WorldWideScience

Sample records for plasma-polymerized microchannel surfaces

  1. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems.

    Science.gov (United States)

    Barbier, Valessa; Tatoulian, Michaël; Li, Hong; Arefi-Khonsari, Farzaneh; Ajdari, Armand; Tabeling, Patrick

    2006-06-06

    We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.

  2. PLASMA POLYMERIZATION OF HYDROPHILIC AND HYDROPHOBIC MONOMERS FOR SURFACE MODIFICATION OF NUCLE-MICROPOROUS MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui

    1990-01-01

    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  3. Plasma polymerized epoxide functional surfaces for DNA probe immobilization.

    Science.gov (United States)

    Chu, Li-Qiang; Knoll, Wolfgang; Förch, Renate

    2008-09-15

    The development of functional surfaces for the immobilization of DNA probe is crucial for a successful design of a DNA sensor. In this report, epoxide functional thin films were achieved simply by pulsed plasma polymerization (PP) of glycidyl methacrylate (GMA) at low duty cycle. The presence of epoxide groups in the resulting ppGMA films was confirmed by Fourier transform infrared spectroscopy. The ppGMA coatings were found to be resistant to the non-specific adsorption of DNA strands, while the epoxide groups obtained could react with amine-modified DNA probes in a mild basic environment without any activation steps. A DNA sensor was made, and was successfully employed to distinguish different DNA sequences with one base pair mismatch as seen by surface plasmon enhanced fluorescence spectroscopy (SPFS). The regeneration of the present DNA sensor was also discussed. This result suggests that surface modification with ppGMA films is very promising for the fabrication of various DNA sensors.

  4. Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility

    OpenAIRE

    Os, van, J.

    2000-01-01

    The work described in this thesis concerns the surface modification of materials by thin film deposition in a plasma reactor. In particular, thin polymeric films bearing amine functionalities were synthesized by plasma polymerization of amino group containing monomers. In addition to the synthesis, attention was directed towards the characterization of these films, and the tailoring of their surface properties on a molecular level. Finally, the amino groups introduced by plasma polymerization...

  5. Surface modification of nanoporous alumina membranes by plasma polymerization.

    Science.gov (United States)

    Losic, Dusan; Cole, Martin A; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  6. Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility

    NARCIS (Netherlands)

    Os, van Menno Thomas

    2000-01-01

    The work described in this thesis concerns the surface modification of materials by thin film deposition in a plasma reactor. In particular, thin polymeric films bearing amine functionalities were synthesized by plasma polymerization of amino group containing monomers. In addition to the synthesis,

  7. Plasma Polymerization Surface Modification of Carbon Black and its Effect in Elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, R.N.; Dierkes, W.K.; Talma, A.G.; Ooij, van W.J.; Noordermeer, J.W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known surfa

  8. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2014-06-25

    Tuning the material properties in order to control the cellular behavior is an important issue in tissue engineering. It is now well-established that the surface chemistry can affect cell adhesion, proliferation, and differentiation. In this study, plasma polymerization, which is an appealing method for surface modification, was employed to generate surfaces with different chemical compositions. Allylamine (AAm), acrylic acid (AAc), 1,7-octadiene (OD), and ethanol (ET) were used as precursors for plasma polymerization in order to generate thin films rich in amine (-NH2), carboxyl (-COOH), methyl (-CH3), and hydroxyl (-OH) functional groups, respectively. The surface chemistry was characterized by X-ray photoelectron spectroscopy (XPS), the wettability was determined by measuring the water contact angles (WCA) and the surface topography was imaged by atomic force microscopy (AFM). The effects of surface chemical compositions on the behavior of human adipose-derive stem cells (hASCs) were evaluated in vitro: Cell Count Kit-8 (CCK-8) analysis for cell proliferation, F-actin staining for cell morphology, alkaline phosphatase (ALP) activity analysis, and Alizarin Red S staining for osteogenic differentiation. The results show that AAm-based plasma-polymerized coatings can promote the attachment, spreading, and, in turn, proliferation of hASCs, as well as promote the osteogenic differentiation of hASCs, suggesting that plasma polymerization is an appealing method for the surface modification of scaffolds used in bone tissue engineering.

  9. Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol).

    Science.gov (United States)

    Sakthi Kumar, D; Fujioka, Masayori; Asano, Kentaro; Shoji, Atsumu; Jayakrishnan, Athipettah; Yoshida, Yasuhiko

    2007-09-01

    Poly(ethylene glycol) (PEG) was 'polymerized' onto poly(ethylene terephthalate) (PET) surface by radio frequency (RF) plasma polymerization of PEG (average molecular weight 200 Da) at a monomer vapour partial pressure of 10 Pa. Thin films strongly adherent onto PET could be produced by this method. The modified surface was characterized by infra red (IR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-cut test, contact angle measurements and static platelet adhesion studies. The modified surface, believed to be extensively cross-linked, however showed all the chemical characteristics of PEG. The surface was found to be highly hydrophilic as evidenced by an interfacial free energy of about 0.7 dynes/cm. AFM studies showed that the surface of the modified PET became smooth by the plasma polymerized deposition. Static platelet adhesion studies using platelet rich plasma (PRP) showed considerably reduced adhesion of platelets onto the modified surface by SEM. Plasma 'polymerization' of a polymer such as PEG onto substrates may be a novel and interesting strategy to prepare PEG-like surfaces on a variety of substrates since the technique allows the formation of thin, pin-hole free, strongly adherent films on a variety of substrates.

  10. Surface Modification of Carbon Nanofibers and Graphene Platelets Mixtures by Plasma Polymerization of Propylene

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Covarrubias-Gordillo

    2017-01-01

    Full Text Available Carbon nanofibers (CNFs, graphene platelets (GPs, and their mixtures were treated by plasma polymerization of propylene. The carbon nanoparticles (CNPs were previously sonicated in order to deagglomerate and increase the surface area. Untreated and plasma treated CNPs were analyzed by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, and thermogravimetric analysis (TGA. DLS analysis showed a significant reduction of average particle size, due to the sonication pretreatment. Plasma polymerized propylene was deposited on the CNPs surface; the total amount of polymerized propylene was from 4.68 to 6.58 wt-%. Raman spectroscopy indicates an increase in the sp3 hybridization of the treated samples, which suggest that the polymerized propylene is grafted onto the CNPs.

  11. Fluorinated silica microchannel surfaces

    Science.gov (United States)

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  12. Controlled chemical and morphological surface modifications via pulsed plasma polymerizations: Synthesis of ultrahydrophobic surfaces

    Science.gov (United States)

    Qiu, Haibo

    The RF plasma polymerization of saturated linear and cyclic perfluoroalkane monomers and vinyl acetic acid were studied in this dissertation. Film chemical compositions, deposition rates, surface wettabilities and morphologies were characterized as functions of various plasma processing conditions. Large progressive changes in chemical compositions with sequential variations in plasma duty cycle were demonstrated in polymerization of both perfluoroalkane and vinyl acetic acid monomers. As anticipated, polymer films obtained from the perfluorocarbon monomers exhibited a general trend towards more linear structures with decreasing plasma duty cycles. However, completely unexpectedly, ultrahydrophobic films were obtained from some of these monomers under restricted duty cycle and power input conditions. SEM and XPS characterizations revealed that a rough, fibrous-like surface morphology is responsible for this ultrahydrophobicity, as opposed to unusual chemical compositions. The growth of the fibrous surface is believed to arise from nucleation and hillock-like growth patterns on selectively activated sites of the growing polymer film. Surface mobility of plasma generated reactive species apparently plays an important role in the growth of the fibrous ultrahydrophobic surfaces, as shown by substrate temperature studies. Additionally, the present study revealed a number of interesting new observations of significant differences in the chemical compositions and deposition rates of polymer films obtained from the diverse range of perfluorocarbon monomers employed in this work. The ultrahydrophobic fluorocarbon films discovered in this investigation were evaluated for use in several biomaterial applications. The results obtained show excellent marine antifouling properties for these surfaces, as documented in ocean testing experiments. These surfaces have also been shown to be useful in controlling protein and peptide surface adsorptions, as well as in the inflammatory

  13. Surface modification of SERS substrates with plasma-polymerized trimethylsilane nanocoating

    Science.gov (United States)

    Kim, Young Jo; Sun, Xin; Jones, John E.; Lin, Mengshi; Yu, Qingsong; Li, Hao

    2015-03-01

    Surface-enhanced Raman scattering (SERS) substrates were modified by depositing a nanometer-thick polymer coating on top of SERS-active surface. This thin hydrophobic nanocoating, achieved by low temperature plasma polymerization of trimethylsilane, was found to reduce surface energy of SERS substrate and in turn help relieve the analyte spreading on the surface of SERS substrates. Detection of melamine molecules with these surface-modified SERS substrates showed that this plasma nanocoating improved, not significantly though, SERS sensitivity in comparison with unmodified SERS substrates. It is believed that the increased hydrophobicity induced by this plasma nanocoating had two folds of beneficial effects on SERS sensitivity. First, the as-produced hydrophobic surface gave rise to preconcentration effect due to the reduced contact area between analyte molecules and the substrate surface. Second, the decreased surface energy of SERS substrates was helpful in placing analyte molecules in SERS hot spots. These two combined gains were deemed to outweigh the loss of SERS sensitivity caused by enlarged distance between metal surface and analyte molecules.

  14. Blood compatibility of surface modified poly(ethylene terephthalate) (PET) by plasma polymerized acetobromo-alpha-D-glucose.

    Science.gov (United States)

    Kumar, D Sakthi; Nair, Baiju G; Varghese, Saino H; Nair, Remya; Hanajiri, T; Maekawa, T; Yoshida, Yasuhiko; John, Rajan K; Jayakrishnan, A

    2010-02-01

    Poly (ethylene terephthalate) (PET) was surface modified by plasma polymerization of acetobromo-alpha-D-glucose (ABG) at different radio frequency (RF) powers. Plasma polymerization was carried out by vaporizing ABG in the powder form by heating at 135 degrees C. Surface modification resulted in improved hydrophilicity and smoothness of the surface especially at low RF powers (30-50 W), but at high RF powers, the surface was found to be etched and the hydrophilicity decreased as evidenced by atomic force microscopy (AFM) and contact angle measurements. The plasma polymerized ABG film was found to be extensively cross-linked as evidenced by its insolubility in water. Infra red (IR) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the plasma polymerized ABG films. IR studies revealed that at lower RF powers, polymerization was taking place mainly by breaking up of acetoxy group while retaining the ring structures to a major extent during the polymerization process whereas at high RF powers, the rupture of ring structures was indicated. XPS indicated a reduction in the percentage of oxygen in the polymers going from low to high RF powers suggestive of complete destruction of the acetoxy group at high RF powers. Cross-cut tests showed excellent adhesive properties of the plasma polymerized ABG films onto PET. Static platelet adhesion tests using platelet rich human plasma showed significantly reduced adhesion of platelets onto modified PET surface as evidenced by scanning electron microscopy. Polymerization of glucose and its derivatives using RF plasma has not been reported so far and the preliminary results reported in this study shows that this could be an interesting approach in the surface modification of biomaterials.

  15. Modification of surface properties of bell metal by radiofrequency plasma polymerization

    Science.gov (United States)

    Chutia, Joyanti; Choudhury, Arup Jyoti; Pal, Arup Ratan; Gogoi, Dolly

    2012-11-01

    Radiofrequency (RF) plasma polymerization is a convenient thin film deposition process as it facilitates the synthesis of polymer films with stable physico-chemical properties suitable for various applications in microelectronic, optical, and biomedical fields. The unique properties of these plasma polymerized films as compared to the conventional ones are strongly related to the proper adjustment of the external plasma discharge parameters and selection of suitable monomer. It is also important to study the fundamental chemistry of RF plasma polymerization process, so that one can successfully correlate the internal features of the discharge with the film properties and explore their possible technological applications. The possibility of using styrene-based plasma polymer (SPP) films on bell metal as protective coatings is explored in this work. Depositions of the films are carried out in RF Ar/styrene discharge at working pressure of 1.2 × 10-1 mbar and at the RF power range of 20 to 110 W. Optical emission spectroscopy (OES) is used to study the active species generated during plasma polymerization, while Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) are used to analyze the internal chemical structures of the films. The protective performances of the SPP films are attempted to correlate with the results obtained from OES, FT-IR, and XPS analyses.

  16. A study of Corrosion Protection of Aluminum Metal by Tetraethoxysilane Plasma Polymerized Coatings-Influence of Aluminum Surface Pretreatments-

    Institute of Scientific and Technical Information of China (English)

    YoshihiroMomose; TatsuyaYabuki

    2004-01-01

    The corrosion-protective performance of plasma-polymerized (PP) coatings on pretreated aluminum substrates has been investigated by cathodic polarization curve measurement. The surface composition and electronic properties of the pretreated and PP film coated metal surfaces were also characterized by XPS and the temperature-programmed photoelectron emission (TPPE). A PP coating was prepared on the pretreated surfaces by plasma polymerization of a mixture of tetraethoxysilane (TEOS) monomer vapor and oxygen using a 13.56MHz radiofrequency generator. The polarization curve of PP film coated samples was measured in NaC1 aqueous solution. The weight loss rate calculated from the value of the corrosion current of the curve was used to estimate the protective performance of the PP film coated samples. Argon plasma treatment of the metal surface gave much better corrosion-protective performance than pretreatments such as oxidation by heating in air and diamond scratching. The XPS analysis indicated that the silicon oxide assigned to SiO2 was formed on the PP film coated surface. The TPPE analysis revealed that the electron emission characteristics for the metal surfaces pretreated only were strongly influenced by the pretreatments, while all the PP film coated samples exhibited nearly the same electron emission trend with a much decreased intensity.

  17. A study of Corrosion Protection of Aluminum Metal by Tetraethoxysilane Plasma Polymerized Coatings -Influence of Aluminum Surface Pretreatments-

    Institute of Scientific and Technical Information of China (English)

    Yoshihiro Momose; Tatsuya Yabuki

    2004-01-01

    The corrosion-protective performance of plasma-polymerized (PP) coatings on pretreated aluminum substrates has been investigated by cathodic polarization curve measurement. The surface composition and electronic properties of the pretreated and PP film coated metal surfaces were also characterized by XPS and the temperature-programmed photoelectron emission (TPPE). A PP coating was prepared on the pretreated surfaces by plasma polymerization of a mixture of tetraethoxysilane (TEOS) monomer vapor and oxygen using a 13.56MHz radiofrequency generator. The polarization curve of PP film coated samples was measured in NaCl aqueous solution. The weight loss rate calculated from the value of the corrosion current of the curve was used to estimate the protective performance of the PP film coated samples. Argon plasma treatment of the metal surface gave much better corrosion-protective performance than pretreatments such as oxidation by heating in air and diamond scratching. The XPS analysis indicated that the silicon oxide assigned to SiO2 was formed on the PP film coated surface. The TPPE analysis revealed that the electron emission characteristics for the metal surfaces pretreated only were strongly influenced by the pretreatments, while all the PP film coated samples exhibited nearly the same electron emission trend with a much decreased intensity.

  18. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    Science.gov (United States)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  19. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  20. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Science.gov (United States)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  1. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...... of different plasma powers and monomer compositions was used. Maleic anhydride (MAR) and 1,2-methylenedioxybenzene (MDOB) were plasma deposited separately and as mixtures to create layers with different surface compositions. In all cases the MAR was hydrolyzed to form carboxylic acid groups. Some carboxylic...... total veflectanc~ Fourier transform infrared spectroscopy. Atomic force microscopy was used to measure the thickness of the plasma films and to monitor the surface roughness for the different polymerization conditions. Finally, preliminary results of fracture energy measurements of the plasma modified...

