified by three-dimensional electron tomography.

  9. Counterstreaming beams and flat-top electron distributions observed with Langmuir, Whistler, and compressional Alfvén waves in earth's magnetic tail.

    Science.gov (United States)

    Teste, Alexandra; Parks, George K

    2009-02-20

    Relevant new clues to wave-particle interactions have been obtained in Earth's plasma sheet (PS). The plasma measurements made on Cluster spacecraft show that broadband (approximately 2-6 kHz) electrostatic emissions, in the PS boundary layer, are associated with cold counterstreaming electrons flowing at 5-12x10(3) km s(-1) through hot Maxwellian plasma. In the current sheet (CS), electromagnetic whistler mode waves (approximately 10-80 Hz) and compressional Alfvén waves (whistler mode emissions triggered by the cyclotron resonance instability.

  10. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  11. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation model

  12. The INTERBALL-Tail ELECTRON experiment: initial results on the low-latitude boundary layer of the dawn magnetosphere

    Directory of Open Access Journals (Sweden)

    J.-A. Sauvaud

    Full Text Available The Toulouse electron spectrometer flown on the Russian project INTERBALL-Tail performs electron measurements from 10 to 26 000 eV over a 4 solid angle in a satellite rotation period. The INTERBALL-Tail probe was launched on 3 August 1995 together with a subsatellite into a 65° inclination orbit with an apogee of about 30 RE. The INTERBALL mission also includes a polar spacecraft launched in August 1996 for correlated studies of the outer magnetosphere and of the auroral regions. We present new observations concerning the low-latitude boundary layers (LLBL of the magnetosphere obtained near the dawn magnetic meridian. LLBL are encountered at the interface between two plasma regimes, the magnetosheath and the dayside extension of the plasma sheet. Unexpectedly, the radial extent of the region where LLBL electrons can be sporadically detected as plasma clouds can reach up to 5 RE inside the magnetopause. The LLBL core electrons have an average energy of the order of 100 eV and are systematically field-aligned and counterstreaming. As a trend, the temperature of the LLBL electrons increases with decreasing distance to Earth. Along the satellite orbit, the apparent time of occurrence of LLBL electrons can vary from about 5 to 20 min from one pass to another. An initial first comparison between electron- and magnetic-field measurements indicates that the LLBL clouds coincide with a strong increase in the magnetic field (by up to a factor of 2. The resulting strong magnetic field gradient can explain why the plasma-sheet electron flux in the keV range is strongly depressed in LLBL occurrence regions (up to a factor of sim10. We also show that LLBL electron encounters are related to field-aligned current structures and that wide LLBL correspond to northward interplanetary magnetic field. Evidence for LLBL/plasma-sheet electron leakage into the magnetosheath during southward IMF is also presented.

  13. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    Science.gov (United States)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1976-01-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure.

  14. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  15. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  16. Parameterization of ionization induced in the atmosphere by precipitating particles

    Science.gov (United States)

    Artamonov, Anton; Usoskin, Ilya; Kovaltsov, Gennady

    We present a physical model to calculate ionization induced in the atmosphere by precipitating particles. This model is based on the Bethe-Bloch equation applied for precipitating particles such as: electrons, alpha-particles and protons. The energy range of precipitating particles is up to 5MeV and 80MeV/nuc respectively. This model provides an easy implementation with a robust realization of model calculations for a wide range of incident energies of precipitating particles. This method is limited to the upper-middle atmosphere. An ionization yield function [see, Usoskin and Kovaltsov, 2006; Usoskin, Kovaltsov, Mironova, 2010] can be also used in this model, making it possible to calculate the atmospheric ionization effect of precipitating particles for the entire atmosphere, dawn to the ground.

  17. Precipitation and Solubility of Calcium Hydrogenurate Hexahydrate.

    Science.gov (United States)

    Babić-Ivančić, V; Füredi-Milhofer, H; Brničević, N; Marković, M

    1992-01-01

    Solid phases formed in the quaternary system: uric acid-calcium hydroxide -hydrochloric acid-water aged for 2 months at 310 K were studied to determine conditions for calcium hydrogenurate hexahydrate, Ca(C5H3N4O)2 · 6H2O precipitation. The precipitates were identified by chemical and thermogravimetric analyses, x-ray powder diffraction, infrared spectroscopy, light microscopy, and scanning electron microscopy. In the precipitation diagram the concentration region in which calcium hydrogenurate hexahydrate precipitated as a single solid phase was established. The solubility of calcium hydrogenurate hexahydrate was investigated in the pH range from 6.2 to 10.1 at different temperatures. The total soluble and ionic concentration of calcium (atomic absorption spectroscopy and Ca-selective electrode), total urate concentration (spectrophotometry), and pH were determined in equilibrated solutions. The data are presented in the form of tables and chemical potential diagrams. By using these data the thermodynamic solubility products of calcium hydrogenurate hexahydrate, Ks = a(Ca(2+)) · a(2)(C5H3N4O3(-)), were determined: [Formula: see text]The formation of calcium hydrogenurate hexahydrate crystals in urinary tract of patients with pathologically high concentrations of calcium and urates (hypercalciuria and hyperuricosiuria) is possible.

  18. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  19. Solvothermal synthesis of spherical YAG powders via different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zuogui [Department of Materials Science and Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353 (China); Zhang Xudong [Department of Materials Science and Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353 (China)], E-mail: wuzuogui11550@163.com; He Wen; Du Yuanwei; Jia Naitao; Liu Pengcheng; Bu Fanqing [Department of Materials Science and Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353 (China)

    2009-03-20

    Yttrium aluminum garnet (YAG) powders were synthesized by a solvothermal method under mild conditions with inexpensive aluminum and yttrium nitrates as the starting materials, and the ethylenediamine (EDA) solution as the solvent. Hydroxide precursors were synthesized by two different precipitating processes, in which urea or ammonium hydrogen carbonate was used as precipitant. The formation of YAG particle was investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results showed that spherical YAG powders were successfully synthesized when ammonium hydrogen carbonate was used as precipitant.

  20. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  1. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  2. Precipitation of Epsilon Copper in Ferrite Antibacterial Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Zhixia ZHANG; Gang LIN; Zhou XU

    2008-01-01

    The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsilon copper precipitation occurs within 90 s. Complex rnultilayer structure confirmed as twins and stacking faults on {111}ε-Cu planes was observed in the precipitates. The precipitates grow by the lengthwise enlargement of a set of parallel layers, having [111]ε-Cu and [112]ε-Cu preferred growth orientations. The volume fraction of precipitates f formed within 120 min can be predicted by a modified Avrami equation (In 1/1-f= kt+b).Simultaneously, substituent atom clusters with a size of 5-10 nm was found to occur in the solution and cause matrix strain. The precipitate morphology and distribution on the surface of ferrite antibacterial stainlesss teel are associated with surface crystallographic orientation of the matrix. The precipitates are predominantly located within the ferrite grains of orientation. The precipitates located on {111}α-Fe surface planes have sphere or ellipse shape.

  3. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  4. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  5. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Haettestrand, Mats; Nilsson, Jan-Olof; Stiller, Krystyna; Liu Ping; Andersson, Marcus

    2004-02-23

    A combination of complementary techniques including one-dimensional and three-dimensional atom probe, energy-filtered transmission electron microscopy and conventional transmission electron microscopy has been used to assess the precipitation reactions at 475 deg. C in a 12%Cr-9%Ni-4%Mo-2%Cu precipitation hardening stainless steel. The continuous hardening up to at least 1000 h of ageing was attributed to a sequence of precipitation reactions involving nickel-rich precipitates nucleating at copper clusters followed by molybdenum-rich quasicrystalline precipitates and nickel-rich precipitates of type L1{sub 0}. An estimate of the relative contributions to the strength increment during tempering based on measurements of particle densities was performed. Nickel-rich precipitates were found to play the most important role up to about 40 h of ageing after which the effect of quasicrystalline particles became increasingly important.

  6. Rising Precipitation Extremes across Nepal

    Directory of Open Access Journals (Sweden)

    Ramchandra Karki

    2017-01-01

    Full Text Available As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively, and likewise, in central (CL, CM and CH and eastern (EL, EM and EH Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks that feature relatively low precipitation and less wet days (rainy days are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing

  7. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  8. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  9. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    Science.gov (United States)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  10. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distribu...

  11. Encoding information into precipitation structures

    Science.gov (United States)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  12. Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics

    Science.gov (United States)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina

    2016-07-01

    We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.

  13. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    Science.gov (United States)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  14. Thermodynamic Analysis on Precipitated Phases in Low Activation Steel

    Directory of Open Access Journals (Sweden)

    PANG Qi-hang

    2016-07-01

    Full Text Available A type of low-carbon reduced activation ferritic/martensitic (RAFM steel is designed.The microstructure and mechanical properties of tested steels prepared by different technologies were investigated by means of scanning electron microscope, transmission electron microscope and tensile test. The chemical composition of precipitations of tested steels are inspected by energy dispersive spectroscopy (EDS, meanwhile the law of precipitation phase of low carbon low activation FM steel was studied by thermodynamic calculations. The results show that the best mechanical properties are obtained by tempering at 750℃ for 1h after quenched from heating at 980℃ for 1h.The low carbon RAFM steel meeting performance standards can be produced. The precipitations are composed of M23C6 and MX.M23C6 carbide precipitates mainly in the process of below 950℃ rolling and heat treatment. However MX mainly precipitates in the process of rolling, and the secondary precipitation seldom occurs during the process of heat treatment and rapid cooling.

  15. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, P. A. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Johnson, J. R. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Chaston, C. C. [Space Sciences Laboratory, University of California, Berkeley California USA; School of Physics, University of Sydney, Sydney New South Wales Australia

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  16. Control of precipitation morphology in the novel HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shih-Fan, Chen [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-05-14

    Examination of 20 thin foils of the specimens with or without deformed austenite with transmission electron microscopy revealed both interphase precipitation and random precipitation in the ferrite for each experimental condition. In the hot deformed condition, random precipitation is more likely to occur within most ferrite grains. Without hot deformation, interphase precipitation is likely to occur in the ferrite matrix. Based on the austenite decomposition kinetics, the occurrence of random precipitation within the most deformed ferrite grains can be ascribed to the acceleration of the austenite/ferrite interface movement velocity resulting from the heavy hot deformation, which causes many microalloying elements to remain mostly in the ferrite matrix and then precipitate homogeneously after further isothermal holding. Vickers hardness data revealed that, in specimens isothermally held at 650 °C without hot deformation, the range of hardness distribution was 180–320 HV 0.1 after 5 min of isothermal holding, and 170–250 HV 0.1 after 60 min. For specimens isothermally held at 650 °C with 20% hot deformation at 900 °C, the range of the hardness distribution was 200–260 for 5 min of isothermal holding, and 210–240 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a narrower range of hardness distribution occurred in specimens that underwent hot deformation. The narrower Vickers hardness distribution reflects more uniform precipitation in each ferrite grain.

  17. The different phases in the precipitation of dicalcium phosphate dihydrate

    Science.gov (United States)

    Ferreira, A.; Oliveira, C.; Rocha, F.

    2003-05-01

    The precipitation of dicalcium phosphate dihydrate, brushite, by mixing a calcium hydroxide suspension and an orthophosphoric acid solution in equimolar quantities, has been investigated in a batch system at 25°C. The concentration of calcium hydroxide and orthophosphoric acid, before mixing, ranged from 50 to 300 mmol dm -3. The phase first precipitated is Ca 5OH(PO 4) 3, hydroxyapatite. The precipitation process of brushite is divided into five stages and is similar for all initial experimental conditions. The extension of each stage varies with the initial reagents' concentrations. These stages are discussed individually as a function of pH and reagents' concentrations. The precipitate was analysed by scanning electron microscopy and X-ray diffraction. The solubility of brushite was determined at 25°C, 30°C and 35°C, and in the pH range 4.5-8.

  18. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Science.gov (United States)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  19. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  20. Optimum conditions for microbial carbonate precipitation.

    Science.gov (United States)

    Okwadha, George D O; Li, Jin

    2010-11-01

    The type of bacteria, bacterial cell concentration, initial urea concentration, reaction temperature, the initial Ca(2+) concentration, ionic strength, and the pH of the media are some factors that control the activity of the urease enzyme, and may have a significant impact on microbial carbonate precipitation (MCP). Factorial experiments were designed based on these factors to determine the optimum conditions that take into consideration economic advantage while at the same time giving quality results. Sporosarcina pasteurii strain ATCC 11859 was used at constant temperature (25°C) and ionic strength with varying amounts of urea, Ca(2+), and bacterial cell concentration. The results indicate that the rate of ureolysis (k(urea)) increases with bacterial cell concentration, and the bacterial cell concentration had a greater influence on k(urea) than initial urea concentration. At 25 mM Ca(2+) concentration, increasing bacterial cell concentration from 10(6) to 10(8)cells mL⁻¹ increased the CaCO(3) precipitated and CO(2) sequestrated by over 30%. However, when the Ca(2+) concentration was increased 10-fold to 250 mM Ca(2+), the amount of CaCO(3) precipitated and CO(2) sequestrated increased by over 100% irrespective of initial urea concentration. Consequently, the optimum conditions for MCP under our experimental conditions were 666 mM urea and 250 mM Ca(2+) at 2.3×10⁸ cells mL⁻¹ bacterial cell concentration. However, a greater CaCO(3) deposition is achievable with higher concentrations of urea, Ca(2+), and bacterial cells so long as the respective quantities are within their economic advantage. X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray analyzes confirmed that the precipitate formed was CaCO(3) and composed of predominantly calcite crystals with little vaterite crystals.

  1. Spontaneous electrostatic precipitation of dust. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, F.M.; Hielscher, F.H.

    1973-05-15

    The report provides fundamental research information on the electrostatic behavior of coal mine dust. The results will be used to help determine whether a precipitator should be designed that would function by the spontaneous exchange of electric charge between coal mine dust and polymer surfaces. The following conclusions were reached: (1) Electrification occurs upon contact of materials; rubbing is not required; (2) Electrification occurs by electron injection and not by polarization of dipoles; (3) The direction of electron transfer depends on the electron-donor or electron-acceptor character of the outermost surfaces of the materials in contact; (4) Some pairs of materials transferred as many as 4 x 10 to the 12th power electrons/cm; (5) Strong electrification of dusts took place in a fraction of a second, but weaker charge transfer took longer; (6) The transfer of charge between an insulated polymer surface and impinging dust particles diminishes as the surface charge builds up on the polymer; (7) The charge transfer characteristics of polymers were modified by incorporating acidic or basic additives. (GRA)

  2. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  3. Atrial Ectopics Precipitating Atrial Fibrillation

    OpenAIRE

    Johnson Francis

    2015-01-01

    Holter monitor tracing showing blocked atrial ectopics and atrial ectopic precipitating atrial fibrillation is being demonstrated. Initially it was coarse atrial fibrillation, which rapidly degenerated into fine atrial fibrillation.

  4. CPC Merged Analysis of Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of two files containing global monthly averaged precipitation rate values at a 2.5x2.5 resolution starting in 1979. Values are obtained...

  5. Hourly and Daily Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Precipitation reports submitted on many form types, including tabular and autographic charts. Reports are almost exclusively from the US Cooperative Observer Network.

  6. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  7. The effects of auroral precipitation on atmospheric nitric oxide concentration

    Science.gov (United States)

    Jones, S.; Lessard, M.; Fritz, B.

    2016-12-01

    The Pulsating Auroral Nitric Oxide Production in the Lower Ionosphere (PANOPLI) project addresses a science problem that has strong implications regarding the question of how solar variability may be related to climate change and terrestrial weather. Pulsating aurora is the ideal choice for studying auroral NO production since this type of aurora is caused by tens of keV electron precipitation (which is known to produce enhancements in thermospheric NO) and is a frequently occurring and long lasting phenomenon resulting in widespread auroral luminosity. The pulsating auroral precipitation results in a large transfer of power from the magnetosphere to the ionosphere-thermosphere and may be a significant contributor to thermospheric NO production, which is dependent on the energy flux and duration of the auroral precipitation. PANOPLI makes use of ground-based riometer measurements to characterize the electron precipitation causing pulsating aurora and determine the effects of pulsating aurora on the theremosphere-mesosphere NO reservoir. The inferred precipitating electron distribution function is input to a model to calculate the expected NO enhancement for comparison with NO enhancements inferred from ground-based Fabry-Perot interferometer measurements. This problem is particularly important because NO produced at low enough altitudes can transport downward to the stratosphere and chemically react with ozone causing depletion. Therefore, this work is a vital first step in quantifying the auroral contribution to ozone depletion. Previous studies have shown that the auroral contribution to atmospheric chemistry can be significant, with up to 60% of ozone depletion enhancements (above background levels) at 35-40 km altitude due to energetic electron precipitation (Randall et al., 2005).

  8. Solitary, explosive, rational and elliptic doubly periodic solutions for nonlinear electron-acoustic waves in the earth's magnetotail region

    CERN Document Server

    El-Wakil, S A; El-Shewy, E K; Abd-El-Hamid, H M

    2010-01-01

    A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth's plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called "blowup" solutions, Jaco...

