WorldWideScience

Sample records for plasma-sector field mass

  1. Determination of rare earth elements in environmental matrices by sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Riondato, J; Vanhaecke, F; Moens, L; Dams, R

    2001-07-01

    In the framework of an international certification campaign, sector-field inductively coupled plasma mass spectrometry (sector-field ICP-MS) was used for the accurate determination of the rare earth elements in five candidate reference materials: aquatic plant, calcareous soil, mussel tissue, river sediment, and tuna muscle. All samples were taken into solution by use of microwave-assisted or mixed microwave-assisted / open beaker acid digestion. Subsequently, the samples were appropriately diluted and subjected to ICP-MS analysis. Except for Sc, all the elements involved were determined at low mass resolution (R = 300). For Sc, application of a higher resolution setting (R = 3,000) was required to separate the analyte signal from those of several molecular ions which gave rise to spectral overlap at low mass resolution. Some of the heavier REE can also suffer from spectral overlap attributed to the occurrence of oxide ions (MO+) of the lighter REE and Ba. This spectral overlap could be successfully overcome by mathematical correction. Matrix effects were overcome by use of two carefully selected internal standards, such that external calibration could be used. On each occasion, a geological reference material was analyzed as a quality-control sample and the reliability of all results obtained was additionally checked by means of chondrite normalization. For tuna muscle the content of all REE was below the limit of detection. For calcareous soil and river sediment, low to sub microg g(-1) values were observed, whereas the REE content of aquatic plant and mussel tissue was considerably lower (low to sub ng g(-1)). Overall, the results obtained were in excellent agreement with the average values, calculated on the basis of all "accepted" values, obtained in different laboratories using different techniques.

  2. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  3. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    International Nuclear Information System (INIS)

    Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M.

    2008-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ∼103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent

  4. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Amais, Renata S. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Long, Stephen E. [Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Christopher, Steven J., E-mail: steven.christopher@nist.gov [Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC (United States)

    2014-01-02

    Graphical abstract: -- Highlights: •Sulfur mass fractions are measured below 10 mg kg{sup −1} in diesel fuel materials. •SF-ICP-MS resolves molecular interferences, including oxygen and sulfur hydrides. •A detection limit of 0.7 mg kg{sup −1} (in the fuel sample) was obtained. -- Abstract: A method is described for quantification of sulfur at low concentrations on the order of mg kg{sup −1} in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at {sup 32}S and {sup 34}S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg{sup −1} S and 2.5 mg kg{sup −1} S (in the sample). The LOD was constrained by instrument background counts at {sup 32}S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06 ± 0.13 mg kg{sup −1}. No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy.

  6. Determination of the profit rate of plasma treated production in the food sector

    Science.gov (United States)

    Gok, Elif Ceren; Uygun, Emre; Eren, Esin; Oksuz, Lutfi; Uygun Oksuz, Aysegul

    2017-10-01

    Recently, plasma is one of an emerging, green processing technologies used for diverse applications especially food industry. Plasma treatment proposes diverse opportunities in food industry such as surface decontamination, modification of surface properties and improvement in mass transfer with respect for foods and food-related compounds. Sometimes manufacturers use chemical treatment to demolish pathogenic flora, but its capabilities are rather limited. New methods of food sterilization consisting of ionizing radiation, exposure to magnetic fields, high-power ultrasonic treatment are needed expensive equipment or have not yet been developed for industrial use. Plasma could be used for the above mentioned reasons. In this study, the profit rate of plasma treated production in food sector was calculated.

  7. Efficient mass calibration of magnetic sector mass spectrometers

    International Nuclear Information System (INIS)

    Roddick, J.C.

    1996-01-01

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: FieldMass 1/2 + B·(Mass) p where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs

  8. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source

    International Nuclear Information System (INIS)

    Walder, A.J.; Freedman, P.A.

    1992-01-01

    An inductively coupled plasma source was coupled to a magnetic sector mass analyser equipped with seven Faraday detectors. An electrostatic filter located between the plasma source and the magnetic sector was used to create a double focusing system. Isotopic ratio measurements of uranium and lead standards revealed levels of internal and external precision comparable to those obtained using thermal inonization mass spectrometry. An external precision of 0.014% was obtained from the 235 U: 238 U measurement of six samples of a National Bureau of Standards (NBS) Standard Reference Material (SRM) U-500, while an RSD of 0.022% was obtained from the 206 Pb: 204 Pb measurement of six samples of NBS SRM Pb-981. Measured isotopic ratios deviated from the NBS value by approximately 0.9% per atomic mass unit. This deviation approximates to a linear function of mass bias and can therefore be corrected for by the analysis of standards. The analysis of NBS SRM Sr-987 revealed superior levels of internal and external precision. The normalization of the 87 Sr: 86 Sr ratio to the 86 Sr: 88 Sr ratio reduced the RSD to approximately 0.008%. The measured ratio was within 0.01% of the NBS value and the day-to-day reproducibility was consistent within one standard deviation. (author)

  9. Nickel quantification in serum by a validated sector-field inductively coupled plasma mass spectrometry method: Assessment of tentative reference values for an Italian population.

    Science.gov (United States)

    Bocca, Beatrice; Forte, Giovanni; Ronchi, Anna; Gaggeri, Raffaella; Alimonti, Alessandro; Minoia, Claudio

    2006-01-01

    The daily exposure to Ni from food, industrial processes, jewellery and coins makes the determination of Ni in human serum an important way to monitor the health status in non-occupationally exposed subjects. To this end, a method based on sector-field inductively coupled plasma mass spectrometry was developed and validated. The limits of detection (LoD) and quantification (LoQ), sensitivity, linearity range, trueness, repeatability, within-laboratory reproducibility and robustness were the considered issues of the validation process. The uncertainty associated with the measurements was also calculated, according to the Eurachem/Citac Guide. The method LoD and LoQ were 0.03 and 0.09 ng mL(-1), linearity was over two order of magnitude, trueness was -3.57%, and the repeatability and reproducibility showed relative standard deviations equal to 4.56% and 6.52%, respectively. The relative expanded uncertainty was 21.8% at the Ni levels found in the general population. The tentative reference value for serum Ni was 0.466 +/- 0.160 ng mL(-1) with a related interval between 0.226 and 1.026 ng mL(-1). Copyright 2006 John Wiley & Sons, Ltd.

  10. Efficient mass calibration of magnetic sector mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Roddick, J C

    1997-12-31

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A{center_dot}Mass{sup 1/2} + B{center_dot}(Mass){sup p} where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs.

  11. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    International Nuclear Information System (INIS)

    Nathan Joe Saetveit

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 (micro)g L -1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 (micro)L injection in a physiological saline matrix

  12. Determination of iodine at ppt level in a nitric acid medium by inductively coupled plasma sector field mass spectrometry: influence of the chemical forms

    International Nuclear Information System (INIS)

    Langlois, B.

    2001-01-01

    Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP/SFMS) was used to determine several chemical forms of iodine, at ppt level, in a nitric acid media. Ascorbic acid was added as a reducing agent in order to maintain iodine as iodide. In a preliminary approach, the influence of the chemical form was studied by comparing inorganic iodine (NaI) and organic iodine (CH3I). Different signal responses were observed. With a conventional sample introduction system, sensitivities obtained for iodo-methane could differ by a factor of 5. This was not caused by a problem of atomization or by a change in the ionization efficiency of the iodo-compound into the plasma. The low volatilization temperature of iodo-methane (315.5 K) seemed to be the main explanation of this phenomena. Actually, nebulization resulted in the volatilization of a 2% nitric acid solution containing iodo-methane. As a result, the transport efficiency of iodo-methane between the nebulizer and the torch was approaching 100%. A Direct Injection High Efficiency Nebulizer (DIHEN) allowed us to minimize the behavior difference between the two iodine species, but the sensitivity ratio was inverted and still differed by 20 - 40%. Moreover, the association of a guard electrode and the direct injection system was studied in order to apply these equipments to the determination of iodine. This association allowed us to improve the sensitivity by a factor of 10 and to minimize memory effects, when compared with a conventional system. Further studies indicated that signal responses obtained with different iodine-containing species, except for iodo-methane, were found to be similar. (author)

  13. Multi-isotopic determination of plutonium (239Pu, 240Pu, 241Pu and 242Pu) in marine sediments using sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D

    2007-03-28

    Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.

  14. Validation of methods to measure uranium isotopes using magnetic sector mass spectrometry with inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hernandez M, H.; Rios L, M. J.; Romero G, E. T.

    2017-10-01

    The mass spectrometry technique with inductively coupled plasma source (Icp-Ms) has been widely used to measure isotopic ratios of elements toxic to human health. Reason for which, in this work several measurement methods for the analysis of uranium isotopes in different matrices were implemented using magnetic sector mass spectrometry with inductively coupled plasma source (Icp-SFMS). Groundwater, sediment, soil and urine were the matrices analyzed, which were supplied by intercomparison tests conducted by the IAEA and Association for the Promotion of Quality Control of Medical Biology Analysis in Radio-toxicology. The procedures used in the treatment of soil, sediment and water samples were based on US EPA methods. In the case of the urine sample, the preparation was rapid (1:20 dilution). The average of the results obtained in yield of each matrix was 94, 71, 72 and 78% for water, urine, soil and sediment respectively. In addition, the precision in terms of standard relative deviation was less than 5% and the accuracy was less than 4%. In conclusion, the Icp-SFMS is a very sensitive technique for measuring isotopes of U in different matrices. However, careful tuning is necessary, especially in the mass regions of interest 234, 235 and 238 if an external quantification is considered using natural U solutions. (Author)

  15. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a 'Rydberg gas?'

    International Nuclear Information System (INIS)

    Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.

    2003-01-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma

  16. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  17. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    Science.gov (United States)

    Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.

    2003-02-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.

  18. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Sarkis, J.E.S.; Silva Queiroz, C.A. da; Rodrigues, C.; Tomiyoshi, I.A.; Abrao, A.

    2003-01-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL -1 . The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences

  19. Role of centrifugal and charge effects of the mass separation in a plasma centrifuge with crossed fields

    International Nuclear Information System (INIS)

    Zhdanov, V.M.; Karchevskii, A.I.; Lukovnikov, A.I.; Potanin, E.P.

    1982-01-01

    The coefficients of mass separation have been calculated for gas mixtures in crossed electric and magnetic fields. The initial kinetic equations have been derived, and the contribution of centrifugal and charge separation mechanisms to mass separation in a weakly ionized plasma has been assessed

  20. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  1. Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of 236 U at concentration ranges down to 3 x 10 -14 g g -1 and extremely low 236 U/ 238 U isotope ratios in soil samples of 10 -7 . By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg -1 uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH + /U + down to a level of 10 -6 . An abundance sensitivity of 3 x 10 -7 was observed for 236 U/ 238 U isotope ratio measurements at mass resolution 4000. The detection limit for 236 U and the lowest detectable 236 U/ 238 U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the 236 U/ 238 U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the 235 U/ 238 U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of 236 U in the upper 0-10 cm soil layers varied from 2 x 10 -9 g g -1 within radioactive spots close to the Chernobyl NPP to 3 x 10 -13 g g -1 on a sampling site located by >200 km from Chernobyl

  2. Determination of extremely low (236)U/(238)U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction.

    Science.gov (United States)

    Boulyga, Sergei F; Heumann, Klaus G

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.

  3. Evaluating the accuracy of uranium isotope amount ratio measurements performed by a quadrupole and a multi-collector magnetic sector inductively coupled plasma mass spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.

    2008-01-01

    The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)

  4. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-01-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  5. Validation of methods to measure uranium isotopes using magnetic sector mass spectrometry with inductively coupled plasma source; Validacion de metodos para medir isotopos de uranio usando espectrometria de masas de sector magnetico con fuente de plasma acoplado inductivamente

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, H. [Universidad del Centro de Mexico, Capitan Caldera 75, Col. Tequixquiapan, 78250 San Luis Potosi, SLP (Mexico); Rios L, M. J. [Universidad Autonoma de San Luis Potosi, Facultad de Enfermeria y Nutricion, Unidad de Posgrado, Av. Nino Artillero 130, 78210 San Luis Potosi, SLP (Mexico); Romero G, E. T., E-mail: hector.hernandez520@gmail.com [ININ, Departamento de Quimica, Laboratorio Forense Nuclear, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-10-15

    The mass spectrometry technique with inductively coupled plasma source (Icp-Ms) has been widely used to measure isotopic ratios of elements toxic to human health. Reason for which, in this work several measurement methods for the analysis of uranium isotopes in different matrices were implemented using magnetic sector mass spectrometry with inductively coupled plasma source (Icp-SFMS). Groundwater, sediment, soil and urine were the matrices analyzed, which were supplied by intercomparison tests conducted by the IAEA and Association for the Promotion of Quality Control of Medical Biology Analysis in Radio-toxicology. The procedures used in the treatment of soil, sediment and water samples were based on US EPA methods. In the case of the urine sample, the preparation was rapid (1:20 dilution). The average of the results obtained in yield of each matrix was 94, 71, 72 and 78% for water, urine, soil and sediment respectively. In addition, the precision in terms of standard relative deviation was less than 5% and the accuracy was less than 4%. In conclusion, the Icp-SFMS is a very sensitive technique for measuring isotopes of U in different matrices. However, careful tuning is necessary, especially in the mass regions of interest 234, 235 and 238 if an external quantification is considered using natural U solutions. (Author)

  6. Determination of extremely low {sup 236}U/{sup 238}U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)]. E-mail: sergei.boulyga@univie.ac.at; Heumann, Klaus G. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)

    2006-07-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of {sup 236}U at concentration ranges down to 3 x 10{sup -14} g g{sup -1} and extremely low {sup 236}U/{sup 238}U isotope ratios in soil samples of 10{sup -7}. By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg{sup -1} uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH{sup +}/U{sup +} down to a level of 10{sup -6}. An abundance sensitivity of 3 x 10{sup -7} was observed for {sup 236}U/{sup 238}U isotope ratio measurements at mass resolution 4000. The detection limit for {sup 236}U and the lowest detectable {sup 236}U/{sup 238}U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the {sup 236}U/{sup 238}U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the {sup 235}U/{sup 238}U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of {sup 236}U in the upper 0-10 cm soil layers varied from 2 x 10{sup -9} g g{sup -1} within radioactive spots close to the Chernobyl NPP to 3 x 10{sup -13} g g{sup -1} on a sampling site located by >200 km from Chernobyl.

  7. Cross-field plasma injection into mirror geometry

    Energy Technology Data Exchange (ETDEWEB)

    Uzun-Kaymak, I U; Clary, R; Ellis, R; Elton, R; Teodorescu, C; Young, W [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Messer, S; Bomgardner, R; Case, A; Witherspoon, F D, E-mail: uzunkaymak@wisc.ed [HyperV Technologies Corp., Chantilly, VA 20151 (United States)

    2009-09-15

    The Maryland Centrifugal Experiment (MCX) and HyperV Technologies Corp. are collaborating on a series of experiments to test the use of a plasma gun to inject mass and momentum into a magnetic-confinement device. HyperV has designed, built and installed a prototype coaxial gun to drive rotation in MCX. The gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. Preliminary measurements at HyperV indicate the gun generates plasma jets with a mass of 160 {mu}g, velocities up to 90 km s{sup -1} and plasma density in the high 10{sup 14} cm{sup -3}. This paper emphasizes characteristics of the plasma gun and penetration of the plasma jet through the MCX magnetic field. Plans for future injection experiments are briefly discussed.

  8. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  9. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  10. The determination of long life radionuclides by means of sector field ICP mass spectrometry

    International Nuclear Information System (INIS)

    Kerl, W.; Becker, J.S.; Dietze, H.J.; Dannecker, W.

    1996-01-01

    Different analytical processes for determining long life radionuclides by means of double-focussing sector field ICP mass spectrometry are described. In determining long life radionuclides by means of ICP-MS, on the one hand the analytical problem areas are in the interference of isobaric atom or molecule ions (eg: 151 Eu + - 151 Sm + , 79 Se + - 39 Ar 40 ArH + ) and on the other hand in the high detection limits when using commercial sample introduction systems (eg: For 129 I). An online coupling of HPLC and ICP-MS was built up for the separation of isobaric atom ions and was tested for the separation of isobaric atom ions and was tested for its efficiency in the separation of lanthanides. Special sample introduction systems for ICP-MS were developed for the analysis of 129 I, by which the sensitivity of detection can be appreciably improved compared to commercial sample introduction systems. (orig.) [de

  11. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  12. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  13. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  14. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  15. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  16. Soliton mass and surface tension in the(lambda/phi/4)2quantum field model

    International Nuclear Information System (INIS)

    Bellissard, J.; Froehlich, J.; Gidas, B.

    1978-01-01

    The spectrum of the mass operator on the soliton sectors of the anisotropic (lambda/phi 4 ) 2 - and the (lambda phi 4 ) 2 -quantum field models in the two phase region is analyzed. It is proven that, for small enough lambda>O, the mass gap m(lambda) on the soliton sector is positive, and m(lambda) = O(lambda -1 ). In principle, our methods apply to any two dimensional quantum field model with a spontaneously broken, internal symmetry group. (orig.) [de

  17. Use of plasma-source multicollector magnetic-sector mass spectrometry for uranium and plutonium analysis in environmental samples

    International Nuclear Information System (INIS)

    Price Russ, G.; Williams, Ross

    2001-01-01

    Full text: The ability to detect and isotopically characterize uranium and plutonium in environmental samples is of primary importance in the search for nuclear proliferation. The utility of isotope ratio measurements for environmental monitoring is limited by sample preparation costs, measurement precision, and sensitivity. This is particularly true for wide-area monitoring where the number of samples required varies inversely with obtainable precision and sensitivity. Historically isotopic measurements have been made by thermal ionization mass spectrometry (TIMS). While requiring extensive sample preparation, no other technique matched its precision and sensitivity for such measurements. Inductively-coupled-plasma, magnetic-sector, multicollector, mass spectrometry offers the prospect of extending the state-of-the-art to higher precision while increasing sensitivity and reducing costs through more rapid analysis and reduced sample preparation. At LLNL this technique is being implemented in the form of an IsoProbe (Micromass, UK). This paper will present data for both standards and IAEA supplied samples demonstrating the power and limitations of the technique. The precision and sensitivity of the IsoProbe results will be compared to TIMS performance for comparable samples. For 48 determinations of natural uranium, using the double spike to correct for bias, a relative standard deviation of 0.04% (1σ) for 238 U/ 235 U has been obtained in a preliminary study. This is a substantial improvement over the TIMS result of 0.1% reported at the previous conference. Further improvements can be expected as we gain a better understanding of the background peaks occurring in the IsoProbe spectra. (author)

  18. Longitudinal effect in the ionospheric plasma density in the evening sector during the magnetic storm on 18-19.12.1978

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Gdalevich, G.L.; Eliseev, A.Yu.; Kolomijtsev, O.P.

    1986-01-01

    The longitidinal effect in the ionospheric plasma density in the evening sector during the magnetic storm on 18-19 December 1978 is investigated. The quantitative confirmation of substantial role of the F2 layer vertical drifts in formation of the ionization level at the height of approximately 500 km is obtained. The observed at these heights plasma density variati ons can be explained by penetration of magnetospheric electrical fields into mean latitudes. It is shown that in case of simulation of disturbance development in the evening sector longitudinal asymmetry in the development of ionospheric disturbance should be taken into account. This effect can provide electron density variations comparable with variations caused by penetration of electrical field of magnetoshperic origin into mean-latitudinal ionosphere

  19. Method Development for Rapid Analysis of Natural Radioactive Nuclides Using Sector Field Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.M.; Ji, Y.Y.; Lee, H.; Park, J.H.; Jang, M.; Chung, K.H.; Kang, M.J.; Choi, G.S. [Korea Atomic Energy Research Institute (Korea, Republic of)

    2014-07-01

    sector field ICP-MS (SPECTRO MS) was used for a rapid determination of radionuclides concentration. For an evaluation of the accuracy and precision of the method, certified reference materials (CRMs) were analyzed using an established process. The analytical results of CRM samples were in agreement with the certified concentration values. Thus, one may conclude that the analytical results derived using fusion and ICP-MS are fairly reliable. Finally, the radioactivity concentration in raw materials (e.g., bauxite, bentonite, ceramic, clay, monazite, and zirconium sand) and by-products (e.g., coal fly and bottom ash) was determined. Document available in abstract form only. (authors)

  20. Metrics for comparing plasma mass filters

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  1. Metrics for comparing plasma mass filters

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  2. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm

    Science.gov (United States)

    Abdu, M. A.; de Paula, E. R.; Batista, I. S.; Reinisch, B. W.; Matsuoka, M. T.; Camargo, P. O.; Veliz, O.; Denardini, C. M.; Sobral, J. H. A.; Kherani, E. A.; de Siqueira, P. M.

    2008-07-01

    Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ˜1200 ms-1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper.

  3. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)

  4. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine

    2002-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  5. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  6. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  7. Normal-mode Magnetoseismology as a Virtual Instrument for the Plasma Mass Density in the Inner Magneotsphere: MMS Observations during Magnetic Storms

    Science.gov (United States)

    Chi, P. J.; Takahashi, K.; Denton, R. E.

    2017-12-01

    Previous studies have demonstrated that the electric and magnetic field measurements on closed field lines can detect harmonic frequencies of field line resonance (FLR) and infer the plasma mass density distribution in the inner magnetosphere. This normal-mode magnetoseismology technique can act as a virtual instrument for spacecraft with a magnetometer and/or an electric field instrument, and it can convert the electromagnetic measurements to knowledge about the plasma mass, of which the dominant low-energy core is difficult to detect directly due to the spacecraft potential. The additional measurement of the upper hybrid frequency by the plasma wave instrument can well constrain the oxygen content in the plasma. In this study, we use field line resonance (FLR) frequencies observed by the Magnetospheric Multiscale (MMS) satellites to estimate the plasma mass density during magnetic storms. At FLR frequencies, the phase difference between the azimuthal magnetic perturbation and the radial electric perturbation is approximately ±90°, which is consistent with the characteristic of standing waves. During the magnetic storm in October 2015, the FLR observations indicate a clear enhancement in the plasma mass density on the first day of the recovery phase, but the added plasma was quickly removed on the following day. We will compare with the FLR observations by other operating satellites such as the Van Allen Probes and GOES to examine the spatial variations of the plasma mass density in the magnetosphere. Also discussed are how the spacing in harmonic frequencies can infer the distribution of plasma mass density along the field line as well as its implications.