  2. Surface Structure Enhanced Microchannel Flow Boiling

    OpenAIRE

    Zhu, Yangying; Antao, Dion Savio; Chu, Kuang-Han; Chen, Siyu; Hendricks, Terry J.; Zhang, Tiejun; Wang, Evelyn N.

    2016-01-01

    We investigated the role of surface microstructures in two-phase microchannels on suppressing flow instabilities and enhancing heat transfer. We designed and fabricated microchannels with well-defined silicon micropillar arrays on the bottom heated microchannel wall to promote capillary flow for thin film evaporation while facilitating nucleation only from the sidewalls. Our experimental results show significantly reduced temperature and pressure drop fluctuation especially at high heat fluxe...

  3. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  4. Adhesion of microchannel-based complementary surfaces.

    Science.gov (United States)

    Singh, Arun K; Bai, Ying; Nadermann, Nichole; Jagota, Anand; Hui, Chung-Yuen

    2012-03-06

    We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.

  5. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Mutlu, Selma [Department of Chemical Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey)], E-mail: smselma@hacettepe.edu.tr; Coekeliler, Dilek [Plasma Aided Bioengineering and Biotechnology Research Group(PABB), Faculty of Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey); Shard, Alex [Department of Engineering Materials, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Goktas, Hilal [Physics Department, Canakkale Onsekiz Mart University, 17100 Canakkale (Turkey); Ozansoy, Berna [Department of Chemical Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey); Mutlu, Mehmet [Plasma Aided Bioengineering and Biotechnology Research Group(PABB), Faculty of Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey)

    2008-01-30

    This paper describes a method for the modification of quartz crystal surfaces to be used as a transducer in biosensors that allow recognition and quantification of certain biomolecules (antibodies, enzymes, proteins, etc). Quartz crystal sensors were modified by a plasma based electron beam generator in order to detect the level of the toxin histamine within biological liquids (blood, serum) and food (wine, cheese, fish etc.). Cysteamine and ethylenediamine were used as precursors in the plasma. After each modification step, the layers on the quartz crystal were characterized by frequency measurements. Modified surfaces were also characterized by contact angle, X-ray photoelectron spectroscopy and atomic force microscopy to determine the physical and chemical characteristics of the surfaces after each modification. Finally, the performance of the sensors were tested by the response to histamine via frequency shifts. The frequency shifts of the sensors prepared by plasma polymerization of ethylenediamine and cysteamine were approximately 3230 Hz and 5630 Hz, respectively, whereas the frequency change of the unmodified crystal surface was around 575 Hz.

  6. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    Science.gov (United States)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  7. Direct fabrication of nanoscale bio-adhesive patterns by electron beam surface modification of plasma polymerized poly ethylene oxide-like coatings.

    Science.gov (United States)

    Brétagnol, Frédéric; Sirghi, Lucel; Mornet, Stéphane; Sasaki, Takao; Gilliland, Douglas; Colpo, Pascal; Rossi, Francois

    2008-03-26

    In this study we present a method to produce nanostructured surfaces containing bio-adhesive features inside a non bio-adhesive matrix. The strategy is based on the combination of low pressure plasma polymerization and electron beam lithography processes and allows the fabrication of the structured materials in just two steps without using any solvents. In a first step, a thin protein-and-cell-repelling coating (∼10 nm) is obtained by plasma polymerization of Di-glyme. Then, in a second step, the bio-adhesive properties of the layer are tuned by monitoring the concentration of ether bonds of the film by irradiating it locally by different irradiation doses with an electron beam. Time-of-flight secondary ion mass spectroscopy and atomic force microscopy analysis have been used to characterize the produced surfaces. Experiments with a model protein (bovine serum albumin) on the patterned surfaces show preferential adhesion to the irradiated regions, indicating the potential of this simple technique for the development of highly compacted sensitive bio-sensing devices.

  8. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization.

    Science.gov (United States)

    Yang, Zhilu; Xiong, Kaiqin; Qi, Pengkai; Yang, Ying; Tu, Qiufen; Wang, Jin; Huang, Nan

    2014-02-26

    The creation of a platform for enhanced vascular endothelia cell (VEC) growth while suppressing vascular smooth muscle cell (VSMC) proliferation offers possibility for advanced coatings of vascular stents. Gallic acid (GA), a chemically unique phenolic acid with important biological functions, presents benefits to the cardiovascular disease therapy because of its superior antioxidant effect and a selectivity to support the growth of ECs more than SMCs. In this study, GA was explored to tailor such a multifunctional stent surface combined with plasma polymerization technique. On the basis of the chemical coupling reaction, GA was bound to an amine-group-rich plasma-polymerized allylamine (PPAam) coating. The GA-functionalized PPAam (GA-PPAam) surface created a favorable microenvironment to obtain high ECs and SMCs selectivity. The GA-PPAam coating showed remarkable enhancement in the adhesion, viability, proliferation, migration, and release of nitric oxide (NO) of human umbilical vein endothelial cells (HUVECs). The GA-PPAam coating also resulted in remarkable inhibition effect on human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation. These striking findings may provide a guide for designing the new generation of multifunctional vascular devices.

  9. Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends

    Science.gov (United States)

    Noordermeer, J. W. M.; Datta, R. N.; Dierkes, W. K.; Guo, R.; Mathew, T.; Talma, A. G.; Tiwari, M.; van Ooij, W.

    Plasma polymerization is a technique for modifying the surface characteristics of fillers and curatives for rubber from essentially polar to nonpolar. Acetylene, thiophene, and pyrrole are employed to modify silica and carbon black reinforcing fillers. Silica is easy to modify because its surface contains siloxane and silanol species. On carbon black, only a limited amount of plasma deposition takes place, due to its nonreactive nature. Oxidized gas blacks, with larger oxygen functionality, and particularly carbon black left over from fullerene production, show substantial plasma deposition. Also, carbon/silica dual-phase fillers react well because the silica content is reactive. Elemental sulfur, the well-known vulcanization agent for rubbers, can also be modified reasonably well.

  10. Surface cell immobilization within perfluoroalkoxy microchannels

    Science.gov (United States)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  11. Pool boiling visualization on open microchannel surfaces

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available The paper presents visualization investigations into pool boiling heat transfer for open minichannel surfaces. The experiments were carried out wih saturated water at atmospheric pressure. Parallel microchannels fabricated by machining were about 0.3 mm wide and 0.2 to 0.4 mm deep. High-speed videos were used as an aid to understanding the heat transfer mechanism. The visualization study aimed at identifying nucleation sites of the departing bubbles and determining their diameters and frequency at various superheats.

  12. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  13. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey); Advanced Technology Research & Application Center, Selçuk University, Konya, 42075 (Turkey); Uçar, Tuba [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Thin films of poly(hexafluorobutyl acrylate-glycidyl methacrylate) can be deposited by PECVD. • The coated surfaces are hydrophobic due to the long fluorinated side chains. • The hydrophobicity of the coating is observed to be stable under harsh conditions. • Film durability is attributed to the mechanical strength of the films due to their epoxide functionality. - Abstract: Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  14. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Science.gov (United States)

    Karaman, Mustafa; Uçar, Tuba

    2016-01-01

    Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  15. Monocyte/macrophage and protein interactions with non-fouling plasma polymerized tetraglyme and chemically modified polystyrene surfaces: In vitro and in vivo studies

    Science.gov (United States)

    Shen, Mingchao

    2001-07-01

    Biomaterials become encapsulated by fibrous tissues after implantation in soft tissues. Monocytes and macrophages are believed to play important roles in this response. The hypothesis tested in this dissertation is that material surface chemistry determines the amount of adsorbed proteins, which mediate monocyte adhesion, activation, and the foreign body response. On chemically modified polystyrene surfaces, monocyte adhesion in vitro was promoted by preadsorbed fibrinogen, fibronectin, and IgG, and increased with increasing amount of adsorbed fibrinogen. Adsorbed proteins and material surface chemistry mediated monocyte activation. TNFalpha release, procoagulant activity, and multinucleated foreign body giant cell (FBGC) formation was at least two-fold higher on IgG than other protein adsorbed surfaces. Adsorbed IgG and fibrinogen triggered monocyte intracellular calcium changes. FBGC formation was the highest on the hydrophobic polystyrene surface. Materials that greatly reduce non-specific protein adsorption may reduce the foreign body response to implanted materials. Radio-frequency plasma polymerized tetraglyme (CH3O(CH2CH2O)4CH 3) surfaces contained PEO-like chemical species and reduced fibrinogen adsorption to less than 10 ng/cm2. Monocyte adhesion to tetraglyme in vitro was also greatly reduced. Monocyte adhesion correlated linearly to the amount of adsorbed fibrinogen on a series of tetraglyme surfaces deposited at different plasma powers. Multivariate analysis using partial least squares regression identified the key surface spectra variables from electron spectroscopy for chemical analysis (ESCA) and time of flight secondary ion mass spectrometry (ToF-SIMS) that contributed to the non-fouling properties of tetraglyme. However, leukocyte adhesion to surfaces implanted subcutaneously in mice for 1 or 28 days did not correlate with protein adsorption and was higher on tetraglyme than the FEP control. Fibrous encapsulation to tetraglyme implanted for 28 days

  16. Optical and Surface Characterization of Radio Frequency Plasma Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films

    Directory of Open Access Journals (Sweden)

    Jakaria Ahmad

    2014-04-01

    Full Text Available Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W and 0.21 nm (at 75 W. Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.

  17. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    as reactive splvent (as shown in Figure 1). 1] H. Biederman, in Plasma Polymer Films. (ed.) H. Biederman. Imperial College Press, Singapore, 13-24 ~OO~· '. , [2] R. d'Agostino et.a!. in Plasma Depd~itiqn, 'Treatment, and Etching ofPolymers. (ed.) R. d'Agostino, Academic Press, U.S. (1990). [3] F. F. Shi......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...

  18. Vapor bubble evolution on a heated surface containing open microchannels

    Science.gov (United States)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  19. Charge trapping in plasma-polymerized thin films

    Science.gov (United States)

    Klemberg-Sapieha, J. E.; Sapieha, S.; Wertheimer, M. R.; Yelon, A.

    1980-07-01

    The surface potential of freshly plasma-polymerized films of hexamethyldisiloxane was measured for film thicknesses ranging from about 0.1 to 1 micron. The films are found to be in an electret state under certain fabrication conditions. Experimental evidence is given which indicates that charge trapped during plasma polymerization is uniformly distributed across the sample thickness. It has been found that other electret properties such as the polarity of trapped charge, and the charge retention characteristics can also be controlled by an appropriate choice of polymerization conditions.

  20. Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization.

    Science.gov (United States)

    Miyazaki, Masaya; Kaneno, Jun; Uehara, Masato; Fujii, Masayuki; Shimizu, Hazime; Maeda, Hideaki

    2003-03-07

    We developed a novel preparation method of nanostructure on the microchannel surface formed by sol-gel like simple treatment with 3-aminopropyltriethoxysilane, which is suitable for a highly efficient enzyme-immobilized microchannel reactor.

  1. Characterization of Plasma Polymerized Hexamethyldisiloxane Films Prepared by Arc Discharge

    NARCIS (Netherlands)

    Lazauskas, A.; Baltrusaitis, Jonas; Grigaliunas, V.; Jucius, D; Guobiene, A.; Prosycevas, I.; Narmontas, P.

    2014-01-01

    Herein, we present a simple method for fabricating plasma polymerized hexamethyldisiloxane films (pp-HMDSO) possessing superhydrophobic characteristics via arc discharge. The pp-HMDSO films were deposited on a soda–lime–silica float glass using HMDSO monomer vapor as a precursor. A detailed surface

  2. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...... of the chemical surface was obtained using pulsed AC plasma, as shown by ToF-SIMS. It is demonstrated how the experimental conditions to some extent control the chemical structure of the plasma-polymerized film, e.g., film thickness, density of post-plasma-polymerized oligomeric chains, and the density of intact...

  3. Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces

    Science.gov (United States)

    Ou, Jia; Perot, Blair; Rothstein, Jonathan

    2003-11-01

    In devices where the fluid flow is laminar, there are currently no methods for reducing drag. We will present a series of experiments which demonstrate a 20-30% drag reduction for the flow of water through microchannels using hydrophobic surfaces with micron sized roughness. These 'ultrahydrophobic' surfaces are fabricated using photolithography to etch microposts and microridges with specific size, spacing and arrangement into silicon. The surfaces are then reacted with an organosilane to make them hydrophobic. The resulting surfaces have contact angles greater than 150 degrees. Pressure drop measurements are made for a series of ultrahydrophobic surface patterns, flow rates and microchannel heights. Pressure drop measurements across hydrophobic smooth surfaces are found to correlate precisely with theory while the drag reduction observed for the flow across these ultrahydrophobic surfaces is found to increase with increasing micropost spacing and decreasing micropost area. A physical model will be presented which explains the drag reduction in terms of a shear-free air-water interface between microposts supported by surface tension. Confirmation of the model will be presented with optical measurements of the displacement of the air-water interface under flow.

  4. A plasma polymerization technique to overcome cerebrospinal fluid shunt infections.

    Science.gov (United States)

    Cökeliler, D; Caner, H; Zemek, J; Choukourov, A; Biederman, H; Mutlu, M

    2007-03-01

    Prosthetic devices, mainly shunts, are frequently used for temporary or permanent drainage of cerebrospinal fluid. The pathogenesis of shunt infection is a very important problem in modern medicine and generally this is characterized by staphylococcal adhesion to the cerebrospinal fluid shunt surfaces. In this paper, the prevention of the attachment of test microorganism Staphylococcus epidermidis on the cerebrospinal fluid shunt surfaces by 2-hydroxyethylmethacrylate (HEMA) precursor modification in the plasma polymerization system, is reported. Different plasma polymerization conditions (RF discharge power 10-20-30 W, exposure time 5-10-15 min) were employed during the surface modification. The surface chemistry and topology of unmodified and modified shunts was characterized by x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Also, static contact angle measurements were performed to state the change of surface hydrophilicity. All samples were tested in vitro with Staphylococcus epidermidis. A plasma-polymerized HEMA film (PP HEMA) was found to be an alternative simple method to decrease the microorganism attachment and create bacterial anti-fouling surfaces. The attachment of the model microorganism Staphylococcus epidermidis on the shunt surface modified by PP HEMA at 20 W and 15 min was reduced 62.3% if compared to the unmodified control surface of the shunt.

  5. A plasma polymerization technique to overcome cerebrospinal fluid shunt infections

    Energy Technology Data Exchange (ETDEWEB)

    Coekeliler, D [Plasma Aided Bioengineering and Biotechnology Research Laboratory, Engineering Faculty, Hacettepe University, 06532, Ankara (Turkey); Caner, H [Department of Neurosurgery, School of Medicine, Baskent University, 06610, Ankara (Turkey); Zemek, J [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53, Prague, Czech Republic (Czech Republic); Choukourov, A [Department of Macromolecular Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Biederman, H [Department of Macromolecular Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Mutlu, M [Plasma Aided Bioengineering and Biotechnology Research Laboratory, Engineering Faculty, Hacettepe University, 06532, Ankara (Turkey)

    2007-03-01

    Prosthetic devices, mainly shunts, are frequently used for temporary or permanent drainage of cerebrospinal fluid. The pathogenesis of shunt infection is a very important problem in modern medicine and generally this is characterized by staphylococcal adhesion to the cerebrospinal fluid shunt surfaces. In this paper, the prevention of the attachment of test microorganism Staphylococcus epidermidis on the cerebrospinal fluid shunt surfaces by 2-hydroxyethylmethacrylate (HEMA) precursor modification in the plasma polymerization system, is reported. Different plasma polymerization conditions (RF discharge power 10-20-30 W, exposure time 5-10-15 min) were employed during the surface modification. The surface chemistry and topology of unmodified and modified shunts was characterized by x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Also, static contact angle measurements were performed to state the change of surface hydrophilicity. All samples were tested in vitro with Staphylococcus epidermidis. A plasma-polymerized HEMA film (PP HEMA) was found to be an alternative simple method to decrease the microorganism attachment and create bacterial anti-fouling surfaces. The attachment of the model microorganism Staphylococcus epidermidis on the shunt surface modified by PP HEMA at 20 W and 15 min was reduced 62.3% if compared to the unmodified control surface of the shunt.