  9. Precipitation Behavior of Carbon-Nitrides in Microalloyed Offshore Platform Plate

    Science.gov (United States)

    Di, Guo-biao; Shen, Qin-yi; Liu, Mei-yan; Jia, Tao; Ma, Qing-shen; Liu, Zhen-yu

    Thermal simulator and transmission electron microscope (TEM) were adopted to investigate the precipitation behavior in different stage of controlled rolling, controlled cooling and the effect of cooling route on precipitation. It is found that the undissolved cuboid precipitates TiN in reheating process was covered by Nb precipitates during rolling process and the content of Nb increased relatively. The strain-induced NbC precipitates were found to be spherical shaped when waiting for a few seconds after rough rolling. The size of precipitates obtained from two-stage cooling process, in which fast and slow cooling were employed respectively, was much smaller and sparse distributed than that obtained from one stage cooling process with slow cooling rate and that is beneficial for precipitation strengthening. The results supplies the theoretical basis for practical application.

  10. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  11. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  12. Chemical Data for Precipitate Samples

    Science.gov (United States)

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  13. Metal particle's precipitation behavior in direct reading ferrography precipitator tube

    Institute of Scientific and Technical Information of China (English)

    尹凤福; 李谋渭

    2004-01-01

    A new metal particle monitoring instrument was developed by improving the traditional direct reading ferrography. The precipitation behaviors of sub-magnetic particles, magnetic particles, and the mixture of these particles were examined with the instrument. The results show that the precipitation behavior of sub-magnetic metal particles of copper and aluminum is not random as it was believed previously. The sub-magnetic particles show a distribution in the precipitator tube, almost the same as the deposition curves as the magnetic particles have. The deposition amount of particles is increased in the oil which consists of several different kinds of particles. On the base of these experiments, a new index used for the total quantity of wear was redefined.

  14. Influence of TiB2 Addition on the Precipitation Kinetics in Al-7Si-0.3Mg In Situ TiB2 Composites

    Science.gov (United States)

    Nandam, S. H.; Murty, B. S.; Sankaran, S.

    2015-07-01

    Precipitation behavior of the Al-7Si-0.3Mg/TiB2 in situ composites was investigated using differential scanning calorimetry and transmission electron microscopy, and it was found that Si precipitation is accelerated with increase in TiB2 content. Non-isothermal kinetic analysis clearly showed a decrease in the precipitation kinetics of the overaged metastable precipitates in the Mg2Si precipitation sequence.

  15. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2016-10-01

    The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal.

  16. Investigating radiation belt losses though numerical modelling of precipitating fluxes

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2004-11-01

    Full Text Available It has been suggested that whistler-induced electron precipitation (WEP may be the most significant inner radiation belt loss process for some electron energy ranges. One area of uncertainty lies in identifying a typical estimate of the precipitating fluxes from the examples given in the literature to date. Here we aim to solve this difficulty through modelling satellite and ground-based observations of onset and decay of the precipitation and its effects in the ionosphere by examining WEP-produced Trimpi perturbations in subionospheric VLF transmissions. In this study we find that typical Trimpi are well described by the effects of WEP spectra derived from the AE-5 inner radiation belt model for typical precipitating energy fluxes. This confirms the validity of the radiation belt lifetimes determined in previous studies using these flux parameters. We find that the large variation in observed Trimpi perturbation size occurring over time scales of minutes to hours is primarily due to differing precipitation flux levels rather than changing WEP spectra. Finally, we show that high-time resolution measurements during the onset of Trimpi perturbations should provide a useful signature for discriminating WEP Trimpi from non-WEP Trimpi, due to the pulsed nature of the WEP arrival.

  17. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.

    Science.gov (United States)

    Bhaduri, Swayamdipta; Debnath, Nandini; Mitra, Sushanta; Liu, Yang; Kumar, Aloke

    2016-04-16

    The particular bacterium under investigation here (S. pasteurii) is unique in its ability, under the right conditions, to induce the hydrolysis of urea (ureolysis) in naturally occurring environments through secretion of an enzyme urease. This process of ureolysis, through a chain of chemical reactions, leads to the formation of calcium carbonate precipitates. This is known as Microbiologically Induced Calcite Precipitation (MICP). The proper culture protocols for MICP are detailed here. Finally, visualization experiments under different modes of microscopy were performed to understand various aspects of the precipitation process. Techniques like optical microscopy, Scanning Electron Microscopy (SEM) and X-Ray Photo-electron Spectroscopy (XPS) were employed to chemically characterize the end-product. Further, the ability of these precipitates to clog pores inside a natural porous medium was demonstrated through a qualitative experiment where sponge bars were used to mimic a pore-network with a range of length scales. A sponge bar dipped in the culture medium containing the bacterial cells hardens due to the clogging of its pores resulting from the continuous process of chemical precipitation. This hardened sponge bar exhibits superior strength when compared to a control sponge bar which becomes compressed and squeezed under the action of an applied external load, while the hardened bar is able to support the same weight with little deformation.

  18. Effect of creep-aging on precipitates of 7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: yclin@csu.edu.cn [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China); Jiang, Yu-Qiang; Chen, Xiao-Min; Wen, Dong-Xu [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); Zhou, Hua-Min [State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China)

    2013-12-20

    The creep-aging behaviors of 7075 aluminum alloy are studied by uniaxial tensile creep experiments under elevated temperatures. The effects of creep-aging temperature and applied stress on the precipitates of 7075-T651 aluminum alloy are investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Results show that (1) coarse insoluble precipitates (Al{sub 7}Cu{sub 2}Fe and Mg{sub 2}Si) and intermediate precipitates (Al{sub 18}Mg{sub 3}Cr{sub 2} and Al{sub 3}Zr) are found in the aluminum matrix, and the effects of creep-aging treatment on these precipitates are not obvious; (2) the main aging precipitates are η′ and η phases, and the amount of aging precipitates increase with the increase of creep-aging temperature and applied stress; (3) with the increase of creep-aging temperature and applied stress, the precipitates are discontinuously distributed on the grain boundary, and the width of precipitate free zone increases with the increase of creep-aging temperature and applied stress and (4) compared with the microstructure in the traditional stress-free aged sample, the creep-aging process can refine the precipitates and narrow the width of the precipitate free zone.

  19. TEM investigations of fine niobium precipitates in HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Beres, M.; Weirich, T.E.; Mayer, J. [Gemeinschaftslabor fuer Elektronenmikroskopie (GFE), RWTH Aachen, Aachen (Germany); Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany)

    2004-11-01

    Commercially produced 0.03% C, 0.08% Nb, 0.01% Ti high strength low alloyed (HSLA) steel in the form of 20 mm thick plates was investigated. The steel was thermomechanically processed and the mechanical properties of the steel were evaluated by tensile testing. Using analytical and high resolution transmission electron microscopy the distribution, morphology, composition, crystal structure and particle size of niobium and titanium carbonitrides were observed and identified in these steels. The distribution of the precipitates was found to be nearly random, with occasional occurrence of precipitation free zones. Complex agglomerates with a cubic TiN seed crystal overgrown by a cubic NbC particle were the most commonly observed precipitates. Further TEM analysis in the accelerated cooled and tempered specimens in 1/4 plate thickness did not reveal any evidence that additional precipitation in the ferrite occurred. Precipitation in ferrite was only detected after subsequent cold deformation and tempering of the same samples. By a combination of EFTEM, STEM, HRTEM in addition to EDX spectroscopy, a large population of strain induced NbC precipitates with fcc crystal structure ranging in size down to 2 nm were identified in the ferrite matrix. (orig.)

  20. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  1. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    Science.gov (United States)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  2. Towards Quantitative Ocean Precipitation Validation

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Andersson, A.

    2009-04-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding and successful modelling of the global climate system as it is an important component of the water cycle. However, reliable detection of quantitative precipitation over the global oceans, especially at high latitudes during the cold season remains a challenging task for remote sensing and model based estimates. Quantitative ship validation data using reliable instruments for measuring rain and snowfall hardly exist but are highly demanded for ground validation of such products. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. Especially for North Atlantic mid-latitude mix-phase precipitation, the HOAPS precipitation retrieval has been investigated in some depth. This analysis revealed that the HOAPS retrieval qualitatively well represents cyclonic and intense mesoscale precipitation in agreement with ship observations and Cloudsat data, while GPCP, ECMWF forecast, ERA-40 and regional model data miss mesoscale precipitation substantially. As the differences between the investigated data sets are already large under mix-phase precipitation conditions, further work is carried out on snowfall validation during the cold season at high-latitudes. A Norwegian Sea field campaign in winter 2005 was carried out using an optical disdrometer capable of measuring quantitative amounts of snowfall over the ocean

  3. Novel ultrafine Fe(C) precipitates strengthen transformation-induced-plasticity steel

    NARCIS (Netherlands)

    Tirumalasetty, G.K.; Fang, C.M.; Xu, Q.; Jansen, J.; Sietsma, J.; Van Huis, M.A.; Zandbergen, H.W.

    2012-01-01

    A transmission electron microscopy study was conducted on nanoprecipitates formed in Ti microalloyed transformation-inducedplasticity-assisted steels, revealing the presence of Ti(N), Ti2CS and a novel type of ultra-fine Fe(C) precipitate. The matrix/precipitate orientation relationships, sizes and

  4. Features of the planetary distribution of ion precipitation at different levels of magnetic activity

    Science.gov (United States)

    Vorobjev, V. G.; Yagodkina, O. I.; Antonova, E. E.

    2015-09-01

    Observations from DMSP F6 and F7 spacecraft were used to examine the features of the planetary distribution of ion precipitation. Ion characteristics were defined within the boundaries of different types of auroral electron precipitation, which in accordance with the conclusions from (Starkov et al., 2002) were divided into a structured precipitation of an auroral oval (AOP) and zones of diffuse precipitation DAZ and SDP located equatorward and poleward of AOP, respectively. Analogous to electron precipitation, ion precipitation did not demonstrate dependences of the average energy and the average energy flux of precipitating particles on the Dst index value. In the diffuse precipitation zone (DAZ) equatorward of the auroral oval, ion energies clearly peaked in the sector of 1500-1800 MLT. The average energy value grows as magnetic activity increases from ~12 keV at AL =-1000 nT to ~18 keV at AL =-1000 nT. In the region of structured precipitation (AOP), the minimum of the average ion energy is observed in the dawn sector of 0600-0900 MLT. Ion energy fluxes ( F i ) are maximal in the nighttime MLT sectors. In the zone of soft diffuse precipitation (SDP) poleward of AOP, the highest ion energy fluxes are observed in the daytime sector, while the nightside F i values are insignificant. Ion energy fluxes in the SDP zone show an anticorrelation with the average ion energy in the same MLT sector. An ion precipitation model was created which yields a global distribution of both the average ion energies and the ion energy fluxes depending on the magnetic activity expressed by AL and Dst indices. Comparison of this model with the model of electron precipitation shows that the planetary power of ion precipitation at low magnetic activity (| AL| = 100 nT) is ~12% of the electron precipitation power and exponentially decreases to ~4% at | AL| > 1000 nT. The ion precipitation model was used to calculate the plasma pressure at the ionospheric altitudes. The planetary

  5. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  6. Kinetics of asphaltene precipitation from crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, T.; Hussein, I.A.; Fogler, H.S. [Michigan Univ., Ann Arbor (United States). Dept. of Chemical Engineering

    2008-07-01

    The kinetics of asphaltene precipitation from crude oils was investigated using n-alkane precipitants. Recent studies have shown that there is a kinetic phenomenon associated with asphaltene precipitation. This study showed that the time needed to precipitate the asphaltenes can vary from a few minutes to several months, depending on the amount of n-alkane precipitant added. As such, the onset of asphaltene precipitation is a function of the concentration of precipitant and time. A technique to quantify the amount of asphaltenes precipitated as a function of time and precipitant concentration was presented. This study also investigated the kinetic effects caused by various precipitants. Optical microscopy was used to monitor the growth of asphaltene aggregates with time. Refractive index measurements provided further insight into the kinetics of asphaltene precipitation. Polarity based fractionation and dielectric constant measurements were used to compare the nature of asphaltenes precipitated early in the precipitation process with the asphaltenes precipitated at later times. It was concluded that asphaltenes precipitating at different times from the same crude oil-precipitant mixture are different from one another. 3 refs.

  7. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry.

    Science.gov (United States)

    Stack, Andrew G; Fernandez-Martinez, Alejandro; Allard, Lawrence F; Bañuelos, José L; Rother, Gernot; Anovitz, Lawrence M; Cole, David R; Waychunas, Glenn A

    2014-06-03

    Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.

  8. Nano γ'/γ″ composite precipitates in Alloy 718

    Science.gov (United States)

    Phillips, P. J.; McAllister, D.; Gao, Y.; Lv, D.; Williams, R. E. A.; Peterson, B.; Wang, Y.; Mills, M. J.

    2012-05-01

    Nanoscale composite precipitates of Alloy 718 have been investigated with both high-resolution scanning transmission electron microscopy and phase field modeling. Chemical analysis via energy-dispersive x-ray spectroscopy allowed for the differentiation of γ' and γ″ particles, which is not otherwise possible through traditional Z-contrast methods. Phase field modeling was applied to determine the stress distribution and elastic interaction around and between the particles, respectively, and it was determined that a composite particle (of both γ' and γ″) has an elastic energy that is significantly lower than, for example, single γ' and γ″ precipitates which are non-interacting.

  9. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  10. Precipitation of iron in windopane oyster shells by marine shell-boring cyanobacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Rao, V.P.; Iyer, S.D.

    electron microscopy, suggested the presence of iron as iron oxides. The cyanobacteria from such black shells were cultured in enriched seawater medium. In this medium also they precipitated iron as confirmed by Prussian blue reaction. They were identified...

  11. Facile gold nanorod purification by fractionated precipitation

    Science.gov (United States)

    Thai, T.; Zheng, Y.; Ng, S. H.; Ohshima, H.; Altissimo, M.; Bach, U.

    2014-05-01

    An efficient and facile size- and shape-selective separation of gold nanorod (GNR) solutions is developed using a fractionated precipitation strategy. This convenient method has the benefit of eliminating nanoparticulate side products that can substantially deteriorate the quality of self-assembled nanostructures. The fabrication of advanced plasmonic metamaterials crucially depends on the capacity to supply feedstocks of high-purity building blocks.An efficient and facile size- and shape-selective separation of gold nanorod (GNR) solutions is developed using a fractionated precipitation strategy. This convenient method has the benefit of eliminating nanoparticulate side products that can substantially deteriorate the quality of self-assembled nanostructures. The fabrication of advanced plasmonic metamaterials crucially depends on the capacity to supply feedstocks of high-purity building blocks. Electronic supplementary information (ESI) available: Materials and chemicals, methods and Fig. S1-S8 including AFM cross-section analysis, UV-Vis studies and additional SEM images. See DOI: 10.1039/c4nr01592d

  12. Suppression of tin precipitation in SiSn alloy layers by implanted carbon

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumul......By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed...

  13. How often precipitation records break?

    Science.gov (United States)

    Papalexiou, Simon Michael; Oikonomou, Maria; Floutsakou, Athina; Bessas, Nikolaos; Mamassis, Nikos

    2016-04-01

    How often precipitation records break? Are there any factors that determine the average time needed for the next maximum to occur? In order to investigate these simple questions we use several hundreds of daily precipitation records (more than 100 years long each) and we study the time intervals between each successive maximum precipitation value. We investigate if the record breaking time interval is related (a) to the autocorrelation structure, (b) to probability dry, and (c) to the tail of the marginal distribution. For the last, we first, evaluate which type of tail is better fitted by choosing among three general types of tails corresponding to the distributions Pareto, Lognormal and Weibull; and second, we assess the heaviness of the tail based on the estimated shape parameter. The performance of each tail is evaluated in terms of return period values, i.e., we compare the empirical return periods of precipitation values above a threshold with the predicted ones by each of the three types of fitted tails.

  14. Electrostatic Precipitator (ESP) TRAINING MANUAL

    Science.gov (United States)

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  15. Grassland responses to precipitation extremes

    Science.gov (United States)

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  16. Induced calcium carbonate precipitation using Bacillus species.

    Science.gov (United States)

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca(2+)). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  17. Isothermal Aging Precipitate of TB17 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    WANG Zhe

    2016-10-01

    Full Text Available Transmission Electron Microscope (TEM, X-Ray Diffraction(XRD and Optical Microscope(OMwere employed to investigate the aging precipitation behavior of a new type of ultra-high strength TB17 titanium alloy. The results show that during heat solution treated in the β phase field followed by aging the secondary α phase is nucleated, precipitated and grew on the β phase matrix,and the precipitated phase is lamellar structure which has burgers relation with the matrix. The secondary α phase content is increased rapidly and finally reach a steady-state as aging time increased and the final product of aging consists of α phase and β phase. there is a good linearity relationship between the content of secondary α phase and the hardness of age hardening. The TB17 titanium alloy isothermal phase transformation kinetics can be described by JMAK equation.

  18. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  19. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  20. Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; WANG Li-jun; CUI Wen-fang; LIU Chun-ming

    2008-01-01

    The precipitation behavior of Cr2N during isothermal aging in the temperature range from 700℃to 950℃ in Fe-18Cr-12Mn-0.48N(in mass percent)high nitrogen austenitic stainless steel,including morphology and content of precipitate,was investigated using optical microscopy,scanning electron microscopy,and transmission electron microscopy.The isothermal precipitation kinetics curve of Cr2N and the corresponding precipitation activation energy were obtained.The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time.The nose temperature of Cr2N precipitation is about 800℃,with a corresponding incubation period of 30 min,and the ceiling temperature of Cr2N precipitation is 950℃.The diffusion activation energy of Cr2N precipitation is 296 kJ/mol.