  8. Development of procedure for measurement of Pb isotope ratios in seawater by application of seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Vassileva, Emilia; Wysocka, Irena

    2016-12-01

    Anthropogenic Pb in the oceans, derived from high-temperature industrial processes, fuel combustion and incineration can have an isotopic signature distinct from naturally occurring Pb, supplied by rock weathering. To identify the different pollution sources accurately and to quantify their relative contributions, Pb isotope ratios are widely used. Due to the high salt content (approximately 3.5% of total dissolved solids) and very low levels of Pb (typically from 1 to 100 ng L- 1) in seawater the determination of Pb isotope ratios requires preliminary matrix separation and analyte preconcentration. An analytical protocol for the measurements of Pb isotope ratios in seawater combining seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry (SF ICP-MS) was developed. The application of seaFAST system was advantageous, because of its completely closed working cycle and small volumes of chemicals introduced in pre-treatment step, resulting in very low detection limits and procedural blanks. The preconcentration/matrix separation step was also of crucial importance for minimizing the isobaric and matrix interferences, coming from the seawater. In order to differentiate between anthropogenic and natural Pb sources, particular attention was paid to the determination of 204Pb isotope because of its implication in some geological interpretations. The validation of the analytical procedure was effectuated according to the recommendations of the ISO/IEC 17025 standard. The method was validated by processing the common Pb isotope reference material NIST SRM 981. All major sources of uncertainty were identified and propagated together following the ISO/GUM guidelines. The estimation of the total uncertainty associated to each measurement result was fundamental tool for sorting the main sources of possible biases. The developed analytical procedure was applied to the coastal and open seawater samples, collected in different regions of

  9. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  10. Determination of iodine at ppt level in a nitric acid medium by inductively coupled plasma sector field mass spectrometry: influence of the chemical forms; Etude de la determination de traces d'iode en solution par spectrometrie de masse a secteur magnetique utilisant un plasma a couplage inductif comme source d'ionisation: influence de la forme chimique

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, B

    2001-07-01

    Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP/SFMS) was used to determine several chemical forms of iodine, at ppt level, in a nitric acid media. Ascorbic acid was added as a reducing agent in order to maintain iodine as iodide. In a preliminary approach, the influence of the chemical form was studied by comparing inorganic iodine (NaI) and organic iodine (CH3I). Different signal responses were observed. With a conventional sample introduction system, sensitivities obtained for iodo-methane could differ by a factor of 5. This was not caused by a problem of atomization or by a change in the ionization efficiency of the iodo-compound into the plasma. The low volatilization temperature of iodo-methane (315.5 K) seemed to be the main explanation of this phenomena. Actually, nebulization resulted in the volatilization of a 2% nitric acid solution containing iodo-methane. As a result, the transport efficiency of iodo-methane between the nebulizer and the torch was approaching 100%. A Direct Injection High Efficiency Nebulizer (DIHEN) allowed us to minimize the behavior difference between the two iodine species, but the sensitivity ratio was inverted and still differed by 20 - 40%. Moreover, the association of a guard electrode and the direct injection system was studied in order to apply these equipments to the determination of iodine. This association allowed us to improve the sensitivity by a factor of 10 and to minimize memory effects, when compared with a conventional system. Further studies indicated that signal responses obtained with different iodine-containing species, except for iodo-methane, were found to be similar. (author)

  11. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  12. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  13. Plasma Mass Filters For Nuclear Waste Reprocessing

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  14. The associations between metals/metalloids concentrations in blood plasma of Hong Kong residents and their seafood diet, smoking habit, body mass index and age.

    Science.gov (United States)

    Qin, Yan Yan; Leung, Clement Kai Man; Lin, Che Kit; Wong, Ming Hung

    2015-09-01

    The concentrations of metals/metalloids in blood plasma collected from 111 healthy residents (51 female, 60 male) in Hong Kong (obtained from the Hong Kong Red Cross Blood Transfusion Service, from March to April 2008) were quantified by means of a double-focusing sector field inductively coupled plasma optical emission spectrometer (ICP-OES). Results showed that concentrations of these toxic metals such as Hg, Cd, and Pb in Hong Kong residents were not serious when compared with other countries. Males accumulated significantly higher (p diet habit, body mass index (BMI), and age. More intensive studies involving more samples are needed before a more definite conclusion can be drawn, especially on the causal relationships between concentrations of metals/metalloids with dietary preference and lifestyle of the general public.

  15. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  16. Design and construction of a magnetic sector mass spectrometer

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Ludwig, G.O.; Montes, A.

    1991-08-01

    In this work we describe the design and construction of a sector magnetic mass spectrometer. The main parts of the instrument are: ion source, grids (extraction, energy analysis and ion acceleration), electrostatic lens, magnetic sector and detector. All these components are kept inside a vacuum chamber evacuated by a turbomolecular pump. (author)

  17. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  18. Gas chromatography/plasma spectrometry - an important analytical tool for elemental speciation studies

    International Nuclear Information System (INIS)

    Wuilloud, Jorgelina C.A.; Wuilloud, Rodolfo G.; Vonderheide, Anne P.; Caruso, Joseph A.

    2004-01-01

    In this review, a full discussion and update of the state-of-the-art of gas chromatography (GC) coupled to all known plasma spectrometers is presented. A brief introductive discussion of the advantages and disadvantages of GC-plasma interfaces, as well as types of plasmas and mass spectrometers, is given. The plasma-based techniques covered include inductively coupled plasma mass spectrometry (ICP-MS) microwave-induced plasma optical emission spectrometry (MIP-OES), and inductively coupled plasma optical emission spectrometry (ICP-OES). Also, different variants of plasma sources, such as low power plasmas and glow discharge (GD) sources, are described and compared with respect to their capabilities in elemental speciation. Recent advances and alternative mass analyzers (collision/reaction cell; time-of-flight; double-focusing sector field) are also mentioned. Different aspects of the GC-plasma coupling are discussed with particular attention to the applications of these hyphenated techniques to the analysis of elemental species. Additionally, classical and modern sample preparation methods, including extraction and/or preconcentration and derivatization reactions, are presented and evaluated

  19. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    Full Text Available Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured electrons and isotropic ion

  20. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available

    Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured

  1. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass

  2. Substorm observations in the early morning sector with Equator-S and Geotail

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    1999-12-01

    Full Text Available Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20–04 MLT, on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasma sheet; storms and substorms

  3. The acceleration of a gaseous plasma by intense microwave fields in a constant inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Mourier, Georges

    1971-01-01

    A gaseous plasma excited by a powerful microwave source (up to 300 kW) was studied theoretically and experimentally. The large amplitude electric field excites, in a constant inhomogeneous magnetic field, a plasma near to the electron cyclotron resonance. These particles are accelerated to energies of between 100 and 10000 eV and subsequently drift to the regions of lower magnetic field. The ions are accelerated by the resulting electrostatic forces. Ion and electron currents of some tens of milli-amperes to a few amperes are obtained. The energy of the electrons is limited by their relativistic mass; a three-dimensional of space charge model is set up to describe the particle flow. (author) [fr

  4. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    International Nuclear Information System (INIS)

    Lundin, R.; Hultqvist, B.

    1989-01-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989

  5. Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, O.E.; Paulsen, J.V.

    1997-01-01

    It is shown by simple physical arguments and fluid simulations that electrostatic flute-mode fluctuations can sustain a substantial cross-field current in addition to mass and energy transport. The simulations show that this current determines essential features of the fluctuating plasma...

  6. The MSSM without gluinos; an effective field theory for the stop sector

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Jason; Greub, Christoph [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Crivellin, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Yamada, Youichi [Tohoku University, Department of Physics, Sendai (Japan)

    2017-11-15

    In this article we study the MSSM with stops and Higgs scalars much lighter than gluinos and squarks of the first two generations. In this setup, one should use an effective field theory with partial supersymmetry in which the gluino and heavy squarks are integrated out in order to connect SUSY parameters (given at a high scale) to observables in the stop sector. In the construction of this effective theory, valid below the gluino mass scale, we take into account O(α{sub 3}) and O(Y{sub t,b}{sup 2}) effects and calculate the matching as well as the renormalization group evolution. As a result, the running of the parameters for the stop sector is modified with respect to the full MSSM and SUSY relations between parameters are broken. We show that for some couplings sizable numerical differences exist between the effective field theory approach and the naive calculation based on the MSSM running. (orig.)

  7. Ghost sector of vacuum string field theory and the projection equation

    International Nuclear Information System (INIS)

    Potting, Robertus; Raeymaekers, Joris

    2002-01-01

    We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)

  8. Magnetic field in expanding quark-gluon plasma

    Science.gov (United States)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  9. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  10. Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)

  11. On gravity's role in the genesis of rest masses of classical fields

    Science.gov (United States)

    Szabados, László B.

    2018-03-01

    It is shown that in the Einstein-conformally coupled Higgs-Maxwell system with Friedman-Robertson-Walker symmetries the energy density of the Higgs field has stable local minimum only if the mean curvature of the t=const hypersurfaces is less than a finite critical value χ _c, while for greater mean curvature the energy density is not bounded from below. Therefore, there are extreme gravitational situations in which even quasi-locally defined instantaneous vacuum states of the Higgs sector cannot exist, and hence one cannot at all define the rest mass of all the classical fields. On hypersurfaces with mean curvature less than χ _c the energy density has the `wine bottle' (rather than the familiar `Mexican hat') shape, and the gauge field can get rest mass via the Brout-Englert-Higgs mechanism. The spacelike hypersurface with the critical mean curvature represents the moment of `genesis' of rest masses.

  12. Mass analyzer ``MASHA'' high temperature target and plasma ion source

    Science.gov (United States)

    Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.

    2004-05-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.

  13. Mass analyzer 'MASHA' high temperature target and plasma ion source

    International Nuclear Information System (INIS)

    Semchenkov, A.G.; Rassadov, D.N.; Bekhterev, V.V.; Bystrov, V.A.; Chizov, A.Yu.; Dmitriev, S.N.; Efremov, A.A.; Guljaev, A.V.; Kozulin, E.M.; Oganessian, Yu.Ts.; Starodub, G.Ya.; Voskresensky, V.M.; Bogomolov, S.L.; Paschenko, S.V.; Zelenak, A.; Tikhonov, V.I.

    2004-01-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency

  14. Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques

    Directory of Open Access Journals (Sweden)

    D. Yao

    2007-03-01

    Full Text Available Using 1024 nights of data from 2002–2005 taken by the Cornell Narrow Field Imager (CNFI, we examine equatorial plasma bubble (EPB zonal drift velocity characteristics. CNFI is located at the Maui Space Surveillance Site on the Haleakala Volcano (geographic: 20.71° N, 203.83° E; geomagnetic: 21.03° N, 271.84° E on the island of Maui, Hawaii. The imager is set up to view in a magnetic field-aligned geometry in order to maximize its resolution. We calculate the zonal drift velocities using two methods: a correlation routine and an EPB west-wall intensity gradient tracking routine. These two methods yield sizeable differences in the evenings, suggesting strong pre-local midnight EPB development. An analysis of the drift velocities is also performed based on the three influencing factors of season, geomagnetic activity, and solar activity. In general, our data match published trends and drift characteristics from past studies. However, we find that the drift magnitudes are much lower than results from other imagers at similar latitude sectors but at different longitude sectors, suggesting that zonal drift velocities have a longitudinal dependence.

  15. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  16. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  17. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  18. Superstring field theory equivalence: Ramond sector

    International Nuclear Information System (INIS)

    Kroyter, Michael

    2009-01-01

    We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.

  19. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  20. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  1. Reversed-Field Pinch plasma model

    International Nuclear Information System (INIS)

    Miley, G.H.; Nebel, R.A.; Moses, R.W.

    1979-01-01

    The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile

  2. Oscillations and Stability of Plasma in an External High-Frequency Electric Field

    International Nuclear Information System (INIS)

    Aliev, Ju.M.; Gorbunov, L.M.; Silin, V.P.; Uotson, H.

    1966-01-01

    A theory is developed for the oscillations and stability of plasma in a strong external HF electric field. The kinetic equation with self-congruent reciprocity is linearized for weak deviations from the ground state. Since the latter depends on an external HF field, the linearized equation obtained has coefficients with a periodic time dependence. From this equation and also from Maxwell's equations there is derived a dispersion equation for plasma oscillations that represents the zero value of the infinite order determinant, and that is solved both for external field frequencies considerably exceeding the electron Langmuir frequency and for frequencies that are less. The external HF field changes the oscillation branches in a plasma without an external field, and also leads to a new low-frequency oscillation branch. Movement of particles in the HF field gives spatial dispersion. If the frequency of the field exceeds the election Langmuir frequency, the plasma oscillations are stable. At frequencies less than this level there occurs a build-up of low-frequency oscillations. Here the maximum of the build-up occurs when the external field frequencies approach the electron Langmuir frequency and is equal to the product of the Langmuir frequency and the one-third power of the electron-ion mass ratio. Away from the resonance, -the increment of build-up has the same order of magnitude as the ion Langmuir frequency. An external magnetic field increases the number of possible natural plasma oscillations and thereby increases the possibility of resonance with the external HF field. Allowance for the thermal motion of the particles enables one to determine the attenuation of the oscillations in question. Expressions for the decrements are derived. The effect of the external HF field on a plasma in which there are beams is also discussed. An HF field has a destabilizing effect on a system of this kind, since on the one hand there can be a build-up of fresh, low

  3. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  4. Large amplitude waves and fields in plasmas

    International Nuclear Information System (INIS)

    Angelis, U. de; Naples Univ.

    1990-02-01

    In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)

  5. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres

    International Nuclear Information System (INIS)

    Sheridan, T. E.; Katschke, M. R.; Wells, K. D.

    2007-01-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model

  6. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  7. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  8. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  9. Controlling of merging electric field and IMF magnitude on storm-time changes in thermospheric mass density

    Directory of Open Access Journals (Sweden)

    Y. L. Zhou

    2013-01-01

    Full Text Available The controls of merging electrical field, Em, and IMF (interplanetary magnetic field magnitude, B, on the storm-time changes in upper thermospheric mass density are statistically investigated using GRACE accelerometer observations and the OMNI data of solar wind and IMF for 35 great storms during 2002–2006. It reveals the following: (1 The correlation coefficients between the air mass density changes and the parameters of Em and B are generally larger at lower latitudes than at higher latitudes, and larger in noon and midnight sectors than in dawn and dusk. (2 The most likely delay time (MLDT of mass density changes in respect to Em is about 1.5 h (4.5 h at high (low latitudes, having no distinct local time dependence, while it is 6 h at middle latitudes in all the local time sectors except for noon, which is longer than at low latitudes. A similar fact of longer delay time at mid-latitude is also seen for B. The MLDTs for B at various latitudes are all local time dependent distinctly with shorter delay time in noon/midnight sector and larger in dawn/dusk. Despite of widely spread of the delay time, IMF B exhibits still larger correlation coefficients with mass density changes among the interplanetary parameters. (3 The linear control factor of B on the density changes increases for large B, in contrast to somewhat saturation trend for larger Em. (4 The influence of B and Em on the mass densities shows different behavior for different types of storms. The influence intensity of Em is much stronger for CIR-driven than for CME-driven storm, while it is not so distinct for B. On the local time asymmetry of the influence, both Em and B have largest influence at noon sector for CME-driven storms, while an obviously larger intensification of the influence is found in dawn/dusk sector during CIR storms, especially for parameter Em.

  10. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  11. General structure of democratic mass matrix of quark sector in E{sub 6} model

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, R., E-mail: rciftci@cern.ch [Ankara (Turkey); Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch [Ankara University, Ankara (Turkey)

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  12. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  13. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  14. Effects of magnetic fields on the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-11-15

    In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

  15. General connected and reconnected fields in plasmas

    Science.gov (United States)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  16. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  17. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    Science.gov (United States)

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright 2009 John Wiley & Sons, Ltd.

  18. Influence of error fields on the plasma confining field and the plasma confinement in tokamak

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1977-05-01

    Influence of error fields on the plasma confining field and the plasma confinement is treated in the standpoint of design. In the initial breakdown phase before formation of the closed magnetic surfaces, the vertical field properly applied is the most important. Once the magnetic surfaces are formed, the non-axisymmetric error field is important. Effect of the shell gap associated with iron core and with pulsed vertical coils is thus studied. The formation of magnetic islands due to the external non-axisymmetric error field is studied with a simple model. A method of suppressing the islands by choosing the minor periodicity is proposed. (auth.)

  19. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  20. Plasma heating in a variable magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  1. Wake field in electron-positron plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Berezhiani, V.I.

    1993-03-01

    We study the creation of wake field in cold electron positron plasma by electron bunches. In the resulting plasma inhomogeneity we study the propagation of short electromagnetic pulse. In is found that wake fields can change the frequency of the radiation substantially. (author). 7 refs, 1 fig

  2. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  3. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  4. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  5. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  6. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  7. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  8. A mean field theory for the cold quark gluon plasma applied to stellar structure

    Energy Technology Data Exchange (ETDEWEB)

    Fogaca, D. A.; Navarra, F. S.; Franzon, B. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    An equation of state based on a mean-field approximation of QCD is used to describe the cold quark gluon plasma and also to study the structure of compact stars. We obtain stellar masses compatible with the pulsar PSR J1614-2230 that was determined to have a mass of (1.97 {+-} 0.04 M{sub Circled-Dot-Operator }), and the corresponding radius around 10-11 km.

  9. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    NARCIS (Netherlands)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels - Adamowicz, E.

    2006-01-01

    Fractional no. d. measurements for a radiofrequency plasma needle operating at atm. pressure were obtained using a mol. beam mass spectrometer (MBMS) system designed for diagnostics of atm. plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes

  10. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  11. Freeze-In Dark Matter from a sub-Higgs Mass Clockwork Sector via the Higgs Portal

    OpenAIRE

    Kim, Jinsu; McDonald, John

    2018-01-01

    The clockwork mechanism allows extremely weak interactions and small mass scales to be understood in terms the structure of a theory. A natural application of the clockwork mechanism is to the freeze-in mechanism for dark matter production. Here we consider a Higgs portal freeze-in dark matter model based on a scalar clockwork sector with a mass scale which is less than the Higgs boson mass. The dark matter scalar is the lightest scalar of the clockwork sector. Freeze-in dark matter is produc...

  12. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  13. ICP magnetic sector multiple collector mass spectrometry and the precise measurement of isotopic compositions using nebulization of solutions and laser ablation of solids

    International Nuclear Information System (INIS)

    Halliday, A.N.; Lee, D-C.; Christensen, J.N.; Yi, W.; Hall, C.M.; Jones, C.E.; Teagle, D.A.H.; Freedman, P.A.