  6. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  7. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    DEFF Research Database (Denmark)

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... cells ( HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using...

  8. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  9. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    Science.gov (United States)

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  10. Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinmo [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Division of Advanced Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-600 (Korea, Republic of); Jung, Donggeun [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Park, Yongsup [Division of Advanced Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-600 (Korea, Republic of); Kim, Yongki [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Division of Advanced Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-600 (Korea, Republic of); Moon, Dae Won [Division of Advanced Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-600 (Korea, Republic of); Lee, Tae Geol [Division of Advanced Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-600 (Korea, Republic of)]. E-mail: tglee@kriss.re.kr

    2007-02-28

    A quantitative analysis of the surface density of amine groups on a plasma-polymerized ethylenediamine thin film deposited on a platinum surface using inductively coupled plasma chemical vapor deposition method is described. UV-visible spectroscopy together with a chemical derivatization technique using Fourier transform infrared (FT-IR) spectroscopy was used to obtain the quantitative information. Chemical tags of pentafluorobenzaldehyde were hybridized with the surface amine groups and were easily detected due to the characteristic absorption bands of C-F stretching, aromatic ring and C=N stretching vibrations in the reflection-absorption FT-IR spectra. The surface amine density was reproducibly controlled as a function of deposition plasma power and quantified using UV-visible spectroscopy. A good linear correlation was observed between the FT-IR intensities of the characteristic absorption bands and the surface amine densities, suggesting the possibility of using this chemical derivatization technique to quantify the surface densities of specific functional groups on an organic surface. Chemical derivatization was also used with X-ray photoelectron spectroscopy on the same samples, and the results were compared with those obtained from FT-IR and time-of-flight secondary ion mass spectrometry. Although each analysis technique has different probing depths from the surface, the three different data sets obtained from the chemical tags correlated well with each other since each analysis technique measured the chemical tags on the sample surface.

  11. Concentration polarization, surface currents, and bulk advection in a microchannel

    CERN Document Server

    Nielsen, Christoffer P

    2014-01-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behaviour of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.

  12. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber......-coated crystals were then treated with one of the plasma polymerized coatings. Adsorption of fibrinogen, human serum albumin or immunoglobulin G was measured using a QCM-D instrument [5] (model E4, Q-Sense AB, Vastra Frolunda, Sweden) using a solution of 50llg/1 protein in PBS buffer. Results and Discussion: Our...

  13. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  14. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    Science.gov (United States)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  15. A NUMERICAL INVESTIGATION INTO ELECTROOSMOTIC FLOW IN MICROCHANNELS WITH COMPLEX WAVY SURFACES

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2011-01-01

    Full Text Available This study investigates the flow characteristics of electroosmotic flow in a microchannel with complex wavy surfaces. A general method of coordinate transformation is used to solve the governing equations describing the electroosmotic flow in the microchannel. Numerical simulations are performed to analyze the effects of wave amplitude on the electrical field, flow streamlines, and flow fields in the microchannel. The simulation results show that, compared to a traditional pressure-driven flow, flow recirculation is not developed in the electroosmotic flow in a microchannel with complex wavy surfaces. The simulations also show that the electrical field and velocity profiles change along the channel in the region of wavy surfaces. Non-flat velocity profiles are observed in different cross-sections of the channel in the region of wavy surfaces.

  16. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    Science.gov (United States)

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  17. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  18. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  19. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    Science.gov (United States)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the

  20. Microchannel-based surface-enhanced Raman spectroscopy for integrated microfluidic analysis.

    Science.gov (United States)

    Lai, Chun-hong; Chen, Li; Chen, Gang; Xu, Yi; Wang, Chun-yan

    2014-01-01

    We have demonstrated a microchannel-based, surface-enhanced Raman spectroscopy (SERS) sensing approach for integrated microfluidic analysis developed using standard micro-fabrication technology. Our approach allows high-sensitivity SERS sensing with a comparatively low-excitation optical power intensity and large cross-sectional microchannel for biological cell analysis. Utilizing a microchannel with a cross section of 100 × 70 μm(2), we achieved a detection limit smaller than 10 nM for rhodamine 6G at an excitation power intensity of 132 W/cm(2), avoiding any possible heating effects on the sample under investigation. There is great potential for further improvement in the sensitivity of this microchannel-based SERS detection.

  1. Concentration polarization, surface currents, and bulk advection in a microchannel

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system...

  2. Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sunggyun; Han, Solyi; Kim, Wookbae [Korea Polytechnic Univ., Siheung (Korea, Republic of); Sung, Inha [Hannam Univ., Daejeon (Korea, Republic of)

    2013-12-15

    Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

  3. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  4. Suppressing high-frequency temperature oscillations in microchannels with surface structures

    Science.gov (United States)

    Zhu, Yangying; Antao, Dion S.; Bian, David W.; Rao, Sameer R.; Sircar, Jay D.; Zhang, Tiejun; Wang, Evelyn N.

    2017-01-01

    Two-phase microchannel heat sinks are attractive for thermal management of high heat flux electronic devices, yet flow instability which can lead to thermal and mechanical fatigue remains a significant challenge. Much work has focused on long-timescale (˜seconds) flow oscillations which are usually related to the compressible volume in the loop. The rapid growth of vapor bubbles which can also cause flow reversal, however, occurs on a much shorter timescale (˜tens of milliseconds). While this high-frequency oscillation has often been visualized with high-speed imaging, its effect on the instantaneous temperature has not been fully investigated due to the typical low sampling rates of the sensors. Here, we investigate the temperature response as a result of the high-frequency flow oscillation in microchannels and the effect of surface microstructures on this temperature oscillation with a measurement data acquisition rate of 1000 Hz. For smooth surface microchannels, fluid flow oscillated between complete dry-out and rewetting annular flow due to the short-timescale flow instability, which caused high-frequency and large amplitude temperature oscillations (10 °C in 25 ms). In comparison, hydrophilic surface structures on the microchannel promoted capillary flow which delayed and suppressed dry-out in each oscillation cycle, and thus significantly reduced the temperature oscillation at high heat fluxes. This work suggests that promoting capillary wicking via surface structures is a promising technique to reduce thermal fatigue in high heat flux two-phase microchannel thermal management devices.

  5. TFE-PLASMA POLYMERIZED DERMAL SHEEP COLLAGEN FOR THE REPAIR OF ABDOMINAL-WALL DEFECTS

    NARCIS (Netherlands)

    VANDERLAAN, JS; LOPEZ, GP; VANWACHEM, PB; NIEUWENHUIS, P; RATNER, BD; BLEICHRODT, RP; SCHAKENRAAD, JM

    1991-01-01

    The aim of this study was to design and evaluate a degradable biomaterial for the repair of abdominal wall defects. Hexamethylenediisocyanate-tanned dermal sheep collagen (HDSC) was plasma-polymerized with tetrafluoroethylene (TFE) which resulted in a hydrophobic surface on the visceral side (TFE-HD

  6. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  7. Hydrophobic plasma polymerized hexamethyldisilazane thin films: characterization and uses

    Directory of Open Access Journals (Sweden)

    Alexsander Tressino de Carvalho

    2006-03-01

    Full Text Available Hexametildisilazane (HMDS plasma polymerized thin films obtained using low frequency power supplies can be used to make adsorbent films and turn surfaces hydrophobic. The aim of this work was to verify the hydrophobicity and adsorption properties of HMDS thin films (with and without the addition of oxygen, resulting in double or single layer films obtained using an inductive reactor powered with a 13.56 MHz power supply. Single and double layer thin films were deposited on silicon for film characterization, polypropylene (PP for ultraviolet (UVA/UVC resistance tests, piezoelectric quartz crystal for adsorption tests. The double layer (intermixing of HMDS plasma polymerized films and HMDS plasma oxidized surfaces showed a non-continuous layer. The films showed good adhesion to all substrates. Infrared analysis showed the presence of CHn, SiCH3, SiNSi and SiCH2Si within the films. Contact angle measurements with water showed hydrophobic surfaces. UVA/UVC exposure of the films resulted in the presence of cross-linking on carbonic radicals and SiCH2Si formation, which resulted in a possible protection of PP against UVA/UVC for a duration of up to two weeks. Adsorption tests showed that all organic reactants were adsorbed but not water. Plasma etching (PE using O2 showed that even after 15 minutes of exposure the films do not change their hydrophobic characteristic but were oxidized. The results point out that HMDS films can be used: for ultraviolet protection of flexible organic substrates, such as PP, for sensor and/or preconcentrator development, due to their adsorption properties, and in spatial applications due to resistance for O2 attack in hostile conditions, such as plasma etching.

  8. Organic nanocones fabricated by atmospheric plasma polymerization for immobilizing bioprobes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Guangliang; Chen Wenxing [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen Shihua; Zhou Mingyan [Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: glchen@zstu.edu.cn

    2008-02-20

    Inspired by the formation process of natural thundershowers, we fabricated an organic nanocone matrix-like bamboo-shoot by using atmospheric plasma polymerization in the absence of any catalyst or template. The discharging characteristics affected the nanocone shape and distribution in an obvious way. The nanocones prepared by helium (He) plasma were about 120 nm in diameter and 80 nm high. The nanostructured surface acted as an adhesion layer immobilizing DNA probes for DNA hybridization assay. The density of NH{sub 2}-DNA probes prepared by He, argon (Ar) and nitrogen (N{sub 2}) plasma was confirmed by the dyed oligonucleotide and was found to be 3.2, 1.0 and 0.6 pM cm{sup -2}, respectively. Each nanocone prepared by helium plasma contains nearly 4 x 10{sup 2} amine groups.

  9. Surface Roughness Study on Microchannels of CO2 Laser Fabricating Pmma-Based Microfluidic Chip

    Science.gov (United States)

    Chen, Xueye; Li, Tiechuan; Fu, Baoding

    A novel method named soak sacrificial layer ultrasonic method (SSLUM) has been presented for optimizing the surface roughness of the microchannels of polymethyl methacrylate (PMMA)-based microfluidic chips. CO2 laser was used for ablative microchannels on the PMMA sheet, and the effects of key parameters including laser power, laser ablation speed and solution concentration on the surface roughness of microchannels were estimated and optimized by SSLUM. The experimental observation demonstrates that the surface roughness results mainly from the residues on the channel wall, which are produced by the bubbles movement and bursting. The research results show that the surface roughness can be improved effectively by using SSLUM. In our experiment, the best value was Ra = 110nm with laser power 12W, laser ablation speed 10mm/s, the solution concentration 75%, and the time of ultrasonic vibration 25min. SSLUM is proven to be an effective, simple and rapid method for optimizing the surface roughness of microchannels of microfluidic chips.

  10. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  11. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  12. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    Energy Technology Data Exchange (ETDEWEB)

    Krasteva, N A; Toromanov, G; Hristova, K T; Radeva, E I; Pecheva, E V; Dimitrova, R P; Altankov, G P; Pramatarova, L D, E-mail: nataly@bio21.bas.b

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  13. PLASMA POLYMERIZATION OF ACETYLENE/CO2/H2

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ji; FANG Yuee; SHI Tianyi; SHOHEI INOUE

    1989-01-01

    A study has been made on the plasma polymerization of acetylene/CO2/H2 in a capacitively coupled RF plasma. The monomer mixture yielded a crosslinked film with light brown color. A kinetic study is reported for the plasma polymerization of acetylene/CO2/H2. The effects of discharge power level and reactor geometry on the rate of polymer formation are reported. The structure of the plasma polymer is investigated by IR study.

  14. Polymer coatings on plane and spherical surfaces obtained by plasma polymerization from trans-2-butene and hydrogen mixture; Depots de polymere sur surfaces planes et spheriques obtenus par polymerisation plasma a partir d`un melange de trans-2-butene et d`hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Benardais, A

    1997-10-21

    This study of a low frequency plasma polymerization process was undertaken to be used in manufacturing of targets used in laser-matter interaction experiments. In this system, whether the sample is placed in the discharge or outside of the discharge, hydrocarbon coatings from a gaseous mixture of hydrogen and trans-2-butene are obtain. This study consists of two parts. We first dealt with the understanding of plasma polymerization mechanisms in the reactor which resulted in a better process optimization. The study of gas flow in the reactor allowed us to determine the species repartition in the vessel. With experiments performed on the electrical behavior in the reactor we were able to define the discharge type. Then, species present in the plasma were analysed by emission spectroscopy and mass spectrometry and then reaction mechanisms were proposed. Attention was paid to the role of hydrogen which in fact acted as a reagent like trans-2-butene. We also worked on the process optimization in order to obtain a good working point which produces coatings which are as transparent as possible, contain only carbon and hydrogen (and the least amount of oxygen), have a smooth surface finish (mean square root of roughness < 50 nm) and retain their qualities overtime. After the reactor characterization, the study of the effects of different parameters (inner or post-discharge coatings, pressure, total gas flow, composition of the mixture of trans-2-butene and hydrogen, power, frequency, interelectrode distance) on deposition rate, roughness and chemical composition of coatings led to the finding of optimal deposition conditions. (author) 103 refs.

  15. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).

    Science.gov (United States)

    Sriphutkiat, Yannapol; Zhou, Yufeng

    2017-01-07

    Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing and causes damage to the nozzle. Particle accumulation in a 100 μm microchannel was investigated by light microscopy, and its area growth in an exponential format was used to quantify this phenomenon. The effects of the constriction angle and alginate concentration on particle accumulation were also studied. In order to reduce the clogging problem, an acoustic method was proposed and evaluated here. Numerical simulation was first conducted to predict the acoustic radiation force on the particles in the fluid with different viscosities. Interdigital transducers (IDTs) were fabricated on the LiNbO₃ wafer to produce standing surface acoustic waves (SSAW) in the microchannel. It was found that the actuation of SSAW can reduce the accumulation area in the microchannel by 2 to 3.7-fold. In summary, the particle accumulation becomes significant with the increase of the constriction angle and fluid viscosity. The SSAW can effectively reduce the particle accumulation and postpone clogging.

  16. Effect of geometrical parameters of open microchannel surfaces on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available This study focuses on the effect of channel depth on the heat transfer coefficient during nucleate pool boiling. Experimental studies were performed for saturated deionized water, and Novec-649 as working fluids at atmospheric pressure. Copper surfaces were modified to form microchannels with different geometrical properties. The microchannels were from 0.2 mm to 0.4 mm deep, 0.3 mm wide and spaced every 0.1 mm. The experiment was conducted for increasing heat flux up to the critical heat flux point. The surface modification provided an appreciably higher heat transfer coefficient compared to the smooth surface for all boiling liquids. The maximum heat transfer coefficient obtained exceeded 60 kW/m2K.

  17. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  18. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Yano

    2016-12-01

    Full Text Available A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2 was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection.

  19. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.

    Science.gov (United States)

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    2015-05-05

    We demonstrate a miniaturized acoustofluidic device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethylsiloxane microchannel for achieving size-selective separation and exchange of medium around polystyrene particles in a continuous, label-free, and contactless fashion. The SIDTs, deposited parallel to each other, produce tunable traveling surface acoustic waves (TSAWs) at desired locations, which, in turn, yield an anechoic corner inside the microchannel that is used to selectively deflect particles of choice from their streamlines. The TSAWs with frequency fR originating from the right SIDT and propagating left toward the microchannel normal to the fluid flow direction, laterally deflect larger particles with diameter d1 from the hydrodynamically focused sample fluid that carries other particles as well with diameters d2 and d3, such that d1 > d2 > d3. The deflected particles (d1) are pushed into the top-left corner of the microchannel. Downstream, the TSAWs with frequency fL, such that fL > fR, disseminating from the left SIDT, deflect the medium-sized particles (d2) rightward, leaving behind the larger particles (d1) unaffected in the top-left anechoic corner and the smaller particles (d3) in the middle of the microchannel, thereby achieving particle separation. A particle not present in the anechoic corner could be deflected rightward to realize twice the medium exchange. In this work, the three-way separation of polystyrene particles with diameters of 3, 4.2, and 5 μm and 3, 5, and 7 μm is achieved using two separate devices. Moreover, these devices are used to demonstrate multimedium exchange around polystyrene particles ∼5 μm and 7 μm in diameter.