  1. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    Energy Technology Data Exchange (ETDEWEB)

    Satyawali, Yamini; Schols, Edo; Van Roy, Sandra; Dejonghe, Winnie; Diels, Ludo [Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Vanbroekhoven, Karolien, E-mail: karolien.vanbroekhoven@vito.be [Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium)

    2010-09-15

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200 mg L{sup -1}), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co.

  2. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    KAUST Repository

    Satyawali, Yamini

    2010-09-01

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200mgL-1), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET® assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co. © 2010 Elsevier B.V.

  3. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  4. Variability of multifractal parameters in an urban precipitation monitoring network

    Science.gov (United States)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  5. Wave-induced precipitation as a loss process for radiation belt particles

    Science.gov (United States)

    Inan, U. S.; Chang, H. C.; Helliwell, R. A.; Katsufrakis, J. P.; Imhof, W. L.

    Precipitation of radiation belt electrons by VLF waves injected from ground based transmitters was achieved during the Stimulated Emission of Energetic Particles (SEEP) experiments (Imhof et al., 1983), the first direct satellite based observation of modulated precipitation of electrons in the bounce loss cone. This paper considers the temporal and spectral shape as well as the absolute flux level of the observed precipitation pulses. In order to model these results, both the pitch angle dependence of the particle distribution near the edge of the loss cone and atmospheric backscatter which leads to multiple interactions of the particles with the wave are considered. Based on a comparison of theory with observations, the leverage of the precipitation process is estimated. Crude estimates of the percentage depletion of the radiation belt population due to the observed transmitter induced precipitation are also made.

  6. Evolution Of Precipitate Morphology During Extrusion In Mg ZK60A Alloy

    Directory of Open Access Journals (Sweden)

    Park J.

    2015-06-01

    Full Text Available In this study, a continuously casted ZK60A magnesium alloy (Mg-Zn-Zr was extruded in two different extrusion ratios, 6:1 and 10:1. The evolution of precipitates was investigated on the two extruded materials and compared with that of as-casted material. The microstructural analysis was performed by electron backscatter diffraction and transmission electron microscopy, and the compositional information was obtained using energy-dispersive X-ray spectroscopy. Several distinct morphologies of precipitates were observed, such as dot, rod, and disk shaped. The formation mechanisms of those precipitates were discussed with respect to the heat and strain during the extrusion process.

  7. Precipitation of sodium acid urate from electrolyte solutions

    Science.gov (United States)

    Füredi-Milhofer, Helga; Babić-Ivaniĉić, Vesna; Milat, Ognjen; Brown, Walter E.; Gregory, Thomas M.

    1987-07-01

    The precipitation of soduim urate from solutions containing uric acid, soduim hydroxide, hydrochloric acid, sodium chloride and water was investigated at constant pH (7.5±0.1) and temperature (308 K). Precipitates were observed by lights and electron microscopy and characterized by electron and X-ray diffraction. The results are presented in the form of "precipitation" and "chemical potential" diagrams, the latter giving the soduim-to-urate molar ratios of the precipitates. Two types of precipitation boundaries were observed, both of which had indicated soduim-to-urate moral ratios of 1:1. The ion activity product, (Na +)(HU -), associated with boundary I was AP I=(4.8±1.1)×10 -5 and with boundary II was with boundary II was AP II=(6.5±0.4)×10 -4. The supersaturation, S, at boundary II was S=AP II/ Ksp=12.3, in which Ksp is the solubility product of soduim acid urate monohydrate. The latter precipitated as well-formed crystals at supersaturations of 12.3 and above. The ion activity product associated with boundary I is approximately equal to the solubility product of soduim acid urate monohydrate. Small amounts of several morphologically different sodium urate crystals formed in the range of supersaturations (1≤ S≤12.3). Crystals formed in this range may include the monohydrate of sodium acid urate and possibly a higher hydrate. The findings have relevance to pathological renal stone formation and gouty arthritis.

  8. Trends in Precipitation Extremes over Southeast Asia

    Science.gov (United States)

    Endo, N.; Matsumoto, J.

    2010-12-01

    Trends in precipitation extremes were examined using daily precipitation data from Southeast Asian countries during 1950's to 2000's. Number of wet day, defined by a day with daily precipitation exceeding 1 mm, tends to decrease over these countries, while average precipitation intensity of wet day shows an increasing trend. Heavy precipitation indices, which are defined by precipitation amount and percentile, demonstrate that the number of stations with significant upward trend is larger than that with significant downward trend. Heavy precipitation increases in southern Vietnam, northern part of Myanmar, and the Visayas and Luzon Islands in the Philippines, while heavy precipitation decreases in northern Vietnam. Annual maximum number of consecutive dry days decreases in the region where winter monsoon precipitation dominates. Prolongation of the dry season is suggested in Myanmar.

  9. Correlation between total precipitable water and precipitation over East Asia

    Science.gov (United States)

    Keum, Wangho; Lim, Gyu-Ho

    2017-04-01

    The precipitation rate(PR) and the total precipitable water(TPW) interact with various physical mechanisms. The correlation of two variables changes with difference of domain resolution and characteristics of the region. This poster analyzes the correlation between PR and TPW over East Asia using Cyclostationary Empirical Orthogonal Function(CSEOF) which is one of the PCA analysis. The CSEOF is useful to search a periodic pattern of the data. The anomalies which is subtracted climatological mean from the original data are used to represent annual cycles. Two variances of ERA-Interim Monthly Total Column Water vapor and GPCP monthly precipitation amounts with 372 time since January, 1984 to December, 2014 are decomposed into several modes separately. The first mode which explain largest variance are used in analysis. PC of both PR and TPW increase recently on mean value and amplitude, and they show considerable correlation on phase. The correlation coefficient of PR and TPW is 0.61 and maintains the same values by month. The result of harmonic analysis shows 2 to 6 year oscillations. As result of decomposed modes of two variables, there is the relationship between TPW PC series and horizontal moisture gradient. The Horizontal moist gradient can change affect moisture flux convergence which is one of important variable of rainfall events.

  10. Precipitation hardening in Fe--Ni base austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, K.M.

    1979-05-01

    The precipitation of metastable Ni/sub 3/X phases in the austenitic Fe--Ni-base alloys has been investigated by using various combinations of hardening elements, including Ti, Ta, Al, and Nb. The theoretical background on the formation of transition precipitates has been summarized based on: atomic size, compressibility, and electron/atom ratio. A model is proposed from an analysis of static concentration waves ordering the fcc lattice. Ordered structure of metastable precipitates will change from the triangularly ordered ..gamma..', to the rectangularly ordered ..gamma..'', as the atomic ratio (Ti + Al)/(Ta + Nb) decreases. The concurrent precipitation of ..gamma..' and ..gamma..'' occurs at 750/sup 0/C when the ratio is between 1.5 and 1.9. Aging behavior was studied over the temperature range of 500/sup 0/C to 900/sup 0/C. Typical hardness curves show a substantial hardening effect due to precipitation. A combination of strength and fracture toughness can be developed by employing double aging techniques. The growth of these coherent intermediate precipitates follows the power law with the aging time t : t/sup 1/3/ for the spherical ..gamma..' particles; and t/sup 1/2/ for the disc-shaped ..gamma..''. The equilibrium ..beta.. phase is observed to be able to nucleate on the surface of imbedded carbides. The addition of 5 wt % Cr to the age-hardened alloys provides a non-magnetic austenite which is stable against the formation of mechanically induced martensite.Cr addition retards aging kinetics of the precipitation reactions, and suppresses intergranular embrittlement caused by the high temperature solution anneal. The aging kinetics are also found to be influenced by solution annealing treatments.

  11. Precipitation sequence in friction stir weld of 6063 aluminum during aging

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.S.; Kokawa, Hiroyuki; Enomoto, Masatoshi; Jogan, Shigetoshi; Hashimoto, Takenori

    1999-12-01

    The precipitation sequence in friction stir weld of 6063 aluminum during postweld aging, associated with Vickers hardness profiles, has been examined by transmission electron microscopy. Friction stir welding produces a softened region in the weld, which is characterized by dissolution and growth of the precipitates. The precipitate-dissolved region contains a minimum hardness region in the as-welded condition. In the precipitate-dissolved region , postweld aging markedly increases the density of strengthening precipitates and leads to a large increase in hardness. On the other hand, aging forms few new precipitates in the precipitate-coarsened region, which shows a slight increase in hardness. The postweld aging at 443 K for 43.2 ks (12 hours) gives greater hardness in the overall weld than in the as-received base material and shifts the minimum hardness from the as-welded minimum hardness region t the precipitate-coarsened region. These hardness changes are consistent with the subsequent precipitation behavior during postweld aging. The postweld solution heat treatment (SHT) and aging achieve a high density of strengthening precipitates and bring a high hardness homogeneously in the overall weld.

  12. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-07-04

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  13. Niobium carbide precipitation in microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, C.; Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany); Bleck, W. [Inst. for Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany)

    2004-11-01

    The precipitation of niobium carbo-nitrides in the austenite phase, interphase and ferrite phase of microalloyed steel was assessed by a critical literature review and a round table discussion. This work analyses the contribution of niobium carbide precipitates formed in ferrite in the precipitation hardening of commercially hot rolled strip. Thermodynamics and kinetics of niobium carbo-nitride precipitation as well as the effect of deformation and temperature on the precipitation kinetics are discussed in various examples to determine the amount of niobium in solid solution that will be available for precipitation hardening after thermomechanical rolling in the austenite phase and successive phase transformation. (orig.)

  14. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  15. Acid precipitation; an annotated bibliography

    Science.gov (United States)

    Wiltshire, Denise A.; Evans, Margaret L.

    1984-01-01

    This collection of 1660 bibliographies references on the causes and environmental effects of acidic atmospheric deposition was compiled from computerized literature searches of earth-science and chemistry data bases. Categories of information are (1) atmospheric chemistry (gases and aerosols), (2) precipitation chemistry, (3) transport and deposition (wet and dry), (4) aquatic environments (biological and hydrological), (5) terrestrial environments, (6) effects on materials and structures, (7) air and precipitation monitoring and data collection, and (8) modeling studies. References date from the late 1800 's through December 1981. The bibliography includes short summaries of most documents. Omitted are unpublished manuscripts, publications in press, master 's theses and doctoral dissertations, newspaper articles, and book reviews. Coauthors and subject indexes are included. (USGS)

  16. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  17. Global Precipitation Mission Visualization Tool

    Science.gov (United States)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  18. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  19. Seasonal precipitation forecast skill over Iran

    CSIR Research Space (South Africa)

    Shirvani, A

    2015-07-01

    Full Text Available of the Global Precipitation Climatology Centre (GPCC) Version 6 gridded precipitation data, using model output statistics (MOS) developed through the canonical correlation analysis (CCA) option of the Climate Predictability Tool (CPT). Retroactive validations...

  20. River Forecasting Center Quantitative Precipitation Estimate Archive

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Radar indicated-rain gage verified and corrected hourly precipitation estimate on a corrected ~4km HRAP grid. This archive contains hourly estimates of precipitation...

  1. U.S. 15 Minute Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source...

  2. Nickel hydroxide precipitation from aqueous sulfate media

    Science.gov (United States)

    Sist, Cinziana; Demopoulos, George P.

    2003-08-01

    Hydrometallurgical processing of laterite ores constitutes a major industrial and R&D activity in extractive metallurgy. In some of the process flowsheets, nickel hydroxide precipitation is incorporated. For these operations, the optimization of nickel hydroxide precipitation is important to assure efficiency and product quality. The main objective of this investigation was to study and improve the precipitation characteristics of Ni(OH)2 in a sulfate system using supersaturation controlled precipitation.

  3. Global Precipitation Measurement (GPM) Mission: NASA Precipitation Processing System (PPS)

    Science.gov (United States)

    Stocker, Erich Franz

    2008-01-01

    NASA is contributing the precipitation measurement data system PPS to support the GPM mission. PPS will distribute all GPM data products including NASA s GMI data products freely and quickly. PPS is implementing no system mechanisms for restricting access to GPM data. PPS is implementing no system mechanisms for charging for GPM data products. PPS will provide a number of geographical and parameter subsetting features available to its users. The first implementation of PPS (called PPS--) will assume processing of TRMM data effective 1 June 2008. TRMM realtime data will be available via PPS- to all users requesting access

  4. Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed

    Science.gov (United States)

    Liu, Gui-hua; Li, Zheng; Li, Xiao-bin; Qi, Tian-gui; Peng, Zhi-hong; Zhou, Qiu-sheng

    2017-08-01

    The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that the (001) and (112) planes of gibbsite surfaces are remarkably stable because of their low surface energies. In addition, the (010) plane of boehmite grows preferentially during precipitation because of its low surface energy. Thus, we propose a method to precipitate spherical boehmite from a supersaturated sodium aluminate solution by adding gibbsite as seed in a heterogeneous system. In this method, gibbsite acts as the preliminary seed and saturation modifier. The results show that the fine boehmite first nucleates on the (001) and (112) planes of gibbsite and then grows vertically on the (001) and (112) basal planes of gibbsite via self-assembly, thereby forming spherical boehmite. Simultaneously, gibbsite is dissolved into the aluminate solution to maintain the saturation for the precipitation of boehmite. The precipitation ratio fluctuates (forming an M-shaped curve) because of gibbsite dissolution and boehmite precipitation. The mechanism of boehmite precipitation was further discussed on the basis of the differences in surface energy and solubility between gibbsite and boehmite. This study provides an environmentally friendly and economical method to prepare specific boehmite in a heterogeneous system.

  5. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  6. Skill assessment of precipitation nowcasting in Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2013-04-01

    Very short-term precipitation forecasting (i.e nowcasting) systems may provide valuable support in the weather surveillance process as they allow to issue automated early warnings for heavy precipitation events (HPE) as reviewed recently by Pierce et al. (2012). The need for warnings is essential in densely populated regions of small catchments, such as those typically found in Mediterranean coastal areas, prone to flash-floods. Several HPEs that occurred in NE Spain are analyzed using a nowcasting system based on the extrapolation of rainfall fields observed with weather radar following a Lagrangian approach developed and tested successfully in previous studies (Berenguer et al. 2005, 2011). Radar-based nowcasts, with lead times up to 3 h, are verified here against quality-controlled weather radar quantitative precipitation estimates and also against a dense network of raingauges. The basic questions studied are the dependence of forecast quality with lead time and rainfall amounts in several high-impact HPEs such as the 7 September 2005 Llobregat Delta river tornado outbreak (Bech et al. 2007) or the 2 November 2008 supercell tornadic thunderstorms (Bech et al. 2011) - both cases had intense rainfall rates (30' amounts exceeding 38.2 and 12.3 mm respectively) and daily values above 100 mm. Verification scores indicated that forecasts of 30' precipitation amounts provided useful guidance for lead times up to 60' for moderate intensities (up to 1 mm in 30') and up to 2.5h for lower rates (above 0.1 mm). On the other hand correlations of radar estimates and forecasts exceeded Eulerian persistence of precipitation estimates for lead times of 1.5 h for moderate intensities (up to 0.8 mm/h). We complete the analysis with a discussion on the reliability of threshold to lead time dependence based on the event-to-event variability found. This work has been done in the framework of the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M

  7. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. (Swedish Inst. of Space Physics, Uppsala (Sweden))

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  8. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. [Swedish Inst. of Space Physics, Uppsala (Sweden)

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the `auroral arcs` - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  9. Limnological aspects of acid precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1978-01-01

    Lakes and streams in parts of Norway, Sweden, Canada, and the United States are being severely impacted by acidic precipitation. Scientists meeting at Sagamore, New York, agreed that this is the most serious limnological problem today. The factor responsible for determining the sensitivity of surface waters to acidification is alkalinity derived by weathering of soils and bedrock in the watershed. Acidification, defined as a reduction in alkalinity, can be quantified if preacidification alkalinity data exist, but often they do not. Data on pH and Ca from surface waters in areas not affected by acid precipitation were compared to similar data from areas which receive precipitation with a weighted average hydrogen ion concentration of pH < 4.6. A semiquantitative estimation of surface water acidification can be made for lakes and streams, where earlier chemistry data are lacking, based on this analysis of pH and Ca data. Biological responses to acidification range from a reduction in numbers of species of algae and zooplankton to complete elimination of all fish life. Major biological processes such as primary production and decomposition may be altered leading to an accumulation of plant material and organic debris within lakes and streams. Increased concentrations of aluminum from the ..mu..g/l to mg/l range have been found at levels shown to be toxic to fish. These elevated levels apparently result from the exchange of H/sup +/ and Al in the watershed. There also appears to be a relationship between lake acidification and the accumulation of mercury in fish. Problems of aluminum analysis received detailed attention, and watershed mass balances, comparative watershed studies, whole lake manipulations, synoptic surveys, and the liming of acidified waters were discussed. A priority-rated list of recommendations for research was presented.