    1996-01-01

    Inductively-coupled plasma (ICP) sources offer considerable advantages over thermal sources because the high ionization efficiency facilitates measurements of relatively high sensitivity for elements such as Hf or Sn, which can be difficult to measure precisely with thermal ionization mass spectrometry (TIMS). The mass discrimination (bias) is larger than for TIMS, favours the heavier ions, and decreases in magnitude with increasing mass. However, in contrast to TIMS, this discrimination is largely independent of the chemical or physical properties of the element or the duration of the analysis. This has been demonstrated to high precision with a double focussing multiple collector magnetic sector mass spectrometer with an ICP source. The principle of this instrument is briefly described. The potential of the instrument for high precision isotopic measurements of a very broad range of elements, using solution aspiration or laser ablation, is indicated. 15 refs

  14. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  15. Dark Sectors 2016 Workshop: Community Report

    CERN Document Server

    Alexander, Jim; Echenard, Bertrand; Essig, Rouven; Graham, Matthew; Izaguirre, Eder; Jaros, John; Krnjaic, Gordan; Mardon, Jeremy; Morrissey, David; Nelson, Tim; Perelstein, Maxim; Pyle, Matt; Ritz, Adam; Schuster, Philip; Shuve, Brian; Toro, Natalia; Van De Water, Richard G.; Akerib, Daniel; An, Haipeng; Aniol, Konrad; Arnquist, Isaac J.; Asner, David M.; Back, Henning O.; Baker, Keith; Baltzell, Nathan; Banerjee, Dipanwita; Batell, Brian; Bauer, Daniel; Beacham, James; Benesch, Jay; Bjorken, James; Blinov, Nikita; Boehm, Celine; Bondi, Mariangela; Bonivento, Walter; Bossi, Fabio; Brodsky, Stanley J.; Budnik, Ran; Bueltmann, Stephen; Bukhari, Masroor H.; Bunker, Raymond; Carpinelli, Massimo; Cartaro, Concetta; Cassel, David; Cavoto, Gianluca; Celentano, Andrea; Chaterjee, Animesh; Chaudhuri, Saptarshi; Chiodini, Gabriele; Cho, Hsiao-Mei Sherry; Church, Eric D.; Cooke, D.A.; Cooley, Jodi; Cooper, Robert; Corliss, Ross; Crivelli, Paolo; Curciarello, Francesca; D'Angelo, Annalisa; Davoudiasl, Hooman; De Napoli, Marzio; De Vita, Raffaella; Denig, Achim; deNiverville, Patrick; Deshpande, Abhay; Dharmapalan, Ranjan; Dobrescu, Bogdan; Donskov, Sergey; Dupre, Raphael; Estrada, Juan; Fegan, Stuart; Ferber, Torben; Field, Clive; Figueroa-Feliciano, Enectali; Filippi, Alessandra; Fornal, Bartosz; Freyberger, Arne; Friedland, Alexander; Galon, Iftach; Gardner, Susan; Girod, Francois-Xavier; Gninenko, Sergei; Golutvin, Andrey; Gori, Stefania; Grab, Christoph; Graziani, Enrico; Griffioen, Keith; Haas, Andrew; Harigaya, Keisuke; Hearty, Christopher; Hertel, Scott; Hewett, JoAnne; Hime, Andrew; Hitlin, David; Hochberg, Yonit; Holt, Roy J.; Holtrop, Maurik; Hoppe, Eric W.; Hossbach, Todd W.; Hsu, Lauren; Ilten, Phil; Incandela, Joe; Inguglia, Gianluca; Irwin, Kent; Jaegle, Igal; Johnson, Robert P.; Kahn, Yonatan; Kalicy, Grzegorz; Kang, Zhong-Bo; Khachatryan, Vardan; Kozhuharov, Venelin; Krasnikov, N.V.; Kubarovsky, Valery; Kuflik, Eric; Kurinsky, Noah; Laha, Ranjan; Lanfranchi, Gaia; Li, Dale; Lin, Tongyan; Lisanti, Mariangela; Liu, Kun; Liu, Ming; Loer, Ben; Loomba, Dinesh; Lyubovitskij, Valery E.; Manalaysay, Aaron; Mandaglio, Giuseppe; Mans, Jeremiah; Marciano, W.J.; Markiewicz, Thomas; Marsicano, Luca; Maruyama, Takashi; Matveev, Victor A.; McKeen, David; McKinnon, Bryan; McKinsey, Dan; Merkel, Harald; Mock, Jeremy; Monzani, Maria Elena; Moreno, Omar; Nantais, Corina; Paul, Sebouh; Peskin, Michael; Poliakov, Vladimir; Polosa, Antonio D.; Pospelov, Maxim; Rachek, Igor; Radics, Balint; Raggi, Mauro; Randazzo, Nunzio; Ratcliff, Blair; Rizzo, Alessandro; Rizzo, Thomas; Robinson, Alan; Rubbia, Andre; Rubin, David; Rueter, Dylan; Saab, Tarek; Santopinto, Elena; Schnee, Richard; Shelton, Jessie; Simi, Gabriele; Simonyan, Ani; Sipala, Valeria; Slone, Oren; Smith, Elton; Snowden-Ifft, Daniel; Solt, Matthew; Sorensen, Peter; Soreq, Yotam; Spagnolo, Stefania; Spencer, James; Stepanyan, Stepan; Strube, Jan; Sullivan, Michael; Tadepalli, Arun S.; Tait, Tim; Taiuti, Mauro; Tanedo, Philip; Tayloe, Rex; Thaler, Jesse; Tran, Nhan V.; Tulin, Sean; Tully, Christopher G.; Uemura, Sho; Ungaro, Maurizio; Valente, Paolo; Vance, Holly; Vavra, Jerry; Volansky, Tomer; von Krosigk, Belina; Whitbeck, Andrew; Williams, Mike; Wittich, Peter; Wojtsekhowski, Bogdan; Xue, Wei; Yoon, Jong Min; Yu, Hai-Bo; Yu, Jaehoon; Yu, Tien-Tien; Zhang, Yue; Zhao, Yue; Zhong, Yiming; Zurek, Kathryn

    2016-01-01

    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.

  16. Dark Sectors 2016 Workshop: Community Report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Jim; et al.

    2016-08-30

    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.

  17. Development of near-field laser ablation inductively coupled plasma mass spectrometry for sub-micrometric analysis of solid samples

    International Nuclear Information System (INIS)

    Jabbour, Chirelle

    2016-01-01

    A near field laser ablation method was developed for chemical analysis of solid samples at sub-micrometric scale. This analytical technique combines a nanosecond laser Nd:YAG, an atomic Force Microscope (AFM), and an inductively coupled plasma mass spectrometer (ICPMS). In order to improve the spatial resolution of the laser ablation process, the near-field enhancement effect was applied by illuminating, by the laser beam, the apex of the AFM conductive sharp tip maintained at a few nanometers (5 to 30 nm) above the sample surface. The interaction between the illuminated tip and the sample surface enhances locally the incident laser energy and leads to the ablation process. By applying this technique to conducting gold and tantalum samples, and semiconducting silicon sample, a lateral resolution of 100 nm and depths of a few nanometers were demonstrated. Two home-made numerical codes have enabled the study of two phenomena occurring around the tip: the enhancement of the laser electrical field by tip effect, and the induced laser heating at the sample surface. The influence of the main operating parameters on these two phenomena, amplification and heating, was studied. an experimental multi-parametric study was carried out in order to understand the effect of different experimental parameters (laser fluence, laser wavelength, number of laser pulses, tip-to-sample distance, sample and tip nature) on the near-field laser ablation efficiency, crater dimensions and amount of ablated material. (author) [fr

  18. Plasma behaviors in the open field region of reversed-field theta-pinch

    International Nuclear Information System (INIS)

    Aso, Yoshiyuki; Hirano, Keiichi.

    1983-03-01

    A characteristic behavior of the plasma in an open field region of reversed field theta pinch has been studied with the guide field (GF) which extends the field line along the axial direction. The experimental result suggests that the rotaional instability may be induced in FRC after the plasma touches the wall at the ends of the open field. (author)

  19. Impact of magnetic perturbation fields on tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, Sina; Maraschek, Marc; Suttrop, Wolfgang; Zohm, Hartmut [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Classen, Ivo [FOM-Institute DIFFER, Nieuwegein (Netherlands); Collaboration: the ASDEX Upgrade Team

    2015-05-01

    Non-axisymmetric external magnetic perturbation (MP) fields arise in every tokamak e.g. due to not perfectly positioned external coils. Additionally many tokamaks, like ASDEX Upgrade (AUG), are equipped with a set of external coils, which produce a 3D MP field in addition to the equilibrium field. This field is used to either compensate for the intrinsic MP field or to influence MHD instabilities such as Edge Localised Modes (ELMs) or Neoclassical Tearing Modes (NTMs). But these MP fields can also give rise to a more global plasma response. The resonant components can penetrate the plasma and influence the stability of existing NTMs or even lead to their formation via magnetic reconnection. In addition they exert a local torque on the plasma. These effects are less pronounced at high plasma rotation where the resonant field components are screened. The non-resonant components do not influence NTMs directly but slow down the plasma rotation globally via the neoclassical toroidal viscous torque. The island formation caused by the MP field as well as the interaction of pre-existing islands with the MP field at AUG is presented. It is shown that these effects can be modelled using a simple forced reconnection theory. Also the effect of resonant and non-resonant MPs on the plasma rotation at AUG is discussed.

  20. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  1. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  2. The study of a plasma jet injected by an on-board plasma thruster

    International Nuclear Information System (INIS)

    Grebnev, I.A.; Ivanov, G.V.; Khodnenko, V.P.

    1981-01-01

    The injection of a steady plasma jet into the ionosphere results in interactions which were studied in experiments conducted onboard two Meteor satellites in 1977-1979. The jet parameters at the propulsion system output were as follows: propulsive mass: Xe Xe (+) ion density at the nozzle section 3 x 10 to the 11th per cu cm plasma stream divergence: 20 degrees jet velocity: 10-12 km/cm ion energy: 130 eV electron temperature: 1 + 3 eV. A Bennett-type modified radio-frequency mass-spectrometer and a two-channel electromagnetic wave analyzer were used for the measurements. It was found that (1) the injected plasma jet propagation depends on the jet injection pitch angle (2) when the plasma jet was injected along the magnetic field, impactless jet spreading took place without considerable interaction with the ionospheric plasma (3) when the plasma jet was injected across the magnetic field, considerable interaction was observed between the plasma jet/ionospheric plasma and the earth's magnetic field and (4) electromagnetic fields were generated near the satellite by plasma jet interaction

  3. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  4. Z-Z' mass hierarchy in a supersymmetric model with a secluded U(1)'-breaking sector

    International Nuclear Information System (INIS)

    Erler, Jens; Langacker, Paul; Li Tianjun

    2002-01-01

    We consider the Z ' /Z mass hierarchy in a supersymmetric model in which the U(1) ' is broken in a secluded sector coupled to the ordinary sector only by gauge and possibly soft terms. A large mass hierarchy can be achieved while maintaining the normal sparticle spectra if there is a direction in which the tree level potential becomes flat when a particular Yukawa coupling vanishes. We describe the conditions needed for the desired breaking pattern, to avoid unwanted global symmetries, and for an acceptable effective μ parameter. The electroweak breaking is dominated by A terms rather than scalar masses, leading to tan β≅1. The spectrum of the symmetry breaking sector is displayed. There is significant mixing between the MSSM particles and new standard model singlets, for both the Higgs scalars and the neutralinos. A larger Yukawa coupling for the effective μ parameter is allowed than in the NMSSM because of the U(1) ' contribution to the running from a high scale. The upper bound on the tree-level mass of the lightest CP even Higgs doublet mass is about cx174 GeV, where c is of order unity, but the actual mass eigenvalues are generally smaller because of singlet mixing

  5. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  6. Dynamics of a rarefied plasma in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Kadomtsev, B B; Rudakov, L I; Vedyonov, A A

    1958-07-01

    The nature of the motion and properties of high temperature plasma in a magnetic field is of particular interest for the problem of producing controlled thermonuclear reactions. The most general theoretical approach to such problems lies in the description of the plasma by the Boltzmann and Maxwell equations that connect the self-consistent electric and magnetic fields with the ion and electron distribution functions. The exact equations for the motion of plasma in an electromagnetic field can only be solved in certain simple cases especially because the fields are influenced by the collective motion of all the particles. For a certain class of problems it is possible to work out a procedure for decreasing the number of variables and thus simplify the characteristic equations. In this work the following cases are considered and equations derived: equations for the macroscopic motion of the plasma; hydrodynamics of a low pressure plasma; instability of plasma in a magnetic field with an anisotropic ion velocity distribution; stability of a pinched cylindrical plasma using the kinetic equation; non-linear one-dimensional motion of a rarefied plasma.

  7. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  8. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  9. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  10. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Science.gov (United States)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  11. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    International Nuclear Information System (INIS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable

  12. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  13. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  14. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    Science.gov (United States)

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  15. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  16. Nonequilibrium Thermodynamic Treatment of a Warm Plasma in Strong Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Shahein, R.A.

    2008-01-01

    In the framework of the irreversible thermodynamics we study a rarefied and collisional warm electron plasma under the effects of external strong magnetic and electric fields which generate small wave amplitudes. We adopt the linear theory and normal mode solution in the MHD model to calculate the perturbations in pressure, mass density, components of velocity, electric and magnetic fields. By applying the second law of thermodynamics it is concluded that the change in the internal energy of the plasma particles predicts whether they gain from or lose energy to the generated waves .The obtained results agree with the physical ground bounded by the positive nature of the entropy production. The predictions have been carried out within the range of the frequency of the generated waves and the distance from the Debye sphere

  17. Precise determination of dissolved silica in seawater by ion-exclusion chromatography isotope dilution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Nonose, Naoko; Cheong, Chikako; Ishizawa, Yukari; Miura, Tsutomu; Hioki, Akiharu

    2014-08-20

    Ion exclusion chromatograph (IEC) isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) (IEC-ID-ICP-MS) was developed for measurement of dissolved silica in seawater, which was applied to production of certified reference materials (CRMs) of three concentration levels of nutrients (high, medium and low levels). IEC-ICP-MS has been employed to separate dissolved silica from seawater matrix. In the present study, in order to solve substantial problems due to spectral interference in ICP-MS and to improve the accuracy of IEC-ICP-MS beyond standard addition or conventional calibration methods, ID method was coupled with ICP-sector field mass spectrometry (operated under medium resolution,i.e., m/Δm=4000). In addition, effects of various operating parameters in ICP-MS on a silicon background level were also investigated to obtain lower background equivalent concentration (BEC). As a result, 3 ng g(-1) of the BEC and 0.5 % of relative standard uncertainties were achieved in the analyses of dissolved silica in seawater samples at concentration levels from 4.0 mg kg (-1) to 0.8 mg kg(-1) as silicon. The developed method was successfully validated by analyses of an artificial seawater containing a known amount of silicate and the seawater certified reference material MOOS-2 produced by the National Research Council Canada. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  19. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  20. Production of a rapidly rotating plasma by cross-field injection of gun-produced plasma

    International Nuclear Information System (INIS)

    Ohzu, Akira; Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1984-01-01

    Cross-field plasma injection with use of a JxB plasma gun is described as a method to produce rapidly rotating plasma in a crossed electric and magnetic field system. The rotational velocity of the plasma is seriously limited by neutrals surrounding the plasma through strong interactions at the boundary layer. The concentration of neutrals can be reduced by the injection of fully or partially ionized plasma into the discharge volume instead of filling the volume with an operating gas. With use of this method, it is observed that the rotational velocity increases by a factor of 2 to 3 when compared with the conventional method of stationary gas-filling. (author)

  1. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2013-10-01

    Full Text Available Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004. Using observations made by a small, low-power 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59° S, 44.21° W; −2.35° dip lat, we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical drifts in the Brazilian sector. Using same-day 150 km-echoes measurements made at the Jicamarca Radio Observatory in Peru, we also demonstrate the variability of the equatorial vertical drifts across the American sector. In addition to first estimates of the absolute vertical plasma drifts in the eastern American (Brazilian sector, we also present observations of abnormal drifts detected by the São Luís radar associated with the 2009 major sudden stratospheric warming event.

  2. Rotating field current drive in spherical plasmas

    International Nuclear Information System (INIS)

    Brotherton-Ratcliffe, D.; Storer, R.G.

    1988-01-01

    The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)

  3. Mass savings domain of plasma propulsion for LEO to GEO transfer

    International Nuclear Information System (INIS)

    Choueiri, E.Y.; Kelly, A.J.; Jahn, R.G.

    1993-01-01

    A parametric model is used to study the mass savings of plasma propulsion over advanced chemical propulsion for lower earth orbit (LEO) to geosynchronous orbit (GEO) transfer. Such savings are characterized by stringent requirements of massive payloads (O(10) metric tons) and high power levels (O(100) kW). Mass savings on the order of the payload mass are possible but at the expense of longer transfer times (8--20 months). Typical of the savings domain is the case of a self-field magnetoplasmadynamic (MPD) thruster running quasi-steadily, at an I s of 2000 s, with 600 kW of input power, raising a 50 metric ton satellite in 270 days. The initial mass at LEO will be 65 tons less than a 155 ton LO 2 /LH 2 advanced chemical high thrust spacecraft. An optimum I s can only be found if the cost savings associated with mass savings are counterbalanced by the cost losses incurred by longer transfer times. A simplistic cost model that illustrates the overall trends in the optimization yielded an optimum I s of about 2200 s for a cost effective baseline MPD system

  4. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  5. Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1987-01-01

    A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs

  6. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  7. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  8. Plasma Signatures of Radial Field Power Dropouts

    International Nuclear Information System (INIS)

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  9. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NARCIS (Netherlands)

    Lindsay, A.; Anderson, C.; Slikboer, E.T.; Shannon, S.; Graves, D.

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge;

  10. Electro-Magnetic Fields and Plasma in the Cosmos

    International Nuclear Information System (INIS)

    Scott, Donald E.

    2006-01-01

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories

  11. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  12. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  13. Is the Magnetic Field in the Heliosheath Sector Region and in the Outer Heliosheath Laminar?

    Science.gov (United States)

    Opher, M.; Drake, J. F.; Swisdak, M. M.; Toth, G.

    2010-12-01

    All the current global models of the heliosphere are based on the assumption that the magnetic field in the outer heliosheath close to the heliopause is laminar. We argue that in the outer heliosheath the heliospheric magnetic field is not laminar but instead consists of nested magnetic islands. Recently, we proposed (Drake et al. 2009) that the annihilation of the ``sectored'' magnetic field within the heliosheath as it is compressed on its approach to the heliopause produces the anomalous cosmic rays (ACRs) and also energetic electrons. As a product of the annihilation of the sectored magnetic field, densly-packed magnetic islands are produced. These magnetic islands will be convected with the ambient flows as the sector boundary is carried to higher latitudes filling the outer heliosheath. We further argue that the magnetic islands will develop upstream (but still within the heliosheath) where collisionless reconnection is unfavorable -- large perturbations of the sector structure near the heliopause will cause compressions of the current sheet upstream, triggering reconnection. As a result, the magnetic field in the heliosheath sector region will be disordered well upstream of the heliopause. We present a 3D MHD simulation with unprecedent numerical resolution that captures the sector boundary. We show that due to the high pressure of the interstellar magnetic field the disordered sectored region fills a large portion of the northern part of the heliosphere with a smaller extension in the southern hemisphere. We test these ideas with observations of energetic electrons, which because of their high velocity are most sensitive to the structure of the magnetic field. We suggest that within our scenario we can explain two significant anomalies in the observations of energetic electrons in the outer heliosphere: the sudden decrease in the intensity of low energy electrons (0.02-1.5MeV) from the LECP instrument on Voyager 2 in 2008 (Decker 2010); and the dramatic

  14. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2005-01-01

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma

  15. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  16. Experimental studies of plasma wake-field acceleration and focusing

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Argonne National Lab., IL

    1989-01-01

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs

  17. The plasma leptin concentration is closely associated with the body fat mass in nondiabetic uremic patients

    DEFF Research Database (Denmark)

    Clausen, P; Nielsen, P K; Olgaard, K

    1999-01-01

    filtration rate seemed to have a limited influence on the plasma leptin concentration in nondiabetic uremic subjects matched by body fat mass to controls. The plasma leptin concentration was closely associated with the body fat mass, and the leptin level might, therefore, be useful as an indicator of the fat......Plasma leptin is associated with the body mass index and, more precisely, with the body fat mass. Plasma leptin has been found to be elevated in uremic patients. This study aimed at investigating the plasma leptin concentration and associations between plasma leptin, body fat mass, and glomerular.......4 (3.1-59.5) ng/ml versus 5.4 (1.6-47.5) ng/ml (median and range in parentheses; p

  18. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy); Smirnov, Alexei Yu. [Max-Planck-Institute for Nuclear Physics,Saupfercheckweg 1, D-69117 Heidelberg (Germany); International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy)

    2016-05-23

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U{sub PMNS}∼V{sub CKM}{sup †}U{sub 0}, where structure of U{sub 0} is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m{sub D}, the portal mass matrix M{sub D} and the mass matrix of singlets M{sub S} are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A{sub 4}×Z{sub 4} as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U{sub 0}∼U{sub TBM} or U{sub BM}. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  19. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  20. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  1. Surface multipole guide field for plasma injection

    International Nuclear Information System (INIS)

    Breun, R.A.; Rael, B.H.; Wong, A.Y.

    1977-01-01

    Described here is a surface guide field system which is useful for injection of plasmas into confinement devices. Experimental results are given for 5--25-eV hydrogen plasmas produced by a coaxial discharge (Marshall) gun. It is found that better than 90% of the plasma produced by the gun is delivered to the end of the guide 180 cm away, while the neutral component falls by more than an order of magnitude. For these results the rod current providing the magnetic field had to be large enough to provide at least 1.5-ion gyroradii from the center of the guide to the surface of the inner rod

  2. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  3. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  4. Mass Customized Technical Textiles in the B2B Sector

    Science.gov (United States)

    Gebhardt, R.; Barteld, M.; Grafmüller, L.; Mosig, T.; Weiß, M.

    2017-10-01

    Mass Customization is a great opportunity for textile companies for both staying competitive in high-wage countries and offering inexpensive, customized products. Within the area of Technical Textiles, this study focuses on the B2B sector and shows the status quo, potentials and strengths. Both management and technological issues are addressed. For the former, business models and the value co-creation process are dealt with, for the latter, the focus is on modelling.

  5. Impact of error fields on plasma identification in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martone, R., E-mail: Raffaele.Martone@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Chiariello, A.G.; Formisano, A.; Mattei, M. [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Pironti, A. [Ass. EURATOM/ENEA/CREATE, Università degli Studi di Napoli “Federico II”, Via Claudio 25, Napoli (Italy)

    2013-10-15

    Highlights: ► The paper deals with the effect on plasma identification of error fields generated by field coils manufacturing and assembly errors. ► EFIT++ is used to identify plasma gaps when poloidal field coils and central solenoid coils are deformed, and the gaps sensitivity with respect to such errors is analyzed. ► Some examples of reconstruction errors in the presence of deformations are reported. -- Abstract: The active control of plasma discharges in present Tokamak devices must be prompt and accurate to guarantee expected performance. As a consequence, the identification step, calculating plasma parameters from diagnostics, should provide in a very short time reliable estimates of the relevant quantities, such as plasma centroid position, plasma-wall distances at given points called gaps, and other geometrical parameters as elongation and triangularity. To achieve the desired response promptness, a number of simplifying assumptions are usually made in the identification algorithms. Among those clearly affecting the quality of the plasma parameters reconstruction, one of the most relevant is the precise knowledge of the magnetic field produced by active coils. Since uncertainties in their manufacturing and assembly process may cause misalignments between the actual and expected geometry and position of magnets, an analysis on the effect of possible wrong information about magnets on the plasma shape identification is documented in this paper.

  6. Error Field Correction in DIII-D Ohmic Plasmas With Either Handedness

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Schaffer, Michael J.; La Haye, Robert J.; Scoville, Timothy J.; Menard, Jonathan E.