  20. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels

    Science.gov (United States)

    Chen, Yongping; Zhang, Chengbin; Shi, Mingheng; Peterson, G. P.

    2009-08-01

    A three-dimensional model of laminar flow in microchannels is numerically analyzed incorporating surface roughness effects as characterized by fractal geometry. The Weierstrass-Mandelbrot function is proposed to characterize the multiscale self-affine roughness. The effects of Reynolds number, relative roughness, and fractal dimension on laminar flow are all investigated and discussed. The results indicate that unlike flow in smooth microchannels, the Poiseuille number in rough microchannels increases linearly with the Reynolds number, Re, and is larger than what is typically observed in smooth channels. For these situations, the flow over surfaces with high relative roughness induces recirculation and flow separation, which play an important role in single-phase pressure drop. More specifically, surfaces with the larger fractal dimensions yield more frequent variations in the surface profile, which result in a significantly larger incremental pressure loss, even though at the same relative roughness. The accuracy of the predicted Poiseuille number as calculated by the present model is verified using experimental data available in the literature.

  1. Study on the mixing of fluid in curved microchannels with heterogeneous surface potentials

    Institute of Scientific and Technical Information of China (English)

    Lin Jian-Zhong; Zhang Kai; Li Hui-Jun

    2006-01-01

    In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential ψn has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchannel's radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing.

  2. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

    Indian Academy of Sciences (India)

    Bhabesh Kumar Nath; Aziz Khan; Joyanti Chutia; Arup Ratan Pal; Heremba Bailung; Neelotpal Sen Sarma; Devasish Chowdhury; Nirab Chandra Adhikary

    2014-12-01

    This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm-2 exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  3. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics

    Science.gov (United States)

    Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.

    2016-08-01

    Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.

  4. Application of plasma-polymerized films for isoelectric focusing of proteins in a capillary electrophoresis chip.

    Science.gov (United States)

    Tsai, Shuo-Wen; Loughran, Michael; Hiratsuka, Atsunori; Yano, Kazuyoshi; Karube, Isao

    2003-03-01

    The first use of plasma polymerization technique to modify the surface of a glass chip for capillary isoelectric focusing (cIEF) of different proteins is reported. The electrophoresis separation channel was machined in Tempax glass chips with length 70 mm, 300 microm width and 100 microm depth. Acetonitrile and hexamethyldisiloxane monomers were used for plasma polymerization. In each case 100 nm plasma polymer films were coated onto the chip surface to reduce protein wall adsorption and minimize the electroosmotic flow. Applied voltages of 1000 V, 2000 V and 3000 V were used to separate mixtures of cytochrome c (pI 9.6), hemoglobin (pI 7.0) and phycocyanin (pI 4.65). Reproducible isoelectric focusing of each pI marker protein was observed in different coated capillaries at increasing concentration 2.22-5 microg microL(-1). Modification of the glass capillary with hydrophobic HMDS plasma polymerized films enabled rapid cIEF within 3 min. The separation efficiency of cytochrome c and phycocyanin in both acrylamide and HMDS coated capillaries corresponded to a plate number of 19600 which compares favourably with capillary electrophoresis of neurotransmitters with amperometric detection.

  5. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  6. An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel.

    Science.gov (United States)

    Jang, Kihoon; Sato, Kae; Tanaka, Yo; Xu, Yan; Sato, Moritoshi; Nakajima, Takahiro; Mawatari, Kazuma; Konno, Tomohiro; Ishihara, Kazuhiko; Kitamori, Takehiko

    2010-08-07

    This report describes a direct approach for cell micropatterning in a closed glass microchannel. To control the cell adhesiveness inside the microchannel, the application of an external stimulus such as ultraviolet (UV) was indispensible. This technique focused on the use of a modified 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, which is known to be a non-biofouling compound that is a photocleavable linker (PL), to localize cells via connection to an amino-terminated silanized surface. Using UV light illumination, the MPC polymer was selectively eliminated by photochemical reaction that controlled the cell attachment inside the microchannel. For suitable cell micropatterning in a microchannel, the optimal UV illumination time and concentration for cell suspension were investigated. After selective removal of the MPC polymer through the photomask, MC-3T3 E1 cells and vascular endothelial cells (ECs) were localized only to the UV-exposed area. In addition, the stability of patterned ECs was also confirmed by culturing for 2 weeks in a microchannel under flow conditions. Furthermore, we employed two different types of cells inside the same microchannel through multiple removal of the MPC polymer. ECs and Piccells were localized in both the upper and down streams of the microchannel, respectively. When the ECs were stimulated by adenosine triphosphate (ATP), NO was secreted from the ECs and could be detected by fluorescence resonance energy transfer (FRET) in Piccells, which is a cell-based NO indicator. This technique can be a powerful tool for analyzing cell interaction research.

  7. High-Voltage Insulation Organic-Inorganic Nanocomposites by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2014-01-01

    Full Text Available In organic-inorganic nanocomposites, interfacial regions are primarily influenced by the dispersion uniformity of nanoparticles and the strength of interfacial bonds between the nanoparticles and the polymer matrix. The insulating performance of organic-inorganic dielectric nanocomposites is highly influenced by the characteristics of interfacial regions. In this study, we prepare polyethylene oxide (PEO-like functional layers on silica nanoparticles through plasma polymerization. Epoxy resin/silica nanocomposites are subsequently synthesized with these plasma-polymerized nanoparticles. It is found that plasma at a low power (i.e., 10 W can significantly increase the concentration of C–O bonds on the surface of silica nanoparticles. This plasma polymerized thin layer can not only improve the dispersion uniformity by increasing the hydrophilicity of the nanoparticles, but also provide anchoring sites to enable the formation of covalent bonds between the organic and inorganic phases. Furthermore, electrical tests reveal improved electrical treeing resistance and decreased dielectric constant of the synthesized nanocomposites, while the dielectric loss of the nanocomposites remains unchanged as compared to the pure epoxy resin.

  8. Numerical simulation of the efficiency of mixing in heterogeneous microchannels with patterned surface potentials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; LIN Jianzhong; LI Huijun

    2006-01-01

    The mixing of samples in heterogeneous microchannels with a periodically stepwise surface potential was analyzed numerically using the control volume method. The equations describing the wall potential and external potential were solved first to get the distribution of wall potential and external potential, respectively, then the momentum equation was solved to get the developed flow field.Finally, the mass transport equation was solved to get the concentration field. The simulation results show that the distribution of samples at the inlet of the microchannel determines its theoretical value of concentration, therefore, the pattern of the distribution of samples at the inlet and its corresponding velocity can be changed to get the desirable concentration of solute. The heterogeneous wall potential almost has no effect on the mixing of samples in two-inlet microfluidic devices. For three-inlet microfluidic devices, the comprehensive ability of transportation and mixing has an optimization when the ratio of periodic length of wall potential to the height of the microchannel is about 4.88.The above conclusions are helpful to the optimization of the design of microfluidic devices.

  9. Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition.

    Science.gov (United States)

    Zhou, Ming-Yu; Xie, Rui; Yu, Ya-Lan; Chen, Gang; Ju, Xiao-Jie; Yang, Lihua; Liang, Bin; Chu, Liang-Yin

    2009-08-01

    The flow characteristics of monodisperse thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microspheres during the phase transition in microchannels with different surface wettabilities and roughnesses are investigated systematically. Glass microchannels are modified by hydroxylation treatment to achieve hydrophilic surface, by self-assembly of chlorotrimethylsilane to realize hydrophobic surface, and by coating with silica nanoparticles to generate rough surface. The phase transition of PNIPAM microspheres in microchannels is induced by local heating. The results show that the surface wettability and roughness of microchannel significantly affect the flow behaviors of PNIPAM microspheres during the phase transition. It is much easier for the PNIPAM microspheres in microchannel with hydrophobic surface to stop right after the phase transition than those in microchannel with hydrophilic surface, and it is also much easier for the PNIPAM microspheres in microchannel with rough surface to stop right after the phase transition than those in microchannel with smooth surface. These results indicate that hydrophobic and rough surface properties of the microchannel can enhance the site-specific targeting of PNIPAM microspheres caused by the phase transition. The results in this study provide valuable information for the application of thermo-responsive drug carriers in site-specific targeting therapy.

  10. Plasma polymerization of acetylene onto silica: an approach to control the distribution of silica in single elastomers and immiscible blends

    NARCIS (Netherlands)

    Tiwari, M.; Noordermeer, J.W.M.; Ooij, W.J.; Dierkes, W.K.

    2008-01-01

    Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water pene

  11. Keynote Paper: Cell-Surface Adhesive Interactions in Microchannels and Microvessels

    CERN Document Server

    King, M R

    2003-01-01

    Adhesive interactions between white blood cells and the interior surface of the blood vessels they contact is important in inflammation and in the progression of heart disease. Parallel-plate microchannels have been useful in characterizing the strength of these interactions, in conditions that are much simplified over the complex environment these cells experience in the body. Recent computational and experimental work by several laboratories have attempted to bridge this gap between behavior observed in flow chamber experiments, and cell-surface interactions observed in the microvessels of anesthetized animals.

  12. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  13. Characterization and protein-adsorption behavior of deposited organic thin film onto titanium by plasma polymerization with hexamethyldisiloxane.

    Science.gov (United States)

    Hayakawa, Tohru; Yoshinari, Masao; Nemoto, Kimiya

    2004-01-01

    Plasma polymerized hexamethyldisiloxane (HMDSO) thin film was deposited onto titanium using a radio-frequency apparatus for the surface modification of titanium. A titanium disk was first polished using colloidal silica at pH=9.8. Plasma-polymerized HMDSO films were firmly attached to the titanium by heating the titanium to a temperature of approximately 250 degrees C. The thickness of the deposited film was 0.07-0.35mum after 10-60min of plasma polymerization. The contact angle with respect to double distilled water significantly increased after HMDSO coating. X-ray photoelectron spectroscopy revealed that the deposited thin film consisted of Si, C, and O atoms. No Ti peaks were observed on the deposited surface. The deposited HMDSO film was stable during 2-weeks immersion in phosphate buffer saline solution. Fourier transform reflection-absorption spectroscopy showed the formation of Si-H, Si-C, C-H, and Cz.dbnd6;O bonds in addition to Si-O-Si bonds. Quartz crystal microbalance-dissipation measurement demonstrated that the deposition of HMDSO thin films on titanium has a benefit for fibronectin adsorption at the early stage. In conclusion, plasma polymerization is a promising technique for the surface modification of titanium. HMDSO-coated titanium has potential application as a dental implant material.

  14. Thermodynamic analysis of shark skin texture surfaces for microchannel flow

    Science.gov (United States)

    Yu, Hai-Yan; Zhang, Hao-Chun; Guo, Yang-Yu; Tan, He-Ping; Li, Yao; Xie, Gong-Nan

    2016-09-01

    The studies of shark skin textured surfaces in flow drag reduction provide inspiration to researchers overcoming technical challenges from actual production application. In this paper, three kinds of infinite parallel plate flow models with microstructure inspired by shark skin were established, namely blade model, wedge model and the smooth model, according to cross-sectional shape of microstructure. Simulation was carried out by using FLUENT, which simplified the computation process associated with direct numeric simulations. To get the best performance from simulation results, shear-stress transport k-omega turbulence model was chosen during the simulation. Since drag reduction mechanism is generally discussed from kinetics point of view, which cannot interpret the cause of these losses directly, a drag reduction rate was established based on the second law of thermodynamics. Considering abrasion and fabrication precision in practical applications, three kinds of abraded geometry models were constructed and tested, and the ideal microstructure was found to achieve best performance suited to manufacturing production on the basis of drag reduction rate. It was also believed that bionic shark skin surfaces with mechanical abrasion may draw more attention from industrial designers and gain wide applications with drag-reducing characteristics.

  15. PLASMA POLYMERIZED ORGANOSILANES AS A PROTECTIVE COATING ON METAL

    Institute of Scientific and Technical Information of China (English)

    SUN Qiushi; HOU Xiaohua

    1997-01-01

    Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-deposited organosilane polymers, the corrosion performance of such coating system on copper substrates were investigated.

  16. Impact of low-pressure glow-discharge-pulsed plasma polymerization on properties of polyaniline thin films

    Science.gov (United States)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2016-12-01

    This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.

  17. Entropy Generation Analysis of Open Parallel Microchannels Embedded Within a Permeable Continuous Moving Surface: Application to Magnetohydrodynamics (MHD

    Directory of Open Access Journals (Sweden)

    Mohammad H. Yazdi

    2011-12-01

    Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.

  18. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  19. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel

    Science.gov (United States)

    Sun, Yanhong; Guo, Chaohong; Jiang, Yuyan; Wang, Tao; Zhang, Lei

    2016-11-01

    This paper demonstrates an online measurement technique which can measure both surface tension and viscosity for confined fluids in microfluidic systems. The surface tension and viscosity are determined by monitoring the liquid film thickness deposited in a microchannel based on the hydrodynamics of Taylor flow. Measurements were carried out for pure liquids and binary aqueous liquid mixtures. The results agreed well with reference data and theoretical models. This novel method has considerable potential for measuring dynamic interfacial tension of complex mixtures. Furthermore, it offers opportunity for integrating property measurement with two-phase flow in microchannel, opening new lines of applications.

  20. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-osmotic Flow in Microchannels

    CERN Document Server

    Nam, Sungmin; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z; Sung, Gunyong; Kim, Sung Jae

    2014-01-01

    Possible mechanisms of overlimiting current in unsupported electrolytes, exceeding diffusion limitation, have been intensely studied for their fundamental significance and applications to desalination, separations, sensing, and energy storage. In bulk membrane systems, the primary physical mechanism is electro-convection, driven by electro-osmotic instability on the membrane surface. It has recently been predicted that confinement by charged surfaces in microchannels or porous media favors two new mechanisms, electro-osmotic flow (EOF) and surface conduction (SC), driven by large electric fields in the depleted region acting on the electric double layers on the sidewalls. Here, we provide the first direct evidence for the transition from SC to EOF above a critical channel height, using in situ particle tracking and current-voltage measurements in a micro/nanofluidic device. The dependence of the over-limiting conductance on channel depth (d) is consistent with theoretical predictions, scaling as d^-1 for SC a...

  1. Preparation and properties of plasma-polymerized thiophene (PPT) conducting films

    Energy Technology Data Exchange (ETDEWEB)

    Sadhir, R.K. (Westinghouse Science and Tech. Center, Pittsburgh, PA (United States)); Schoch, K.F. Jr. (Westinghouse Science and Tech. Center, Pittsburgh, PA (United States))

    1993-01-15

    This paper presents, for the first time, conducting films of polythiophene prepared by plasma-polymerization. In this technique, ionized argon is the initiating species for the polymerization of thiophene in a region away from the high RF flux-density. These films displayed a conductivity of 1.8 x 10[sup -4] S cm[sup -1] after doping with iodine. The surface morphology of the films deposited away from the high RF flux-density region showed topology similar to the films prepared by electrochemical methods. The films deposited near the high RF flux-density region showed a platelet structure. (orig.)