  10. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Science.gov (United States)

    Elgallad, E. M.; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ‧ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ‧ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ‧ phase, whereas the preceding precipitation of the θ‧ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  11. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  12. Recrystallization-precipitation interaction during austenite hot deformation of a Nb microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Vervynckt, S. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Verbeken, K., E-mail: Kim.Verbeken@UGent.be [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Max-Planck-Institut fur Eisenforschung, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Thibaux, P. [OCAS N.V., ArcelorMittal R and D Industry Ghent, J.F. Kennedylaan 3, B-9060 Zelzate (Belgium); Houbaert, Y. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium)

    2011-06-25

    Highlights: {yields} Recrystallization-precipitation interaction was studied in well-designed HSLA steel. {yields} Recrystallization process was monitored by multiple characterization techniques. {yields} The Zener drag force evolution was determined based on experimental data. {yields} A reasonable estimate of the recrystallization driving force was made. {yields} Correlation between recrystallization and precipitate pinning was demonstrated. - Abstract: The role of Nb during austenite processing of High Strength Low Alloy (HSLA) steels has been the subject of considerable interest and discussion over the past decades. In this work, the precipitation state of a Nb microalloyed steel is studied extensively during the different stages of the process, i.e. after reheating, during cooling, during deformation and during recrystallization. To do so, a combination of experimental methods was applied: Transmission Electron Microscopy in combination with Energy Dispersive X-ray Spectroscopy (TEM-EDX), Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and X-ray Diffraction (XRD). To obtain the best accuracy for these precipitation measurements, a model alloy was designed that showed extensive precipitation. From this experimental study, a correlation between the precipitate pinning and the recrystallization driving force could be made and the precipitation state during recrystallization could be linked to the recrystallization kinetics by comparison of the recrystallization driving force to the Zener pinning force. It was confirmed that recrystallization occurred during the precipitate nucleation and coarsening stage, while it was halted completely during the precipitation growth stage.

  13. The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel.

    Science.gov (United States)

    Yan, Biyu; Liu, Yongchang; Wang, Zejun; Liu, Chenxi; Si, Yonghong; Li, Huijun; Yu, Jianxing

    2017-09-01

    To study the effects of various types of precipitates and precipitate evolution behavior on austenite (size and phase fraction) in reduced activation ferritic/martensitic (RAFM) steel, RAFM steel was heated to various austenitizing temperatures. The microstructures of specimens were observed using optical microscopy (OM) and transmission electron microscopy (TEM). The results indicate that the M23C₆ and MX precipitates gradually coarsen and dissolve into the matrix as the austenitizing temperatures increase. The M23C₆ precipitates dissolve completely at 1100 °C, while the MX precipitates dissolve completely at 1200 °C. The evolution of two types of precipitate has a significant effect on the size of austenite. Based on the Zener pinning model, the effect of precipitate evolution on austenite grain size is quantified. It was found that the coarsening and dissolution of M23C₆ and MX precipitates leads to a decrease in pinning pressure on grain boundaries, facilitating the rapid growth of austenite grains. The austenite phase fraction is also affected by the coarsening and dissolution of precipitates.

  14. Struvite Precipitation and Biological Dissolutions.

    OpenAIRE

    Ezquerro, Ander

    2010-01-01

    Struvite is a salt that is formed out of  Mg2+,NH4+ and PO43- and it crystallizes in form of MgNH4PO4.6H2O. Struvite‟s (magnesium ammonium phosphate or MAP) precipitation has recently been regarded as an interesting technique to remove phosphate and ammonium from waste water. The high elimination rates and the possibility of recycling the struvite as a direct slow release fertilizer make this process feasible and appealing. However, the costs due to the raw chemicals needed are drawbacks that...

  15. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  16. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  17. Heavy precipitation episodes and cosmic rays variation

    Directory of Open Access Journals (Sweden)

    A. Mavrakis

    2006-01-01

    Full Text Available In this paper an attempt is made to investigate the possible temporal correlation between heavy precipitation episodes and cosmic rays' activity, on various time scales. Cosmic rays measurements are sparse and cover less extended periods than those of precipitation. Precipitation is largely influenced by local climatic and even physiographic conditions, while cosmic rays' distribution is far more uniform over an area. Thus, in an effort to cover a larger range of climatic characteristics, each cosmic rays station was correlated with several nearby precipitation stations. Selected statistical methods were employed for the data processing. The analysis was preformed on annual, seasonal, monthly and daily basis whenever possible. Wet and dry regions and/or seasons seem to present a different response of precipitation to cosmic rays variations. Also Forbush decreases in most cases will not lead to heavy precipitation, yet this might be sensitive to precipitable water availability.

  18. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  19. Precipitation chemistry in central Amazonia

    Science.gov (United States)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-01-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  20. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    Science.gov (United States)

    Ma, Q.; Li, W.; Thorne, R. M.; Nishimura, Y.; Zhang, X.-J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Henderson, M. G.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Angelopoulos, V.

    2016-05-01

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

  1. Experimental Study of the Interaction between Recrystallization and Precipitation Processes of an AA8011 Commercial Alloy

    Directory of Open Access Journals (Sweden)

    Ney José Luiggi

    2014-01-01

    Full Text Available Phase changes in a commercial AA8011 alloy from different initial microstructure conditions were studied using thermoelectric power (ΔS, differential scanning calorimetry (DSC, and transmission electron microscopy (TEM techniques with the purpose of obtaining evidence of the interaction between recovery-precipitation and recrystallization-precipitation processes occurring during nonisothermal heating at different rates. Thermoelectric power and its thermal derivative reflect this evidence by a displacement of the characteristic precipitation peaks, the recovery and recrystallization contributions remaining masked by the strong incidence of the iron precipitation on that property, while DSC measurements detect the emergence of new peaks not observed on thermograms of homogenized samples. An exhaustive study of these peaks permits direct differentiation between precipitation and recovery-recrystallization contributions. TEM confirms the interaction between both processes by means of local observations.

  2. Influence of the pre-deformation on precipitation in 2024 AlCuMg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, R.; Somoza, A. [IFIMAT, Univ. Nacional del Centro de la Provincia de Buenos Aires and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina); Tolley, A. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica and CONICET, San Carlos de Bariloche (Argentina)

    2001-07-01

    A study on the influence of pre-deformation on the precipitation kinetics in the 2024 AlCuMg commercial alloy, using positron annihilation lifetime spectroscopy, Vickers microhardness and transmission electron microscopy is presented. Precipitation was induced by artificial aging heat treatments at 190 C in samples with four different pre-deformation degrees between 0% and 8%. Positron lifetime results show an acceleration of the aging kinetics as a consequence of pre-deformation, which is correlated with the changes in hardness. TEM characterization of the microstructure corresponding to two different thermomechanical treatments is presented. The role of the dislocations introduced by pre-deformation on the precipitation kinetics is discussed in terms of the heterogeneous precipitation on dislocations and the modifications in the bulk precipitation. (orig.)

  3. Enhanced diffusion and precipitation in Cu: In alloys due to low energy ion bombardment

    Science.gov (United States)

    Rivaud, L.; Ward, I. D.; Eltoukhy, A. H.; Greene, J. E.

    1981-01-01

    The effects of low energy Ar + ion bombardment on supersaturated Cu: 10at%-In alloys at room temperature were investigated using scanning transmission electron microscopy and Auger electron spectroscopy. Both 1 and 3 keV Ar + bombardment resulted in the preferential sputter removal of In. The surface and altered layer remained supersaturated however, and ion bombardment enhanced diffusion was sufficient to allow the precipitation of In-rich δ-phase (~30 at% In) particles in the near-surface region. The average precipitate size and number density in samples bombarded with 3 keV Ar + ions were ~200 Å and 10 10 cm -2 as compared to 150 A and 10 9 cm -2 in samples bombarded at 1 keV. The ion bombardment induced precipitates nucleated within the grains rather than, as was observed for thermally induced precipitates, at grain boundaries.

  4. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  5. Niobium carbide and tin precipitation in continuously cast microalloyed steels

    Science.gov (United States)

    Stock, Julian

    With high yield strength, toughness and good weldability, microalloyed steels are widely used in the automotive, pipeline and transportation industries. Microalloying elements such as niobium (Nb), titanium (Ti) and vanadium (V) in concentrations of less than 0.1 wt. pct. are typical. For optimal benefits in the final product, it is usually desired for Ti to form fine precipitates during and after solidification and for Nb to be in solution prior to hot-rolling. Vanadium precipitates at lower temperatures and is less involved in the solidification/casting process. In one aspect of the investigation, the effects of cooling rate on the titanium nitride (TiN) precipitation size distribution were investigated in a Ti-added low-carbon steel. Prior research reported an inverse relationship between the average TiN precipitation size and the post-solidification cooling rate and the present work was undertaken to examine this behavior over a wider range of cooling rates. Using the GleebleRTM 3500's casting simulation capabilities along with controlled cooling rates, the TiN precipitation behavior in thick-slab, thin-slab and thin-strip material was simulated using a commercially produced 0.04C, 1.23Mn steel with near-stoichiometric Ti and N levels. Transmission electron microscopy (TEM) investigation of carbon extraction replicas was carried out to characterize the influence of cooling rates on precipitate size distributions. Decreasing particle sizes with increasing cooling rates were found. Average particle sizes as low as 6.7 nm were present in thin-strip simulations and might be of interest, as fine particles could contribute to strengthening of rapidly cooled steels. In a second aspect of the investigation, niobium carbide (NbC) precipitation during the compact strip production (CSP) process was investigated in two Nb-added low-carbon steels. Instead of industrial sampling, the GleebleRTM was used for casting simulations using two CMn(Nb) steels with high and low- Nb

  6. An empirical model of the high-energy electron environment at Jupiter

    Science.gov (United States)

    Soria-Santacruz, M.; Garrett, H. B.; Evans, R. W.; Jun, I.; Kim, W.; Paranicas, C.; Drozdov, A.

    2016-10-01

    We present an empirical model of the energetic electron environment in Jupiter's magnetosphere that we have named the Galileo Interim Radiation Electron Model version-2 (GIRE2) since it is based on Galileo data from the Energetic Particle Detector (EPD). Inside 8RJ, GIRE2 adopts the previously existing model of Divine and Garrett because this region was well sampled by the Pioneer and Voyager spacecraft but poorly covered by Galileo. Outside of 8RJ, the model is based on 10 min averages of Galileo EPD data as well as on measurements from the Geiger Tube Telescope on board the Pioneer spacecraft. In the inner magnetosphere the field configuration is dipolar, while in the outer magnetosphere it presents a disk-like structure. The gradual transition between these two behaviors is centered at about 17RJ. GIRE2 distinguishes between the two different regions characterized by these two magnetic field topologies. Specifically, GIRE2 consists of an inner trapped omnidirectional model between 8 to 17RJ that smoothly joins onto the original Divine and Garrett model inside 8RJ and onto a GIRE2 plasma sheet model at large radial distances. The model provides a complete picture of the high-energy electron environment in the Jovian magnetosphere from ˜1 to 50RJ. The present manuscript describes in great detail the data sets, formulation, and fittings used in the model and provides a discussion of the predicted high-energy electron fluxes as a function of energy and radial distance from the planet.

  7. Effects of Mo on the Precipitation Behaviors in High-Nitrogen Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Feng Shi; Yang Qi; Chunming Liu

    2011-01-01

    Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The experimental results show that precipitation displays a discontinuous cellular way and the precipitates are identified as Cr2N in Fe-18Cr-18Mn-0.63N steel. The addition of Mo makes precipitation occur not only at the grain boundary but also inside the grain and precipitation also displays discontinuous cellular way. The precipitates at the grain boundary and in the cell are both identified as G2N phase and χ phase and the precipitates inside the grain are identified as χ phase in Fe-18Cr-18Mn-2Mo-0.69N steel. The nucleations of χ phase and Cr2N phase at the grain boundary are both governed by the diffusion of Cr atoms. The formation and growth of χ phase inside the grain are induced by the impoverishment of N atoms with increasing aging time.

  8. Interstitial-phase precipitation in iron-base alloys: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.

  9. How calcium prevents precipitation hardening in Al–Mg–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, Sigurd, E-mail: sigurd.wenner@ntnu.no [Department of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim (Norway); Marioara, Calin D.; Andersen, Sigmund J. [Materials and Chemistry, SINTEF, Box 4760 Sluppen, NO-7465 Trondheim (Norway); Holmestad, Randi [Department of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim (Norway)

    2013-07-15

    We have investigated the effect on precipitate microstructure and hardness upon adding small amounts of Ca to a base Al–Mg–Si alloy. The main investigative techniques were transmission and scanning electron microscopy. We found that large Ca-containing particles with composition CaAl{sub 2}Si{sub 2} form during the production stages of the alloy. The particles leave less Si available in solid solution for the nucleation of hardening precipitates, leading to a coarser microstructure consisting of less coherent precipitates. The resulting hardness decrease is measurable for alloys containing more than 60 at ppm of Ca.

  10. Kinetics of Ag-rich precipitates formation in Cu-Al-Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T.; Guerreiro, M.R.; Silva, R.A.G

    2004-06-15

    The kinetics of Ag-rich precipitates formation in the Cu-2 wt.% Al alloy with additions of 2, 4, 6, 8, 10 and 12 wt.% Ag was studied using microhardness changes with temperature and time, differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that an increase in the Ag content decreases the activation energy for Ag-rich precipitates formation, and that it is possible to estimate the values of the diffusion and nucleation activation energies for the Ag precipitates.

  11. Precipitation of Nanosized MX at Coherent Cu-Rich Phases in Super304H Austenitic Steel

    Science.gov (United States)

    Ou, Ping; Xing, Hui; Sun, Jian

    2015-01-01

    The present investigation of transmission electron microscopy reports the precipitation of nanosized and cubical-shaped incoherent Nb-rich MX at the coherent Cu-rich phases in the austenitic matrix of the Super304H steel. In addition, the nanosized Nb-rich MX phases were often observed to precipitate on dislocations during creep. It is concluded that the dense incoherent Nb-rich MX and coherent Cu-rich precipitates with a nanosized diameter contribute excellent creep resistance in the steel.

  12. Bias Adjusted Precipitation Threat Scores

    Directory of Open Access Journals (Sweden)

    F. Mesinger

    2008-04-01

    Full Text Available Among the wide variety of performance measures available for the assessment of skill of deterministic precipitation forecasts, the equitable threat score (ETS might well be the one used most frequently. It is typically used in conjunction with the bias score. However, apart from its mathematical definition the meaning of the ETS is not clear. It has been pointed out (Mason, 1989; Hamill, 1999 that forecasts with a larger bias tend to have a higher ETS. Even so, the present author has not seen this having been accounted for in any of numerous papers that in recent years have used the ETS along with bias "as a measure of forecast accuracy".

    A method to adjust the threat score (TS or the ETS so as to arrive at their values that correspond to unit bias in order to show the model's or forecaster's accuracy in extit{placing} precipitation has been proposed earlier by the present author (Mesinger and Brill, the so-called dH/dF method. A serious deficiency however has since been noted with the dH/dF method in that the hypothetical function that it arrives at to interpolate or extrapolate the observed value of hits to unit bias can have values of hits greater than forecast when the forecast area tends to zero. Another method is proposed here based on the assumption that the increase in hits per unit increase in false alarms is proportional to the yet unhit area. This new method removes the deficiency of the dH/dF method. Examples of its performance for 12 months of forecasts by three NCEP operational models are given.

  13. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    Science.gov (United States)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.

    2017-06-01

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7-5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV-1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1-10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. The current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.

  14. Simulation of Radiation Belt Precipitation During the March 17, 2013 Storm

    Science.gov (United States)

    Brito, T. V.; Hudson, M. K.; Paral, J.

    2014-12-01

    Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHZ frequency range. Several balloon missions measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL campaign, have observed this modulation at ULF wave frequencies (Clilverd et al., 2007; Millan et al., 2011). However, ULF waves in the magnetosphere, commonly associated with oscillations in solar wind dynamic pressure on the dayside and with Kelvin-Helmhotz instabilities in the flanks, are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons. It has been conjectured that ULF oscillations in the magnetosphere may modulate EMIC wave growth rates. EMIC waves, in turn, have long been associated with energetic electron precipitation, since they can cause pitch angle scattering of these particles, thus lowering their mirror points (Miyoshi et al., 2008; Carson et al., 2013). This would explain the ULF modulation of MeV electrons seen by the balloon instruments. However, test particle simulations show that another hypothesis is possible (Brito et al., 2012). 3D simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the LFM code, during a CME-shock event on March 17, 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of VLF-type waves, which are not resolved in the MHD simulation.

  15. Precipitation and clustering in the early stages of ageing in Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Talukder, E-mail: talukder.alam@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Chaturvedi, Mahesh [Department of Mechanical and Industrial Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 (Canada); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia)

    2010-11-15

    Research highlights: {yields} IN718 could be age hardened rapidly by secondary phase formation. {yields} Co-located phases were observed in the earliest stage of detection. {yields} Clustering of Ti/Al and Nb atoms was observed prior to precipitation. - Abstract: In this report we investigate the onset and evolution of precipitation in the early stages of ageing in the alloy WE 91, a variant of the Ni-Fe-Cr superalloy Inconel 718 (IN718). Transmission electron microscopy and atom probe tomography were used to study the size and volume fraction of {gamma}' and {gamma}'' precipitates and the extent of pre-precipitate clustering of Al/Ti and Nb. Co-located {gamma}' and {gamma}'' precipitates were observed from the shortest ageing times that precipitates could be visualised using atom probe. At shorter times, prior to the observation of precipitates, clustering of Al/Ti and Nb was shown to occur. The respective volume fraction of the {gamma}' and {gamma}'' precipitates and the clustering of Al/Ti and Nb suggest that {gamma}'' nucleates prior to {gamma}' during ageing at 706 deg. C for this alloy.