    2011-01-01

    Error field correction results in DIII-D plasmas are presented in various configurations. In both left-handed and right-handed plasma configurations, where the intrinsic error fields become different due to the opposite helical twist (handedness) of the magnetic field, the optimal error correction currents and the toroidal phases of internal(I)-coils are empirically established. Applications of the Ideal Perturbed Equilibrium Code to these results demonstrate that the field component to be minimized is not the resonant component of the external field, but the total field including ideal plasma responses. Consistency between experiment and theory has been greatly improved along with the understanding of ideal plasma responses, but non-ideal plasma responses still need to be understood to achieve the reliable predictability in tokamak error field correction.

  7. Cross-field Mobility in a Pure Electron Plasma

    International Nuclear Information System (INIS)

    Fossum, E.C.; King, L.B.

    2006-01-01

    An electron trapping apparatus was constructed in order to study electron dynamics in the defining electric and magnetic field of a Hall-effect thruster. The approach presented here decouples the cross-field mobility from plasma effects by conducting measurements on a pure electron plasma in a highly controlled environment. Dielectric walls are removed completely eliminating all wall effect; thus, electrons are confined solely by a radial magnetic field and a crossed, independently-controlled, axial electric field that induces the closed-drift azimuthal Hall current. Electron trajectories and cross-field mobility were examined in response to electric and magnetic field strength and background neutral density

  8. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  9. Centrifugal mass separation in rotating plasmas produced by a coaxial plasma gun

    International Nuclear Information System (INIS)

    Ikehata, T.; Suzuki, M.; Tanabe, T.; Mase, H.

    1989-01-01

    Rotating Cu/Zn plasmas produced by a coaxial plasma gun have been applied to plasma centrifuge. A separation factor of up to 10 is measured over a radius of 4 cm when a current of 13 kA and an axial magnetic field of 2.5 kG are applied. Plasma parameters are: rotation frequency ω=1.1x10 6 rad/s, density n∼10 15 cm -3 , and ion temperature T i =10 eV. The separation factor of 2 is attained even in the plasma core where the density is higher than one-half of the peak value. This is attributed to the fact that a strong centrifugal force forms a hollow density profile which gives the density peak at a radius of 2 cm

  10. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  11. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  12. Plasma cluster acceleration by means of external magnetic fields

    International Nuclear Information System (INIS)

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  13. Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids

    International Nuclear Information System (INIS)

    Ranville, J.F.; Shanks, F.; Morrison, R.J.S.; Harris, T.; Doss, F.; Beckett, R.; Chittleborough, D.J.

    1999-01-01

    A relatively new hyphenated technique for the simultaneous size separation and elemental analysis of colloids has been further developed and applied to the characterization of soil colloids. Sedimentation field-flow fractionation (SdFFF) was directly interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to provide high-resolution sizing and elemental analysis of colloids in the range 0.05-1.0 μm. For this work our existing SdFFF instrument was modified by addition of an upgraded motor and software for centrifuge speed control and data collection. Analytical techniques were developed for the calibration and drift correction of the ICP-MS data collected during on-line SdFFF-ICP-MS analyses. Software was developed to allow off-line computation of drift-corrected, elemental concentrations across the colloid size range. SdFFF-ICP-MS examination of two colloid samples isolated from surface soil horizons showed significant enrichment in iron-containing phases in both the smaller and larger colloids relative to intermediate particle sizes (∼0.3 0.3 μm). These results demonstrate the utility of SdFFF-ICP-MS for examination of soil chemistry and mineralogy and suggests the technique will have application to other environmental and geochemical studies. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. The vacuum-arc plasma motion in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Timoshenko, A.I.; Gnybida, M.V.; Taran, V.S.; Tereshin, V.I.; Chechelnitskij, O.G.

    2005-01-01

    The separation of the vacuum-arc plasma from macro-particles in the curvilinear plasma filters allows obtaining coatings with especially high characteristics. However, inside such filters the significant plasma losses also have been occurred. At the same time, increasing in the filter's efficiency is a difficult task without an effective mathematical model that really would describe the vacuum-arc plasma motion in a toroidal magnetic field. The description based on the flax-tube model was in fact only the first approximation in the decision of this problem. According to detailed flax-tube analysis of ions passage through the quarter torus plasma guide, the efficiency of the filter should grow up to 85% as the positive potential U, applied to the body of the plasma guide, is on the increase. However, the experiment showed that maximum of transparency reach up to ∼ 12%, at potential about of +18 Volts, and comes down under the further increase in potential. Such big digression from experiment does not justify the use of flux-tube model for designing of curvilinear plasma filters. We offer the new approach to the description of the vacuum-arc plasma motion in a toroidal magnetic field based on the solutions of steady-state (∂/∂t=0) Vlasov-Maxwell equations for the long plasma column aligned parallel to a constant axial magnetic field. The relations for the self-consistent electric polarization fields, which appear due to displacement of the electron component from ionic one on the curvilinear part of motion, were derived within a framework of the drift approximation. The dynamics of the central part of the plasma flow in the electric polarization fields was considered in detail. The displacement of the plasma flow at the output of the plasma guide was calculated for the carbon and titanium plasmas. The good agreement with the experimental data was obtained. (author)

  15. Harmonisation efforts in the field of accounting of public sector

    Directory of Open Access Journals (Sweden)

    Milena Otavová

    2011-01-01

    Full Text Available Increasing requirements for financial reporting of public sector led to a need to create a system that would provide relevant and reliable information for management of accounting entities of public sector and also to increase the quality of accounting and financial statements of public institutions. The International Public Sector Accounting Standards Board (IPSASB is therefore creating high-quality financial reporting standards for public sector (IPSAS. Paper points out the ongoing reform of accounting in the field of public finances in the Czech Republic, where there are substantial changes in accounting rules and it also introduces new accounting methods. Regarding the fact that accounting of public sector is nowadays accounting system perhaps with the greatest potential of development, paper highlights the differences in financial reporting in accordance with Czech legislation and IPSAS system. It tries to catch the essential differences that arise from the financial legislation, the accounting basis and also from the content of financial statements. The paper also indicates the difference between Czech Accounting Standards for selected accounting entities that maintain accounts in accordance with Decree No. 410/2009 Coll. and International Public Sector Accounting Standards (IPSAS. There is also recommended approach to the creation of national standards with regard to international harmonization.

  16. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  17. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  18. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  19. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  20. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  1. Role of Plasma Temperature and Residence Time in Stagnation Plasma Synthesis of c-BN Nanopowders

    Science.gov (United States)

    2013-01-01

    7 A plasma ion source creates the ions, which are then separated by magnetic mass separation to guide the separate beams into a deposition...generator is the soul contributor to sustaining the plasma. Figure 3.3 Plasma synthesis setup. Solid powder-form precursors are sublimated and...operation frequency gives the proper magnetic field skin depth to match the overall plasma torch diameter. The magnetic field skin depth is inversely

  2. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    Science.gov (United States)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  3. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  4. Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event

    Science.gov (United States)

    Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-01-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours

  5. Particle masses without the Higgs mechanism and supersymmetry

    International Nuclear Information System (INIS)

    Winterberg, F

    2012-01-01

    The non-observation of the Higgs boson and supersymmetry in the most recent high-energy physics data suggests considering the conjectured Planck mass plasma as a potential alternative. In it supersymmetry is replaced by the assumption that the vacuum of space is densely filled in equal numbers with positive and negative Planck mass particles, and the Higgs field by the gravitational field of interacting large positive with likewise large negative mass quasiparticles of the Planck mass plasma, giving these positive-negative mass configurations a small positive gravitational field mass. From this configuration the Dirac equation can be derived, with the fermions of the standard model composed of large positive and negative masses. (paper)

  6. Density and magnetic field measurements in the Tormac IV-c plasma

    International Nuclear Information System (INIS)

    Coonrod, J.W. Jr.

    1978-01-01

    Tormac is a concept for magnetically confining a high-β fusion plasma in a toroidal, stuffed line cusp. A Tormac plasma has two regions: an interior confined on the closed toroidal field lines of the stuffing field, and an exterior sheath on open, cusped field lines. The interior plasma gives the device a longer confinement time than a standard mirror, while the favorable curvature of the cusp fields allow the plasma to be stable at higher values of β (the ratio of the plasma pressure to magnetic pressure) than a totally closed configuration like Tokamak. This thesis describes the design, construction and operation of Tormac IV-c, and reports on the results, with emphasis on describing the behavior of the density compression and field penetration

  7. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  8. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  9. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  10. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  11. Planetary plasmas and fields

    International Nuclear Information System (INIS)

    Roederer, J.G.

    1976-01-01

    The magnetospheres of earth, Jupiter, and Mercury are discussed. The main features and physical processes characteristic of the quiet time earth magnetosphere are examined. Jupiter's larger and more distant magnetosphere is compared with the earth's and recent findings are reviewed. The plasma and field environment of Mercury is also discussed and similarities with the earth's magnetosphere are noted

  12. On the electric and magnetic field generation in expanding plasmas

    International Nuclear Information System (INIS)

    Gielen, H.J.G.

    1989-01-01

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author

  13. Magnetic field propagation in a two ion species planar plasma opening switch

    International Nuclear Information System (INIS)

    Strauss, H. R.; Doron, R.; Arad, R.; Rubinstein, B.; Maron, Y.; Fruchtman, A.

    2007-01-01

    Three fluid plasma evolution equations are applied to the problem of magnetic field propagation in a planar plasma opening switch. For certain initial conditions in which Hall parameter H∼1, magnetic field penetration due to the Hall field, initially, as expected, either opposes or adds to the hydromagnetic pushing, depending on the polarity of the magnetic field relative to the density gradient. Later, however, the plasma pushing by the magnetic field is found in the case studied here to modify the plasma density in a way that the density gradient tends to align with the magnetic field gradient, effectively turning off the Hall effect. The penetration of the magnetic field then ceases and plasma pushing becomes the dominant process

  14. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  15. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  16. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  17. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  18. Indigenous instrumentation for mass spectrometry. PD-5-1

    International Nuclear Information System (INIS)

    Handu, V.K.

    2007-01-01

    Mass Spectrometry is a powerful analytical technique due to its high sensitivity, specificity, selectivity, and wide field of applications in elemental analysis, especially in the determination of trace and ultra trace elements, precise and accurate isotopic ratio measurements. Due to these excellent features, it is a crucial analytical tool for number of Department of Atomic Energy's (DAE) programs. BARC, over the years, has developed several mass spectrometers suitable for needs of a number of programs in DAE and, in this process, technologies have been developed in HV/UHV systems, precision mechanical engineering and fabrication, design and fabrication of electromagnets, ion optics, ultra stable analog and digital electronics, data systems etc. A large number of these mass spectrometers are being used regularly in various units of DAE. Since users are demanding TIMS mass spectrometer with better specifications, efforts are being made in house to develop TIMS with improved specifications. Efforts are also under way to develop a multi collector, plasma source mass spectrometer (MC-ICP-MS) with magnetic sector mass analyzer, since such instrument is increasingly being used to measure isotopic ratios with high precision

  19. Experiments for obtaining field influence mass particles.

    CERN Document Server

    Yahalomi, E

    2010-01-01

    Analyzing time dilation experiments the existence of a universal field interacting with moving mass particles is obtained. It is found that mass particle changes its properties depend on its velocity relative to this universal scalar field and not on its velocity relative to the laboratory. High energy proton momentum, energy and mass were calculated obtaining new results. Experiments in high energy accelerators are suggested as additional proofs for the existence of this universal field. This universal field may explain some results of other high energy experiments.

  20. The Effects of Muscle Mass on Homocyst(e)ine Levels in Plasma and Urine.

    Science.gov (United States)

    Malinow, M René; Lister, Craig L; DE Crée, Carl

    The present study was designed to examine the relationship between homocyst(e)ine (H[e]) levels and muscle mass. Two experimental groups each of 24 Caucasian males, one consisting of higher-muscle mass subjects (HMM) and the other of lower-muscle mass subjects (LMM) participated in this study. Muscle mass was estimated from 24-hour urine collections of creatinine (Crt). Muscle mass was 40.3 ± 15.9 kg in HMM and 37.2 ± 11.4 kg in LMM (P= 0.002). Mean plasma H(e) levels in HMM were 10.29 ± 2.9 nmol/mL, and in LMM were 10.02 ± 2.4 nmol/L (Not significant, [NS]). Urinary H(e) levels (UH[e]) were 9.95 ± 4.3 nmol/mL and 9.22 ± 2.9 nmol/mL for HMM and LMM, respectively (NS). Plasma H(e) levels correlated well with UH(e) (HMM: r= 0.58, P= 0.009; LMM: r= 0.66, P= 0.004). Muscle mass and was not correlated to either plasma H(e) or UH(e). However, in HMM trends were identified for body mass to be correlated with UH(e) (r= 0.39, P= 0.10) and UCrt (r= 0.41, P= 0.08). Surprisingly, in HMM plasma and UCrt were only weakly correlated (r= 0.44, P= 0.06). Our results do not support a causal relationship between the amount of muscle mass and H(e) levels in plasma or urine.

  1. theoretical and experimental study of plasma acceleration by means of R.F. and static magnetic field gradient

    International Nuclear Information System (INIS)

    Bardet, Rene; Consoli, Terenzio; Geller, Richard

    1964-09-01

    In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr

  2. Rethermalization of a field-reversed configuration plasma in translation experiments

    International Nuclear Information System (INIS)

    Himura, H.; Okada, S.; Sugimoto, S.; Goto, S.

    1995-01-01

    A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field. copyright 1995 American Institute of Physics

  3. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  4. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector

    International Nuclear Information System (INIS)

    Takahashi, K.; McEntire, R.W.; Zanetti, L.J.; Lopez, R.E.; Kistler, L.M.; Ipavich, R.M.

    1987-01-01

    Data from three instruments, the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer onboard the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (CCE) spacecraft have been used to study a compressional Pc 5 wave observed at 1925-2200 UT on day 202 (July 21) of 1986 at a radial distance of ≅ 8 R E in the postmidnight sector near the beginning of minor geomagnetic activity. The wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons (E approx-gt 10 keV), and a large azimuthal wave number (m ∼ 65). These properties are similar to those of compressional Pc 5 waves observed previously at geostationary orbit. The unique observations associated with the CCE event are the occurrence in the postmidnight sector, the eastward (or sunward) propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. These are opposite to previous geostationary observations. The authors propose that the unique propagation and polarization are propagating westward in the plasma rest frame, appears to propagate eastward to the observer because the electric field drift velocity is larger than the wave phase velocity

  5. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  6. Effects of a nonuniform open magnetic field on the plasma presheath

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1991-01-01

    Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)

  7. Simulations of an ultracold, neutral plasma with equal mass for every charge

    International Nuclear Information System (INIS)

    Robicheaux, F; Bender, B J; Phillips, M A

    2014-01-01

    The results of a theoretical investigation of an ultracold, neutral plasma composed only of equal mass positive and negative charges are reported. In our simulations, the plasma is created by the fast dissociation of a neutral particle; each dissociation leads to one positive ion and one negative ion with the same mass as the positive ion. The temperature of the plasma is controlled by the relative energy of the dissociation. We studied the early time evolution of this system where the initial energy was tuned so that the plasma is formed in the strongly coupled regime. In particular, we present results on the temperature evolution and three body recombination. In the weakly coupled regime, we studied how an expanding plasma thermalizes and how the scattering between ions affects the expansion. Because the expansion causes the density to drop, the velocity distribution only evolves for a finite time with the final distribution depending on the number of particles and initial temperature of the plasma. (paper)

  8. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  9. A non-linear theory for the bubble regime of plasma wake fields in tailored plasma channels

    CERN Document Server

    Thomas, Johannes

    2016-01-01

    We introduce a first full analytical bubble and blow-out model for a radially inhomogeneous plasma in a quasi-static approximation. For both cases we calculate the accelerating and the focusing fields. In our model we also assume a thin electron layer that surrounds the wake field and calculate the field configuration within. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. From a previous study of hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime we know that pancake-like laser pulses lead to highest electron energies [Pukhov et al, PRL 113, 245003 (2014)]. As it was shown, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths by varying the plasma density profile inside a deep channel. Now we show why the radial fields in the vacuum part of a channel become defocussing.

  10. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  11. Measurement of the effective plasma ion mass in large tokamaks

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-01-01

    There is not yet a straightforward method for the measurement of the D-T ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not only depend on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. This method has been revised to assess its likely precision for the JET tokamak. The low n GAE modes are sometimes too close to the continuum edge to be detectable and the interpretation of the GAE spectrum is rendered less direct than had been hoped. We present a statistical study on the precision with which the D-T ratio could be estimated from the GAE spectrum on JET. (author) 4 figs., 8 refs

  12. High-precision lead isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry

    International Nuclear Information System (INIS)

    Walder, A.J.; Furuta, Naoki.

    1993-01-01

    An inductively coupled plasma (ICP) ion source coupled to a magnetic sector mass analyser equipped with seven Faraday detectors has been used to measure the lead isotope ratios in solutions of Sanshiro Pond sediment collected at the University of Tokyo, airborne particulates collected at Shinjuku in Tokyo and Merck multielement standard product number 97279494. A thallium correction technique was utilized to allow a simultaneous correction for mass bias. This work followed an earlier interlaboratory comparison study of the above-mentioned solutions using ICP quadrupole mass spectrometry, and has demonstrated a considerable improvement in analytical precision. The following isotope ratio measurements were recorded. Pond sediment solution containing 82 ng ml -1 lead: 206 Pb/ 204 Pb=17.762±0.014; 206 Pb/ 207 Pb=1.1424±0.0009; 208 Pb/ 204 Pb=37.678±0.034. Airborne particulate solution containing 45 ng ml -1 lead: 206 Pb/ 204 Pb=17.969±0.006; 206 Pb/ 207 Pb=1.1528±0.0003; 208 Pb/ 204 Pb=37.915±0.021. Merck multielement standard solution containing 100 ng ml -1 lead: 206 Pb/ 204 Pb=19.255±0.015; 206 Pb/ 207 Pb=1.2238±0.0004; 208 Pb/ 204 Pb=38.476±0.021 (All errors are given as ±2 standard deviations). (author)

  13. Controlled dissolution of silicon dioxide layers for depth resolved multielement analysis by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Lorge, Susan E.; Houk, R.S.

    2009-01-01

    Dissolution procedures were developed to control the number of surface layers removed, in an attempt to achieve depth resolved analysis by inductively coupled plasma-mass spectrometry (ICP-MS). NIST 612 glass was chosen because it is a homogeneous material with many elements at interesting concentrations, ∼ 50 ppm. Varying dissolution time and HF concentration resulted in the reproducible removal of SiO 2 layers as thin as 70 A deep. Dissolved trace metals were determined after dilution by inductively coupled plasma-mass spectrometry (ICP-MS) with a magnetic sector instrument. The amount removed was determined from the concentration of a major element, Ca. With the exception of Zn, trace metal concentrations agreed reasonably well with their certified values for removal depths of 500, 300 and 150 A. Zinc concentration was significantly high in all dissolutions indicating either a contamination problem or that Zn is removed at a faster rate than Ca. For the dissolutions that removed 70 A of SiO 2 , Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb and U recovery results agreed with their certified values (∼ 50 ppm); Ti, As, Mo, Ba, and Th could not be determined because net intensities were below 3σ of the blank; and measured concentrations for Cu, Pb and Zn were well above the certified values.

  14. Extraction of K- mesonlike particles from a D2 gas discharge plasma in magnetic field

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1996-05-01

    From the outside region of D 2 gas discharge plasma along magnetic field, K - mesonlike particles are extracted with D - ions and π - mesonlike particles. Then, a higher positive bias voltage is necessary for the beam collector of magnetic mass analyzer in order to detect the K - mesonlike particles, and we must interrupt the diffusion of the positive ions to the back of the beam collector. (author)

  15. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  16. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    Science.gov (United States)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  17. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  18. Merging of magnetic fields with field-aligned plasma flow components

    International Nuclear Information System (INIS)

    Mitchell, H.G. Jr.; Kan, J.R.

    1978-01-01

    The Sonnerup merging model for an incompressible plasma is extended to allow a flow component along the field lines in the inflow regions. Solutions are found to exist as long as the difference between the quantities B. V for the two inflow regions does not exceed a critical magnitude dependent on the inflow field magnitudes and plasma densities. All such solutions satisfy Vasyliunas' definition of merging, but some classes of solution have radically altered geometries, i.e. geometries in which the inflow regions are much smaller than the outflow regions. The necessary but not sufficient condition for these unusual geometries is that the field-aligned flow component in at least one inflow region be super-Alfvenic. A solution for the case of a vacuum field in one inflow region is obtained in which any flow velocity is allowed in the non-vacuum inflow region, although super-Alfvenic flow can still result in an unusual geometry. For symmetric configurations, the usual geometry, that of Petschek and Sonnerup, is retained as long as both field-aligned flow components in the inflow regions are less than twice the inflow Alfven speed. For the case of a vacuum field on one side and fields approximating the boundary between the solar wind and the earth's dayside magnetosphere, the usual geometry is retained for flow less than about 2.5 times the local Alfven speed. (author)

  19. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    Science.gov (United States)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  20. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  2. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D

    2001-01-01

    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  3. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  4. Evaluations of electric field in laser-generated pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Láska, Leoš; Krása, Josef; Rohlena, Karel; Wolowski, J.

    2006-01-01

    Roč. 56, Suppl. B (2006), B580-B585 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] Institutional research plan: CEZ:AV0Z10100523 Keywords : electric field in plasma * debye length * plasma temperature * plasma density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.568, year: 2006

  5. Correlation of Magnetic Fields with Solar Wind Plasma Parameters at 1AU

    Science.gov (United States)

    Shen, F.