  2. Nanometer scale vacuum lithography using plasma polymerization and plasma etching

    CERN Document Server

    Kim, S O

    1998-01-01

    Thin films of plasma polymerization were fabricated through plasma polymerization of interelectrode capacitively coupled gas flow system. After delineating the pattern with an accelerating voltage of 30kV, ranging the dose of 1 approx 500 mu C/cm sup 2 , the pattern was developed with a dry type and formed by plasma etching. By analyzing the molecule structure using FT-IR ( Fourier Transform-Infrared Spectrometry), it was confirmed that the thin films of PPMST (Plasma Polymerized Methylmethacrylate+Styrene+Tetramethyltin) contained the functional radicals of the MST (Methylmethacrylate sub S tyrene+Tetramethyltin) monomer. The Thin films of PPMST had a highly cross-linked structure resulting in a higher molecule weight than the conventional resist. The deposition rate of the PPMST thin films was 230 approx 600 A/min as a function of 50 approx 200 W power and 200 approx 60 A/min as a function 0.1 approx 0.7 Torr pressure. The etching rate of the thin films of PPMST was 875 approx 3520 A/min as a function of 50...

  3. Improvement of the water selectivity of ULTEM poly(ether imide) pervaporation films by an allylamine-plasma-polymerized layer

    OpenAIRE

    Kaba, Meriyam; Raklaoui, Nabil; Guimon, Marie Françoise; Mas, André

    2005-01-01

    International audience; The wettability and surface energy of extruded ULTEM poly(ether imide) films strongly increased (the water contact angle varied from 75 to 38° and the surface energy varied from 45.3 to 59.5 mJ m-2, respectively) with the deposition of an allylamine-plasma-polymerized layer and were characterized with X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy according to the experimental parameters. Pervaporation tests for dehydrating ...

  4. Effects of Surface Wettability and Roughness on the Heat Transfer Performance of Fluid Flowing through Microchannels

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-06-01

    Full Text Available The surface characteristics, such as wettability and roughness, play an important role in heat transfer performance in the field of microfluidic flow. In this paper, the process of a hot liquid flowing through a microchannel with cold walls, which possesses different surface wettabilities and microstructures, is simulated by a transient double-distribution function (DDF two-phase thermal lattice Boltzmann BGK (LBGK model. The Shan-Chen multiphase LBGK model is used to describe the flow field and the independent distribution function is introduced to solve the temperature field. The simulation results show that the roughness of the channel wall improves the heat transfer, no matter what the surface wettability is. These simulations reveal that the heat exchange characteristics are directly related to the flow behavior. For the smooth-superhydrophobic-surface flow, a gas film forms that acts as an insulating layer since the thermal conductivity of the gas is relatively small in comparison to that of a liquid. In case of the rough-superhydrophobic-surface flow, the vortex motion of the gas within the grooves significantly enhances the heat exchange between the fluid and wall.

  5. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  6. Research of Hollow Cathode Remote Plasma Polymerization on Surface of Secondary Battery Separator%电池隔膜表面空心阴极等离子体接枝聚合研究

    Institute of Scientific and Technical Information of China (English)

    温贻芳; 陈新; 芮延年; 王红卫

    2012-01-01

    The surface of non-woven polypropylene secondary battery separator was modified by hollow cathode remote plasma polymerizatioa The polymerization mechanism was analyzed, and the effects of working parameters (such as discharge power, working gas flow rate, sample position etc. ) on the polymerization rate were studied systematically. The IR and SEM were used to analyze the chemical composition and the surface morphology. The results show that the hydrophilic group was imported on the surface of polypropylene after hollow cathode remote plasma modification, so that the wettability of the non-woven polypropylene secondary battery separator was greatly improved.%应用自制的空心阴极等离子体装置,引发丙烯酸在丙纶表面的接枝聚合,研究了等离子体接枝聚合作用机理,分析了等离子体接枝聚合各参数(放电功率、气体流量、丙烯酸蒸气流量、样品位置等)对聚合速率的影响.通过红外光谱、扫描电镜等对丙纶接枝聚合膜表面的化学组成和形态结构等进行了表征分析,证明了亲水基团的引入,改善了丙纶隔膜的亲水性能.

  7. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  8. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    Science.gov (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  9. Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface

    Science.gov (United States)

    Zhu, Lianhua; Guo, Zhaoli

    2017-02-01

    The nonequilibrium gas flow in a two-dimensional microchannel with a ratchet surface and a moving wall is investigated numerically with a kinetic method [Guo et al., Phys. Rev. E 91, 033313 (2015)], 10.1103/PhysRevE.91.033313. The presence of periodic asymmetrical ratchet structures on the bottom wall of the channel and the temperature difference between the walls of the channel result in a thermally induced flow, and hence a tangential propelling force on the wall. Such thermally induced propelling mechanism can be utilized as a model heat engine. In this article, the relations between the propelling force and the top wall moving velocity are obtained by solving the Boltzmann equation with the Shakhov model deterministically in a wide range of Knudsen numbers. The flow fields at both the static wall state and the critical state at which the thermally induced force cancels the drag force due to the active motion of the top wall are analyzed. A counterintuitive relation between the flow direction and the shear force is observed in the highly rarefied condition. The output power and thermal efficiency of the system working as a model heat engine are analyzed based on the momentum and energy transfer between the walls. The effects of Knudsen number, temperature difference, and geometric configurations are investigated. Guidance for improving the mechanical performance is discussed.

  10. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel.

    Science.gov (United States)

    Huang, Hong-Yuan; Wu, Tsung-Lin; Huang, Hung-Ru; Li, Chin-Jung; Fu, Hui-Ting; Soong, Yung-Kuei; Lee, Ming-Yih; Yao, Da-Jeng

    2014-02-01

    Conventional methods to prepare sperm have been amenable to the investigation of outcomes such as rates of recovery and conventional semen parameters. The standard preparation of sperm for assisted reproduction is criticized for its centrifugation steps, which might either recover motile sperm in variable proportions or increase the probability of damage to sperm DNA. An microfluidic system was designed to separate motile sperm according to a design whereby nonmotile spermatozoa and debris flow along their initial streamlines and exit through one outlet-up, whereas motile spermatozoa have an opportunity to swim into a parallel stream and to exit through a separate outlet-down. This chip was fabricated by microelectromechanical systems technology with polydimethylsiloxane molding. The hydrophilic surface, coated with poly (ethanediol) methyl ether methacrylate, exhibits enduring stability maintained for the microchannel. Microscopic examination and fluorescent images showed that the motility of sperm varied with the laminar streams. To confirm the sorting, we identified and quantified the proportions of live and dead sperm before and after sorting with flow cytometric analysis. The results on the viability of a sample demonstrated the increased quality of sperm after sorting and collection in the outlet reservoir. The counted ratio of live sperm revealed the quantity and efficiency of the sorted sperm.

  11. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kolmos, H.J.; Palarasah, Yaseelan

    2011-01-01

    surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the pp......In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene...

  12. Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency

    Science.gov (United States)

    Chase, J. E.; Boerio, F. J.

    2003-05-01

    Plasma polymerized fluorocarbon films were deposited onto polyethylene (PE) substrates to increase oil-repellency of PE. Depositions were performed using the monomer, 1H,1H,2H-perfluoro-1-dodecene in a parallel-plate, radio frequency (rf) reactor, with variable continuous-wave power ranging from 2 to 160 W. The film deposition rate and morphology were strongly dependent on the applied rf power. Most importantly, the chemical structure of the deposited films was also altered, resulting in changes in contact angles of various liquids and the surface energy. Films deposited at low power were composed mainly of perfluoromethylene (CF2) species (up to 67.2%), as shown by x-ray photoelectron spectroscopy (XPS). With an increase in rf power, CF2 content in the film decreased as further fragmentation of the monomer occurred. For each deposition at varying rf powers, even at powers as low as 2 W, the C=C and C-H bonds in the monomer were dissociated by the plasma and not incorporated into the films, as shown by Fourier transform infrared spectroscopy. Oil-repellency, as shown by increased contact angles of hydrocarbon liquids, was found to increase as the amount of CF2 species increased in the film structure. A low critical surface energy (2.7 mJ/m2) was calculated for the film deposited with only 2 W of rf power. Adhesion of the plasma-polymerized films to the PE was also evaluated and found to be poor for films with a high concentration of CF2 species, where cohesive failure within the film occurred. However, adhesion increased as a function of rf power, where the film structure showed more cross-linking. There was a compromise between producing a film with high oleophobicity (oil-repellency) while maintaining adhesion of the film to PE, as some disruption of the CF2 chains in the films was necessary for cohesion through cross-linking.

  13. STUDIES ON THE PERMEABILITY OF PVC /EBBA OVERLAPPED ULTRATHIN COMPOSITE MEMBRANES MODIFIED BY PLASMA- POLYMERIZATION WITH FLUOROCARBON MONOMERS

    Institute of Scientific and Technical Information of China (English)

    FU Xiucheng; JIN Xigao; Tisato KAJIYAMA

    1989-01-01

    The PVC/EBBA ultrathin composite membranes with thickness of about 100 nm were prepared by spreading the solution on water surface. The overlapped composite membrane showed a characteristic aggregation structure in which the polymer matrix exists as a three-dimensional spongy network and the liquid crystal domains were observedThe surface modification for the overlapped membranes was carried out by means of plasma-polymerization with the monomers of fluorocarbon compounds. Both Arrhenius plots of permeability coefficients for oxygen (-Po2) in the membrane samples before and after modification showed significant increase in the vicinity of the TKN of EBBA.

  14. Characterization of Plasma-Polymerized Fused Polycyclic Compounds for Binding Conducting Polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Norrman, Kion; Kingshott, Peter

    2005-01-01

    An investigation is made of the plasma polymerization of fused polycyclic monomers containing a dioxy-ring that is fused to an aromatic ring. These molecules provide the basis for very efficient polymerization mechanisms in which only the dioxy-ring undergoes ring opening during the polymerization...... with the remaining part of the monomer remaining intact. XPS, ToF-SIMS, and IR are used to investigate the chemistry of the films produced by plasma polymerization of EDT, which contains a high content of the aromatic group. We find that the plasma-polymerized films of EDT contain intact thiophene groups...

  15. Plasma-polymerized thiophene films for enhanced rubber steel bonding

    Science.gov (United States)

    Delattre, James L.; d'Agostino, Riccardo; Fracassi, Francesco

    2006-03-01

    Thin films of plasma-polymerized thiophene (PPTh) were deposited on cold-rolled steel substrates to improve adhesion to rubber compounds. PPTh films were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy. The ratio of carbon-to-sulfur found in PPTh films is 4:1, suggesting the monomer structure is generally intact, which was supported by FT-IR absorptions characteristic of polymerized thiophene rings. However, some fragmentation did occur to give acetylenic and aliphatic groups. Steel-rubber adhesion measurements, performed in accordance with the ASTM 429-B peel test, strongly depended on cleaning and pretreatment methods as well as film thickness. Best results were obtained on polished steel samples that were cleaned with acid, pretreated with a hydrogen/argon plasma, then coated with 50 Å of PPTh film. These samples exhibited a peel force of 14.3 N/mm, which is comparable to that of polished brass control samples. Depth-profiling XPS analysis of the rubber-steel interface showed the existence of an iron sulfide layer which is likely responsible for the strong adhesion.

  16. The molecular structure of interfaces formed between plasma polymerized silica-like films and epoxy adhesives

    Science.gov (United States)

    Bengu, Basak

    The molecular structure of the interphase formed by curing a model adhesive system consisting of the diglycidyl ether of bisphenol-A (DGEBA) and dicyandiamide (DDA) against inorganic substrates, including mechanically polished aluminum, electrogalvanized steel (EGS) and plasma polymerized silica-like primer films, was determined using reflection--absorption infrared spectroscopy (RAIR) and X-ray photoelectron spectroscopy (XPS). RAIR analysis suggested that DGEBA/DDA mixtures created an interphase with a different molecular structure from the bulk of the adhesive when cured in contact with aluminum. The formation of this unique interphase was mainly due to interactions between DDA and the Al surface. XPS analysis indicated that aluminum ions exposed by heating the substrate surface were necessary for this interaction. DDA was found to adsorb onto the aluminum surface via the lone pair of electrons on the nitrogen atoms of the nitrile groups. A slight decrease in the nitrile stretching frequency indicated an additional back-bonding interaction between aluminum ions and the nitrile groups. Slight back donation of electrons from the metal to DDA resulted in a reduction product that led to the formation of the carbodiimide form of DDA. This specific reaction caused a decrease in the concentration of nitrile groups in the interphase and changed the network structure of the epoxy adhesive in the regions close to the oxide surface. The interaction of DDA with EGS surfaces followed a similar trend. However, the effects were much more pronounced with EGS and the path of the curing reaction and the network structure near the metal surface were strongly affected by EGS/DDA interactions. Two types of plasma polymerized silica-like films were prepared from hexamethyldisiloxane (HMDSO) monomer and oxygen by varying the gas compositions. One of the films was high and the other was low in hydroxyl content. XPS results showed that adjacent to the silica-like primer films, the

  17. Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel.

    Science.gov (United States)

    Liu, Yun; Wang, Huixiang; Liu, Qingping; Qu, Haiyun; Liu, Baohong; Yang, Pengyuan

    2010-11-07

    A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.

  18. NafionTM膜表面改性用等离子体聚合方法提高膜的阳离子选择性%Surface Modification of Ion Exchange Membrane(NafionTM) The Enhancement of Cation Selectivity by Plasma Polymerization Process

    Institute of Scientific and Technical Information of China (English)

    曾蓉; 朱鹤孙; 庞志成; 弋峰

    2001-01-01

    An ultra-thin anionic exchange layer containing —NH2 and —CONH2 was deposited on the surface of NafionTM membrane. This layer was deposited from ethylene and ammonia using a glow-discharge plasma polymerization technique. The SEM, ATR(attenuated total reflection) spectra and XPS(X-ray photoelectron spectroscopy) showed that the resulted plasma polymers containing —NH2 and —CONH2 was about 0.5 μm thick. The proton perm-selectivity of plasma-modified NafionTM membrane was expressed by tCu, the transference number of the Cu2+ ion through the membrane which was determined by using NafionTM membrane as the separator in a typical two-compartment cell(0.25 mol/L CuCl2-0.5mol/L HCl|plasma-modified NafionTM membrane|1 mol/L HCl). Pretreatment of the NafionTM membrane by oxygen sputtering enhanced the adhesion of plasma polymer onto its surface. The plasma-treated membrane exhibited a high perm-selectivity and its resistance in 1 mol/L HCl was only a little bit higher than NafionTM membrane(<0.5 Ω*cm2).%采用辉光放电等离子体聚合方法, 以C2H4和NH3为单体, 在NafionTM膜表面沉积一层含氨基及酰氨基的类聚乙烯阴离子交换膜, 提高了NafionTM膜对阳离子的选择性, 同时不显著增加膜电阻. 由SEM确定该等离子体聚合膜厚约0.5 μm, 用红外光谱及X光电子能谱表征膜结构. 采用四电极法测量膜电阻, 膜对质子的选择性由Cu2+的迁移数tCu表征, 用二室隔膜装置(0.25 mol/L CuCl2-0.5 mol/L HCl|等离子体处理膜|1 mol/L HCl)测量tCu. O2等离子体预处理NafionTM膜有利于沉积膜在NafionTM膜上的沉积并与NafionTM膜紧密结合. 经改性后的NafionTM膜电阻值仍然很小, 在1 mol/L HCl溶液中电阻小于0.5 Ω*cm2.