  16. Strain-induced Precipitation in Ti Micro-alloyed Interstitial-free Steel

    Institute of Scientific and Technical Information of China (English)

    Ya-jun HUI; Yang YU; Lin WANG; Chang WANG; Wen-yuan LI; Bin CHEN

    2016-01-01

    Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free (IF)steel at the tempera-ture ranging from 800 to 1 000 ℃.The results show that the softening kinetics curves of deformed austenite can be divided into three stages.At the first stage,the stress has a sharp drop due to the onset of recrystallization.At the second stage,a plateau appears on the relaxation curves indicating the start and finish of strain-induced precipitation. At the third stage,the stress curves begin to descend again because of coarsening of precipitates.Precipitation-time-temperature (PTT)diagram exhibited a “C”shape,and the nose point of the PTT diagram is located at 900 ℃ and the start precipitation time of 10 s.The theoretical calculation shows that the strain-induced precipitates were con-firmed as almost pure TiC particles.The TiC precipitates were heterogeneously distributed in either a chain-like or cell-like manner observed by transmission electron microscopy (TEM),which indicates the precipitates nucleated on dislocations or dislocation substructures.In addition,a thermodynamic analytical model was presented to describe the precipitation in Ti micro-alloyed IF steel,which shows a good agreement between the experimental observation and the predictions of the model.

  17. Carbide precipitation in austenitic stainless steel carburized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, F. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)]. E-mail: frank.ernst@case.edu; Cao, Y. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Michal, G.M. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Heuer, A.H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2007-04-15

    Low-temperature gas-phase carburization can significantly improve the surface mechanical properties and corrosion resistance of austenitic stainless steel by generating a single-phase 'case' with concentrations of interstitially dissolved carbon exceeding the equilibrium solubility limit by orders of magnitude. Upon prolonged treatment, however, carbides (mostly {chi}, M{sub 5}C{sub 2}) can precipitate and degrade the properties. High-resolution and spatially resolved analytical transmission electron microscopy revealed the precise carbide-austenite orientation relationship, a highly coherent interface, and that precipitation only occurs when (i) the carbon-induced lattice expansion of the austenite has reached a level that substantially reduces volume-misfit stress and (ii) diffusional transport of nickel, chromium, and iron - enhanced by structural defects - can locally reduce the nickel concentration to the solubility limit of nickel in {chi}-carbide.

  18. SURFACE METALLIZATION OF CENOSPHERES AND PRECIPITATORS BY ELECTROLESS PLATING

    Institute of Scientific and Technical Information of China (English)

    Chujiang Cai; Zhigang Shen; Mingzhu Wang; Shulin Ma; Yushan Xing

    2003-01-01

    This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternatively,according to the characteristic surface of cenospheres, an Ag coating catalysis system is adopted to first deposit Ag on the cenospheres surface, followed, if necessary, by the deposition of other metals such as Cu, Ni, etc. on the Ag coating to produce monolayer and multilayer metal-coated cenospheres. The surface characteristics and the morphologies of the metal coatings are examined in detail with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. It can be shown that the quality of metal coatings derived from the Ag coating catalysis system, is better than that of the colloidal Pd0 catalysis system.

  19. Constitutive Response of Microbial Induced Calcite Precipitation Cemented Sands

    Science.gov (United States)

    Feng, Kai

    In the last decade, microbial induced calcite precipitation (MICP) emerged as a novel technique for implementing soil improvement in an environmentally-friendly and economically beneficial manner. However, the mechanical behavior and constitutive response of these materials are still not fully explored by researchers. In this dissertation, the characteristics of MICP cemented sands are investigated through numerical modelling and experimental tests, including macro and micro tests under both static and dynamic loading. In the first part, the mechanical behavior of MICP cemented sands were probed using monotonic load testing and the existence of calcite precipitation was verified by scanning electron microscopy, with this behavior compared to traditionally cemented soil and naturally cemented soil. Both MICP cementation and traditional cementation were verified to be effective in the increase of stiffness and strength, and unique characteristic of MICP cemented soil was highlighted.

  20. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    Science.gov (United States)

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  1. Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions

    Science.gov (United States)

    Clarens, A. F.; Tao, Z.; Plattenberger, D.

    2016-12-01

    Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better

  2. Circulation factors affecting precipitation over Bulgaria

    Science.gov (United States)

    Nojarov, Peter

    2017-01-01

    The objective of this paper is to determine the influence of circulation factors on precipitation in Bulgaria. The study succeeds investigation on the influence of circulation factors on air temperatures in Bulgaria, as the focus here is directed toward precipitation amounts. Circulation factors are represented through two circulation indices, showing west-east or south-north transport of air masses over Bulgaria and four teleconnection indices (patterns)—North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian. Omega values at 700-hPa level show vertical motions in the atmosphere. Annual precipitation trends are mixed and not statistically significant. A significant decrease of precipitation in Bulgaria is observed in November due to the strengthening of the eastward transport of air masses (strengthening of EA teleconnection pattern) and anticyclonal weather (increase of descending motions in the atmosphere). There is also a precipitation decrease in May and June due to the growing influence of the Azores High. An increase of precipitation happens in September. All this leads to a redistribution of annual precipitation course, but annual precipitation amounts remain the same. However, this redistribution has a negative impact on agriculture and winter ski tourism. Zonal circulation has a larger influence on precipitation in Bulgaria compared to meridional. Eastward transport throughout the year leads to lower than the normal precipitation, and vice versa. With regard to the four teleconnection patterns, winter precipitation in Bulgaria is determined mainly by EA/WR teleconnection pattern, spring and autumn by EA teleconnection pattern, and summer by SCAND teleconnection pattern.

  3. Precipitation Ground Validation over the Oceans

    Science.gov (United States)

    Klepp, C.; Bakan, S.

    2012-04-01

    State-of-the-art satellite derived and reanalysis based precipitation climatologies show remarkably large differences in detection, amount, variability and temporal behavior of precipitation over the oceans. The uncertainties are largest for light precipitation within the ITCZ and for cold season high-latitude precipitation including snowfall. Our HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data, www.hoaps.org) precipitation retrieval exhibits fairly high accuracy in such regions compared to our ground validation data. However, the statistical basis for a conclusive validation has to be significantly improved with comprehensive ground validation efforts. However, existing in-situ instruments are not designed for precipitation measurements under high wind speeds on moving ships. To largely improve the ground validation data basis of precipitation over the oceans, especially for snow, the systematic data collection effort of the Initiative Pro Klima funded project at the KlimaCampus Hamburg uses automated shipboard optical disdrometers, called ODM470 that are capable of measuring liquid and solid precipitation on moving ships with high accuracy. The main goal of this project is to constrain the precipitation retrievals for HOAPS and the new Global Precipitation Measurement (GPM) satellite constellation. Currently, three instruments are long-term mounted on the German research icebreaker R/V Polarstern (Alfred Wegner Institut) since June 2010, on R/V Akademik Ioffe (P.P.Shirshov Institute of Oceanology, RAS, Moscow, Russia) since September 2010 and on R/V Maria S. Merian (Brise Research, University of Hamburg) since December 2011. Three more instruments will follow shortly on further ships. The core regions for these long-term precipitation measurements comprise the Arctic Ocean, the Nordic Seas, the Labrador Sea, the subtropical Atlantic trade wind regions, the Caribbean, the ITCZ, and the Southern Oceans as far south to Antarctica. This

  4. Mean Annual Precipitation in West-Central Nevada using the Precipitation-Zone Method

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains 1971-2000 mean annual precipitation estimates for west-central Nevada. This is a raster data set developed using the precipitation-zone...

  5. Impacts of extreme precipitation and seasonal changes in precipitation on plants

    Directory of Open Access Journals (Sweden)

    M. J. B. Zeppel

    2013-10-01

    Full Text Available The hydrological cycle is predicted to become more intense in future climates, with both larger precipitation events and longer times between events. Redistribution of precipitation may occur both within and across seasons, and the resulting wide fluctuations in soil water content may dramatically affect plants. Though these responses remain poorly understood, recent research in this emerging field suggests the effects of redistributed precipitation may differ from predictions based on previous drought studies. We review available studies on both extreme precipitation (redistribution within seasons and seasonal changes in precipitation (redistribution across seasons on grasslands and forests. Extreme precipitation differentially affected Aboveground Net Primary Productivity (ANPP, depending on whether extreme precipitation led to increased or decreased soil water content (SWC, which differed based on the current precipitation at the site. Specifically, studies to date reported that extreme precipitation decreased ANPP in mesic sites, but, conversely, increased ANPP in xeric sites, suggesting that plant available water is a key factor driving responses to extreme precipitation. Similarly, the effects of seasonal changes in precipitation on ANPP, phenology, and leaf and fruit development varied with the effect on SWC. Reductions in spring or summer generally had negative effects on plants, associated with reduced SWC, while subsequent reductions in autumn or winter had little effect on SWC or plants. Similarly, increased summer precipitation had a more dramatic impact on plants than winter increases in precipitation. The patterns of response suggest xeric biomes may respond positively to extreme precipitation, while comparatively mesic biomes may be more likely to be negatively affected. And, seasonal changes in precipitation during warm or dry seasons may have larger effects than changes during cool or wet seasons. Accordingly, responses to

  6. Application of quantitative precipitation forecasting and precipitation ensemble prediction for hydrological forecasting

    OpenAIRE

    Tao, P.; Tie-Yuan, S.; Zhi-Yuan, Y.; Jun-Chao, W.

    2015-01-01

    The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period....

  7. Nucleation pathway in coherent precipitation

    Science.gov (United States)

    Philippe, T.; Blavette, D.

    2011-12-01

    The non-classical nucleation pathway of coherent precipitates has been computed through minimisation of the nucleation barrier in the composition (c)-size (R) space to predict the evolution of nucleus composition. The generalized Gibbs model, developed by Schmelzer et al. [J. Chem. Phys. 112 (2000) p.3820; J. Colloid Interface Sci. 272 (2004) p.109], has been extended to include misfit elastic energy. The composition of critical embryos c* was found to be independent of the interfacial constant. The composition of critical nuclei (c*) decreased with supersaturation. The elastic energy increased both c* and the nucleation barrier, as well as R*. The evolution of nucleus composition (c) as a function of size (R) along the minimum energy pathway was computed. Nucleation only starts when a size threshold is exceeded. Then, rapid enrichment to the expected composition (c β) precedes a constant composition regime. However, for small supersaturations, the change in cluster composition can occur sharply for a very small radius and then the composition slowly increased with a significant change in size. Coherency misfit energy was found to slow down the evolution of nuclei composition with R. The model was compared to experimental results.

  8. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  9. Four point measurements of electrons using PEACE in the high-altitude cusp

    Directory of Open Access Journals (Sweden)

    M. G. G. T. Taylor

    Full Text Available We present examples of electron measurements from the PEACE instruments on the Cluster spacecraft in the high-latitude, high-altitude region of the Earth’s magnetosphere. Using electron density and energy spectra measurements, we examine two cases where the orbit of the Cluster tetrahedron is outbound over the northern hemisphere, in the afternoon sector approaching the magnetopause. Data from the magnetometer is also used to pinpoint the position of the spacecraft with respect to magnetospheric boundaries. This preliminary work specifically highlights the benefit of the multipoint measurement capability of the Cluster mission. In the first case, we observe a small-scale spatial structure within the magnetopause boundary layer. The Cluster spacecraft initially straddle a boundary, characterised by a discontinuous change in the plasma population, with a pair of spacecraft on either side. This is followed by a complete crossing of the boundary by all four spacecraft. In the second case, Cluster encounters an isolated region of higher energy electrons within the cusp. The characteristics of this region are consistent with a trapped boundary layer plasma sheet population on closed magnetospheric field lines. However, a boundary motion study indicates that this region convects past Cluster, a characteristic more consistent with open field lines. An interpretation of this event in terms of the motion of the cusp boundary region is presented.

    Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions

  10. Precipitation of humic acid with divalent ions

    DEFF Research Database (Denmark)

    Andersen, Niels Peder Raj; Mikkelsen, Lene Haugaard; Keiding, Kristian

    2001-01-01

    and Ba2+. The phase diagram model can not account for the observed precipitation in region III and However, in region IV the HA appears to posses colloidal properties, which is supported by precipitation taking place at a constant zeta-potential -21mV with the same amount of added barium ion regardless...

  11. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David;

    2007-01-01

    of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...

  12. Asphaltene precipitates in oil production wells

    DEFF Research Database (Denmark)

    Kleinitz, W,; Andersen, Simon Ivar

    1998-01-01

    At the beginning of production in a southern German oil field, flow blockage was observed during file initial stage of production from the oil wells. The hindrance was caused by the precipitation of asphaltenes in the proximity of the borehole and in the tubings. The precipitates were of solid...

  13. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    In order to obtain quantitative data on the asphaltene precipitation induced by the addition of n-alkane (heptane) at temperatures above the normal boiling point of the precipitant, a high temperature/high pressure filtration apparatus has been constructed. Oil and alkane are mixed at the appropr...

  14. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [New Mexico State Univ., Las Cruces, NM (United States)

    1999-08-01

    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  15. Precipitation hardening in 350 grade maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, U.K. (Bhabha Atomic Research Centre, Bombay, (India). Radiometallurgy Div.); Dey, G.K. (Bhabha Atomic Research Centre, Bombay, (India). Metallurgy Division); Asundi, M.K. (Government Colony, Bombay, (India))

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  16. Precipitation hardening in 350 grade maraging steel

    Science.gov (United States)

    Viswanathan, U. K.; Dey, G. K.; Asundi, M. K.

    1993-11-01

    Evolution of microstructure in a 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni3 (Ti, Mo) and Fe2Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  17. Particle precipitation prior to large earthquakes of both the Sumatra and Philippine Regions: A statistical analysis

    Science.gov (United States)

    Fidani, Cristiano

    2015-12-01

    A study of statistical correlation between low L-shell electrons precipitating into the atmosphere and strong earthquakes is presented. More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA-15 Sun-synchronous polar orbiting satellite were analysed. Electron fluxes were analysed using a set of adiabatic coordinates. From this, significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicentre geographical positions to a given altitude towards the zenith. Counting rates were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. NOAA-15 electron data from July 1998 to December 2011 were compared for nearly 1800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30-100 keV precipitating electrons detected by the vertical NOAA-15 telescope and earthquake epicentre projections at altitudes greater that 1300 km, a significant correlation appeared where a 2-3 h electron precipitation was detected prior to large events in the Sumatra and Philippine Regions. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The Discussion below of satellite orbits and detectors is useful for future satellite missions for earthquake mitigation.

  18. Effect of precipitations on the damping capacity of Fe-13Cr-2.5Mo alloy

    Science.gov (United States)

    Hu, Xiaofeng; Li, Xiuyan; Zhang, Bo; Rong, Lijian; Li, Yiyi

    2009-07-01

    The influence of precipitations on the damping capacity of Fe-13Cr-2.5Mo (mass %) based alloys has been investigated in this paper. The damping behaviors were examined by dynamic mechanical analyzer (DMA) at temperature t = 35 °C, vibrate frequency f = 1 Hz and strain amplitude ɛ of 10-6 and 10-3. Field-emission scanning electron microscope (FESEM) with X-ray energy dispersive spectrometer (EDS) was used to observe microstructure and determine the composition of precipitations. The results show that damping capacity of Fe-13Cr-2.5Mo based alloys is more strongly correlated with intragranular precipitation than with grain boundary (GB) precipitation. Fe-Cr-Mo alloy annealed at 1100 °C for 1 h followed by furnace cooling (FC) with relatively fewer intergranular precipitations, exhibits higher damping behavior. With the increase of annealing temperature, the amount of intragranular precipitations increases while damping capacity of Fe-Cr-Mo alloy decreases. Addition of 1.0% Ti obviously inhibits precipitation of GB precipitations, but promotes the intragranular precipitations in the alloy distinctly, so the damping capacity of Fe-Cr-Mo- 1Ti is slightly lower than that of Fe-Cr-Mo alloy. Addition of 1.0% Nb can significantly decrease damping capacity of Fe-Cr-Mo-1Nb at low strain amplitude. But at higher strain amplitude, damping capacity increases more rapidly and Fe- Cr-Mo-1Nb possesses the highest damping capacity. This result reveals that larger amount of precipitations in Fe-Cr-Mo based alloys can interact with dislocations and generate an amplitude-dependent dislocation damping Q-1dis at high strain amplitude.

  19. Preparation of Hydroxyapatite Fibers by the Homogeneous Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper discussed the preparing process of hydroxyapatite fibers which were widely used as reinforcement for biomedical materials by homogeneous precipitation method.The needle-like hydroxyapatite crystals were synthesized in an aqueous system.They were transferred from precursors-dicalcium phosphate anhydrate and octacalcium phosphate crystals.The reaction conditions were well controlled in order to obtain crystals in given morphology.The products were characterized by X-ray powder diffractometry(XRD),scanning electron microscopy (SEM) and infrared spectroscopy(IR).They were verified to be hydroxyapatite crystals with needle-like in shape.