    2017-12-01

    The physical parameters of the solar wind observed in-situ near 1AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature T and velocity V, and the negative correlation between density N and velocity V, are well known. However, the magnetic field intensity does not appear to be well correlated with any individual plasma parameter. In this paper, we discuss previously under-reported correlations between B and the combined plasma parameters √NV2 as well as between B and √NT. These two correlations are strong during the periods of corotating interaction regions and high speed streams, moderate during intervals of slow solar wind, and rather poor during the passage of interplanetary coronal mass ejections. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure. Then, we employ a 3D MHD model to simulate the formation of the relationships between the magnetic strength B and √NV2 as well as √NT observed at 1AU. The inner boundary condition is derived by empirical models, with the magnetic field and density are optional. Five kinds of boundary conditions at the inner boundary of heliosphere are tested. In the cases that the magnetic field is related to speed at the inner boundary, the correlation coefficients between B and √NV2 as well as between B and √NT are even higher than that in the observational results. At 1AU the simulated radial magnetic field shows little latitude dependence, which matches the observation of Ulysses. Most of the modeled characters in these cases are closer to observation than others. This inner boundary condition may more accurately characterize Sun's magnetic influence on the heliosphere. The new input may be able to improve the simulation of CME propagation in the inner heliosphere and the space weather forecasting.

  6. Theory of mass-discrimination effects in ion extraction from a plasma of wide pressure range

    International Nuclear Information System (INIS)

    Chang, J.-S.; Kodera, K.

    1979-01-01

    Mass-discrimination effects in stagnation-point ion extraction are treated for a plasma with a wide range of Knudsen number, i.e. when the charged particle's mean free path 3 , ion Schmidt numbers, from 0 to 10 4 , the effective Knudsen number K from 0 to infinity, and the Debye ratio Rsub(p)/lambdasub(D) from 0 to 10 -1 . Numerical results show that: (1) for a non-flowing plasma, mass-discrimination effects increase with increasing effective Knudsen number (or gas pressure) and decreasing sampling potential; (2) for a non-flowing plasma, no significant effect of the Debye ratio on mass-discrimination was found; (3) for a flowing plasma, mass-discrimination effects decrease with increasing Reynolds number (or flow velocity) and ion Schmidt number, and with decreasing sampling potential and effective Knudsen number. (Auth.)

  7. Impact of mass generation for spin-1 mediator simplified models

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.

    2017-01-01

    In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, only pure vector couplings between the spin-1 mediator and the dark matter are allowed. If these coupling restrictions are not obeyed, unphysical results may be obtained such as a violation of unitarity at high energies. These two-mediator scenarios lead to important phenomenology that does not arise in single mediator models. We survey two-mediator dark matter models which contain both vector and scalar mediators, and explore their relic density and indirect detection phenomenology.

  8. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  9. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  10. Plasma-column instabilities in a reversed-field pinch without a shell

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  11. Plasma-column instabilities in a reversed-field pinch without a shell

    International Nuclear Information System (INIS)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  12. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  13. The Multipole Plasma Trap-PIC Modeling Results

    Science.gov (United States)

    Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina

    2017-10-01

    A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.

  14. Steady state models for filamentary plasma structures associated with force free magnetic fields

    International Nuclear Information System (INIS)

    Marklund, G.

    1978-05-01

    This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases

  15. Interaction of a supersonic plasma jet with a coaxial dipole magnetic field

    International Nuclear Information System (INIS)

    Landes, K.

    1975-01-01

    A low pressure plasma jet of considerable conductivity can be influenced by a magnetic field. On the other hand the influencing magnetic field is changed by currents induced in the plasma jet. New astrophysical examples of suchlike interaction have been found in the investigation of the moon, where the partially not currentfree solar wind is influenced by locally confined magnetic fields. In the experiment reported, the interaction of a supersonic plasma jet with a coaxial, dipole-shaped magnetic field is investigated. A current is superimposed to the plasma jet. (Auth.)

  16. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)

    2011-09-09

    Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  17. Coupling of Hidden Sector

    OpenAIRE

    Królikowski, Wojciech

    2016-01-01

    A hypothetic Hidden Sector of the Universe, consisting of sterile fer\\-mions (``sterinos'') and sterile mediating bosons (``sterons'') of mass dimension 1 (not 2!) --- the last described by an antisymmetric tensor field --- requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, sugge...

  18. Plasma cleaning of ITER First Mirrors in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  19. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  20. Preliminary study of cross-field plasma injection in 2XIIB

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Hartman, C.W.; Simonen, T.C.

    1978-01-01

    Preliminary results are presented of a study of cross-field plasma injection in the 2XIIB mirror machine. Plasma accelerated by a coaxial deflagration gun was observed to pass 3.5M across the vacuum field, and some trapping was observed when the gun plasma intersected a plasma streaming along B at the center of the magnetic well. Parameters for the experiment are: gun plasma kinetic energy 50 to 200 eV, n/sub gun/ = 3 x 10 13 cm -3 , streaming plasma 25 to 50 eV and n/sub streaming/ = 6 x 10 11 cm -3 , duration of both 100 to 200 μsec. For the trapped plasma, n = 2.4 x 10 12 cm -3 , and the decay time is t/sub 1 / 2 / = 400 μsec consistent with Coulomb scattering loss at 100 eV mean ion energy

  1. Initial plasma production by induction electric field on QUEST tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Sato, Kohnosuke

    2007-01-01

    Induction electric field by center solenoid coil plays a roll to produce initial plasma. According to Townsend avalanche theory, minimum electric field for plasma breakdown depends on neutral gas pressure and connection length. On QUEST spherical tokamak, a connection length is evaluated as 966m on null point neighborhood with coil current ratio I PF26 /I CS =0.1, and induction electric field considering eddy current of vacuum vessel is evaluated as about 0.1 V/m on null point neighborhood. With Townsend avalanche theory, these values manage to produce initial plasma on QUEST. (author)

  2. Edge Plasma Response to Non-Axisymmetric Fields in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M.; Lao, L. L.; Buttery, R. J.; Evans, T. E.; Snyder, P. B.; Wade, M.R., E-mail: ferraro@fusion.gat.com [General Atomics, San Diego (United States); Moyer, R. A.; Orlov, D. M. [University of California San Diego, La Jolla (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, Livermore (United States)

    2012-09-15

    Full text: The application of non-axisymmetric fields is found to have significant effects on the transport and stability of H-mode tokamak plasmas. These effects include dramatic changes in rotation and particle transport, and may lead to the partial or complete suppression of edge-localized modes (ELMs) under some circumstances. The physical mechanism underlying these effects is presently not well understood, in large part because the response of the plasma to non- axisymmetric fields is significant and complex. Here, recent advances in modeling the plasma response to non-axisymmetric fields are discussed. Calculations using a resistive two-fluid model in diverted toroidal geometry confirm the special role of the perpendicular electron velocity in suppressing the formation of islands in the plasma. The possibility that islands form near the top of the pedestal, where the zero-crossing of the perpendicular electron velocity may coincide with a mode-rational surface, is explored, and the implications for ELM suppression are discussed. Modeling results are compared with empirical data. It is shown that numerical modeling is successful in reproducing some experimentally observed effects of applied non-axisymmetric fields on the edge temperature and density profiles. The numerical model self-consistently includes the plasma, separatrix, and scrape-off layer. Rotation and diamagnetic effects are also included self-consistently. Solutions are calculated using the M3D-C1 extended-MHD code. (and others)

  3. Ion deposition by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hu, K.; Houk, R.S.

    1996-01-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of 165 Ho + at 5x10 12 ions s -1 . The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. copyright 1996 American Vacuum Society

  4. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  5. Confinement of laser plasma by solenoidal field for laser ion source

    International Nuclear Information System (INIS)

    Okamura, M.; Kanesue, T.; Kondo, K.; Dabrowski, R.

    2010-01-01

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  6. Superstrong fields in Plasmas: First International Conference. Proceedings

    International Nuclear Information System (INIS)

    Lontano, M.; Mourou, G.; Pegoraro, F.; Sindoni, E.

    1998-01-01

    These proceedings are based on papers presented at the first International Conference on Superstrong Fields in Plasmas held in Varenna, Italy in August endash September, 1997. The conference attracted more than 100 participants from fourteen countries. A wide range of topics were discussed, including fundamental atomic and plasma processes, relativistic nonlinear optics, solid density plasmas, laser systems for ultrahigh-intensity physics, applications of ultrastrong fields and applications of ultraintense pulses to astrophysics. The progress in laser technology was brought into focus at this conference, especially the creation of pulses with peak power exceeding multiple TW range and the interaction of these pulses with superrelativistic electrons. There were 74 papers presented; out of these, 6 have been abstracted for the Energy Science and Technology database

  7. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  8. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  9. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    International Nuclear Information System (INIS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-01-01

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  10. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  11. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-01-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  12. Radio frequency conductivity of plasma in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Itoh, Sanae; Nishikawa, Kyoji; Fukuyama, Atsushi; Itoh, Kimitaka.

    1985-01-01

    Nonlocal conductivity tensor is obtained to study the kinetic effects on propagation and absorption of radio frequency (rf) waves in dispersive plasmas. Generalized linear propagator in the presence of the inhomogeneity of magnetic field strength along the field line is calculated. The influence of the inhomogeneity to the rf wave-energy deposition is found to be appreciable. Application to toroidal plasmas is shown. (author)

  13. LONGITUDINAL AND TRANSVERSAL PLASMA WAVE INSTABILITIES IN TWO COUNTERSTREAMING PLASMAS WITHOUT EXTERNAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D

    1963-03-15

    Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)

  14. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  15. Laser experiments explore the hidden sector

    International Nuclear Information System (INIS)

    Ahlers, M.

    2007-11-01

    Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses -7 times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background. (orig.)

  16. Electrical field excitation in non-uniform plasma by a modulated electron beam

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Borisov, O.A.

    2000-01-01

    Excitation of electric fields due to a modulated electron beam in a warm non-uniform plasma is treated for weak beams in warm plasma. It is shown that the maximum electric field magnitude that is reached near the local plasma resonance point depends significantly on the direction of the electron stream motion. In collisional plasma the magnitude of the Langmuir wave that propagates to the subcritical plasma also depends on the direction of the electron stream motion. The motion of the modulated electron stream front results in beatings between oscillations on the modulation frequency and on the local electron plasma frequencies at the initial moment. Later these beatings damp in the supercritical plasma, whereas in the subcritical plasma they are transformed into spatial beatings between the field of the modulated electron stream and the excited Langmuir wave. (orig.)

  17. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    Science.gov (United States)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  18. Magnetic field line draping in the plasma depletion layer

    Science.gov (United States)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  19. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  20. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    International Nuclear Information System (INIS)

    Otto, Antonius

    2012-01-01

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves

  1. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  2. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  3. Stabilization effect of a strong HF electrical field on beam-plasma interaction in a relativistic plasma waveguide

    International Nuclear Information System (INIS)

    El-Shorbagy, K.H.

    2000-07-01

    The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  4. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Science.gov (United States)

    Pham Thi Thu, H.; Amory-Mazaudier, C.; Le Huy, M.

    2011-01-01

    Quiet days variations in the Earth's magnetic field (the Sq current system) are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq), during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E). Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74). This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79) and San Juan in the American sector (~0.03, geographic latitude ~18.38). At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: - The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. - In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger than the afternoon

  5. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Directory of Open Access Journals (Sweden)

    H. Pham Thi Thu

    2011-01-01

    Full Text Available Quiet days variations in the Earth's magnetic field (the Sq current system are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq, during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E. Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74. This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79 and San Juan in the American sector (~0.03, geographic latitude ~18.38. At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: – The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. – In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger

  6. Inductively-coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Dale, L.

    1990-01-01

    The instrument in operation at the Lucas Heights Research Laboratories is a VG Plasma-quad PQ 2. A schematic diagram of the instrument components is presented along with its applicability to various fields of research and its perceived limitations. Apart from its high sensitivity the capability for rapid multi-element analysis in one of its major advantages over other instrumental method analysis. The necessity to present the sample in the form of a solution is probably its major drawback. 4 tabs, 7 figs

  7. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  8. Electric field effects in the night-side subauroral F region

    International Nuclear Information System (INIS)

    Deminov, M.G.; Shubin, V.N.

    1988-01-01

    Theoretical analysis of peculiarities of subauroral ionosphere F-region electron concentration due to magnetospheric substorm electric fields is presented. For this purpose a simple model of electric field was used in which longitudinal current effect on subauroral ionosphere conducting layer is taken into account . This model represents the band of plasma fast western drift near the equatorial boundary of the auroral oval in the night-time sector with plasma leaking into this band both from medium latitudes and from the auroral oval region. In the morning sector the plasma drift rate is sufficiently lower and is oriented mainly to the east. It is shown that in the band of fast western plasma drift F-layer maximum altitude h m grows while N m layer concentration in the maximum drops which is mainly due to the increase of temperature and 0 + ion recombination coefficient. In the morning sector h m practically does not change and N m grows which leads to formation of a step-like structure of N m latitude distribution and to a shift of the main ionospheric gap minimum the equator at the rate of about 80 m/s during the first hours of substorm progress

  9. Magnetic fields in laser heated plasmas

    International Nuclear Information System (INIS)

    Amiranoff, F.; Brackbill, J.; Colombant, D.; Grandjouan, N.

    1984-01-01

    With a fixed-ion code for the study of self-generated magentic fields in laser heated plasmas, the inhibition of thermal transport and the effect of the Nernst term are modeled for a KrF laser. For various values of the flux limiter, the response of a foil to a focused laser is calculated without a magnetic field and compared with the response calculated with a magnetic field. The results are: The Nernst term convects the magnetic field to densities above critical as found by Nishiguchi et al. (1984), but the field does not strongly inhibit transport into the foil. The field is also transported to sub-critical densities, where it inhibits thermal diffusion and enhance lateral transport by convection

  10. Effect of magnetic field gradient on power absorption in compact microwave plasma sources

    International Nuclear Information System (INIS)

    Dey, Indranuj; Shamim, Md.; Bhattacharjee, Sudeep

    2006-01-01

    We study the effect of the change in magnetic field gradient at the electron cyclotron resonance (ECR) point, on the generated plasma for two different cylindrical minimum B-field configurations, viz. the hexapole and the octupole. The plasma parameters such as the electron and ion density, electron temperature including the wave field characteristics (B-field and E-field) in the plasma will be measured and compared for the two configurations. (author)

  11. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  12. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  13. Gauge boson mass without a Higgs field: a simple model

    International Nuclear Information System (INIS)

    Nicholson, A.F.; Kennedy, D.C.

    1997-02-01

    A simple, anomaly-free chiral gauge theory can be perturbatively quantized and renormalized in such a way as to generate fermion and gauge boson masses. This development exploits certain freedoms inherent in choosing the unperturbed Lagrangian and in the renormalization procedure. Apart from its intrinsic interest, such a mechanism might be employed in electroweak gauge theory to generate fermion and gauge boson masses without a Higgs sector. 38 refs

  14. Meson masses in electromagnetic fields with Wilson fermions

    Science.gov (United States)

    Bali, G. S.; Brandt, B. B.; Endrődi, G.; Gläßle, B.

    2018-02-01

    We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured ρ -meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between ρ -mesons and pions. We also derive Ward-Takashi identities for QCD +QED both in the continuum formulation and for (order a -improved) Wilson fermions.

  15. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  16. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  17. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-01-01

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  18. LOMEGA: a low frequency, field implicit method for plasma simulation

    International Nuclear Information System (INIS)

    Barnes, D.C.; Kamimura, T.

    1982-04-01

    Field implicit methods for low frequency plasma simulation by the LOMEGA (Low OMEGA) codes are described. These implicit field methods may be combined with particle pushing algorithms using either Lorentz force or guiding center force models to study two-dimensional, magnetized, electrostatic plasmas. Numerical results for ωsub(e)deltat>>1 are described. (author)

  19. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  20. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata

    1978-01-01

    The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)

  1. Current sustaining by RF travelling field in a collisional toroidal plasma

    International Nuclear Information System (INIS)

    Fukuda, Masaji; Matsuura, Kiyokata.

    1977-06-01

    The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)

  2. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Gäckle, M.; Merten, D.

    2010-12-01

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  3. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  4. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  5. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  6. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  7. Advanced Channeling Technologies in Plasma and Laser Fields

    Directory of Open Access Journals (Sweden)

    Dabagov Sultan B.

    2018-01-01

    Full Text Available Channeling is the phenomenon well known in the world mostly related to the motion of the beams of charged particles in aligned crystals. However, recent studies have shown the feasibility of channeling phenomenology application for description of other various mechanisms of interaction of charged as well as neutral particle beams in solids, plasmas and electromagnetic fields covering the research fields from crystal based undulators, collimators and accelerators to capillary based X-ray and neutron optical elements. This brief review is devoted to the status of channeling-based researches at different centers within international and national collaborations. Present and future possible developments in channeling tools applied to electron interactions in strong plasma and laser fields will be analyzed.

  8. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  9. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  10. Megagauss field generation for high-energy-density plasma science experiments

    International Nuclear Information System (INIS)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-01-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs

  11. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  12. Dielectric response of particle-antiparticle plasmas in a magnetic field

    International Nuclear Information System (INIS)

    Frankel, N.E.; Hines, K.C.; Kowalenko, V.

    1982-01-01

    We have considered the longitudinal dielectric response of an ultra-degenerate relativistic plasma composed of electrons and positrons. We have used the relativistic Hartree self-consistent field method to investigate the dispersion relations and damping parameters of such a plasma in the presence of a magnetic field. These properties must be studied in the various regimes appropriate for a relativistic plasma as detailed by Tsytovich and Jancovici. Although it is hoped that this work will yield new insight into certain astrophysical phenomena (such as pulsars), it is interesting to note that laboratory electron-positron plasmas may be a thing of the immediate future as a result of suggested new experiments using an intense relativistic electron beam. (author)

  13. Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.

    1995-01-01

    The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs

  14. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector

    Science.gov (United States)

    Kumar, Sanjay

    2017-05-01

    In the present study, slant total electron content (STEC) data computed from ground based GPS measurements over Hyderabad (Geog. Lat. 17.41° N, geog. long. 78.55° E, mag. lat. 08.81° N) and two close stations at Bangalore (Geog. Lat. 13.02°/13.03° N, geog. long. 77.57°/77.51° E, mag. lat. 04.53°/04.55° N) in Indian region during 2007-2012, have been used to study the occurrences and characteristics of equatorial plasma bubbles (EPBs). The analysis found maximum EPB occurrences during the equinoctial months and minimum during the December solstice throughout 2007-2012 except during the solar minimum years in 2007-2009. During 2007-2009, the maximum EPB occurrences were observed in June solstice which could not be predicted by the model proposed by Tsunoda (J. Geophys. Res., 90:447-456, 1985). The equinox maximum in EPB occurrences for high solar activity years could be caused by the vertical F-layer drift due to pre-reversal electric field (PRE), and expected to be maximum when day-night terminator aligns with the magnetic meridian i.e. during the equinox months whereas maximum occurrences during the solstice months of solar minimum could be caused by the seed perturbation in plasma density induced by gravity waves from tropospheric origins. Generally EPB occurrences are found to be more prominent during nighttime hours (2000-2400 hours) than the daytime hours. Peak in EPB occurrences is in early night for high solar activity years whereas same is late night for low solar activity. The day and nighttime EPB occurrences have been analyzed and found to vary in accordance with solar activity with an annual correlation coefficient (R) of ˜0.99 with F_{10.7} cm solar Flux. Additionally, solar activity influence on EPB occurrences is seasonal dependent with a maximum influence during the equinox season (R=0.88) and a minimum during winter season (R =0.73). The solar activity influences on EPB occurrences are found in agreement with the previous works reported in

  15. Diagnosing impaired glucose tolerance using direct infusion mass spectrometry of blood plasma.

    Directory of Open Access Journals (Sweden)

    Petr G Lokhov

    Full Text Available The goal of this study was to evaluate the capacity for mass spectrometry of blood plasma to diagnose impaired glucose tolerance (IGT. For this study, blood plasma samples from control subjects (n = 30 and patients with IGT (n = 20 were treated with methanol and low molecular weight fraction were then analyzed by direct infusion mass spectrometry. A total of 51 metabolite ions strongly associated with IGT were detected. The area under a receiver operating characteristic (ROC curve (AUC for diagnosing IGT that was based on an analysis of all these metabolites was 0.93 (accuracy 90%, specificity 90%, and sensitivity 90%. The associated reproducibility was 85%. The metabolites identified were also consistent with risk factors previously associated with the development of diabetes. Thus, direct infusion mass spectrometry of blood plasma metabolites represents a rapid, single-step, and reproducible method for the analysis of metabolites. Moreover, this method has the potential to serve as a prototype for clinical analyses that could replace the currently used glucose tolerance test with a more patient-friendly assay.