  19. Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings

    Science.gov (United States)

    Liu, Xiaojun; Wang, Lei; Hao, Jie; Chu, Liqiang

    2015-12-01

    Herein we report on the deposition of transparent hydrophobic thin coatings by radio frequency plasma polymerization (PP) of perfluorooctyl ethylene (PFOE) in both pulsed and continuous wave (CW) modes. The chemical compositions of the resulting PP-PFOE coatings were confirmed by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The thicknesses and surface morphologies of the coatings were examined using surface plasmon resonance spectroscopy and atomic force microscopy. The surface wetting properties and optical transmittance were measured using a water contact angle goniometer and UV-vis spectroscopy. The FT-IR and XPS data showed that the PP-PFOE coatings deposited in the pulsed mode had a higher retention of CF2 groups compared to those from the CW mode. While the water contact angle of the freshly deposited PP-PFOE from the pulsed mode showed a decrease from 120 degrees to 111 degrees in the first two days, it then remained almost unchanged up to 45 days. The UV-vis data indicated that a PP-PFOE coating 30.6 nm thick had a light transmittance above 90% in the UV and visible ranges. The deposition rates under various plasma conditions are also discussed. supported by the Tianjin Research Program of Application Foundation and Advanced Technology, China (No. 12JCYBJC31700) and the Program for New Century Excellent Talents in University, China (No. NCET-12-1064)

  20. Enzyme biosensor based on plasma-polymerized film-covered carbon nanotube layer grown directly on a flat substrate.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Matsui, Yasunori

    2011-07-01

    We report a novel approach to fabrication of an amperometric biosensor with an enzyme, a plasma-polymerized film (PPF), and carbon nanotubes (CNTs). The CNTs were grown directly on an island-patterned Co/Ti/Cr layer on a glass substrate by microwave plasma enhanced chemical vapor deposition. The as-grown CNTs were subsequently treated by nitrogen plasma, which changed the surface from hydrophobic to hydrophilic in order to obtain an electrochemical contact between the CNTs and enzymes. A glucose oxidase (GOx) enzyme was then adsorbed onto the CNT surface and directly treated with acetonitrile plasma to overcoat the GOx layer with a PPF. This fabrication process provides a robust design of CNT-based enzyme biosensor, because of all processes are dry except the procedure for enzyme immobilization. The main novelty of the present methodology lies in the PPF and/or plasma processes. The optimized glucose biosensor revealed a high sensitivity of 38 μA mM(-1) cm(-2), a broad linear dynamic range of 0.25-19 mM (correlation coefficient of 0.994), selectivity toward an interferent (ascorbic acid), and a fast response time of 7 s. The background current was much smaller in magnitude than the current due to 10 mM glucose response. The low limit of detection was 34 μM (S/N = 3). All results strongly suggest that a plasma-polymerized process can provide a new platform for CNT-based biosensor design.

  1. Plasma-polymerized hexamethyldisilazane treated by nitrogen plasma immersion ion implantation technique

    Energy Technology Data Exchange (ETDEWEB)

    Honda, R Y; Mota, R P; Batocki, R G S; Santos, D C R; Nicoleti, T; Kostov, K G; Kayama, M E; Algatti, M A [Laboratorio de Plasma, Faculdade de Engenharia, UNESP, Av. Dr Ariberto Pereira da Cunha-333, 12516-410, Guaratingueta, SP (Brazil); Cruz, N C [Laboratorio de Plasmas Tecnologicos, Unidade Diferenciada, UNESP, Av. Tres de Marco-511, 18085-180, Sorocaba, SP (Brazil); Ruggiero, L, E-mail: honda@feg.unesp.b [Faculdade de Ciencias, UNESP, Av. Luis E. Carrijo Coube 14-1, 17033-360, Bauru, SP (Brazil)

    2009-05-01

    This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm{sup -1}, 2960 cm{sup -1}, 1650 cm{sup -1}, 1250 cm{sup -1} and 1050 cm{sup -1} were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.

  2. Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M A; Ramos, A S; Manfredini, M I; Alves, H A; Ramos, E C T [UNIVAP, Sao Jose dos Campos, SP (Brazil); Honda, R Y; Kostov, K G; Lucena, E F; Mota, R P; Algatti, M A; Kayama, M E, E-mail: rmota@feg.unesp.b [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil)

    2009-05-01

    Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm{sup -1}), C-H (3000-2900cm{sup -1}), C=O (1730-1650cm{sup -1}), C-O and C-O-C bonds at 1200-1600cm{sup -1}. The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85 deg. to 22 deg. Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.

  3. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation.

    Science.gov (United States)

    Antonini, V; Torrengo, S; Marocchi, L; Minati, L; Dalla Serra, M; Bao, G; Speranza, G

    2014-01-01

    Plasma enhanced physical vapor depositions are extensively used to fabricate substrates for cell culture applications. One peculiarity of the plasma processes is the possibility to deposit thin films with reproducible chemical and physical properties. In the present work, a combinatorial plasma polymerization process was used to deposit thin carbon based films to promote cell adhesion, in the interest of testing cell proliferation as a function of the substrate chemical properties. Peculiarity of the combinatorial approach is the possibility to produce in just one deposition experiment, a set of surfaces of varying chemical moieties by changing the precursor composition. A full characterization of the chemical, physical and thermodynamic properties was performed for each set of the synthesized surfaces. X-ray photoelectron spectroscopy was used to measure the concentration of carboxyl, hydroxyl and amine functional groups on the substrate surfaces. A perfect linear trend between polar groups' density and precursors' concentration was found. Further analyses reveled that also contact angles and the correspondent surface energies of all deposited thin films are linearly dependent on the precursor concentration. To test the influence of the surface composition on the cell adhesion and proliferation, two cancer cell lines were utilized. The cell viability was assessed after 24 h and 48 h of cell culture. Experiments show that we are able to control the cell adhesion and proliferation by properly changing the thin film deposition conditions i.e. the concentration and the kind of chemical moiety on the substrate surface. The results also highlight that physical and chemical factors of biomaterial surface, including surface hydrophobicity and free energy, chemical composition, and topography, can altered cell attachment.

  4. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Nečas, David [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Čechal, Jan [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Eliáš, Marek [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); and others

    2015-04-30

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH{sub x} environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH{sub x} concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH{sub x} (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high

  5. Comparative studies of chemically synthesized and RF plasma-polymerized poly(-toluidine)

    Indian Academy of Sciences (India)

    Shama Islam; G B V S Lakshmi; M Zulfequar; M Husain; Azher M Siddiqui

    2015-04-01

    Poly(-toluidine) (POT) polymer was synthesized by chemical method and RF plasma polymerization at a radio frequency (RF) power input of 15 W on ultrasonically cleaned glass and silicon wafer substrates. These samples were characterized by DC conductivity measurements, UV–visible, XRD and FTIR techniques. The DC-conductivity was measured at 410 K, which was found to increase by two orders of magnitude for thin film as compared to pellet samples. It has been observed that the activation energy increases for RF plasma-polymerized POT. Transmission and reflectance spectra were studied for measuring optical constants like absorption coefficient (), extinction coefficient (), optical band gap (g), Urbach energy (e), and refractive index (). From XRD studies, one can infer that the samples grown by both the methods are amorphous in nature. The results indicate that the structures of plasma-polymerized POT are rather different from polymers synthesized by conventional chemical methods, due to a higher degree of cross-linking and branching reactions in plasma polymerization. This makes them suitable for various electroactive devices. A higher and more stable conductivity can be obtained with RF plasma-polymerized POT which is much smoother and more uniform.

  6. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  7. Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction

    Science.gov (United States)

    Maynes, D.; Jeffs, K.; Woolford, B.; Webb, B. W.

    2007-09-01

    This paper reports results of an analytical and experimental investigation of the laminar flow in a parallel-plate microchannel with ultrahydrophobic top and bottom walls. The walls are fabricated with microribs and cavities that are oriented parallel to the flow direction. The channel walls are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the vapor cavity flow is employed and coupled with a numerical model of the liquid flow by matching the local liquid and vapor phase velocity and shear stress at the interface. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width, increasing relative cavity depth, and decreasing relative microrib/cavity module length. Comparisons were also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model underpredicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions, with greater deviation observed at increasing size of the cavity fraction. Based on the numerical predictions, an expression is proposed in which the friction factor-Reynolds number product may be estimated in terms of the important variables.

  8. Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells

    Science.gov (United States)

    Roualdes, Stéphanie; Topala, Ionut; Mahdjoub, Habiba; Rouessac, Vincent; Sistat, Philippe; Durand, Jean

    Sulfonated polystyrene-type membranes were synthesized by plasma polymerization of a mixture of styrene and trifluoromethane sulfonic acid monomers in a low-frequency after-glow discharge plasma reactor. Such a deposition process enables the preservation of the monomers structure, which was confirmed by mass spectrometry analysis. The synthesized plasma-polymerized membranes are dense and uniform with a few microns thickness. Their structure determined by Fourier-transform infra-red spectroscopy and X-ray photoelectron spectroscopy is very rich in sulfonic acid groups (up to 5%) and stable up to 120 °C. Even if their intrinsic proton conductivity is low (10 -1 mS cm -1), directly related to their disorganized and highly cross-linked structure, plasma-polymerized membranes present a proton conduction ability similar to Nafion ® because of their low thickness. Due to their highly cross-linked structure, these membranes enable a reduction of the methanol crossover in a factor 10 by comparison with Nafion ®. Thus, the integration of plasma-polymerized films in miniaturized direct methanol fuel cells as proton-exchange membranes seems promising.

  9. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  10. Numerical simulation of electroosmotic flow in hydrophobic microchannels

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Electroosmotic flow(EOF) is a promising way for driving and mixing fluids in microfluidics.For the parallel-plate microchannel with the hydrophobic surface, this paper solved the governing equations using the finite element method(FEM), and the effects of microchannel height, electric strength and ionic concentration on EOF were thus investigated.The simulation indicates that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels, the steady time of EOF is proportional to the square of microchannel height, and the scale is microsecond.EOF velocity is proportional to the electric strength and independent of the channel height, and decreases slowly with the ionic concentration, which is lower than that in hydrophilic microchannel due to the presence of slip length in hydrophobic microchannel.The results can provide valuable insights into the optimal design of microchannel surfaces to achieve accurate EOF control in hydrophobic microchannel.

  11. Atmospheric pressure plasma polymerization using double grounded electrodes with He/Ar mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang; Tae, Heung-Sik, E-mail: hstae@ee.knu.ac.kr [School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Shin, Bhum Jae [Department of Electronics Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Seo, Jeong Hyun [Department of Electronics Engineering, Incheon National University, Incheon 406-772 (Korea, Republic of)

    2015-09-15

    In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CH species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.

  12. Atmospheric pressure plasma polymerization using double grounded electrodes with He/Ar mixture

    Directory of Open Access Journals (Sweden)

    Dong Ha Kim

    2015-09-01

    Full Text Available In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ device to individually control the plasmas in both fragmentation (or active and recombination (or passive regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM. Plasma composition was measured by optical emission spectroscopy (OES. In addition to a large number of Ar and He spectra lines, we observed some spectra of C2 and CH species for fragmentation and N2 (second positive band species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2nd grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.

  13. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels.

    Science.gov (United States)

    Nam, Sungmin; Cho, Inhee; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z; Moon, Dustin Jaesuk; Sung, Gun Yong; Kim, Sung Jae

    2015-03-20

    Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d(-1) for SC and d(4/5) for EOF with a minimum around d=8  μm. The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d. This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media.

  14. The golden-mean surface pattern to enhance flow mixing in micro-channel.

    Science.gov (United States)

    Wang, J F; Liu, Y; Xu, Y S

    2009-04-01

    Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.

  15. Analysis of electro-osmotic flow in a microchannel with undulated surfaces

    CERN Document Server

    Yoshida, Hiroaki; Washizu, Hitoshi

    2016-01-01

    The electro-osmotic flow through a channel between two undulated surfaces induced by an external electric field is investigated. The gap of the channel is very small and comparable to the thickness of the electrical double layers. A lattice Boltzmann simulation is carried out on the model consisting of the Poisson equation for electrical potential, the Nernst--Planck equation for ion concentration, and the Navier--Stokes {\\color{black}equations} for flows of the electrolyte solution. An analytical model that predicts the flow rate is also derived under the assumption that the channel width is very small compared with the characteristic length of the variation along the channel. The analytical results are compared with the numerical results obtained by using the lattice Boltzmann method. In the case of a constant surface charge density along the channel, the variation of the channel width reduces the electro-osmotic flow, and the flow rate is smaller than that of a straight channel. In the case of a surface ch...

  16. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  17. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C., E-mail: chadlia.el.manaa@gmail.com [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Kouki, F. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Durand-Drouhin, O. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Bouchriha, H. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); and others

    2014-06-02

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method.

  18. Electroosmotic shear flow in microchannels

    NARCIS (Netherlands)

    Mampallil, Dileep; Ende, van den Dirk

    2013-01-01

    We generate and study electroosmotic shear flow in microchannels. By chemically or electrically modifying the surface potential of the channel walls a shear flow component with controllable velocity gradient can be added to the electroosmotic flow caused by double layer effects at the channel walls.

  19. Numerical simulation of electroosmotic flow in hydrophobic microchannels

    Institute of Scientific and Technical Information of China (English)

    YANG DaYong; LIU Ying

    2009-01-01

    Electroosmotic flow(EOF)is a promising way for driving and mixing fluids in microfluidics.For the parallel-plate microchannel with the hydrophobic surface,this paper solved the governing equations using the finite element method(FEM),and the effects of microchannel height,electric strength and ionic concentration on EOF were thus investigated.The simulation indicates that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels,the steady time of EOF is proportional to the square of microchannel height,and the scale is microsecond.EOF velocity is proportional to the electric strength and independent of the channel height,and decreases slowly with the ionic concentration,which is lower than that in hydrophilic rnicrochannel due to the presence of slip length in hydrophobic microchannel.The results can provide valuable insights into the optimal design of microchannel surfaces to achieve accurate EOF control in hydrophobic microchannel.

  20. Inkjet print microchannels based on a liquid template.

    Science.gov (United States)

    Guo, Yuzhen; Li, Lihong; Li, Fengyu; Zhou, Haihua; Song, Yanlin

    2015-04-07

    A simple method to fabricate microchannels is demonstrated based on an inkjet printing liquid template. The morphology of the liquid template can be well controlled by using ink with viscosity sensitive to temperature. The as-prepared Y-shape microchannel is used as a microfluidic reactor for an acylation fluorigenic reaction in a matrix of polydimethylsiloxane (PDMS). Arbitrary modification of the microchannels could be easily realized synchronously with the formation of the microchannels. By grafting polyethylene glycol (PEG) onto the internal surface, an anti-biosorption microchannel is obtained. The facile method will be significant for the fabrication of a microfluidic chip with functional modifications.

  1. Wetting, Solubility and Chemical Characteristics of Plasma-Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films

    Directory of Open Access Journals (Sweden)

    Jakaria Ahmad

    2014-07-01

    Full Text Available Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene using radio frequency (RF plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

  2. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Tapan; Pal, Arup R., E-mail: arpal@iasst.gov.in; Chutia, Joyanti

    2014-09-15

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure.