  20. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    Science.gov (United States)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  1. Application of quantitative precipitation forecasting and precipitation ensemble prediction for hydrological forecasting

    Directory of Open Access Journals (Sweden)

    P. Tao

    2015-05-01

    Full Text Available The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period. Hydrological forecast based on Ensemble Precipitation prediction gives better hydrological forecast information, better satisfying the need for risk information for flood prevention and disaster reduction, and has broad development opportunities.

  2. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brice, Craig, E-mail: craig.a.brice@lmco.com [NASA Langley Research Center, Hampton, VA 23681 (United States); Shenoy, Ravi [Northrop Grumman Corporation Technical Services, Hampton, VA 23681 (United States); Kral, Milo; Buchannan, Karl [University of Canterbury, Christchurch (New Zealand)

    2015-11-11

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al{sub 2}Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  3. Precipitation hardening of biodegradable Fe-Mn-Pd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moszner, F. [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Sologubenko, A.S. [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Schinhammer, M. [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Lerchbacher, C. [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Haenzi, A.C. [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Leitner, H. [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Uggowitzer, P.J. [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland); Loeffler, J.F., E-mail: joerg.loeffler@mat.ethz.ch [Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich (Switzerland)

    2011-02-15

    This work presents a phenomenological description of the precipitation controlled hardening of a new biodegradable Fe-based alloy developed to fulfill the requirements of temporary implant applications. Pronounced strengthening of the solution-treated martensitic Fe-10Mn-1Pd (in wt.%) alloy upon isothermal aging at temperatures within the ferrite-austenite phase field is observed and attributed to the thermally activated formation of coherent plate-like Pd-rich precipitates on {l_brace}1 0 0{r_brace} planes of the matrix. The onset and the early stages of alloy decomposition were studied using two complementary techniques: transmission electron microscopy and three-dimensional atom probe analysis. Three distinct regions of the hardening kinetics are recognized and closely correlated to the evolution of the alloy microstructure. Upon aging, clustering of Pd atoms within the Fe-Mn solid solution occurs. The very small clusters grow, coarsen and adopt a plate-like shape, rearranging mutually to reduce the overall elastic strain energy. The elastic interaction of the dislocation substructure with Pd-rich precipitates of evolving morphology affects the dislocation mobility and is responsible for the hardness evolution of the alloy. A study of the hardening kinetics shows that the process exhibits all the features characteristic of maraging steels.

  4. PRECIPITATION AND MICROSTRUCTURE OF Cr MODIFIED Al3Ti

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; M. Nemoto

    2001-01-01

    The microstructures of Cr modified Al3 Ti containing Al2 Ti and L10-AlTi precipitateshave been investigated in terms of transmission electron microscopy ( TEM). Fine pre-cipitation of Al2 Ti (Ga2Hf type structure) and L 1o-AlTi(Cr) occurs in L l2-Al3 Ti(Cr)by aging around 973K. The aging behavior was investigated by microhardness mea-surements. TEM observations revealed that plate-like Al2 Ti precipitates lie on { 100}planes of the L12-Al3 Ti(Cr) matrix with the c axis of the tetragonal phase perpendic-ular to the thin plate. As contrast with Al2 Ti precipitates, L1o-AlTi(Cr) precipitatesform thin plate and lie on {100} planes of L12-Al3Ti(Cr) matrix at the initial agingtime and for long time aging the habit plane of the thin plate deviated from {100}plane and finally formed a kinked plate. The coherency stresses across the precipi-tate/matrix interface are considered to be the main factor controlling the precipitatemorphology.``

  5. Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    Liliana E. Romo

    2011-01-01

    Full Text Available Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt. containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonal wurtzite crystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.

  6. Precipitation Behavior During Aging in α Phase Titanium Supersaturated with Cu

    Science.gov (United States)

    Mitsuhara, Masatoshi; Masuda, Tomoya; Nishida, Minoru; Kunieda, Tomonori; Fujii, Hideki

    2016-04-01

    Age hardening of Ti-2.3 mass pct Cu (Ti-2.3Cu) at 673 K to 873 K (400 °C to 600 °C) after solution treatment at 1063 K (790 °C) was observed. The relationship between precipitates formed during aging and changes in hardness was investigated. During aging at 673 K (400 °C), the hardness increased rapidly up to 200 hours, and subsequently increased more slowly up to 1000 hours. At 873 K (600 °C), the hardness began to decrease immediately. Transmission electron microscopy showed that fine disk-shaped precipitates of 20 to 40 nm in diameter grew in the α phase. It is concluded that these precipitates interacted with dislocations and increased the hardness. At 873 K (600 °C), precipitates of 1 µm in length and Ti2Cu particles of 200 nm in length were observed. The decrease in hardness may have resulted from the precipitate formation decreasing the concentration of Cu in the α phase. Bright/dark contrast of the three atomic layers and small atomic shift of the hcp structure were observed in the atomic resolution imaging of the precipitates. This suggests that the precipitates are not just Cu-enriched zones and have structures with similar periodicity to the Ti2Cu phase, which is thermally stable at those aging temperatures.

  7. Regional Bias of Satellite Precipitation Estimates

    Science.gov (United States)

    Modrick, T. M.; Georgakakos, K. P.; Spencer, C. R.

    2012-12-01

    Satellite-based estimates of precipitation have improved the spatial availability of precipitation data particularly for regions with limited gauge networks due to limited accessibility or infrastructure. Understanding the quality and reliability of satellite precipitation estimates is important, especially when the estimates are utilitized for real-time hydrologic forecasting and for fast-responding phenomena. In partnership with the World Meteorological Organization (WMO), the U.S. Agency of International Development (USAID) and the National Ocean and Atmospheric Administration (NOAA), the Hydrologic Research Center has begun implementation of real-time flash flood warning systems for diverse regions around the world. As part of this effort, bias characteristics of satellite precipitation have been examined in these various regions, such includes portions of Southeastern Asia, Southeastern Europe, the Middle East, Central America, and the southern half of the African continent. The work has focused on the Global Hydro-Estimator (GHE) precipitation product from NOAA/NESDIS. These real-time systems utilize the GHE given low latency times of this product. This presentation focuses on the characterization of precipitation bias as compared to in-situ gauge records, and the regional variations or similarities. Additional analysis is currently underway considering regional bias for other satellite precipitation products (e.g., CMORPH) for comparison with the GHE results.

  8. Identification of the poleward boundary of the auroral oval using characteristics of ion precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Troshichev, O.A.; Shishkina, E.M. [Arctic and Antartic Research Institute, St. Petersburg (Russian Federation); Meng, C.I.; Newell, P.T. [Johns Hopkins Univ., Laurel, MD (United States)

    1996-03-01

    The authors look for characteristics to identify the poleward edge of the auroral oval, by looking at precipitation properties of electrons and ions from DMSP F6 and F7 crossings of this region. They average the readings over 1/2 degree in latitude, and normalize them to flux maxima for each pass. The precipitation data clearly indicates the presence of the auroral oval. As one moves poleward then dependent upon the interplanetary magnetic field orientation, the precipitation falls off one or more orders of magnitude when B{sub z}>0, or when B{sub z}<0, it degenerates to an unstructured type of polar rain, with no clear ion precipitation evident. For B{sub z}>0 there are clear markers for identifying the inner edge of the oval, which are not so evident for southward fields. They discuss the significance of this boundary layer.

  9. THEORY OF A QUODON GAS WITH APPLICATION TO PRECIPITATION KINETICS IN SOLIDS UNDER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, Volodymyr; Shapovalov, Roman V.

    2014-06-17

    Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the “gas” of lattice solitons (a.k.a. “quodons”) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be comparable to the density of classical phonon gas. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methods.

  10. A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, S.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Pancholi, V. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Gupta, Manoj [Materials Science Division, Department of Mechanical Engineering, National University of Singapore (Singapore)

    2010-07-01

    The microstructural evolution and precipitation behavior of cryorolled Al 6063 alloy were investigated. The Al 6063 alloy plates were solutionized and cryorolled with thickness reduction of 25% and 93%. The phase identification and microstructure of the cryorolled Al alloy sample were carried out by XRD, electron backscattered diffraction (EBSD) analysis and TEM. The cryorolled Al alloy upon 93% thickness reduction exhibits ultrafine grain structure. The DSC results of cryorolled Al 6063 alloy obtained at different heating rate are used to calculate activation energies for the evolution of precipitates. The influence of different reduction rates on activation energy of precipitate formation in the cryorolled Al 6063 alloy was analyzed. It was clear from the present study that an ultrafine-grained Al 6063 alloy exhibits a higher driving force for the precipitation formation when compared to bulk Al alloy.

  11. Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97

    Science.gov (United States)

    Dethloff, Christian; Gaganidze, Ermile; Aktaa, Jarir

    2014-11-01

    Characterization of irradiation induced microstructural defects is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM) is used to analyze the types and structure of precipitates, and the evolution of their size distributions and densities caused by neutron irradiation to a dose of 32 displacements per atom (dpa) at 330-340 °C in the irradiation experiment ARBOR 1. A significant growth of MX and M23C6 type precipitates is observed after neutron irradiation, while the precipitate density remains unchanged. Hardening caused by MX and M23C6 precipitate growth is assessed by applying the Dispersed Barrier Hardening (DBH) model, and shown to be of minor importance when compared to other irradiation effects like dislocation loop formation. Additionally, grain boundary segregation of chromium induced by neutron irradiation was investigated and detected in irradiated specimens.

  12. Scales of Topographic Dependence of Alpine Precipitation

    Science.gov (United States)

    Hutchinson, M. F.

    2002-12-01

    Scales of topographic dependence of daily precipitation over the Swiss Alps are examined using a new multivariate precipitation interpolation technique. The method of additive regression splines has been designed to incorporate spatially varying dependences on several topographic variables. It avoids the "curse of dimension" by restricting the underlying spline structure to be two-dimensional. This is in keeping with the overall goal of delivering essentially two-dimensional maps. Moreover, it permits a separation between physical process, as represented by various topographic variables, and the empirically determined, continuous two-dimensional effects of these variables on precipitation across the landscape. The analysis determines horizontal and vertical scales of the interaction of precipitation with topography. A common limitation with existing precipitation interpolation methods lies in their difficulty in identifying effective topographic parameters other than elevation. Orographic effects associated with slope and aspect are often discussed but are not always statistically significant. The effects of two topographic parameters, the northern and eastern components of the unit normal to an appropriately vertically exaggerated digital elevation model, are investigated. These parameters have some basis in process modelling studies and, unlike topographic aspect, are continuous functions of horizontal position. They are used to identify significant topographic aspect effects on precipitation without prior knowledge of the prevailing wind field. Short range correlation structure has rarely been explicitly identified in precipitation interpolation studies but its impact is surprisingly strong. Evidence for its existence in these precipitation data was provided in an earlier study but effective methods for calibrating such correlation in spline analyses have only recently been developed. The spatial scale of correlation found here, around 5 km, is large enough to

  13. A New Method for Near Real Time Precipitation Estimates Using a Derived Statistical Relationship between Precipitable Water Vapor and Precipitation

    Science.gov (United States)

    Roman, J.

    2015-12-01

    The IPCC 5th Assessment found that the predicted warming of 1oC would increase the risk of extreme events such as heat waves, droughts, and floods. Weather extremes, like floods, have shown the vulnerability and susceptibility society has to these extreme weather events, through impacts such as disruption of food production, water supply, health, and damage of infrastructure. This paper examines a new way of near-real time forecasting of precipitation. A 10-year statistical climatological relationship was derived between precipitable water vapor (PWV) and precipitation by using the NASA Atmospheric Infrared Sounder daily gridded PWV product and the NASA Tropical Rainfall Measuring Mission daily gridded precipitation total. Forecasting precipitation estimates in real time is dire for flood monitoring and disaster management. Near real time PWV observations from AIRS on Aqua are available through the Goddard Earth Sciences Data and Information Service Center. In addition, PWV observations are available through direct broadcast from the NASA Suomi-NPP ATMS/CrIS instrument, the operational follow on to AIRS. The derived climatological relationship can be applied to create precipitation estimates in near real time by utilizing the direct broadcasting capabilities currently available in the CONUS region. The application of this relationship will be characterized through case-studies by using near real-time NASA AIRS Science Team v6 PWV products and ground-based SuomiNet GPS to estimate the current precipitation potential; the max amount of precipitation that can occur based on the moisture availability. Furthermore, the potential contribution of using the direct broadcasting of the NUCAPS ATMS/CrIS PWV products will be demonstrated. The analysis will highlight the advantages of applying this relationship in near-real time for flash flood monitoring and risk management. Relevance to the NWS River Forecast Centers will be discussed.

  14. Precipitation of barium flouride microcrystals from electrolytic solutions: The influence of the composition of the precipitating solutions

    Science.gov (United States)

    Kolar, Z.; Binsma, J. J. M.; Subotić, B.

    1984-02-01

    The composition, shape and size of the particles obtained by precipitation in aqueous solutions of various barium salts (chloride, nitrate and acetate) with various fluorides (ammonium, sodium and hydrogen) have been studied by X-ray powder diffraction analysis and scanning electron microscopy. From Ba(NO 3) 2 in combination with NH 4F or NaF and from Ba(C 2H 3O 2) 2 in combination with NH 4F, NaF or HF, precipitates of pure cubic-BaF 2 (β-BaF 2) are obtained. The shape and size of β-BaF 2 particles depend on the combination of the compounds used for the precipitation and their concentrations. It appears that only when (equal volumes of) solutions of Ba(NO 3) 2 (0.125 mol dm -3) or Ba(C 2H 3O 2) 2 (0.125 and 0.150 mol dm -3) and NH 4F (0.250 or 0.300 mol dm -3) are mixed particles are formed as more or less regular cubes with smooth faces. These crystals are suitable to be used in studies of the transport of ions from crystals to the solution and vice versa with the aid of radioactive tracers ("heterogeneous isotopic exchange" studies).

  15. Spinodal decomposition and precipitation in Cu–Cr nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sheibani, S., E-mail: ssheibani@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Heshmati-Manesh, S.; Ataie, A. [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Caballero, A.; Criado, J.M. [Instituto de Ciencia de Materiales de Sevilla and Departamento de Quimica Inorganica, CSIC – Universidad de Sevilla (Spain)

    2014-02-25

    Highlights: • Precipitation mechanism of supersaturated Cu-Cr solid solutions was investigated. • Precipitation begins with spinodal decomposition and ends with nucleation and growth. • Kinetics of decomposition is faster in presence of Al{sub 2}O{sub 3} nano-particles. -- Abstract: In this study, spinodal decomposition and precipitation mechanism of mechanically alloyed supersaturated Cu–3wt.%Cr and Cu–5wt.%Cr solid solutions was investigated under nonisothermal aging. Decomposition mechanism and kinetics were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Also, the microstructure was characterized by transmission electron microscopy (TEM). Effect of Al{sub 2}O{sub 3} reinforcement on the aging kinetics was also evaluated. It was found that Cu–3wt.%Cr and Cu–5wt.%Cr solid solutions undergo spinodal decomposition at initial stages of ageing. However, decomposition mechanism was changed to nucleation and growth by the aging progress. The aging kinetics for the Cu–Cr/Al{sub 2}O{sub 3} composition appeared to be slightly faster than that for Cu–Cr, since the ageing activation energy is decreased in presence of Al{sub 2}O{sub 3} nano-particles. This behavior is probably due to the higher dislocation density and other structural defects previously produced during ball milling. A detailed comparison of the DSC results with those obtained by TEM, showing good consistency, has been presented. The average size of Cr-rich precipitates was about 10 nm in the copper matrix.

  16. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  17. Precipitation method and characterization of cobalt oxide nanoparticles

    Science.gov (United States)

    Prabaharan, D. Durai Manoharadoss; Sadaiyandi, K.; Mahendran, M.; Sagadevan, Suresh

    2017-04-01

    Cobalt oxide (Co3O4) nanoparticles were synthesized using precipitation method. The X-ray diffraction (XRD) pattern was used to determine the structure of Co3O4 nanoparticles. The presence of Co3O4 nanoparticles was confirmed by the FTIR spectrum. The fact about the surface morphology of Co3O4 nanoparticles was revealed by scanning electron microscopic analysis. Transmission electron microscopy was used to measure the particle size of the Co3O4 nanoparticles. The absorption spectrum made it possible to analyze the optical properties of Co3O4 nanoparticles. This work contributes to the study of dielectric properties such as the dielectric loss and the dielectric constant of Co3O4 nanoparticles, at varied frequencies and temperatures. The magnetic properties of the Co3O4 nanoparticles were also investigated.

  18. PRECIPITATION BEHAVIOR OF M2N IN A HIGH-NITROGEN AUSTENITIC STAINLESS STEEL DURING ISOTHERMAL AGING

    Institute of Scientific and Technical Information of China (English)

    F. Shi; L.J. Wang; W.F. Cui; C.M. Liu

    2007-01-01

    The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy (OM), scanning electron microscopy ( SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a=0.4752nm and c=0.4429nm, and the orientation relationship between the MN precipitates and austenite determined from the SADP is [01110]M2N// [101]γ,[2-1-10]M2N// [010]γ.