  16. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  17. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  18. Direct determination of tellurium in soil and plant samples by sector-field ICP-MS for the study of soil-plant transfer of radioactive tellurium subsequent to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident caused the release of large amounts of radioactive Te into the environment. Stable Te, as an analogue, is considered to be useful for the estimation of the soil-plant transfer of radioactive Te. It is necessary to estimate the radiation dose of Te that would result from food ingestion. However, due to the extremely low concentrations of Te in the environment, reported transfer factor values for Te are considerably limited. We report a sensitive analytical method for direct determination of trace Te in soil and plant samples using a sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The developed analytical method is characterized by a very low detection limit at the sub-parts per billion (ng g"-"1) level in soil and plant samples, and it has been applied to the study of soil-plant transfer to collect transfer factor data in Japan. (author)

  19. Production and Magnetic Field Confinement of Laser-Irradiated Solid Particle Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haught, A. F.; Polk, D. H.; Fader, W. J. [United Aircraft Research Laboratories East Hartford, CT (United States)

    1969-01-15

    The focused high-intensity beam from a Q-spoiled laser has been used to form a high-temperature, high-density plasma from a single 10-20 micron radius solid particle of lithium hydride which is electrically suspended in a vacuum environment free of all material supports. Time-resolved charge collection measurements of the freely expanding plasma have shown that a high degree of ionization of the 10{sup 15} atoms in the lithium hydride particle can be achieved and that the plasma produced is essentially spherically symmetric in density over the full 4 {pi} solid angle. Time-of-flight studies of the plasma expansion have shown that average electron and ion energies exceeding 200 electron volts are obtained and that the plasma expansion rate, like the plasma density, is spherically symmetric. No charge separation or separation of the lithium and hydrogen ions is observed in the expanding plasma. Numerical calculations of the plasma formation and expansion have been made using a one-dimensional spherical hydrodynamic model and, on the basis of the results obtained, an integrated similarity model has been developed for calculations of the plasma time history and energy over the range of conditions employed in the experiments. These calculations, which include the effects of laser pulse time history, fraction of the incident beam occupied by the expanding plasma, radial density and velocity gradients within the plasma, and spatial distribution of the incident laser energy, give results for the plasma radial density distribution, velocity profile, and plasma energy in good agreement with those determined experimentally over the full range of the present measurements. Measurements have been carried out to examine the interaction of these laser -produced plasmas with mirror, cusp, and minimum-B magnetic fields. Experiments with mirror and minimum-B magnetic fields up to 8 kC show that plasmas with densities of 10{sup 12} -10{sup 13} cm{sup -3} are confined for times of 5

  20. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender

    2009-01-01

    mechanical and barrier properties and be more suitable for a wider range of food-packaging applications. Natural or synthetic clay nanofillers are being investigated for this purpose in a project called NanoPack funded by the Danish Strategic Research Council. In order to detect and characterize the size...... of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...... of polylactide (PLA) with 5% Cloisite®30B (a derivatized montmorillonite clay) as a filler. Based on AF4-MALS analyses, we found that particles ranging from 50 to 800 nm in radius indeed migrated into the 95% ethanol used as a food simulant. The full hyphenated AF4-MALS-ICP-MS system showed, however, that none...

  1. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    Science.gov (United States)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  2. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  3. Mass spectrometric identification of diagnostic markers for chronic prostatitis in seminal plasma by analysis of seminal plasma protein clinical samples.

    Science.gov (United States)

    Rokka, A; Mehik, A; Tonttila, P; Vaarala, M

    2017-08-15

    There are few specific diagnostic markers for chronic prostatitis. Therefore, we used mass spectrometry to evaluate differences in seminal plasma protein expression among patients with prostatitis and young and middle-aged healthy controls. We analysed pooled seminal plasma protein samples from four prostatitis patients (two pools), three young controls (one pool), and three middle-aged controls (one pool). The samples were analysed by liquid chromatography-tandem mass spectrometry. Of the 349 proteins identified, 16 were differentially expressed between the two control pools. Five proteins were up- or down-regulated in both of the prostatitis pools compared to middle-aged controls but not between young and middle-aged pools. Progestagen-associated endometrial protein (PAEP) was over-expressed in prostatitis samples compared to young and middle-aged controls. Our findings and those of previous studies indicate that PAEP is a potential seminal plasma marker for chronic prostatitis. In conclusion, we found age-related changes in seminal plasma protein expression. PAEP expression in seminal plasma should be investigated further to evaluate its potential as a diagnostic marker for chronic prostatitis.

  4. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  5. Electron attachment mass spectrometry as a diagnostics for electronegative gases and plasmas

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.

    1998-01-01

    Electron attachment mass spectrometry (EAMS) has been developed to study mixtures of electronegative gases and plasmas. A quadrupole mass spectrometer (QMS) has been used to detect negative ions, formed from sampled species by attachment of low energy electrons. Varying the electron energy allows to

  6. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  7. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Shimamura, Tadashi

    1997-01-01

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  8. On plasma stability under anisotropic random electric field influence

    International Nuclear Information System (INIS)

    Rabich, L.N.; Sosenko, P.P.

    1987-01-01

    The influence of anisotropic random field on plasma stability is studied. The thresholds and instability increments are obtained. The stabilizing influence of frequency missmatch and external magnetic field is pointed out

  9. Modeling the chemistry of plasma polymerization using mass spectrometry.

    Science.gov (United States)

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  10. Stability of axisymmetric plasmas in closed line magnetic fields

    International Nuclear Information System (INIS)

    Simakov, A.N.; Vernon Wong, H.; Berk, H.L.

    2003-01-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)

  11. Fast reconnection of magnetic fields in a plasma

    International Nuclear Information System (INIS)

    Hu, P.N.

    1983-01-01

    Reconnection process of magnetic fields in a plasma is analytically studied by perturbing the boundary conditions on a slab of incompressible plasma with a resonant surface inside. It is found, for small resistivity, that the reconnection takes place on Alfven time scale and continues into a slow time scale t 1 = eta/sup 1/3/t. Both time scales are faster than the usual tearing time scale. Furthermore, the plasma evolves globally from its initial equilibrium on the slow time scale and settles down to a different final equilibrium

  12. Radiative properties of a plasma moving across a magnetic field. I: Theoretical analysis

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.; Miller, R.H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a two-dimensional model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. The magnitude of the radiation field and the amount of plasma momentum and energy carried away by and stored instantaneously in the fields are discussed only qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws for the magnitude of the fields and the slowing down of the plasma cloud are presented in a companion manuscript

  13. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  14. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  15. Numerical analysis of plasma-wall interaction for an oblique magnetic field

    International Nuclear Information System (INIS)

    Chodura, R.

    1982-01-01

    A numerical code is used to calculate energy and incidence angle of plasma ions and electrons impinging on an absorbing wall. Plasma particles coming from a plasma of given density and temperature traverse a transition layer with an electric space charge field perpendicular to the wall and a given magnetic field of arbitrary angle before being adsorbed in the wall. The 1d electrostatic particle code determines the electric field and the change of particle velocity distributions in the transition layer. When the incidence angle psi of the magnetic field is varied from 0 0 (normal) to 90 0 (tangential), the impact energies W of ions and electrons at the wall stay nearly unchanged. Electrons reach the wall according to an isotropic Maxwellian distribution except for large angles psi where only electrons travelling along the magnetic field have a chance to escape the plasma. Ions hit the wall at increasing angles theta for increasing psi. The incidence angle of cold ions (Tsub(i0) = 0) is always steeper than that of the magnetic field. For nearly grazing incidence angle of the magnetic field psi →90 0 the ion incidence angle theta becomes grazing as well. After the distribution function is determined the sputtering yield of wall incident ions is calculated for different magnetic field angles psi showing maximum yield for psi near to 90 0 . (orig.)

  16. Fluctuations in collisional plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Momot, A. I.; Zagorodny, A. G.

    2011-01-01

    The theory of large-scale fluctuations in a plasma is used to calculate the correlations functions of electron and ion density with regard to particle collisions described within the Bhatnagar-Gross-Krook (BGK) model and the presence of a constant external electric field. The changes of plasma particle distribution functions due to an external electric field and their influence on the plasma dielectric response are taken into account. The dispersion relations for longitudinal waves in such a plasma are studied in details. It is shown that external electric field can lead to the ion-acoustic wave instability and anomalous growth of the fluctuation level. Detailed numerical studies of the general relations for electron number density fluctuations are performed and the effect of external electric field on the fluctuation spectra is studied.

  17. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  18. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  19. Screening of the field of a static charge in an anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Arsenin, V.V.; Puzitskii, M.L.

    1991-01-01

    The field of a static charge placed in an equilibrium plasma is screened at a distance of the order of the Debye radius. Debye screening occurs both with and without an external magnetic field. This property also persists when the plasma is not an equilibrium plasma but the velocity distribution function of the particles is isotropic (the screening radius in this case contains the characteristic value of the energy instead of the temperature). The situation can change if the distribution is anisotropic. First, the drop in the field can become non-Debye. In particular, in an unmagnetized plasma some distribution functions are characterized by a power-law decrease of the field. Second, a static test charge induces a magnetic as well as an electrostatic field in an anisotropic plasma. In this communication the authors describe the anomalies of screening of the field of a static charge in a magnetized plasma. For definiteness they consider a situation (typical, e.g., of magnetic mirror systems) when the ionic component is anisotropic. The simplifications for the sake of computations are limited to the case of a charge which extends along the magnetic field and only harmonics much longer than the Debye length are significant in the Fourier expansion of the density of this charge in the longitudinal coordinate

  20. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.

    Science.gov (United States)

    Cole, A J; Hegna, C C; Callen, J D

    2007-08-10

    A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.

  1. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    International Nuclear Information System (INIS)

    Lambert, M.A.

    1996-06-01

    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods

  2. Ohm close-quote s law for plasmas in reversed field pinch configuration

    International Nuclear Information System (INIS)

    Martines, E.; Vallone, F.

    1997-01-01

    An analytical relationship between current density and applied electric field in reversed field pinch (RFP) plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned momentum transport caused by the magnetic field stochasticity. This Ohm close-quote s law yields current density profiles with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP experiments has been obtained. The results of the theoretical work have been compared with experimental data from the RFX experiment, and a good agreement has been found. copyright 1997 The American Physical Society

  3. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  4. Lifshitz-sector mediated SUSY breaking

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Tamarit, Carlos

    2014-01-01

    We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by Λ HL 2 /M P 2 , the ratio of the Hořava-Lifshitz cross-over scale Λ HL to the Planck scale M P . This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields

  5. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    CERN Document Server

    Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  6. Fields and plasmas in the outer solar system. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, CA (USA); Wolfe, J H [National Aeronautics and Space Administration, Moffett Field, CA (USA). Ames Research Center

    1979-04-01

    The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existance of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominante and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium.

  7. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases

    Science.gov (United States)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.

    2016-03-01

    In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind

  8. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  9. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  10. Investigation of plasma heating by magnetic pumping with nonaxisymmetric alternating fields

    International Nuclear Information System (INIS)

    Lapshin, V.I.; Stepanov, K.N.

    1975-01-01

    Non-collisional heating is studied of an inhomogeneous plasma cylinder with the aid of magnetic pumping with axial nonsymmetric variable fields running along a constant field at the phase velocity ω/ksub(ax) which is around an ion thermal velocity or an ion sound velocity. The axial wave-number ksub(ax) is assumed to be greater that I/R, where R is the major radius of the torus. The heating rate at ksub(ax)a approximately 1 (a is the plasma radius) is found to be equal to that in the axial symmetric case. In the event of an ion-acoustic resonance (ω approximately ksub(ax) vsub(s) the energy absorption rate increases by (Tsub(e)/Tsub(i)) >> 1 times, if the resonance occurs in a narrow resonance layer, and by (Tsub(e)/Tsub(i))sup(3/2) times if it does in the entire plasma volume (vsub(s) is the sound velocity). If the pumping frequency is of the same order as the frequency of drift oscillations of inhomogeneous plasma, the pumping field may lead to plasma cooling. This effect is linked with a severe non-equilibrium and instability of an inhomogeneous plasma in this frequency range

  11. Acceleration of particles by electron plasma waves in a moderate magnetic field

    International Nuclear Information System (INIS)

    Smith, D.F.

    1976-01-01

    A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behaviour is expected to affect the development of wave spectra and the subsequent acceleration spectrum. (Auth.)

  12. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  13. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  14. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  15. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  16. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  17. Large-scale interaction of the solar wind with cometary plasma tails

    International Nuclear Information System (INIS)

    Niedner, M.B. Jr.

    1979-01-01

    The study of the behavior of plasma tails in the context of their interaction with the solar wind could have important implications for the structure of the interplanetary medium in three dimensions. Comet Kohoutek 1973f exhibited a broad range of plasma tail behavior. On 1974 January 20, the tail was in a highly disturbed condition. Comet Kohoutek was encountering the leading edge of a very strong high-speed stream at the time the plasma tail disturbance started to develop. Comparison of the observed tail geometry on January 20 with the theoretical position angles generated from the wind sock theory of plasma tails and the corotated satellite observations shows that the tail disturbance was probably caused by large gradients of the polar component of the solar-wind velocity. Within hours after the disturbance of January 20, the plasma tail of comet Kohoutek became disconnected from the cometary head, and was replaced by a new plasma tail. The comet was very near an interplanetary sector boundary at the time of disconnection. The disconnection event (DE) is suggested to have resulted from the magnetic reconnection of plasma tail field lines. A similar analysis of other DEs found in original plate material and in published photographs shows the most DEs occur near corotated sector boundaries. Thus, the sector boundary model is further supported, and the finding provides the only known method of probing sector structure to high latitudes. Sector boundaries can often extend to high latitudes in a nearly North-South orientation, and this property is not restricted to times away from solar minimum. Furthermore, the boundaries are inferred to be randomly tilted with respect to the polarity sequence across the boundary and to the magnetic signs of the solar poles

  18. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  19. Field stability by the electron beam in a warm magnetized plasma-filled waveguide

    International Nuclear Information System (INIS)

    Khalil, Sh.M.; Sayed, Y.A.; EI-Shorbagy, Kh.H.; EI-Gendy, A.T.

    2002-11-01

    We study the effect of the electron beam on the field stability and minimizing the energy losses in waveguide filled with plasma. Analytical calculations are performed to find the plasma dielectric tensor. By applying the boundary conditions at the plasma-conductor interface, we derive the dispersion equations, which describe the propagated E- and H- waves and their damping rate. The necessary condition for the field stability in the waveguide and the amplification coefficient for the E- wave are obtained. Realistic plasma conditions (i.e. its warmness and inhomogeneity under the effect of an external static magnetic field) are taken into consideration. The electron beam is found to play a crucial role in controlling the field attenuation in waveguide. (author)

  20. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  1. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  2. The Influence of the Axial Magnetic Field Upon-the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; EL-Demrdash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters of a coaxial plasma gun device. The experimental results are investigated with 0.5 KJ plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied

  3. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  4. Edge-plasmas and wall protection in RFPs [Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1988-01-01

    The Reverse-Field Pinch (RFP) has the ability to operate as a compact, moderate-to-high beta, high-power-density system. A compact system requires careful control of the particle and heat fluxes impinging on plasma-facing components. A strongly recycling, toroidal-field open divertor combined with a highly radiating (>90% of plasma heating power) core plasma is required. An open divertor configuration locates the plate near the field null to take advantage of the flux expansion and minimum poloidal asymmetries to minimize peak heat fluxes. The physics and engineering requirements are quantitatively discussed for an evolutionary sequence of impurity/ash-control schemes for AT-40M (0.4 MA) → ZT-P (0.08 MA) → ZTH (2-4 MA) → FTF/RFP (10 MA) → TITAN (18 MA). 13 refs., 5 figs., 2 tabs

  5. Radioimmunoassay and chemical ionization/mass spectrometry compared for plasma cortisol determination

    International Nuclear Information System (INIS)

    Lindberg, C.; Johnson, S.; Hedner, P.; Gustafsson, A.

    1982-01-01

    A method is described for determination of cortisol in plasma and urine, based on chemical ionization/mass spectrometry with deuterium-labeled cortisol as the internal standard. The within-run precision (CV) was 2.5-5.7%, the between-run precision 4.6%. Results by this method were compared with those by a radioimmunological method (RIANEN Cortisol, New England Nuclear) for 395 plasma samples. The latter method gave significantly higher (approx. 25%) cortisol values

  6. Investigation of shock compressed plasma parameters by interaction with magnetic field

    International Nuclear Information System (INIS)

    Dudin, S. V.; Fortov, V. E.; Gryaznov, V. K.; Mintsev, V. B.; Shilkin, N. S.; Ushnurtsev, A. E.

    1998-01-01

    The Hall effect parameters in shock compressed air, helium and xenon have been estimated and results of experiments with air and helium plasma are presented. Explosively driven shock tubes were used for the generation of strong shock waves. To obtain magnetic field a solenoid was winded over the shock tube. Calculations of dense shock compressed plasma parameters were carried out to plan the experiments. In the experiments with the magnetic field of ∼5 T it was found, that air plasma slug was significantly heated by the whirlwind electrical field. The reflected shock waves technique was used in the experiments with helium. Results on measurements of electrical conductivity and electron concentration of helium are presented

  7. Field-aligned plasma-potential structure formed by local electron cyclotron resonance

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi

    2001-01-01

    The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)

  8. ADVECTIVE TRANSPORT OF INTERSTELLAR PLASMA INTO THE HELIOSPHERE ACROSS THE RECONNECTING HELIOPAUSE

    International Nuclear Information System (INIS)

    Strumik, M.; Grzedzielski, S.; Czechowski, A.; Macek, W. M.; Ratkiewicz, R.

    2014-01-01

    We discuss results of magnetohydrodynamical model simulations of plasma dynamics in the proximity of the heliopause (HP). The model is shown to fit details of the magnetic field variations observed by the Voyager 1 spacecraft during the transition from the heliosphere to the local interstellar medium (LISM). We propose an interpretation of magnetic field structures observed by Voyager 1 in terms of fine-scale physical processes. Our simulations reveal an effective transport mechanism of relatively dense LISM plasma across the reconnecting HP into the heliosphere. The mechanism is associated with annihilation of magnetic sectors in the heliospheric plasma near the HP

  9. An Investigation of the Effects of a Driven Plasma Rotation on Fluctuation in a Magnetized Linear Plasma Source. Final Technical Report

    International Nuclear Information System (INIS)

    Thomas, E.

    2004-01-01

    The rotation of a plasma is one of the most fundamental global modes of plasma behavior. It is the zeroth order plasma response to a transverse electric field. In its simplest kinetic form, the so-called E x B drift (here, E is the electric field vector and B is the magnetic field vector), both the ions and the electrons will undergo a drift in the same direction. This motion is considered a universal mode of a plasma since the mechanism of the E x B drift is, to zero-order, independent of both the mass and the charge of the particles

  10. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  11. Plasma-induced field emission and plasma expansion of carbon nanotube cathodes

    International Nuclear Information System (INIS)

    Liao Qingliang; Zhang Yue; Qi Junjie; Huang Yunhua; Xia Liansheng; Gao Zhanjun; Gu Yousong

    2007-01-01

    High intensity electron emission cathodes based on carbon nanotube films have been successfully fabricated. An investigation of the explosive field emission properties of the carbon nanotube cathode in a double-pulse mode was presented and a high emission current density of 245 A cm -2 was obtained. The formation of the cathode plasma layer was proved and the production process of the electron beams from the cathode was explained. The time and space resolution of the electron beams flow from the cathode was investigated. The plasma expanded at a velocity of ∼8.17 cm μs -1 towards the anode and influenced on the intensity and distribution of electron beams obviously. The formation of cathode plasma had no preferential position and the local enhancement of electron beams was random. This carbon nanotube cathode appears to be suitable for high-power microwave device applications

  12. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  13. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  14. Electric field measurements on plasma bullets in N2 using four-wave mixing

    NARCIS (Netherlands)

    van der Schans, M.; Böhm, P.; Nijdam, S.; IJzerman, W.L.; Czarnetzki, U.

    2015-01-01

    Atmospheric pressure plasma jets driven by pulsed DC or kHz AC voltages typically consist of discrete guided ionisation waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated. Electric field measurements in N2

  15. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  16. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    International Nuclear Information System (INIS)

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-01-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results

  17. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum

    International Nuclear Information System (INIS)

    Marques, Diego

    2009-01-01

    We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.

  18. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    Science.gov (United States)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  19. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  20. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    Science.gov (United States)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  1. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  2. Spectroscopic measurement of the electric field in a helium plasma jet

    NARCIS (Netherlands)

    Hofmans, M.; Sobota, A.

    2017-01-01

    The electric field in a plasma jet is measured spectroscopically utilizing the Stark-effect. A cold atmospheric pressure helium plasma jet is used, which operates at a μs-pulsed applied voltage of 6 kV, a frequency of 5 kHz and with a helium flow of 1.5 slm. Due to the electric field in the jet, the

  3. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  5. Plasma production and thermalisation in a strong field

    International Nuclear Information System (INIS)

    Vinnik, D.V.; Schmidt, S.M.; Prozorkevich, A.V.; Smolyansky, S.A.; Toneev, V.D.; Hecht, M.B.; Roberts, C.D.

    2001-01-01

    Aspects of the formation and equilibration of a quark-gluon plasma are explored using a quantum kinetic equation, which involves a non-Markovian, Abelian source term for quark and antiquark production and, for the collision term, a relaxation time approximation that defines a time-dependent quasi-equilibrium temperature and collective velocity. The strong Abelian field is determined via the simultaneous solution of Maxwell's equation. A particular feature of this approach is the appearance of plasma oscillations in all thermodynamic observables. Their presence can lead to a sharp increase in the time-integrated dilepton yield, although a rapid expansion of the plasma may eliminate this signal. (orig.)

  6. Lorentz Violation of the Photon Sector in Field Theory Models

    Directory of Open Access Journals (Sweden)

    Lingli Zhou

    2014-01-01

    Full Text Available We compare the Lorentz violation terms of the pure photon sector between two field theory models, namely, the minimal standard model extension (SME and the standard model supplement (SMS. From the requirement of the identity of the intersection for the two models, we find that the free photon sector of the SMS can be a subset of the photon sector of the minimal SME. We not only obtain some relations between the SME parameters but also get some constraints on the SMS parameters from the SME parameters. The CPT-odd coefficients (kAFα of the SME are predicted to be zero. There are 15 degrees of freedom in the Lorentz violation matrix Δαβ of free photons of the SMS related with the same number of degrees of freedom in the tensor coefficients (kFαβμν, which are independent from each other in the minimal SME but are interrelated in the intersection of the SMS and the minimal SME. With the related degrees of freedom, we obtain the conservative constraints (2σ on the elements of the photon Lorentz violation matrix. The detailed structure of the photon Lorentz violation matrix suggests some applications to the Lorentz violation experiments for photons.

  7. Resonant geomagnetic field oscillations and Birkeland currents in the morning sector

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.; Lundin, R.; Marklund, G.T.; Block, L.P.; Lindqvist, P.A.