  3. Understanding the charge carrier conduction mechanisms of plasma-polymerized 2-furaldehyde thin films via DC electrical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Humayun, E-mail: HXK598@bham.ac.uk [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bhuiyan, A.H. [Department of Physics, Bangladesh University of Engineering & Technology, Dhaka 1000 (Bangladesh); Rahman, M. Mahbubur [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia)

    2016-06-30

    Monomer 2-furaldehyde (FDH) was deposited onto the glass substrates in optimum conditions via a glow discharge using a capacitively coupled parallel plate reactor to obtain plasma polymerized 2-furaldehyde (PPFDH) thin films of different thicknesses. In order to realize the carrier conduction mechanisms, the direct current density against applied voltage (J–V) characteristics of these films with different thicknesses were investigated at different temperatures (T) in the voltage region from 0.5 to 49 V in Al/PPFDH/Al sandwich configuration. The J–V characteristics at various temperatures follow a power law of the form J ∞ V{sup n}. In the low voltage region the values of n were recorded to be 0.80 ≤ n ≤ 1.12 and those in the high voltage region found to lie between 1.91 ≤ n ≤ 2.58, demonstrating the Ohmic conduction mechanism in the low voltage region and non-Ohmic conduction in the high voltage region. Theoretically calculated and experimental results of Schottky (β{sub s}) and Poole–Frenkel (β{sub PF}) coefficients display that the most probable conduction mechanism in PPFDH thin films is the Schottky type. Arrhenius plots of J vs. 1/T for an applied voltage of 5 V, the activation energies were 0.13 ± 0.02 and 0.50 ± 0.05 eV in the low and high temperature regions, respectively. However, for an applied voltage of 35 V, the activation energy values were found to be 0.11 ± 0.01 eV and 0.55 ± 0.02 eV, respectively in low and high temperature regions. - Highlights: • Plasma polymerized 2-furaldehyde films were synthesized via a glow discharge technique. • Uniformity of the surface of the PPDFH films was identified via SEM analysis. • Energy dispersive X-ray spectra show the presence of C, O, and substrate related elements. • The dominant conduction mechanism in the PPFDH films is of Schottky type. • Schottky type mechanism was also confirmed by the temperature dependence J–V studies.

  4. Synthesis of PPy-like Nanocrystallines by Oriented Plasma Polymerization at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    FANG Xin-sheng; GUO Ying; XU Jin-zhou; ZHANG Jing

    2006-01-01

    Polymeric polypyrrole-like (PPy-like) nanocrystallines were fast synthesized through oriented plasma polymerization at atmospheric pressure and room temperature. The effects of discharge power on the nanocrystalline morphology were investigated. Larger power tends to produce longer nanocrystallines. 3 mm long nanowires were produced at the largest power in our experiment. TEM image and the sharp electronic diffraction spots in SAD suggest that the nanoparticles have a single crystal phase. The chemical structure of the nanocrystalline has been studied through FTIR, EDX etc. This novel polymerization method could have great applications in fabricating functional polymeric nanocrystallines.

  5. Hydrophobic coating of solid materials by plasma-polymerized thin film using tetrafluoroethylene

    Science.gov (United States)

    Hozumi, K.; Kitamura, K.; Kitade, T.

    1980-01-01

    Glass slides were coated with plasma-polymerized tetrafluoroethylene films of different thickness using the glow discharge technique in a tube-shaped chamber, and the plasma conditions, film growth rates, light permeability of the polymer films, and particle bond strength in the polymer films were studied. Ashed sections of mouse organs and ashed bacillus spores were also coated to give them hydrophobic treatment without damaging their shapes or appearance. The hydrophobic coating of the specimens was successful, and the fine ash patterns were strongly fixed onto the glass slides, making permanent preparations.

  6. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-01-01

    Full Text Available This work presents a study on the preparation of plasma-polymerized aniline (pPANI nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, gas chromatography-mass spectrometry (GC-MS, and gel permeation chromatography (GPC techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw, about 533 kDa with 1.9 polydispersity index (PDI. This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  7. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    Science.gov (United States)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  8. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV

    Science.gov (United States)

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V.

    2017-03-01

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV-A and UV-B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV-C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.

  9. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV

    Science.gov (United States)

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V.

    2017-01-01

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV–A and UV–B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV–C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment. PMID:28358138

  10. Investigation of Plasma Polymerized Maleic Anhydride Film in a Middle Frequency Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    TANG Wenjie; CHEN Qiang; ZHANG Yuefei; GE Yuanjing

    2008-01-01

    Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by water contact angle (WCA), Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) analysis, and a thickness profilometer. The influence of the processing parameters on the film properties such as the power frequency, and polymerization zone was investigated. The results show that anhydride group incorporated into the growing films is favorable at the frequency of 80 kHz and working pressure of 50 Pa. The poly (maleic anhydride) film is uniform and compact at an average deposition rate of 8 nm/min.

  11. Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems

    Science.gov (United States)

    Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.

    2011-12-01

    Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.

  12. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    Science.gov (United States)

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  13. Heat transfer and fluid flow in microchannels

    Science.gov (United States)

    Mala, Ghulam Mohiuddin

    Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the

  14. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Amreen A. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Pal, Arup R., E-mail: arpal@iasst.gov.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Kar, Rajib [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Bailung, Heremba; Chutia, Joyanti [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Patil, Dinkar S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2014-12-15

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO{sub 2}) nanocomposite thin films. The deposition of PPani-TiO{sub 2} nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO{sub 2} nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO{sub 2} nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H{sub 2}SO{sub 4} doping in PPani-TiO{sub 2} nanocomposite. • PPani-TiO{sub 2} nanocomposite based self-powered-hybrid photodetector.

  15. Conductive Polymer Synthesis with Single-Crystallinity via a Novel Plasma Polymerization Technique for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-09-01

    Full Text Available This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ technique. Transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and field emission scanning electron microscopy (FE-SEM results show that the plasma-polymerized pyrrole (pPPy nanoparticles have a fast deposition rate of 0.93 µm·min−1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.

  16. On the optical and electrical properties of rf and a.c. plasma polymerized aniline thin films

    Indian Academy of Sciences (India)

    U S Sajeev; C Joseph Mathai; S Saravanan; Rajeev R Ashokan; S Venkatachalam; M R Anantharaman

    2006-04-01

    Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques.

  17. Up-scaling the production of modified a-C:H coatings in the framework of plasma polymerization processes

    Science.gov (United States)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2009-10-01

    Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m 3) and a large-scale (1 m 3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF - small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2-5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/ F vs. ( W/ F) -1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/ F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.

  18. Alkali Absorption Property of Polypropylene Non-woven Fabrics Surface Modified by Hollow Cathode Remote Plasma Polymerization%空心阴极远区等离子体接枝聚合表面改性丙纶无纺布的吸碱性能

    Institute of Scientific and Technical Information of China (English)

    温贻芳; 陈新; 王士喜; 芮延年; 王红卫

    2011-01-01

    利用空心阴极远区等离子体改性技术对丙纶无纺布表面进行了改性处理,研究了等离子体处理参数对丙纶无纺布吸碱性能的影响;采用红外光谱、扫描电镜等对丙纶无纺布表面的化学组成和形态等进行了表征。结果表明:等离子体处理时间、放电功率、气体流量等对丙纶无纺布的吸碱性能有很大的影响,而且试样距丙烯酸喂气管的距离对处理效果的影响也很明显;通过空心阴极远区等离子体接枝聚合表面改性处理,在丙纶无纺布的表面引入了亲水性羧基基团,改善了其浸润性,显著提高了其吸碱率和吸碱速率,达到了国外进1:7电池隔膜的指标。%The surface of polypropylene non-woven fabrics was modified by hollow cathode remote plasma modification technology. The effect of the plasma treatment parameters on the property of polypropylene non-woven fabrics was studied. The FTIR and SEM were used to analyze the chemical composition and morphology. The results show that plasma treatment time, discharge power, gas flow had a great influence on the alkali absorption property, and the effect of the distance between the sample and acrylic acid feeding tube on treatment results was obvious. The invasion property of the polypropylene non-woven fabrics was improved due to the import of hydrophilic group by hollow cathode remote plasma surface modification. The alkali absorption capacity and rate were raised obviously, and the alkali absorption performance reached the level of foreign battery separator.

  19. Highly curved microchannel plates

    Science.gov (United States)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  20. 制冷系统不同表面能微通道的流动沸腾传热特性试验%Flowing boiling heat transfer characteristics test for microchannels with different surface energy in refrigeration system

    Institute of Scientific and Technical Information of China (English)

    罗小平; 邓聪; 冯振飞; 周建阳

    2016-01-01

    With the development of many applications in modern industrial system and equipment, the ability to dissipate a large amount of heat from small surface area has been becoming increasingly urgent. Flow boiling in microchannels provides unique advantages when applied in micro-module equipment. Therefore, the microchannel heat exchangers have a broad industrial and market prospects for their high heat transfer coefficients and appreciable reduction in weight and volume. Flow boiling heat transfer in microchannels becomes one of popular researching hot spots. But the researches about flow boiling in microchannels with different surface energy are still lacked and further researches are needed. In this study, the current experiments fabricated 3 different modules with the identical sizes of 240 mm × 400 mm × 7.5 mm and with the different surface energy. Flow boiling experiments were conducted with the refrigerant R141b in a test module containing 22 microchannels which were 2 mm wide and 1 mm deep. During the experiments, the heat flux imposed on the aluminum substrate varied from 9 to 26 kW/m2 and the mass flux flowing into the channel varied from 50 to 583 kg/(m2·s). The effects of the microchannels with different energy on boiling heat transfer under a certain pressure were experimentally investigated with different heat flux and mass flux. The results showed that the thermodynamic equilibrium quality increased fairly linearly with axial variation, with the slope inversely proportional to mass flow rate. The two-phase boiling heat transfer came earlier when mass flow rate was smaller and the increase of mass flow rate was beneficial to boiling heat transfer, but leading to the increasing of the length of the subcooled region. Heat transfer coefficient was relatively stable in the saturated boiling region of the microchannels and had a tendency to decrease along the flow direction due to the rise of gas phase proportion. Compared to the microchannels with the

  1. Use of thin films obtained by plasma polymerization for grain protection and germination enhancement

    Directory of Open Access Journals (Sweden)

    Rodrigo A. M. Carvalho

    2005-12-01

    Full Text Available In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.

  2. Nanomechanical properties of advanced plasma polymerized coatings for mechanical data storage.

    Science.gov (United States)

    Tranchida, Davide; Pihan, Sascha A; Zhang, Yi; Schönherr, Holger; Berger, Rüdiger

    2011-04-07

    In this paper we report on the unprecedented deformation behavior of stratified ultrathin polymer films. The mechanical behavior of layered nanoscale films composed of 8-12 nm thin plasma polymerized hexamethyldisiloxane (ppHMDSO) films on a 70 nm thick film of polystyrene was unveiled by atomic force microscopy nanoindentation. In particular, we observed transitions from the deformation of a thin plate under point load to an elastic contact of a paraboloid of revolution, followed by an elastic-plastic contact for polystyrene and finally an elastic contact for silicon. The different deformation modes were identified on the basis of force-penetration data and atomic force microscopy images of residual indents. A clear threshold was observed for the onset of plastic deformation of the films at loads larger than 2 μN. The measured force curves are in agreement with an elastic and elastic-plastic contact mechanics model, taking the amount of deformation and the geometry of the layer that presumably contributed more to the overall deformation into account. This study shows that the complex deformation behavior of advanced soft matter systems with nanoscale dimensions can be successfully unraveled.

  3. Spectroscopic Study of Plasma Polymerized a-C:H Films Deposited by a Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Thejaswini Halethimmanahally Chandrashekaraiah

    2016-07-01

    Full Text Available Plasma polymerized a-C:H thin films have been deposited on Si (100 and aluminum coated glass substrates by a dielectric barrier discharge (DBD operated at medium pressure using C2Hm/Ar (m = 2, 4, 6 gas mixtures. The deposited films were characterized by Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS, Raman spectroscopy, and ellipsometry. FT-IRRAS revealed the presence of sp3 and sp2 C–H stretching and C–H bending vibrations of bonds in the films. The presence of D and G bands was confirmed by Raman spectroscopy. Thin films obtained from C2H4/Ar and C2H6/Ar gas mixtures have ID/IG ratios of 0.45 and 0.3, respectively. The refractive indices were 2.8 and 3.1 for C2H4/Ar and C2H6/Ar films, respectively, at a photon energy of 2 eV.

  4. Varying stress of SiOsub>xsub>Csub>ysub> thin films deposited by plasma polymerization.

    Science.gov (United States)

    Liao, Wei-Bo; Chang, Ya-Chen; Jaing, Cheng-Chung; Cheng, Ching-Long; Lee, Cheng-Chung; Wei, Hung-Sen; Kuo, Chien-Cheng

    2017-02-01

    SiOsub>xsub>Csub>ysub> thin films were deposited by plasma polymerization. The stress of the deposited SiOsub>xsub>Csub>ysub> thin films can be modified by adjusting the beam current, the anode voltage, and the flow rate of hexamethyldisiloxane (HMDSO) gas and oxygen. Reducing the beam current or increasing the flow rate of HMDSO gas increased the linear/cage structure ratio and turned the stress of the SiOsub>xsub>Csub>ysub> thin films from compressive to tensile. The linear/cage structure ratio can be adjusted by changing the composite parameter, W[FM]sub>csub>/[FM]sub>msub>, to control the stress of the deposited plasma polymer films. Multilayers of TiOsub>2sub>/SiOsub>2sub>/TiOsub>2sub> were coated on a SiOsub>xsub>Csub>ysub> plasma polymer film herein, reducing their stress by 70% from 0.06 to 0.018 GPa. The refractive index is 1.55, and the absorption coefficient is less than 10-4 at 550 nm of the SiOsub>xsub>Csub>ysub> films. Superior optical performances of SiOsub>xsub>Csub>ysub> thin films make their use in optical thin films.

  5. Surface modification of Polymers by plasma polymerization techniques for tissue engineering

    OpenAIRE

    Francesch de Castro, Laia

    2008-01-01

    El treball que es presenta en aquesta tesi pretén contribuir al camp de la ciència de superfícies biològiques, amb el desenvolupament de superfícies adaptades amb cadenes lateral reactives per tal de unir covalentment biomolècul·les d'interès a la superfície.La polimerització assistida per plasma del recobriments actius és un mètode atractiu per tal d'obtenir cadenes laterals reactives, mitjançant pel·lícules nanomètriques amb densitats de grups funcionals adaptats. Sota control de les condic...

  6. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.

    Science.gov (United States)

    Yang, Zhilu; Wang, Jin; Luo, Rifang; Maitz, Manfred F; Jing, Fengjuan; Sun, Hong; Huang, Nan

    2010-03-01

    For an improved hemocompatibility of 316L stainless steel (SS), we develop a facile and effective approach to fabricating a pulsed-plasma polymeric allylamine (P-PPAm) film that possesses a high cross-linking degree and a high density of amine groups, which is used for subsequent bonding of heparin. The P-PPAm film as a stent coating shows good resistance to the deformation behavior of compression and expansion of a stent. Using deionized water as an aging medium, it is demonstrated that the heparin-immobilized P-PPAm (Hep-P-PPAm) surface has a good retention of heparin. The systematic in vitro hemocompatibility evaluation reveals lower platelet adhesion, platelet activation and fibrinogen activation on the Hep-P-PPAm surface, and the activated partial thromboplastin time prolongs for about 15 s compared with 316L SS. The P-PPAm surface significantly promotes adhesion and proliferation of endothelial cells (ECs). For the Hep-P-PPAm, although EC adhesion and proliferation is slightly suppressed initially, after cultivation for 3 days, the growth behavior of ECs is remarkably improved over 316L SS. In vivo results indicate that the Hep-P-PPAm surface successfully restrain thrombus formation by growing a homogeneous and intact shuttle-like endothelium on its surface. The Hep-P-PPAm modified 316L SS shows a promising application for vascular devices.

  7. Overlimiting current in a microchannel

    CERN Document Server

    Dydek, E Victoria; Rubinstein, Isaak; Deng, D S; Mani, Ali; Bazant, Martin Z

    2011-01-01

    We revisit the classical problem of diffusion-limited ion transport to a membrane (or electrode) by considering the effects of charged side walls. Using simple mathematical models and numerical simulations, we identify three basic mechanisms for over-limiting current in a microchannel: (i) {\\it surface conduction} carried by excess counterions, which dominates for very thin channels, (ii) convection by {\\it electro-osmotic flow} on the side walls, which dominates for thicker channels and transitions to (iii) {\\it electro-osmotic instability} on the membrane end in very thick channels. These intriguing electrokinetic phenomena may find applications in biological separations, water desalination, and electrochemical energy storage.