  19. Effect of nano-sized precipitates on the crystallography of ferrite in high-strength strip steel

    Science.gov (United States)

    Yang, Jing-jing; Wu, Run; Liang, Wen; Tang, Meng-xia

    2014-05-01

    For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing precipitates exhibit the high Taylor factor as well as the crystallographic orientations with {012}, {011}, {112}, or {221} plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipitates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a relatively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

  20. Effect of nano-sized precipitates on the crystallography of ferrite in high-strength strip steel

    Institute of Scientific and Technical Information of China (English)

    Jing-jing Yang; Run Wu; Wen Liang; Meng-xia Tang

    2014-01-01

    For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing pre-cipitates exhibit the high Taylor factor as well as the crystallographic orientations with{012},{011},{112}, or{221}plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipi-tates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a rela-tively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

  1. Precipitation Recycling and the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    Science.gov (United States)

    Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.

  2. Fundamental features of copper ion precipitation using sulfide as a precipitant in a wastewater system.

    Science.gov (United States)

    Choi, Jung-Yoon; Kim, Dong-Su; Lim, Joong-Yeon

    2006-01-01

    We have investigated the precipitation features of copper ion using sulfide as a precipitant by varying the mole ratio of sulfide to copper ion, pH, temperature and the kind and concentration of complexing agent. In the precipitation of copper ion by sulfide, sludge is produced as cupric sulfide; thus, there is a possibility for its recycled use in photochemical and ceramic processes. When the ratio of the concentration of copper ion to sulfide was increased to more than 1.0, the extent of precipitation was very high. As the ratio was increased, nucleation time was decreased and crystal growth rate was raised. The higher the pH, the greater the amount of precipitated copper ion due to lowered solubility of cupric sulfide. When temperature changed from 25 degrees C to 55 degrees C, the precipitation of copper ion was increased a little. On the basis of estimated thermodynamic parameters such as Gibbs free energy and enthalpy, the precipitation reaction was spontaneous and endothermic. The precipitation of copper ion was lowered in the presence of complexing agent and it was affected by the stability of the copper complex. The feasibility test for the application of precipitation treatment to actual wastewater containing copper ion showed, although there was a little decrease in the removal of copper, the precipitation extent of copper was higher than 90% compared with that for artificial wastewater.

  3. Bands of ions and angular V's - A conjugate manifestation of ionospheric ion acceleration

    Science.gov (United States)

    Winningham, J. D.; Burch, J. L.; Frahm, R. A.

    1984-01-01

    Data from the hot plasma instruments on Dynamics Explorer 1 and 2 spacecraft have been used to study the injection, drift, and subsequent precipitation of suprathermal positive ions in the auroral zone. The observation at both high and low altitudes of electron inverted 'V' events in the boundary plasma sheet (BPS) and of ion 'bands' (energy decreasing with decreasing latitude) in the adjacent central plasma sheet (CPS) leads to the following ion injection model: upward-moving energetic ion beams are injected onto BPS magnetic field lines by the electrostatic potential drops associated with electron inverted V's. As the ion beams move toward the equator and into the conjugate hemisphere they are convected to lower latitudes and into the CPS. The energy-latitude dependence of the ion bands, coupled with concurrent ion convection measurements, indicate that the ion distributions are primarily O(+), in agreement with their postulated ionospheric source.

  4. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    Science.gov (United States)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  5. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    Science.gov (United States)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-10-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  6. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  7. U.S. Hourly Precipitation Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This publication contains hourly precipitation amounts obtained from recording rain gages located at National Weather Service, Federal Aviation Administration, and...

  8. U.S. Hourly Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is...

  9. Processing NPP Bottoms by Ferrocyanide Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, A. E.; Slastennikov Y. T.; Sinyakin O. G.

    2002-02-25

    The purpose of work is a laboratory test of a technological scheme for cleaning bottoms from radionuclides by use of ozonization, ferrocyanide precipitation, filtration and selective sorption. At carrying out the ferrocyanide precipitation after ozonization, the specific activity of bottoms by Cs{sup 137} is reduced in 100-500 times. It has been demonstrated that the efficiency of ferrocyanide precipitation depends on the quality of consequent filtration. Pore sizes of a filter has been determined to be less than 0.2 {micro}m for complete separation of ferrocyanide residue. The comparison of two technological schemes for cleaning bottoms from radionuclides, characterized by presence of the ferrocyanide precipitation stage has been performed. Application of the proposed schemes allows reducing volumes of radioactive waste in many times.

  10. Acid precipitation - Effects on forest and fish

    Energy Technology Data Exchange (ETDEWEB)

    Overrein, L.N.; Seip, H.M.; Tollan, A.

    1980-01-01

    The Norwegian Interdisciplinary Research Programme 'Acid Precipitation - Effects on Forest and Fish' (The SNSF-project) was initiated in 1972. The main objectives of the SNSF-project have been to: (1) establish as precisely as possible the effects of acid precipitation on forest and freshwater fish, (2) investigate the effects of air pollutants on soil, vegetation and water, required to satisfy point 1. The final report summarizes the results of the entire program on the basis of some 300 SNSF reports and data presented in various international journals in the period 1972-80. Attention is given to emissions and transport, atmospheric deposits in Norway, water acidification - status and trends, chemical modifications of precipitation in contact with soil and vegetation, snow and snowmelt, land-use changes and acidification, conceptual models for water acidification, effects of acid precipitation on soil productivity and plant growth, and effects of acid water on aquatic life.

  11. Identifying external influences on global precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, K.; Bonfils, C.

    2013-11-11

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

  12. Precipitation Reconstruction over Land (PREC/L)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists files of 3 resolutions of monthly averaged precipitation totals. The global analyses are defined by interpolation of gauge observations...

  13. BOREAS HYD-8 Gross Precipitation Data

    Science.gov (United States)

    Fernandes, Richard; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-08 team made measurements of surface hydrological processes at the Southern Study Area-Old Black Spruce (SSA-OBS) Tower Flux site to support its research into point hydrological processes and the spatial variation of these processes. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gross precipitation measurements for July to August 1996. Gross precipitation is the precipitation that falls that is not intercepted by tree canopies. These data are stored in ASCII text files. The HYD-08 gross precipitation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  14. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    Application of probabilistic precipitation forecasts from a deterministic model towards increasing the lead-time of flash flood forecasts in South Africa. ... An ensemble set of 30 adjacent basins is then identified as ensemble members for each ...

  15. Average Annual Precipitation (PRISM model) 1961 - 1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation...

  16. VT Mean Annual Precipitation - 1971-2000

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ClimatePrecip_PRECIPA7100 includes mean annual precipitation data (in inches) for Vermont (1971-2000). It's a raster dataset derived from...

  17. VT Mean Winter Precipitation - 1971-2000

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ClimatePrecip_PRECIPW7100 includes mean winter precipitation data (October through March) for Vermont (1971-2000). It's a raster dataset derived...

  18. Precipitation Aggregation and the Local Environment

    Science.gov (United States)

    Smalley, Mark

    The details of large-scale spatial structures of precipitation have only recently become apparent with the advent of high-resolution near-global observations from space-borne radars. As such, the relationships between these structures and the local environment and global climate are just beginning to emerge in the scientific community. Precipitation aggregates on a wide variety of scales, from individual boundary layer instabilities to extra-tropical cyclones. Separate aggregation states have been associated with widely varying precipitation rates and atmospheric states, motivating the inclusion of spatial information in hydrologic and climate models. This work adds to the body of knowledge surrounding large-scale precipitation aggregation and its driving factors by describing and demonstrating a new method of defining the spatial characteristics of precipitation events. The analysis relies on the high sensitivity and high resolution of the CloudSat Cloud Profiling Radar for the identification of precipitation with near-global coverage. The method is based on the dependence of the probability of precipitation on search area, or spatial resolution. Variations in this relationship are caused by variations in the principal characteristics of event spatial patterns: the relative spacing between events, the number density of events, and the overall fraction of precipitating scenes at high resolution. Here, this relationship is modeled by a stretched exponential containing two coefficients, that are shown to depict seasonal general circulation patterns as well as local weather. NASA's Modern-Era Retrospective analysis for Research and Applications is then used to place those spatial characteristics in the context of the local and large-scale environment. At regional scale, precipitation event density during the Amazon wet season is shown to be dependent on zonal wind speed. On a global scale, the relative spacing of shallow oceanic precipitation depends on the

  19. Nordic Seas Precipitation Ground Validation Project

    Science.gov (United States)

    Klepp, Christian; Bumke, Karl; Bakan, Stephan; Andersson, Axel

    2010-05-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification for these snowfall events resulted in a perfect score between the disdrometer, a precipitation detector and a shipboard observer's log. The disdrometer data is further point-to-area collocated against precipitation from three satellite derived climatologies, HOAPS-3, the Global Precipitation Climatology Project (GPCP) one degree daily (1DD) data set, and the Goddard Profiling algorithm, version 2004 (GPROF 2004). Only the HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in an accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm/h. Therefore two LOFZY case studies with high precipitation rates are presented that still indicate plausible results. Overall, this

  20. Solar Energetic Particle Precipitation Effects on the ionosphere of Mars

    Science.gov (United States)

    Lillis, Robert; Larson, Davin; Luhmann, Janet; Lee, Christina; Jakosky, Bruce

    2016-10-01

    Solar Energetic Particles (SEPs) are an important, if irregular, source of ionization and energy input to the Martian atmosphere. As is the case for much-studied Polar Cap precipitation events on the earth, when SEPs precipitate into the Mars atmosphere, they cause heating, ionization, excitation and dissociation, leading to altitude-dependent changes in chemistry. We present a study of the effects of SEP ionization in the Martian atmosphere using data from the Mars Atmosphere and Volatile Evolution (MAVEN) mission. Specifically, we will correlate altitude profiles of thermal planetary ions (O+, CO2+ and O2+) and electrons measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS) and Langmuir Probe on the MAVEN spacecraft with fluxes of energetic protons and electrons measured by the Solar Energetic Particle (SEP) detector. First, we will present case studies of this correlation, before and during SEP events to examine short-term effects of SEP ionization. We will also examine SEP ionization under different heliospheric conditions, leading to different SEP shadowing geometries and ionization rates. Second, we will present a statistical study showing the degree to which ionospheric densities are affected by the presence of energetic particles, as a function of altitude, SEP spectrum flux and solar zenith angle. This work will provide a better understanding of this important source of ionization in the Martian upper atmosphere and hence, how more frequent and more intense SEP events in Mars' past may have affected the structure of the Martian upper atmosphere and hence atmospheric escape.

  1. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, G., E-mail: guillaume.jeanmaire@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Aubert and Duval, BP1, 63770 Les Ancizes (France); Dehmas, M.; Redjaïmia, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Puech, S. [Aubert and Duval, BP1, 63770 Les Ancizes (France); Fribourg, G. [Snecma Gennevilliers, 171 Boulevard de Valmy-BP 31, 92702 Colombes (France)

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.

  2. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yajuan [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Fang, Ruimei; Shang, Hongyan [College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Shi, Zhonghua; Gong, Maochu [Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China); Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan (China); Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan (China); Chen, Yaoqiang, E-mail: nic7501@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China); Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan (China); Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan (China)

    2015-04-15

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H{sub 2}-temperature programmed reduction (H{sub 2}-TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m{sup 2}/g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure.

  3. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  4. Aspects of precipitation in alloy Inconel 718

    OpenAIRE

    Azadian, Saied

    2004-01-01

    A study was made of the microstructure of the Ni-base alloy Inconel 718 with emphasis on the precipitation and stability of intermetallic phases as affected by heat treatments. In addition the effect of the precipitation on selected mechanical properties namely hardness, creep notch sensitivity and hot ductlity were investigated. The materials studied were a spray-formed version and three wrought versions of the alloy. The spray-formed version of the alloy was of interest since it exhibited a...

  5. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  6. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  7. Microbially Induced Precipitation of Strontianite Nanoparticles.

    Science.gov (United States)

    Kang, Serku; Yumi Kim; Lee, Young Jae; Roh, Yul

    2015-07-01

    The objectives of this study were to investigate the microbially mediated precipitation of strontium by microorganisms, and to examine the mineralogical characteristics of the precipitates. Wu Do-1 (Proteus mirabilis) enriched from rhodoliths was used to precipitate strontium at room temperature under aerobic environment. The growth of Wu Do-1 gradually increased over 16 days (OD600 = 2.6) and then decreased until 22 days (OD600 = 2.0) during microbial incubation for strontium precipitation. Also, the pH decreased from 6.5 to 5.3 over 4 days of incubation due to microbial oxidation of organic acids, and then the pH increased up to 8.6 at 25 days of incubation due to NH3+ generation. The Sr2+ concentration in the biotic group sharply decreased from 2,953 mg/L to 5.7 mg/L over 29 days of incubation. XRD, SEM-/TEM-EDS analyses revealed that the precipitates formed by Wu Do-1 (Proteus mirabilis) were identified as 20-70 nm sized strontianite (SrCO3). Therefore, these results suggested that formation of sparingly soluble Sr precipitates mediated by Wu Do-1 (Proteus mirabilis) sequesters strontium and carbon dioxide into a more stable and less toxic form such as strontianite (SrCO3). These results also suggest that bioremediation of metal-contaminated water and biominealization of carbonate minerals may be feasible in the marine environment.

  8. Effects of Nb and V on the Precipitation Phases of MX in Q345E Applicable to Cryogenic Flange

    Science.gov (United States)

    Li, Jie; Fan, Dingdong; Xia, Yunjin

    2015-04-01

    Thermodynamic software (Thermo-Calc) is utilized to Q345E applicable to cryogenic flange. The aim is to study the equilibrium precipitation phases between 400 and 1600 °C, and the solubility of Nb and V in austenite. The effects of alloying elements, such as C, N, Nb and V, on these equilibrium precipitation phases are also discussed. Besides theoretical calculation, transmission electron microscopy (TEM) is used to observe these precipitation phases. The results show that main equilibrium precipitation phases are M7C3, MX#1 (Nb-rich), MX#2 (V-rich) and AlN. Among them, the MX#1 phase is composed of major elements (Nb, C, and N) and minor elements (V and Cr). For MX#2 phase, its major elements are V, C, Nb, and N, and minor element is Cr. The precipitation amount and temperature of MX#1 phase were controlled by Nb content, and little affected by the contents of C, N and V. TEM results reveal that the size of precipitation phases varied from several nanometers to more than 100 nm. Large precipitation particles belong to MX#1 phase (Nb-rich), and their morphology tends to be cubic. On the other side, the small precipitation particles are attributed to MX#2 phase (V-rich), and their morphology is spherical or elliptical. These results are consistent with the thermodynamic calculation results about phase composition and precipitation temperature of MX#1 and MX#2.

  9. Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Mossin, Susanne;

    2014-01-01

    Fe/TiO2 based catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP). The catalysts were characterized by activity measurements, N2 physisorption, X-ray powder diffraction, electron paramagnetic resonance spectroscopy, energy dispersive X-ray spectroscopy, H2-.......Relative SCR activity of catalysts at 450 °C....

  10. On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

    Science.gov (United States)

    Denton, M. H.; Reeves, G. D.; Larsen, B. A.; Friedel, R. F. W.; Thomsen, M. F.; Fernandes, P. A.; Skoug, R. M.; Funsten, H. O.; Sarno-Smith, L. K.

    2017-02-01

    Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from 30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at 30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

  11. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  12. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China

    Science.gov (United States)

    Hua, Lijuan; Zhong, Linhao; Ke, Zongjian

    2017-02-01

    A dynamic recycling model (DRM) with an analytical moisture trajectory tracking method, together with Japan Meteorological Agency 25-year reanalysis data, is used to study the regional precipitation recycling process across China, by calculating the regional recycling ratio ( ρ r ) at the daily time scale during 1979-2010. The distribution of ρ r shows that, in western China, especially the Tibetan Plateau and its surrounding areas, precipitation is strongly dependent on the recycling process associated with regional evaporation. In Southeast China, however, the contribution from the recycling processes is much smaller due to the influence of the summer monsoon. A precipitation threshold value of about 4 mm/day is obtained from detailed analysis of both extreme and all-range ρ r years. According to this threshold, China is classified into three types of sub-regions: low-precipitation sub-regions (mainly in the northwest), high-precipitation sub-regions (mainly in the south), and medium-precipitation sub-regions (mainly in the northeast). It is found that ρ r correlates positively with precipitation, as well as convective precipitation ( P CP) and large-scale precipitation ( P LP) in the low-precipitation sub-regions. However, negative ρ r ˜ P LP correlations are found in the high-precipitation sub-regions and nonsignificant correlations exist in the medium-precipitation sub-regions. As P CP is mainly locally generated due to mid-latitude mesoscale systems and the cumulus parameterization used in producing the reanalysis, the recycling ratio positively correlates to the ratio P CP/ P LP in almost all sub-regions, particularly in the Tibetan Plateau and its surrounding areas. The correlation between radiation flux and ρ r suggests more net radiation supports more evaporation and higher ρ r , especially in the high-precipitation sub-regions. The influence of clouds on shortwave radiation is crucial, since evaporation is suppressed when the amount of cloudiness

  13. [Comment on “A new interdisciplinary focus on precipitation research”] Precipitation research

    Science.gov (United States)

    Rodda, John C.