    1988-01-01

    Magnetic field, electric field, and particle measurements acquired by the Viking satellite and magnetic field measurements acquired by the Active Magnetosphere Particle Tracer Explorers (AMPTE) CCE satellite have been used to study the relationship between large-scale Birkeland currents and resonant oscillations in the Earth's magnetic field. Region 1, region 2, and northward B Z (NBZ) Birkeland currents were identified with the data acquired by the Viking magnetic field instrument. Magnetic field oscillations, present in each of the 10 consecutive Viking passes studied here, have periods between 1 min. and 6 min. and amplitudes from 5 nT to 60 nT. These oscillations extend from lower L shells where they correlate with the CCCE observations up to at least the interface between the region 1 and region 2 Birkeland current system. The Viking particle observations confirm that the region 1/region 2 interface maps closely to the interface between the low-latitude boundary layer (LLBL) and the central plasma sheet (CPS). Electric and magnetic field variations are closely correlated in the region 1 Birkeland current. In the region 2 system of Birkeland currents, the northward electric and eastward magnetic field components show the same resonance oscillations with the electric field variations leading the magnetic field by approximately 90 degree. There is evidence that the amplitudes of the oscillations observed by Viking are correlated with interplanetary magnetic field (IMF) cone angle. In one case, the energy-time dispersion signature of temporal magnetosheath plasma injection into the low-latitude boundary layer was associated with the resonant oscillations. These relationships and the presence of the resonant oscillations on field lines up to the region 1/region 2 (LLBL/CPS) interface lead us to conclude that there are several features in the solar wind and the direction of the IMF that can initiate magnetospheric pulsations

  8. Field desorption and field ion surface studies of samples exposed to the plasmas of PLT and ISX

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Panitz, J.A.

    1978-01-01

    Modifications to the surface of field-ion specimens exposed to plasma discharges in PLT and ISX determined by Imaging Probe, Field Ion Microscope, and Transmission Electron Microscope analysis have in the past shown several consistent features. Surface films consisting primarily of limiter material with trapped plasma and impurity species have been found to reside on samples with direct line of sight exposure to the plasma during the discharges. Control specimens placed in the tokamak, but shielded from the plasma, on the other hand, remained free of deposits. When exposed to only high power plasma discharges, samples placed at the wall position in PLT and ISX have survived the exposures with no evidence of damage or implantation. In this paper we describe the results of a recent exposure in PLT in which for the first time samples of stainless steel were included for High-Field Surface Analysis. Tokamak operating conditions, including stainless-steel limiters, titanium gettering between discharges, and the occurrence of a disruption, also distinguished this exposure from those carried out previously. Surprisingly, even with stainless-steel limiters, carbon films were found to be deposited on the samples at a rate

  9. Two-electrons quantum dot in plasmas under the external fields

    Science.gov (United States)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  10. Boundary between a plasma and a field with particle losses

    International Nuclear Information System (INIS)

    Konkhashbaev, I.K.; Zandman, I.S.; Ilinich, F.R.

    1978-01-01

    For open magnetic traps with β=1, the formation of plasma-field boundary (skin-layer) and the rate of the magnetic field fiffusion into plasma were investigated through the consideration of an evolution of a wide skin-layer. A large value of the mirror ratio is assumed for the sake of simplicity. The skin-layer structure is formed by two mechanisms: a mutual plasma-field diffusion tending to expand the boundary, and escape of particles trapped in the skin-layer region, along lines of force through the magnetic mirror, which tends to compress the boundary. It is shown that compression of the wide boundary occurs for the time of the order of the ion-ion collision time when the ion and electron temperatures change substantially. The final skin-layer width proved to be larger than a hybrid one, but smaller than the ion Larmour radius and depends slightly on initial temperatures. It has been established that the diffusion of the magnetic field into the plasma of magnetic trap has the character of a stationary wave of a width equal to the ion Larmour radius and of the velocity V approximately Vsub(Ti)/(ωsub(i)tausub(i))(Vsub(Ti) is the thermal ion velocity, ωsub(i), tausub(i) - the ion cyclotron frequency and collision time)

  11. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  12. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  13. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  14. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  15. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  16. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  17. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  18. Plasma and field observations of a compressional Pc 5 wave event

    International Nuclear Information System (INIS)

    Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Luehr, H.; Glassmeier, K.H.

    1987-01-01

    On October 24, 1984, the AMPTE/IRM satellite, on its inbound orbit in the 1,300 LT sector, observed a strong compressional Pc 5 event lasting for about an hour. The use of data from the full complement of detectors aboard the spacecraft allowed for detailed measurements of field and particle oscillations, with the latter covering energies from a few electron volts up to tens of keV (electrons) or even 1 MeV (protons). Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of in-phase events. But the energetic proton data also exhibited a new feature: Flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied. The low-energy particles showed clear signatures of gradient convection due to the wave electric field with the protons additionally undergoing gyration acceleration. The period of the pulsation decreased while the satellite was moving inward, in agreement with the individual L shell resonance model. But in contrast to earlier observations the periods of the compressional and transverse oscillations differed significantly (by ∼ 25%). The authors interpret this as Doppler shift due to spacecraft motion since in the present event the transverse oscillations did not have the purely radial (poloidal) polarization common to other published cases

  19. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  20. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-01-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed

  1. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Science.gov (United States)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  2. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    Science.gov (United States)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  3. Behaviour of the peripheral plasma in the reversed field pinch

    International Nuclear Information System (INIS)

    Matsuoka, A.; Sato, K.I.; Arimoto, H.; Yamada, S.; Nagata, A.; Murata, H.

    1986-01-01

    By using Langmuir probes installed behind limiters, time behaviour of the peripheral plasma in the Reversed Field Pinch (RFP) are investigated. They are strongly affected by the confined RFP plasma and are divided into three phases (the initial phase before setting up the RFP configuration, the current rising phase, and the quiescent phase), which are just the same as those of the confined RFP plasma. Typical behaviour of the peripheral plasma have relations to the pump out phenomena and of the toroidal flux generation. (author)

  4. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    International Nuclear Information System (INIS)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    Highlights: ► Survey of bio-analytical approaches utilizing biomolecule labelling. ► Detailed discussion of methodology and chemistry of elemental labelling. ► Biomedical and bio-analytical applications of elemental labelling. ► FI-ICP-MS and LC–ICP-MS for quantification of elemental labelled biomolecules. ► Review of selected applications. - Abstract: This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given.

  5. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  6. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1998-01-01

    The bifurcated states of a rotating tokamak plasma in the presence of a static, resonant, error-field are strongly analogous to the bifurcated states of a conventional induction motor. The two plasma states are the open-quotes unreconnectedclose quotes state, in which the plasma rotates and error-field-driven magnetic reconnection is suppressed, and the open-quotes fully reconnectedclose quotes state, in which the plasma rotation at the rational surface is arrested and driven magnetic reconnection proceeds without hindrance. The response regime of a rotating tokamak plasma in the vicinity of the rational surface to a static, resonant, error-field is determined by three parameters: the normalized plasma viscosity, P, the normalized plasma rotation, Q 0 , and the normalized plasma resistivity, R. There are 11 distinguishable response regimes. The extents of these regimes are calculated in P endash Q 0 endash R space. In addition, an expression for the critical error-field amplitude required to trigger a bifurcation from the open-quotes unreconnectedclose quotes to the open-quotes fully reconnectedclose quotes state is obtained in each regime. The appropriate response regime for low-density, ohmically heated, tokamak plasmas is found to be the nonlinear constant-ψ regime for small tokamaks, and the linear constant-ψ regime for large tokamaks. The critical error-field amplitude required to trigger error-field-driven magnetic reconnection in such plasmas is a rapidly decreasing function of machine size, indicating that particular care may be needed to be taken to reduce resonant error-fields in a reactor-sized tokamak. copyright 1998 American Institute of Physics

  7. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  8. Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-01-01

    In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics

  9. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  10. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  11. Heating of field-reversed plasma rings estimated with two scaling models

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1978-05-18

    Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.

  12. On the geometry of field lines in plasma flows

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1988-01-01

    Many research investigators have applied differential geometry to plasma. Intrinsic properties of fluid flows in streamline, vortex line geometries are we ll known under certain set of geometric conditions. Though this approach has yielded some interesting results but the most general properties of flows can be obtained, using eight geometric parameters ksub(s), tsub(s) θsub(ns), θsub(bs), phisub(s), Ωsub(s), div n, div b and the basic necessary conditions to be satisfied by the flow in general anholonomic co-ordinate system together with the conditions to be satisfied by the geometric parameters of triply orthogonal spatial curves of congruences. Adopting the above techniques for triply orthogonal spatial curves of congruences related to the lines of forces, Purushottam has studied the geometric properties of spatial hydromagnetic fluid flows. Again these results have been studied by him in general along the field lines. These results have been studied for plasma along field lines and the basic equations of plasma have been expressed in intrinsic decomposition forms. Furthe r complex lamellar magnetic field have been studied by introducing Lie surface. (a uthor)

  13. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  14. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...

  15. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  16. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  17. Physical analysis of some features of the gauge theories with Higgs sectors

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1995-01-01

    A physical analysis of some features of the gauge theories with Higgs sectors is made. It is shown that we should assume gauge transformations in the fermion and Higgs sectors to be different (i.e., to have different charges) in order to remove contradictions arising in gauge theories with Higgs sectors. Then, the Higgs mechanism can be interpreted as some mechanism of gauge field shielding. In such a mechanism fermions remain without masses. The conclusion is made that in the standard theory of the development of the Universe, monopoles cannot survive at low temperatures. 15 refs

  18. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  19. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  20. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  1. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  2. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  3. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Lin, Chiann Tso; Kim, Jong Seo; Heibeck, Tyler H.; Wang, Jun; Qian, Weijun; Lin, Yuehe

    2012-04-20

    Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The Inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we performed immunoaffinity purification and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChE polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. The exact phosphorylation site of BChE was confirmed on Serine 198 by MS/MS with a 108 Da modification mass and accurately measured parent ion masses. The phosphorylated BChE peptide was also successfully detected in the immunoaffinity purified sample from paraoxon treated human plasma. Thus, immunoaffinity purification combined with mass spectrometry represents a viable approach for the detection of paraoxon-modified BChE and other forms of modified BChE as exposure biomarkers of organophosphates and nerve agents.

  4. Collimation of laser-produced plasmas using axial magnetic field

    Czech Academy of Sciences Publication Activity Database

    Roy, Amitava; Harilal, S.S.; Hassan, S.M.; Endo, Akira; Mocek, Tomáš; Hassanein, A.

    2015-01-01

    Roč. 33, č. 2 (2015), s. 175-182 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-produced plasma * optical emission spectroscopy * plasma-B field interaction * plasma temperature and density * tin plasma Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.649, year: 2015

  5. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  6. About the Toroidal Magnetic Field of a Tokamak Burning Plasma Experiment with Superconducting Coils

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    In tokamaks, the strong dependence on the toroidal magnetic field of both plasma pressure and energy confinement is what makes possible the construction of small and relatively inexpensive burning plasma experiments using high-field resistive coils. On the other hand, the toroidal magnetic field of tokamaks using superconducting coils is limited by the critical field of superconductivity. In this article, we examine the relative merit of raising the magnetic field of a tokamak plasma by increasing its aspect ratio at a constant value of the peak field in the toroidal magnet. Taking ITER-FEAT as an example, we find that it is possible to reach thermonuclear ignition using an aspect ratio of approximately 4.5 and a toroidal magnetic field of 7.3 T. Under these conditions, fusion power density and neutron wall loading are the same as in ITER [International Thermonuclear Experimental Reactor], but the normalized plasma beta is substantially smaller. Furthermore, such a tokamak would be able to reach an energy gain of approximately 15 even with the deterioration in plasma confinement that is known to occur near the density limit where ITER is forced to operate

  7. Method and means for measuring the anisotropy of a plasma in a magnetic field

    Science.gov (United States)

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  8. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  9. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    Science.gov (United States)

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  10. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  11. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  12. Low-frequency instabilities of electron-hole plasmas in crossed fields

    International Nuclear Information System (INIS)

    Schneider, W.; Kirchesch, P.

    1978-01-01

    Using local point-contact probes, we observed two types of low-frequency instabilities in n-InSb at 85 K if the samples were exposed to crossed fields. One is a local density instability with threshold frequencies of f = 1 ... 20 Mc, the other a more turbulent current instability. The threshold values of U 0 and B for the onset of these instabilities and the dependence of their amplitudes on the fields have been measured. If a rectangular semiconductor slab is placed in crossed fields, regions of high electric field strength at opposite edges of the contacts are caused by the distortion of the Hall field, giving rise to the generation of electron-hole plasmas by impact ionization. These plasmas are the sources of the observed instabilities. This is especially evident in the case of the local density instability, which originates at the anode high field corner. Several possible reasons for the development of the instabilities are discussed. (orig.) [de

  13. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  14. Equilibrium of high beta plasma in closed magnetic line system (MBT)

    International Nuclear Information System (INIS)

    Gesso, H.; Shiina, S.; Saito, K.; Nogi, Y.; Osaniai, Y.; Yoshimura, H.; Todoroki, J.; Hamada, S.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1985-01-01

    The beta effects on the plasma equilibrium in Modified Bumpy Torus (MBT) sector, which is an asymmetric closed line system with l = 0 and fairly large l = +- 1 field distortions, are studied. For this purpose, the equilibrium of high beta plasma produced by theta-pinch is compared with that of betaless plasma numerically calculated from the measured magnetic field profiles in device. The equilibrium condition depends weakly on beta value, but the plasma cross-section is vertically elongated as the beta value increases. The m = 1 long wavelength MHD instability is not observed during the observation time of approx. 15 μs. These experimental results are compared with MHD theory based on the new ordering taking the finiteness of l = +- 1 field distortion (deltasub(+-1) > or approx. 1) into account, which suggests significant stabilizing effects due to self formation of magnetic well and also due to the conducting wall. (author)

  15. Study of aerosol sample interaction with dc plasma in the presence of oscillating magnetic field

    International Nuclear Information System (INIS)

    Stoiljkovic, M.M.; Pavlovic, M.S.; Savovic, J.; Kuzmanovic, M.; Marinkovic, M.

    2005-01-01

    Oscillating magnetic field was used to study the efficiency of the aerosol sample introduction into the dc plasma. At atmospheric plasmas, the effect of magnetic field is reduced to Lorentz forces on the current carrying plasma, which produces motion of the plasma. The motion velocity of dc plasma caused by oscillating magnetic field was correlated to spectral emission enhancement of analytes introduced as aerosols. Emission enhancement is the consequence of the reduced barrier to introduction of analyte species and aerosol particles into the hot plasma region. Two hypotheses described in the literature for the origin of the barrier are considered: (i) barrier induced by temperature field is based upon the thermophoretic forces on the aerosol particles when their radius is comparable to the molecular free path in the surrounding gas and (ii) barrier induced by radial electric field, recently described, that originates from gradients of charged particles in radial direction. Correlation between ionization energy of the analyte atoms with experimental emission enhancement obtained by the use of oscillating magnetic field indicates that mechanism (ii) based upon the radial electric field is predominant. The ultimate emission enhancement and possible analytical advantage is discussed

  16. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  17. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  18. Study on the plasma diode in the external magnetic field

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1981-01-01

    The experimental investigations of plasma diode with cathode plasma formation on the basis of an incomplete charge over dielectric surface in the external longitudinal magnetic field with the intensity of Hsub(z) up to 2000 Oe are presented. It is demonstrated that at the 150-250 keV diode voltage and the current density of up to 300 A/cm 2 the homogeneity of the current density over transverse cross section is preserved up to the cell size of metallic grid onto cathode with the change of the magnetic field up to 2000 Oe [ru

  19. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  20. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  1. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  2. Scalar field mass in generalized gravity

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  3. FOREWORD: Workshop on Large Amplitude Waves and Fields in Plasmas, sponsored by the Commission of the European Communities

    Science.gov (United States)

    Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.

    1990-01-01

    During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density

  4. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R

    2012-01-01

    A theory is developed to predict the error-field penetration threshold in low density, ohmically heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in the vicinity of the resonant surface to the applied error-field is calculated from nonlinear drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory. Error-field penetration, and subsequent locked mode formation, is triggered once the destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect of the ion polarization current (caused by the propagation of the error-field-induced island chain in the local ion fluid frame). The predicted scaling of the error-field penetration threshold with engineering parameters is (b r /B T ) crit ∼n e B T -1.8 R 0 -0.25 , where b r is the resonant harmonic of the vacuum radial error-field at the resonant surface, B T the toroidal magnetic field-strength, n e the electron number density at the resonant surface and R 0 the major radius of the plasma. This scaling—in particular, the linear dependence of the threshold with density—is consistent with experimental observations. When the scaling is used to extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is (b r /B T ) crit ∼ 5 × 10 −5 , which just lies within the expected capabilities of the ITER error-field correction system. (paper)

  5. Studies on reducing the scale of a double focusing mass spectrometer

    International Nuclear Information System (INIS)

    Chambers, D.M.; Gregg, H.R.; Andresen, B.D.

    1993-05-01

    Several groups have developed miniaturized sector mass spectrometers with the goal of remote sensing in confined spaces or portability. However, these achievements have been overshadowed by more successful development of man-portable quadrupole and ion trap mass spectrometers. Despite these accomplishments the development of a reduced-scale sector mass spectrometer remains attractive as a potentially low-cost, robust instrument requiring very simple electronics and low power. Previous studies on miniaturizing sector instruments include the use of a Mattauch-Herzog design for a portable mass spectrograph weighing less than 10 kg. Other work has included the use of a Nier-Johnson design in spacecraft-mountable gas chromatography mass spectrometers for the Viking spacecraft as well as miniature sector-based MS/MS instrument. Although theory for designing an optimized system with high resolution and mass accuracy is well understood, such specifications have not yet been achieved in a miniaturized instrument. To proceed further toward the development of a miniaturized sector mass spectrometer, experiments were conducted to understand and optimize a practical, yet nonideal instrument configuration. The sector mass spectrometer studied in this work is similar to the ones developed for the Viking project, but was further modified to be low cost, simple and robust. Characteristics of this instrument that highlight its simplicity include the use of a modified Varian leak detector ion source, source ion optics that use one extraction voltage, and an unshunted fixed nonhomogeneous magnetic sector. The effects of these design simplifications on ion trajectory were studied by manipulating the ion beam along with the magnetic sector position. This latter feature served as an aid to study ion focusing amidst fringing fields as well as nonhomogeneous forces and permitted empirical realignment of the instrument

  6. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Science.gov (United States)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  7. Analysis and correction of intrinsic non-axisymmetric magnetic fields in high-β DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; La Haye, R.J.; Scoville, J.T.

    2002-01-01

    Rapid plasma toroidal rotation, sufficient for stabilization of the n=1 resistive wall mode, can be sustained by improving the axisymmetry of the toroidal magnetic field geometry of DIII-D. The required symmetrization is determined experimentally both by optimizing currents in external n=1 correction coils with respect to the plasma rotation, and by use of the n=1 magnetic feedback to detect and minimize the plasma response to non-axisymmetric fields as β increases. Both methods point to an intrinsic ∼7 G (0.03% of the toroidal field), m/n=2/1 resonant helical field at the q=2 surface as the cause of the plasma rotation slowdown above the no-wall β limit. The drag exerted by this field on the plasma rotation is consistent with the behaviour of 'slipping' in a simple induction motor model. (author)

  8. CP violation in the two-doublet Higgs sector of the MSSM

    International Nuclear Information System (INIS)

    Akhmetzyanova, Eh.N.; Dolgopolov, M.V.; Dubinin, M.N.

    2006-01-01

    Models with extended two-doublet Higgs sector are discussed in view of using their particular features to find out which sources of CP violation could take place in nature. It is considered the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. For case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the interactions of Higgs fields with the third generation of scalar quarks, the Higgs bosons mass spectrum in the case of maximal CP mixing is calculated which is significantly different from CP-conserving case. The phenomenological consequences for the Higgs mass spectrum in the decoupling regime and for the strong mixing case are considered [ru

  9. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  10. Quantitative determination of famotidine in human maternal plasma, umbilical cord plasma and urine using high-performance liquid chromatography - mass spectrometry

    Science.gov (United States)

    Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067

  11. Conceptual design of plasma position control of SST-1 tokamak using vertical field coil

    International Nuclear Information System (INIS)

    Gulati, Hitesh Kumar; Patel, Kiritkumar B.; Dhongde, Jasraj

    2015-01-01

    SST-1 (Steady State Superconducting Tokamak) is a plasma confinement device in Institute for Plasma Research (IPR) India. SST-1 has been commissioned successfully and has been carrying out plasma experiments since the beginning of 2014 achieved a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼ 500 ms. SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1s. Based on the solution of Grad-Shafranov equation the shift of plasma column center from geometrical centre of vacuum chamber is measured using various magnetic probes and flux loops installed in the machine. The closed feedback loop uses plasma current (Ip), Delta R as feedback signal and manipulate the vertical field current (Ivf). The discharge starts with feed forward loop using initially provided reference then the active feedback starts after discharge by few msec once plasma column is completely formed. The feedback loop time is of the order of 10 msec. The primary objective is to acquire plasma position control related signals, compute plasma position and generate position correction signal for VF coil power supply, communicate correction to VF coil power supply and modify VF power supply output in a deterministic time span. In this we present the methodology used for plasma horizontal displacement control using vertical field and discuss the preliminary results. (author)

  12. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  13. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  14. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  15. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  16. My 25 years of experience in CPMS: applications in geochemical, mineral exploration, environment, nuclear, food, petroleum, pharmaceutical and industry sectors

    International Nuclear Information System (INIS)

    Balaram, V.

    2012-01-01

    A unique instrument incorporating an inductively coupled plasma (ICP) source and a double focusing magnetic sector high resolution mass analyzer (HR-ICP- MS) has been developed, having a practical resolving power of about 10000 or more whilst also achieving high sensitivity (Bradshaw et al, 1989). During this period, techniques like multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) and sensitive high resolution ion micro probe (SHRIMP), etc., have brought in the analytical revolution by taking the detection limits for several elements to parts per quadrillion (ppq) levels and the isotope ratio precisions to <0.001% RSD. These advances have contributed to the pioneering research in several areas of science and technology during the last six decades

  17. About of the Electrostatic fields excitation theory by a RF wave in a plasma

    International Nuclear Information System (INIS)

    Gutierrez T, C.R.

    1991-01-01

    In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)

  18. Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma

    International Nuclear Information System (INIS)

    Kalfsbeek, H.W.

    1978-12-01

    A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)

  19. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Patel, Sonal G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Falcon, Ross Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Maron, Yitzhak [Weizmann Inst. of Science, Rehovot (Israel)

    2017-11-01

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

  20. Separation method in the problem of a beam-plasma interaction in bounded warm plasma under the effect of HF electric field

    International Nuclear Information System (INIS)

    EI-Shorbagy, Kh.H.

    2002-11-01

    The stabilization effect of a strong HP electric field on beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique 'separation method' which has been applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  1. Turbulence in tokamak plasmas. Effect of a radial electric field shear

    International Nuclear Information System (INIS)

    Payan, J.

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs

  2. Unstable plasma characteristics in mirror field electron cyclotron ...

    Indian Academy of Sciences (India)

    left hand polarized (LHP) wave. Shufflbotham and ... of a Maxwellian distribution and also the non-effectiveness of a magnetic field on plasma ... Plot of microwave input power versus reflected power and ion current density at pressure 0.4 ...

  3. Bayesian model comparison using Gauss approximation on multicomponent mass spectra from CH4 plasma

    International Nuclear Information System (INIS)

    Kang, H.D.; Dose, V.

    2004-01-01

    We performed Bayesian model comparison on mass spectra from CH4 rf process plasmas to detect radicals produced in the plasma. The key ingredient for its implementation is the high-dimensional evidence integral. We apply Gauss approximation to evaluate the evidence. The results were compared with those calculated by the thermodynamic integration method using Markov Chain Monte Carlo technique. In spite of very large difference in the computation time between two methods a very good agreement was obtained. Alternatively, a Monte Carlo integration method based on the approximated Gaussian posterior density is presented. Its applicability to the problem of mass spectrometry is discussed

  4. Magnetic field approaches in dc thermal plasma modelling

    International Nuclear Information System (INIS)

    Freton, P; Gonzalez, J J; Masquere, M; Reichert, Frank

    2011-01-01

    The self-induced magnetic field has an important role in thermal plasma configurations generated by electric arcs as it generates velocity through Lorentz forces. In the models a good representation of the magnetic field is thus necessary. Several approaches exist to calculate the self-induced magnetic field such as the Maxwell-Ampere formulation, the vector potential approach combined with different kinds of boundary conditions or the Biot and Savart (B and S) formulation. The calculation of the self-induced magnetic field is alone a difficult problem and only few papers of the thermal plasma community speak on this subject. In this study different approaches with different boundary conditions are applied on two geometries to compare the methods and their limitations. The calculation time is also one of the criteria for the choice of the method and a compromise must be found between method precision and computation time. The study shows the importance of the current carrying path representation in the electrode on the deduced magnetic field. The best compromise consists of using the B and S formulation on the walls and/or edges of the calculation domain to determine the boundary conditions and to solve the vector potential in a 2D system. This approach provides results identical to those obtained using the B and S formulation over the entire domain but with a considerable decrease in calculation time.

  5. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  6. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry.

    Science.gov (United States)

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John; Oller Moreno, Sergio; Irincheeva, Irina; Valsesia, Armand; Astrup, Arne; Saris, Wim H M; Hager, Jörg; Kussmann, Martin; Dayon, Loïc

    2016-02-05

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.

  7. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  8. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  9. Control of radial electric field in torus plasma

    International Nuclear Information System (INIS)

    Ida, K.; Idei, H.; Sanuki, H.

    1994-09-01

    The radial electric fields is controlled by changing the direction of neutral beam from co to counter to plasma current in tokamak, while it is controlled by the 2nd harmonic ECH and NBI and pellet injection in heliotron/torsatron. (author)

  10. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  11. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  12. Tertiary Student Transitions: Sectors, Fields, Impacts of and Reasons for Study--Support Document

    Science.gov (United States)

    Fredman, Nick

    2012-01-01

    This paper examines the relationships between post-school educational fields and sectors and labour market considerations that appear to shape students' study decisions. It was found that pathways taken vary considerably by age, suggesting changes over time to patterns in tertiary education towards greater participation overall, a greater extent…

  13. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  14. Principles of spectroscopic diagnostics of a plasma with oscillating electric fields

    International Nuclear Information System (INIS)

    Oks, E.A.

    1986-01-01

    Three types of main principles of spectroscopic diagnosis of the plasma with quasimonochromatic electric fields (QEF) are considered. Principles based on the effects intersectionally depending on the parameters of QEF and the plasma medium are considered. Occurrence of depressions or dips in the profiles of spectral lines is the most important effect among others. Principles based on the nonlinear theory of plasma and laser sattelites of spectral lines as well as laser-spectroscopic diagnosis of QEF in the plasma are considered

  15. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders

    Science.gov (United States)

    Ferrando, A. A.; Green, N. R.

    1993-01-01

    The effect of boron supplementation was investigated in 19 male bodybuilders ages 20-27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

  16. Studying the Electroweak Sector with the ATLAS Detector

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2018-01-01

    (as received from the Speaker Committee. W mass removed from the presentation later on, as discussed in separate talk.) The large integrated luminosities that are available at the LHC, allow to test the gauge structure of the electroweak sector of the Standard Model to highest precision. In this talk, we review the latest results of the ATLAS collaboration involving di-boson and multiboson final states, the electroweak production of vector bosons as well as their constraints of effective field theory operators. Another approach to test the consistency of the electroweak sector is via precision measurements. ATLAS has published a first high precision measurement of the W boson mass, a first measurement of the tau-polarization in Z events as well as a three dimensional cross-section measurement of the Drell-Yan process. The latter allows for the extraction of the forward-backward asymmetry that can be interpreted as a measurement of the weak mixing angle. These results will be presented and discussed.

  17. On infrared and mass singularities of perturbative QCD in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.; Aurenche, P.; Becherrawy, T.

    1988-07-01

    We discuss the radiative corrections to the production of lepton pairs in a quark-gluon plasma at finite temperature. The real-time formalism is used throughout the calculations. We show that both infrared and mass singularities cancel in the final result. In contrast to the zero-temperature case, no factorization theorem is required to deal with mass singularities

  18. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    Tsidulko, Yu.A.; Berk, H.L.

    1996-09-01

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws

  19. Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    Measurements of both incoherent-scatter (IS) and backscatter from field-aligned irregularities (FAI) were made in 1978 with ALTAIR, a fully-steerable high-power radar, to investigate the magnetic-field-aligned characteristics of equatorial plasma bubbles. By operating the radar in a latitude-scan IS mode it was possible to map the location and percentage depletion of plasma bubbles as a function of altitude. By showing that backscatter from FAI is spatially collocated with the upper wall of plasma bubbles it was possible to use the spatial displacement of a field aligned backscatter region to estimate the upward bubble velocity. Besides showing that plasma bubbles are indeed aligned along magnetic field lines, this data set is used to show that a plasma bubble with a percentage depletion of as much as 90% does not have as large an upward velocity as predicted by two-dimensional models. Instead, the inferred bubble velocity is shown to be in better agreement with the bubble velocity predicted by theoretical models using flux-integrated values of electron density and Pedersen conductivity. The need to use flux-tube-integrated values when comparing theory and observation is further stressed by the presence of a non-uniform latitudinal distribution of electron density (i.e. the equatorial anomaly) that was found in the latitude-scan data. (author)

  20. Plasma equilibrium profiles with applied resonant fields on TBR-1 tokamak

    International Nuclear Information System (INIS)

    Castro, R.M. de; Heller, M.V.A.P.; Caldas, I.L.; Silva, R.P. da; Brasilio, Z.A.; Oda, G.A.

    1995-01-01

    In this work we present the measurements of the plasma potential, in the edge and in the scrape-off layer regions of plasma, with and without the presence of the magnetic field perturbations produced by resonant helical windings. (author). 6 refs., 6 figs

  1. Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry

    International Nuclear Information System (INIS)

    Welzel, T; Ellmer, K; Mändl, S

    2014-01-01

    Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Zn x and ZnO y , and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds. (paper)

  2. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  3. Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation

    CERN Document Server

    Fortin, Jean-Francois

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.

  4. Magnetic Field Dependence and Q of the Josephson Plasma Resonance

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.

    1972-01-01

    of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...

  5. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  6. Electromagnetic field theory. Solely theories with plasma in focus

    International Nuclear Information System (INIS)

    Stenstrom, L.

    1979-01-01

    The Institute of Electromagnetic Field Theory at Chalmers Technical University is concerned with purely theoretical work on plasma physics for nuclear fusion. The team concerned is looking at nonlinear effects in the plasma energy exchange mechanism. Both inertia restricted and magnetically enclosed plasma are considered. Analytic and computer methods are used upon the model equations of the plasma. The Institute has associations with Euratom and with work in Maryland and in Grenoble. Work on particle paths is of interst. It also is associated with the construction at Sundsvik of an accelerator to give zero keV negative ions. A problem is to find staff of a sufficiently high quality for such complex work. The difficulties are not economic, but mainly that the desired practical results appear to be so far into the future. (G.P.)

  7. Transport in a fusion plasma in presence of a chaotic magnetic field

    International Nuclear Information System (INIS)

    Nguyen, F.

    1992-09-01

    In the tokamak Tore Supra, the magnetic field ensuring the confinement is stochastic at the plasma edge due to a resonant perturbation. This perturbation is created by a set of six helicoidal coils inside the vacuum vessel, the ergodic divertor. The first part of the study concerns the analysis of the transport of particles and energy in a fusion plasma in presence of a stochastic magnetic field, without physical wall. The effective transport of electrons, i.e. heat transport, increases. The ions transport increases too but less than heat transport. The discrepancy produces a mean radial electric field. The second part is devoted to the influence of the physical wall. The topology of the magnetic connexion on the wall is precisely determined with the code Mastoc. The transport of particles and energy is then described from the confined plasma until the wall. This study enlights severals important observations of the experience Tore Supra in the ergodic divertor configuration: the spreading of the power deposition on the wall components without anomalous concentration, the robustness of this configuration relatively to misalignment, the edge structures visible in H α light during plasma reattachment. In order to study the transport of impurity ions, a variational approach of minimum entropy production has been developped. This principle is applied to the calculation of the neoclassical diffusion of impurity ions with the radial electric field. This electric field deconfines ions if the pressure profile is not balanced by a Lorentz force, i.e. if the plasma is locked in rotation, poloidally and toroidally, because of magnetic perturbation or friction force

  8. Effect of the plasma production rate on the implosion dynamics of cylindrical wire/fiber arrays with a profiled linear mass

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Mitrofanov, K. N.; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N.

    2013-01-01

    Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot m for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R 0 = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot m approx. 0.095 ± 0.015 μg/(cm 2 ns)

  9. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  10. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    Science.gov (United States)

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Plasma grid design for optimized filter field configuration for the NBI test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R.

    2009-01-01

    Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm 2 ) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm 2 ), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.

  12. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  13. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  14. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    Science.gov (United States)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  15. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    Science.gov (United States)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  16. Characterisation of plasma in a rail gun

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  17. The Influence of the Axial Magnetic Field Upon- the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; El-Demardash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters and on the brightness (luminance) of argon plasma. The brightness was measured by with a photomultiplier type of IP28 RCA. The experimental results are investigated with plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied. It was found that the thickness of skin-layer δ about 0.01 cm and the wavelength λ, of the perturbation about 1.3 cm i.e. the instability has been satisfied. The growth rate γ of the instability about 10 6 sec -1 . (author)

  18. Field distribution of a source and energy absorption in an inhomogeneous magneto-active plasma

    International Nuclear Information System (INIS)

    Galushko, N.P.; Erokhin, N.S.; Moiseev, S.S.

    1975-01-01

    In the present paper the distribution of source fields in in a magnetoactive plasma is studied from the standpoint of the possibility of an effective SHF heating of an inhomogeneous plasma in both high (ωapproximatelyωsub(pe) and low (ωapproximatelyωsub(pi) frequency ranges, where ωsub(pe) and ωsub(pi) are the electron and ion plasma frequencies. The localization of the HF energy absorption regions in cold and hot plasma and the effect of plasma inhomogeneity and source dimensions on the absorption efficiency are investigated. The linear wave transformation in an inhomogeneous hot plasma is taken into consideration. Attention is paid to the difference between the region localization for collisional and non-collisional absorption. It has been shown that the HF energy dissipation in plasma particle collisions is localized in the region of thin jets going from the source; the radiation field has a sharp peak in this region. At the same time, non-collisional HF energy dissipation is spread over the plasma volume as a result of Cherenkov and cyclotron wave attenuation. The essential contribution to the source field from resonances due to standing wave excitation in an inhomogeneous plasma shell near the source is pointed out

  19. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  20. Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive

    Directory of Open Access Journals (Sweden)

    V. S. C. Howells

    2008-08-01

    Full Text Available Results are presented from two multi-instrument case studies showing patches of cold, long-lived plasma in the winter nightside ionosphere during times when the z-component of the Interplanetary Magnetic Field (IMF Bz was positive. These enhancements were coincident with the antisunward convective plasma drift, flowing from polar to nightside auroral latitudes. In the first case, on 5 December 2005 with IMF By negative, two regions of enhanced electron density were observed extended in MLT in the magnetic midnight sector separated by lower densities near midnight. It is likely that the earlier enhancement originated on the dayside near magnetic noon and was transported to the nightside sector in the convective flow, whilst the later feature originated in the morning magnetic sector. The lower densities separating the two enhancements were a consequence of a pair of lobe cells essentially blocking the direct antisunward cross polar flow from the dayside. A second case study on 4 February 2006 with IMF By positive revealed a single nightside enhancement likely to have originated in the morning magnetic sector. These multi-instrument investigations, incorporating observations by the EISCAT radar facility, the SuperDARN network and radio tomography, reveal that plasma flowing from the dayside can play a significant role in the nightside ionosphere under conditions of IMF Bz positive. The observations are reinforced by simulations of flux-tube transport and plasma decay.

  1. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  2. Analysis of resistive tearing-mode in the reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Oshiyama, Hiroshi; Masamune, Sadao; Hamuro, Eitaro; Tamaki, Reiji.

    1985-01-01

    As one of the methods of confining high temperature plasma by magnetic stress, attention has been paid to reversed field pinch (RFP). This RFP is the method of maintaining plasma pressure by combining the poloidal field generated by plasma current and the toroidal field having nearly same intensity, thus forming the toroidal shape, closed magnetic surface. As the typical RFP equipment, there have been TPE-1R(M), HBTX-1A, ZT-40M and OHTE, but in order to anticipate the further development, one of the problems is the resistive instability. In this study, the critical beta value determined by the tearing mode in RFP configuration was examined by analytical and numerical calculation methods. The position of a wall required for the stability was determined by solving a second order differential equation for a radial perturbed magnetic field. The propriety of the computer code for determining the position was examined. The magnetic field configuration having a finite beta value was determined, and its stability against a tearing mode was investigated. For this judgement of the stability, the developed computer code was used. The tearing mode in a Bessel function model, the tearing mode of a finite beta value and others are described. (Kako, I.)

  3. Isotopic separation in a rotating neon plasma

    International Nuclear Information System (INIS)

    Cairns, J.B.S.

    1976-01-01

    The background to the use of rotating plasma as element and isotope separators is briefly reviewed. The principles of the process are outlined. The rotation in a plasma centrifuge is produced by passing a radial current across an axial magnetic field. The different mass spheres, if under the influence of azimuthal forces, may be separated by crossing the field. Details are given of the Vortex II experiment in which 22 Ne is separated from neon in a fully ionized rotating plasma. It was demonstrated that 22 Ne enrichments of approximately 15% could be achieved with the possibility of higher values when the design and operation of the plasma centrifuge have been optimised. (U.K.)

  4. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  5. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  6. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    Science.gov (United States)

    Mather, J. W.; Ahluwalia, H. S.

    1988-01-01

    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  8. Extractive alkylation of 6-mercaptopurine and determination in plasma by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Floberg, S; Hartvig, P; Lindström, B; Lönner-Holm, G; Odlind, B

    1981-09-11

    An analytical procedure was developed for the determination of 6-mercaptopurine in plasma. Owing to the polar character and low plasma concentration of the compound, extraction and derivatization was carried out directly from the plasma sample by extractive alkylation. Determination was made using gas chromatography-mass spectrometry with multiple-ion detection. Conditions with respect to the rate of formation and the stability of the derivative formed in the extractive alkylation step were evaluated. The selectively of the method to azathioprine and to metabolites was thoroughly investigated. No 6-mercaptopurine was formed from azathioprine added to water or plasma and run through the method. The method enables the detection of 2 ng of 6 mercaptopurine in a 1.0-ml plasma sample. Quantitative determinations were done down to 10 ng/ml 6 mercaptopurine in plasma.

  9. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  10. Plasma rotation and radial electric field with a density ramp in an ohmically heated tokamak

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-10-01

    Measurements of toroidal and poloidal rotation of the TCA plasma with Alfven Wave Heating and different levels of gas feed are reported. The temporal evolution of the rotation was inferred from intrinsic spectral lines of CV, CIII and, using injected helium gas, from HeII. The light collection optics and line intensity permitted the evolution of the plasma rotation to be measured with a time resolution of 2ms. The rotation velocities were used to deduce the radial electric field. With Alfven heating there was no observable change of this electric field that could have been responsible for the density rise which is characteristic of the RF experiments on TCA. The behaviour of the plasma rotation with different plasma density ramp rates was investigated. The toroidal rotation was observed to decrease with increasing plasma density. The poloidal rotation was observed to follow the value of the plasma density. With hard gas puffing, changes in the deduced radial electric field were found to coincide with changes in the peaking of the plasma density profile. Finally, with frozen pellet injection, the expected increase in the radial electric field due to the increased plasma density was not observed, which may explain the poorer confinement of the injected particles. Even in an ohmically heated tokamak, the measurement of the plasma rotation and the radial electric field are shown to be strongly related to the confinement. A thorough statistical analysis of the systematic errors is presented and a new and significant source of uncertainty in the experimental technique is identified. (author) 18 figs., 18 refs

  11. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  12. Quantitative mass fragmentographic determination of unlabeled and deuterium-labeled propoxyphene in plasma

    International Nuclear Information System (INIS)

    Sullivan, H.R.; McMahon, R.E.

    1977-01-01

    A quantitative gas chromatographic-mass spectrometric method for determination of plasma levels of d-propoxyphene has been developed by using d-propoxyphene-benzyl-d 7 as internal standard. Steady-state pharmacokinetics were studied in a dog by orally administering d-propoxyphene-d 0 for 19 days and d-propoxyphene-d 2 on the 20th day, and monitoring the plasma levels of both compounds and the ratio for 48 hours. It was established that the use of propoxyphene-d 2 did not lead to an isotope effect

  13. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  14. Computer programmes for high current ion trajectories in a magnetic sector-type mass separator

    International Nuclear Information System (INIS)

    Nakai, Akira

    1988-01-01

    According to theoretical calculations previously proposed by the author, a new programme 'MALT' for electronic computers has been developed for numerical calculations of ion trajectories of a high current ion beam traversing a magnetic sector-type mass separator. In the programme, both effects of the fringing field and the space charge are taken into account in an analytical way, so that numerical calculations can be done straightforwardly. Furthermore, it becomes also possible to analyze and cotrol the trajectories of the high current ion beam. The programme MALT contains several subroutine programmes which are separated individually for the convenience of various calculations with respect to the high current ion beam. To demonstrate the calculations by the use of these subroutine programmes, a main programme for the calculation of the trajectories in the whole region of the separator is shown, which also makes it possible to draw the traces of the trajectories. The trajectories calculated by the proposed programme have been compared with the images of the ion beams recorded on novel dry plates developed by the author: the comparison enables us to evaluate the effective space charge and the effective space charge potential, and to analyze the behaviour of the beam of neutral particles accompanying the ion beam. (author)

  15. The application of inductively coupled plasma mass spectrometry to the study of environmental radioactivity

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito; Shiraishi, Kunio; Takaku, Yuichi.

    1991-01-01

    This paper discusses how far inductively coupled plasma mass spectrometry (ICP-MS) is applied in the field of environmental radioactivity. An outline of the apparatus for ICP-MS is given. Interferences associated with ICP-MS are explained in terms of spectrum interference, blocking phenomenon for sampling cone and other elements, and matrix effects. Detection efficiency of ICP-MS is discussed in view of sample induction efficiency, ionization efficiency, sampling efficiency or ion permeability efficiency, and double-focus ICP-MS. Finally, some problems of ICP-MS in measuring long-lived radionuclides are presented, which may be associated with extremely small ratio of radionuclides, measurement accuracy of radionuclide ratio, and extremely small almounts of radionuclides. A great contribution of ICP-MS to the study of environmental radioactivity is stressed. (N.K.) 112 refs

  16. Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Pangborn, R.J.

    1976-01-01

    The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented

  17. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  18. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  19. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V. [Institute for High Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022 (Ukraine); Zagorodny, A. G. [Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., Kiev 03680 (Ukraine)

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  20. Screening Samples for Arsenic by Inductively Coupled Plasma-Mass Spectrometry for Treaty Samples

    Science.gov (United States)

    2014-02-01

    quality system in accordance with International Organization for Standardization/International Electrotechnical Commission ( ISO / IEC ) 17025 :2005...plasma-mass spectrometry ISO / IEC International Organization for Standardization/International Electrotechnical Commission L lewisite MDL method