    I am writing concerning the lead article in the June 5, 1984, Eos, entitled “A new interdisciplinary focus on precipitation research,” particularly the paragraph headed “Measurement of Precipitation.” Measurement of precipitation is a subject of which I know a little. My knowledge comes largely from experimental work in the 1960s and 1970s and committee work subsequently (I even attended one meeting of the 1970 AGU committee). I imagined that, at that time and subsequently, it had become an acknowledged fact in the United States and elsewhere that measurements of precipitation are not easy to make.

  14. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.

  15. Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations

    Science.gov (United States)

    Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki

    2011-01-01

    The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks

  16. Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S [Department of Physics and Electronics, Dr H S Gour University, Sagar (MP) 470003 (India)

    2008-02-15

    This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency {omega} and damping rate with perpendicular wave number k{sub perpendicular}{rho}{sub i} (k{sub perpendicular} is perpendicular wave number and {rho}{sub i} is ion gyroradius) and parallel wave number k{sub parallel} are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k{sub perpendicular}{rho}{sub i}, whereas the electron beam velocity enhances the wave frequency at higher k{sub perpendicular}{rho}{sub i}. The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k{sub perpendicular}{rho}{sub i}. The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere.

  17. Electronic Cigarettes

    Science.gov (United States)

    ... New FDA Regulations Text Size: A A A Electronic Cigarettes Electronic cigarettes (e-cigarettes) are battery operated products designed ... more about: The latest news and events about electronic cigarettes on this FDA page Electronic cigarette basics ...

  18. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  19. Effect of cold compression on precipitation and conductivity of an Al-Li-Cu alloy.

    Science.gov (United States)

    Khan, A K; Robinson, J S

    2008-12-01

    Transmission electron microscopy has been used to investigate the effect of increasing the degree of deformation applied by cold compression on the ageing kinetics and electrical conductivity response of an Al-Li-Cu alloy containing Mg and Ag. When cold compressed greater than 3%, the increased dislocation density accelerates the widespread precipitation of the T(1) phase resulting in an enhanced age hardening response. The lengthening rate of T(1) precipitates is also reduced in this cold compressed condition owing to the reduced local solute supersaturation, a result of the widespread precipitation of T(1) plates. Cold compression by less than 3% does not increase the age hardening response, and the precipitation of GP zones/theta'' appears to be suppressed. Precipitation of the T(1) phase is also not significantly enhanced compared with that of the more than 3% cold compressed conditions. The anomalous decrease in electrical conductivity is associated with the nucleation and growth of the T(1) phase. Strain fields around T(1) precipitates combined with the increased volume fraction of T(1) are thought to be the cause of the anomalous conductivity behaviour.

  20. Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels

    Science.gov (United States)

    Yin, Feng-Shi; Jung, Woo-Sang

    2009-02-01

    Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant 9Cr-W-Mo-VNbTiN steels were characterized by transmission electron microscope (TEM) using carbon film replicas. The steels were prepared by vacuum induction melting followed by hot forging and rolling into plates. The plates were normalized at 1100 °C for 1 hour, cooled in air, and tempered at 700 °C for 1 hour. The results show that bimodal nanosized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. The larger nanosized MX precipitates with the size of 30 to 50 nm are rich in Nb, while the smaller ones with the size of about 10 nm contain less Nb but more V. Small addition of Ti causes an increase in the number of the larger nanosized MX precipitates. The total number density of the nanosized MX precipitates in the ultra-low-carbon ferritic/martensitic steels is measured to be over 300/ μm2, much higher than that in conventional ferritic/martensitic steels. Short-term creep test results show that the ultra-low-carbon ferritic/martensitic steels with high dense nanosized MX precipitates have much higher creep rupture strength than conventional ASME-P92 steel. The strength degradation of the ultra-low-carbon ferritic/martensitic heat-resistant steels during creep is also discussed in this article.

  1. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    Science.gov (United States)

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Homogeneous Precipitation of Nickel Hydroxide Powders

    Energy Technology Data Exchange (ETDEWEB)

    Bora Mavis

    2003-12-12

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup 2+} in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator{trademark}, Version 1.01) lets the user change the order of

  3. The driving mechanisms of particle precipitation during the moderate geomagnetic storm of 7 January 2005

    Directory of Open Access Journals (Sweden)

    N. Longden

    2007-10-01

    Full Text Available The arrival of an interplanetary coronal mass ejection (ICME triggered a sudden storm commencement (SSC at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF. We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA recorded by stations in the Global Riometer Array (GLORIA. No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC of the storm. This is consistent with the findings of Osepian and Kirkwood (2004 that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.

  4. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  5. Extensive electron transport and energization via multiple, localized dipolarizing flux bundles

    Science.gov (United States)

    Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei

    2017-05-01

    Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.Plain Language SummaryScientists have wondered how narrow flow channels in space could transport and energize electrons enough before the electrons escape the channel. They also wondered how narrow, localized magnetic field peaks (and their electric fields) contribute to electron energization in comparison to wide, large-scale electromagnetic fields. We show that it is actually because these fields are so

  6. Complex precipitation pathways in multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, Emmanuel; Nastar, Maylise [Service de Recherches de Metallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette (France); Lae, Ludovic; Deschamps, Alexis [LTPCM/ENSEEG, UMR CNRS 5614, Domaine Universitaire, BP 75, 38402 St Martin d' Heres (France); Epicier, Thierry [Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, INSA, 69621 Villeurbanne (France); Lefebvre, Williams [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France)

    2006-07-01

    One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al - Zr - Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al - Zr - Sc alloys compared with binary Al - Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials. (authors)

  7. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  8. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Science.gov (United States)

    Skofronick-Jackson, Gail; Hudak, David; Petersen, Walter; Nesbitt, Stephen W.; Chandrasekar, V.; Durden, Stephen; Gleicher, Kirstin J.; Huang, Gwo-Jong; Joe, Paul; Kollias, Pavlos; Reed, Kimberly A.; Schwaller, Mathew R.; Stewart, Ronald; Tanelli, Simone; Tokay, Ali; Wang, James R.; Wolde, Mengistu

    2014-01-01

    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed.

  9. The Role of CO2 Physiological Forcing in Driving Future Precipitation Variability and Precipitation Extremes

    Science.gov (United States)

    Skinner, C. B.; Poulsen, C. J.

    2015-12-01

    Transpired water contributes roughly 25% to total precipitation over the Earth's land surface. In addition to transpiration's impact on climatological mean precipitation, recent work suggests that transpiration reduces daily and intraseasonal precipitation variability in tropical forest regions. Projected increases in the concentration of CO2 are expected to reduce transpiration through changes in plant physiology (termed the CO2 physiological effect). Here, we use an ensemble of climate model experiments to assess the potential contribution of the CO2 physiological effect to future changes in precipitation variability and extreme precipitation events. Within our model simulations, precipitation responses to the physiological effects of increased CO2 concentrations are greatest throughout the tropics. In most tropical forest regions CO2 physiological forcing increases the annual number of dry (less than 0.1 mm/day) and extremely wet (rainfall exceeds 95th percentile) days. Changes in precipitation are primarily driven by an increase in surface temperature and subsequent changes in atmospheric stability and moisture convergence over vegetated tropical land regions. Our results suggest that the plant physiological response to CO2 forcing may serve as an important contributor to future precipitation variability in the tropics, and that future work should aim to reduce uncertainty in the response of plant physiology to changes in climate.

  10. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4Zr (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiangyu, E-mail: xxia5@wisc.edu [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Luo, Alan A. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Department of Materials Science and Engineering, The Ohio State University, 116 W. 19th Ave, Columbus, OH 43210 (United States); Stone, Donald S. [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States)

    2015-11-15

    The present research presents a series of investigations into phase identification and precipitation sequence in Mg-4Sm-1Zn-0.4Zr alloy, using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The precipitation sequence is: super saturated solid solution (S.S.S.S) → solute atom clusters → γ″ → γ′ (→stacking faults) → γ. Structure of γ″ has been determined as an ordered hexagonal GP zone, a = 0.556 nm, c = 0.414 nm γ′ is composed of several γ″ layers. Kinetic studies show that quenched-in vacancies play an important role in the formation of solute clusters, while the growth of both precipitates are diffusion controlled. Analysis of microstructure evolution suggests that nucleation of γ′ happens near existing γ″ precipitates. - Highlights: • Precipitation sequence in a high-zinc magnesium-samarium-zinc-zirconium alloy has been identified. • Structures of metastable precipitates are modified directly with HAADF-STEM. • Kinetic calculations were performed to understand nucleation/growth mechanisms of these precipitates.

  11. Influence of cooling rate on secondary phase precipitation and proeutectoid phase transformation of micro-alloyed steel containing vanadium

    Science.gov (United States)

    Dou, Kun; Meng, Lingtao; Liu, Qing; Liu, Bo; Huang, Yunhua

    2016-05-01

    During continuous casting process of low carbon micro-alloyed steel containing vanadium, the evolution of strand surface microstructure and the precipitation of secondary phase particles (mainly V(C, N)) are significantly influenced by cooling rate. In this paper, influence of cooling rate on the precipitation behavior of proeutectoid α-ferrite at the γ-austenite grain boundary and in the steel matrix are in situ observed and analyzed through high temperature confocal laser scanning microscopy. The relationship between cooling rate and precipitation of V(C, N) from steel continuous casting bloom surface microstructure is further studied by scanning electron microscopy and electron dispersive spectrometer. Relative results have shown the effect of V(C, N) precipitation on α-ferrite phase transformation is mainly revealed in two aspects: (i) Precipitated V(C, N) particles act as inoculant particles to promote proeutectoid ferrite nucleation. (ii) Local carbon concentration along the γ-austenite grain boundaries is decreased with the precipitation of V(C, N), which in turn promotes α-ferrite precipitation.

  12. Nature of large (Ti, Nb)(C, N) particles precipitated during the solidification of Ti, Nb HSLA steel

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Zhuo; Xinhua Wang; Wanjun Wang; Hae-Geon Lee

    2007-01-01

    To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. The samples of Ti, Nb-addition steels after unidirectional solidification were examined using field emission scanning electron microscope (FE-SEM) and electron probe X-ray microanalyzer (EPMA). In such specimens, dendrite structure and mushy zone can be detected along the solidification direction. It shows that the addition of titanium, niobium to high-strength low-alloyed (HSLA) steel results in undesirable (Ti, Nb)(C, N) precipitation because of microsegregation. The effect of cooling rate on (Ti, Nb)(C, N) precipitation was investigated. The composition of large precipitates was determined using FE-SEM with EDS. Large (Ti, Nb)(C, N) precipitates could be divided into three kinds according to the composition and morphology. With the cooling rate increasing, Ti-rich (Ti, Nb)(C, N) precipitates are transformed to Nb-rich (Ti, Nb)(C, N) precipitates.

  13. Precipitation-runoff modeling system; user's manual

    Science.gov (United States)

    Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.

    1983-01-01

    The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)

  14. Stochastic Precipitation Downscaling with Orographic Corrections

    Science.gov (United States)

    Brussolo, Elisa; von Hardenberg, Jost; Rebora, Nicola; Provenzale, Antonello

    2010-05-01

    Few existing stochastic precipitation downscaling methods take into account orography, even if orographic precipitation plays an important role in determining precipitation intensities at small scales, particularly in Alpine areas. In this work we present a modification of the RainFARM stochastic downscaling method (Rebora et al. 2006) in order to take into account orographic effects. The model is calibrated using an orographic signature obtained from a database of 450 pluviometric timeseries in North-Western Italy from 2004 to 2008. An out-of-sample verification is performed on data from 2009. We discuss the limitations and the applicability of this approach to downscaling of climate scenarios. References: N. Rebora, L. Ferraris, J. von Hardenberg, A. Provenzale, 2006: RainFARM: Rainfall Downscaling by a Filtered Autoregressive Model. J. Hydrometeorology, 7, 724-738.

  15. Silicide precipitation strengthened TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Okabe, M. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Isobe, S. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Sayashi, M. [Materials Research Laboratory, Nissan Research Center, Nissan Motor Co. Ltd., 1 Natushima-cho, Yokosuka 237 (Japan)

    1995-02-28

    Precipitation of a titanium silicide Ti{sub 5}Si{sub 3} was found to be beneficial to improvement of the creep resistance of a fully lamellar Ti-48Al-1.5Cr cast alloy without the sacrifice of tensile properties. The addition of 0.26-0.65 mol% Si generates fine precipitates less than 200 nm in size during aging at 900 C for 5 h. The precipitates are effective obstacles to dislocation motion and raise the stress exponents of power law creep significantly. The specific creep strength of Si-containing alloys is better than that of a conventional Ni-base cast superalloy Inconel 713C at 800 C for 10000 h. ((orig.))

  16. Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.; Buscarnera, Giuseppe (NWU); (HKUST-- China)

    2017-07-04

    Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flow simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.

  17. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    During the previous reporting period (Quarter Six), the charging and removal of a fine, high resistivity aerosol using the advanced technology of electron beam precipitation was successfully accomplished. Precharging a dust stream circulating through the EBP wind tunnel produced collection efficiency figures of up to 40 times greater than with corona charging and collection alone (Table 1). The increased system collection efficiency attributed to electron beam precharging was determined to be the result of increased particle charge. It was found that as precharger electric field was raised, collection efficiency became greater. In sequence, saturation particle charge varies with the precharger electric field strength, particle migration velocity varies with the precharger and collector electric field, and collection efficiency varies with the migration velocity. Maximizing the system collection efficiency requires both a high charging electric field (provided by the E-beam precharger), and a high collecting electric field (provided by the collector wires and plates). Because increased particle collection efficiency is directly attributable to higher particle charge, the focus of research during Quarter Seven was shifted to learning more about the actual charge magnitude on the aerosol particles. Charge determinations in precipitators have traditionally been made on bulk dust samples collected from the flue gas stream, which gives an overall charge vs. mass (Q/M) ratio measurement. More recently, techniques have been developed which allow the measurement of the charge on individual particles in a rapid and repeatable fashion. One such advanced technique has been developed at FSU for use in characterizing the electron beam precharger.

  18. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    Science.gov (United States)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; hide

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  19. The precipitation of mucin by aluminium.

    Science.gov (United States)

    Exley, C

    1998-07-01

    The interactions of Al with a mucin glycopeptide have been studied. A number of specific reactions were identified the nature of which were dependent upon the Al chemistry in the hydration environment. In particular, Al was observed to precipitate mucin and it is suggested that this proceeded via the intercalation of the hydroxide within the hydrated macroreticular network of the mucin biopolymer. This precipitation of mucin was visible by eye and abolished the viscosity of native mucin. Viscometry indicated that Al was bound by mucin at low pH. At pH > 3 Al formed a low molecular weight complex with mucin which was hydrolytically stable and was not precipitated at pH up to 8. In an additional and competitive reaction Al was bound by mucin and the resultant mucin-Al complex was suggested to be the precursor to self-assembled mucin-Al spheres identified in solution, by photon correlation spectroscopy, and in precipitate using selective histochemistry. The majority of these spherical structures were of sub-micron diameter and, through their interaction with each other, were probably responsible for the observed pH-dependent peaks of mucin solution viscosity. The larger spheres, between 20 and 80 microns in diameter, were only identified in isolated mucin/Al precipitates and, being comparatively rare, were unlikely to have influenced solution viscosities. These large spheres were observed to act as possible nucleation sites for the flocculation of mucin/Al precipitate. Al at concentrations as low as 0.015 mM induced changes in the rheological properties of mucin. Considering the ubiquitous nature of mucin and the degree to which it is conserved within biota the interactions of Al with mucin may have wide ranging implications for biological systems.

  20. A CEMS search for precipitate formation in 57Fe implanted ZnO

    Science.gov (United States)

    Bharuth-Ram, Krishanlal; Masenda, Hilary; Doyle, Terence B.; Geburt, Sebastian; Ronning, Carsten; Gunnlaugsson, Harald Palle

    2012-03-01

    Conversion electron Mössbauer Spectroscopy measurements have been made on ZnO single crystals implanted with 60 keV 57Fe to 4 and 8 at.% peak concentrations, and annealed up to 800°C. The spectra show quite strong changes with annealing, but no evidence of magnetic components, thus precluding the formation of large sized precipitates or secondary phases. Above an annealing temperature of 650°C, the dominant spectral component is a doublet with hyperfine parameters typical of Fe3 + , which is attributed to Fe3 + ions in nano-precipitates ˜5 nm in size.

  1. Precipitating Condensation Clouds in Substellar Atmospheres

    Science.gov (United States)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  2. High volume, multiple use, portable precipitator

    Science.gov (United States)

    Carlson, Duane C.

    2011-10-25

    A portable high air volume electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a collection electrode adapted to carry a variety of collecting media. An air intake is provided such that air to be analyzed flows through an ionization section with a transversely positioned ionization wire to ionize analytes in the air, and then flows over the collection electrode where ionized analytes are collected. Air flow is maintained at but below turbulent flow, Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the selected medium which can be removed for analysis.

  3. Analysis on Summer Precipitation Efficiency in Shenyang

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to analyze summer precipitation efficiency in Shenyang.[Method] By using the method which estimated the cloud water resource,based on the vertical accumulated liquid water content which was observed by "QFW-1 dual-channel microwave radiometer" and the rain intensity data which had 1min interval and were inverted by "particle laser-based optical measurement" (Parsivel),the precipitation efficiency in Shenyang area during July-August,2007 was analyzed.[Result] When the rain inte...

  4. Atmospheric deposition of organic carbon via precipitation

    Science.gov (United States)

    Iavorivsk