  8. Chemically driven fluid transport in long microchannels

    Science.gov (United States)

    Shen, Mingren; Ye, Fangfu; Liu, Rui; Chen, Ke; Yang, Mingcheng; Ripoll, Marisol

    2016-09-01

    Chemical gradients maintained along surfaces can drive fluid flows by diffusio-osmosis, which become significant at micro- and nano-scales. Here, by means of mesoscopic simulations, we show that a concentration drop across microchannels with periodically inhomogeneous boundary walls can laterally transport fluids over arbitrarily long distances along the microchannel. The driving field is the secondary local chemical gradient parallel to the channel induced by the periodic inhomogeneity of the channel wall. The flow velocity depends on the concentration drop across the channel and the structure and composition of the channel walls, but it is independent of the overall channel length. Our work thus presents new insight into the fluid transport in long microchannels commonly found in nature and is useful for designing novel micro- or nano-fluidic pumps.

  9. Monolithic microchannel heatsink

    Science.gov (United States)

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  10. Active microchannel heat exchanger

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  11. Microfabrication of microchannels for fuel cell plates.

    Science.gov (United States)

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  12. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  13. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  14. Online microchannel preconcentrator for carbofuran detection.

    Science.gov (United States)

    Siritham, Charinrat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2013-01-01

    A simple and rapid online microchannel preconcentrator coupled with an amperometric detection for the analysis of carbofuran using polyethylene glycol coated onto magnetic particle (PEG-magnetic particles) sorbents was developed. This simple-to-prepare microchannel preconcentrator used an external magnet to retain the PEG-magnetic particle sorbents inside the microchannel. Under optimum conditions, the system provided two linear ranges, from 0.01 to 10.0 mg L(-1) and from 10.0 to 130.0 mg L(-1) with a limit of detection of 8.7 ± 0.1 μg L(-1). The microchannel preconcentrator provided very good stability; it can be used for up to 326 consecutive injections of 5.0 mg L(-1) carbofuran with a relative standard deviation of less than 3%. The developed system provided a good microchannel-to-microchannel and a good electrode-to-electrode reproducibility (n = 6, %RSD < 1). It also provided an excellent selectivity when it was tested with two other carbamate pesticides, carbaryl and methomyl, with a 43 and 256 times higher detection sensitivity for carbofuran, respectively. The developed system was successfully applied to detect carbofuran in surface water samples obtained near vegetable plantation areas. The concentrations of carbofuran in these samples were found to be in the range of non-detectable to 0.047 ± 0.001 mg L(-1). The developed system is easy to operate and easy to couple with other analytical instruments and it could be easily adapted for the analysis of other polar organic contaminants.

  15. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  16. Microchannel heat sink assembly

    Science.gov (United States)

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  17. Silicon-micromachined microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles P. E-mail: NanoSystem@aol.com; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R. E-mail: winn@fair1.fairfield.edu

    2000-03-11

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of {approx}0.5 to {approx}25 {mu}m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.

  18. Silicon-micromachined microchannel plates

    Science.gov (United States)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-03-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ˜0.5 to ˜25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200°C, also compatible with high-temperture brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.

  19. Droplets Fusion in a Microchannel on a Piezoelectric Substrate

    OpenAIRE

    Fu Xiang-ting; Zha Yan; Zhang An-liang

    2013-01-01

    Fusion droplets is a key operation in a microfluidic device for microfluidic analysis. A new fusion method for droplets was presented. An interditigal transducer and a reflector were fabricated on 1280-yx LiNbO3 piezoelectric substrate using microelectric technology. A poly-dimethyl silicone micro-channel was made by soft lithography technology and mounted on the piezoelectric substrate. Droplets in the microchannel were actuated by surface acoustic wave and fussed each other. Coloured dye so...

  20. Microchannel plate streak camera

    Science.gov (United States)

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  1. Compact microchannel system

    Science.gov (United States)

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  2. Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, C.M.; Kottenstette, R.J.; Casalnuovo, S.A.; Frye-Mason, G.C.; Hudson, M.L.; Sasaki, D.Y.; Manginell, R.P.; Wong, C.C.

    1998-11-01

    Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 {micro}m wide, 200 to 400 {micro}m deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm{sup 2} on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro- channel sidewalls, which domminate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  3. Fractal multifiber microchannel plates

    Science.gov (United States)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  4. Fabrication of the microchannel by metal-organic framework, copper benzenetricarboxylate.

    Science.gov (United States)

    Lim, Mikyung; Seo, You-Kyong; Park, Hyoun Hyang; Kim, Jin-Ha; Chang, Jong-San; Hwang, Young Kyu; Lee, Seung S

    2013-04-01

    We successfully fabricated the metal-organic framework (MOF), copper benzenetricarboxylate on a microchannel system, which was able to solve the problems created by increased heat dissipation in small electronic equipment. The microchannel system was designed to make an entrance part that can control the reaction temperature, which was predicted through a heat transfer analysis and the finite element method with COMSOL Multiphysics. Synthetic conditions, synthesis time, temperature and microchannel size were systematically tuned for the selective fabrication of copper benzenetricarboxylate on a microchannel surface. Scanning electron microscope (SEM) images, selected area electron diffraction (SAED) pattern and Fourier transform infrared (FT-IR) data clearly demonstrated that copper benzenetricarboxylate was strongly adhered to the bottom surfaces of the microchannels. Moreover, the synthesis of MOF in the microchannel system provided a much faster growth rate and better crystallinity compared to a conventional synthesis method.

  5. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2016-12-09

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately.

  6. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating

    Energy Technology Data Exchange (ETDEWEB)

    Rivolo, Paola [Politecnico di Torino, Department of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Nisticò, Roberto, E-mail: roberto.nistico@unito.it [University of Torino, Department of Chemistry and NIS Centre, Via P. Giuria 7, 10125 Torino (Italy); Barone, Fabrizio [University of Torino, Department of Chemistry and NIS Centre, Via P. Giuria 7, 10125 Torino (Italy); Faga, Maria Giulia; Duraccio, Donatella [CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino (Italy); Martorana, Selanna [Herniamesh S.r.l., Via F.lli Meliga 1/C, 10034 Chivasso (Italy); Ricciardi, Serena [Politecnico di Torino, Department of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Magnacca, Giuliana [University of Torino, Department of Chemistry and NIS Centre, Via P. Giuria 7, 10125 Torino (Italy)

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3 months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV–Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties. - Highlights: • Plasma polymerized surface functionalization of hernia-repair meshes was used to confer adhesive properties. • The stability of the adhesive coating was verified under different post-deposition conditions. • The use of AFM in F/D mode was selected to monitor the coating degradation.

  7. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  8. Theoretical Aspects of Microchannel Acoustofluidics

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We study the effects of the temperature dependence of viscosity and density on the acoustic radiation force and the boundary-driven acoustic streaming in microchannel acoustofluidics. The acoustic streaming slip velocity for the bulk flow is calculated numerically taking these thermoviscous effects......) is analyzed for microchannel acoustophoresis....

  9. Microplasma patterning of bonded microchannels using high-precision "injected" electrodes.

    Science.gov (United States)

    Priest, Craig; Gruner, Philipp J; Szili, Endre J; Al-Bataineh, Sameer A; Bradley, James W; Ralston, John; Steele, David A; Short, Robert D

    2011-02-07

    A rapid, high-precision method for localised plasma-treatment of bonded PDMS microchannels is demonstrated. Patterned electrodes were prepared by injection of molten gallium into preformed microchannel guides. The electrode guides were prepared without any additional fabrication steps compared to conventional microchannel fabrication. Alignment of the "injected" electrodes is precisely controlled by the photomask design, rather than positioning accuracy of alignment tools. Surface modification is detected using a fluorescent dye (Rhodamine B), revealing a well-defined micropattern with regions less than 100 µm along the length of the microchannel.

  10. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown.

    Science.gov (United States)

    Liu, Yi; Qu, Shiliang; Li, Yan

    2013-02-01

    Single microchannel high-temperature fiber sensors were fabricated by drilling a microchannel across the fiber core near the end of the common single-mode fiber using femtosecond laser-induced water breakdown. Then the microchannel was annealed by the arc discharge to smooth its inwall. The two sides of microchannel and the end surface of the fiber constitute three reflective mirrors, which form a three-wave Fabry-Pérot interferometer (FPI). The fabricated FPI can be used as a high-temperature sensor in harsh environments due to its large temperature range (up to 1000°C), high linearity, miniaturized size, and perfect mechanical property.

  11. Multiple-Dynode-Layer Microchannel Plate

    Science.gov (United States)

    Woodgate, Bruce E.

    1990-01-01

    Improved microchannel-plate electron image amplifier made of stack of discrete microchannel-plate layers. New plates easier to manufacture because no need to etch long, narrow holes, to draw and bundle thin glass tubes, or to shear plates to give microchannels curvatures necessary for reduction of undesired emission of ions. Discrete dynode layers stacked with slight offset from layer to layer to form microchannel plate with curved channels. Provides for relatively fast recharging of microchannel dynodes, with consequent enhancement of performance.

  12. From square to circular polymeric microchannels by spin coating technology: a low cost platform for endothelial cell culture.

    Science.gov (United States)

    Vecchione, Raffaele; Pitingolo, Gabriele; Guarnieri, Daniela; Falanga, Andrea P; Netti, Paolo A

    2016-05-06

    Square microchannels are easy to fabricate by means of micromachining or lithographic techniques. However, in vitro vascular microcapillaries--as well as plug production and microparticle alignment--require mainly circular microchannels that can be used also in applications based on open microchannels. Nowadays, a simple, low cost, and versatile method to fabricate circular microchannels is still missing. Here, we report on a fast, inexpensive, flexible and reproducible method to fabricate circular microchannels by coupling spin coating with micromilled square microchannels. The proposed method is based on the balance between the displacement of liquid PDMS induced by centrifugal forces and the surface tension that tends to keep the liquid accumulated especially in the corners, which become therefore rounded. To show the versatility of the described experimental study we prepared a variety of rounded microchannels, including branched and PMMA-PDMS hybrid configuration microchannels. Finally, an endothelial cell layer was formed by culturing brain endothelial bEnd.3 cells inside the proposed circular microchannels. Results demonstrated a more successful adhesion, growth, and homogeneous distribution of the cells along the circular microchannel than those observed in the square microchannel used as a control.

  13. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Perry, Steven T.; Arora, Ravi; Qiu, Dongming; Lamont, Michael Jay; Burwell, Deanna; Dritz, Terence Andrew; McDaniel, Jeffrey S.; Rogers, Jr.; William A.; Silva, Laura J.; Weidert, Daniel J.; Simmons, Wayne W.; Chadwell, G. Bradley

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  14. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  15. Droplets Fusion in a Microchannel on a Piezoelectric Substrate

    Directory of Open Access Journals (Sweden)

    Fu Xiang-ting

    2013-07-01

    Full Text Available Fusion droplets is a key operation in a microfluidic device for microfluidic analysis. A new fusion method for droplets was presented. An interditigal transducer and a reflector were fabricated on 1280-yx LiNbO3 piezoelectric substrate using microelectric technology. A poly-dimethyl silicone micro-channel was made by soft lithography technology and mounted on the piezoelectric substrate. Droplets in the microchannel were actuated by surface acoustic wave and fussed each other. Coloured dye solution droplets were used to fusion experiments. Results show that the two droplets in the microchannel can be fused by help of surface acoustic wave, and size of droplets, distance of droplets and RF signal power can affect successful fusion of the droplets. The fusion method is valuable for microlfuidic biological and chemical analysis in a microfluidic device.

  16. PDMS microchannel fabrication technique based on microwire-molding

    Institute of Scientific and Technical Information of China (English)

    JIA YueFei; JIANG JiaHuan; MA XiaoDong; LI Yuan; HUANG HeMing; CAI KunBao; CAI ShaoXi; WU YunPeng

    2008-01-01

    Micro-flow channel is basic functional component of microfluidic chip, and every step-forward of its construction technique has been receiving concern all over the world. This article presents a notcomplicated but flexible method for fabrication of micro-flow channels. This method mainly utilizes the conventional molding capability of polydimethylsiloxane (PDMS) and widespread commercial microwires as templates. We have fabricated out some conventional types of microchannels with different topological shapes, as examples for the demonstration of this flexible fabrication route which was not dependent on the stringent demands of photolithographical or microelectromechanical system (MEMS)techniques. The smooth surface, high-intensity, and high flexibility of the wires made it possible to create many types of topological structures of the two-dimensional or three-dimensional microchannel or channel array. The geometric shape of the cross-section of thus forming microchannel in PDMS was the negative of that of embedded-in microwire, in high-fidelity if suitable measures were taken. Moreover, such a microchannel fabrication process can easily integrate the conductivity and low resistivity of the metal wire to create micro-flow devices that are suitable for the electromagnetic control of liquid or the temperature regulation in the microchannel. Furthermore some preliminary optical analysis was provided for the observation of thus forming rounded microchannel. Based on this molding strategy,we even made some prototypes for functional microflow application, such as microsolenoids chip and temperature control gadgets. And an experiment of forming a droplet in the cross channel further confirmed the feasibility and applicability of this flexible microchannel forming technique.

  17. Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon

    Science.gov (United States)

    Múgica-Vidal, Rodolfo; Alba-Elías, Fernando; Sainz-García, Elisa; Pantoja-Ruiz, Mariola

    2015-08-01

    Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors' mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of hydrophobicity and wear resistance in this work was found in the sample that was coated using a mixture of APTES and PFH in proportions of 75 and 25%, respectively. Its WCA (100.2 ± 7.5°) was the highest of all samples that were measured and more than three times that of the uncoated glass (31 ± 0.7°). This sample underwent a change from a hydrophilic to a

  18. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Department of Surgery, Taichung Veterans General Hospital, Taiwan, ROC (China); National Yang-Ming University, Taipei, Taiwan, ROC (China); Yeh, Chou-Ming, E-mail: cmchou4301@gmail.com [Taichung Hospital, Department of Health, Executive Yuan, Taiwan, ROC (China); Chung, Chi-Jen [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, Taiwan, ROC (China)

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ω{sub p}) and para-xylene monomer flow rate (f{sub p}). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ω{sub p} or high f{sub p}, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ω{sub p} and f{sub p}. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  19. Humidity-independent conducting polyaniline films synthesized using advanced atmospheric pressure plasma polymerization with in-situ iodine doping

    Science.gov (United States)

    Park, Choon-Sang; Kim, Do Yeob; Kim, Dong Ha; Lee, Hyung-Kun; Shin, Bhum Jae; Tae, Heung-Sik

    2017-01-01

    This study reports on the synthesis and characterization of conducting polyaniline (PANI) thin films when using advanced atmospheric pressure plasma jets (APPJs). A simple method for synthesizing conducting polymers (CPs) with humidity-independent characteristics is introduced using advanced APPJs and an in-situ iodine doping method. In the case of ex-situ I2 doping, a humidity effect study showed that increasing the relative humidity produced significant changes in the electrical resistance (R) of the PANI, indicating strong humidity-dependent characteristics similar to conventional CPs. In contrast, in the case of in-situ I2 doping, the R and sensitivity of the PANI remained essentially unchanged when increasing the relative humidity, except for a very low sensitivity of 0.5% under 94% relative humidity. In addition, the R for the PANI with in-situ I2 doping showed no aging effect, while the R for the ex-situ-doped PANI increased dramatically over time. Thus, it is anticipated that the use of in-situ doping during plasma polymerization can be widely used to design stable and high-performance CPs with humidity-independent characteristics for a variety of applications.

  20. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Science.gov (United States)

    Chou, Chia-Man; Yeh, Chou-Ming; Chung, Chi-Jen; He, Ju-Liang

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ωp) and para-xylene monomer flow rate (fp). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ωp or high fp, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ωp and fp. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  1. Characterization of plasma-polymerized 4-vinyl pyridine with silver nanoparticies on poly(ethylene terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, J.; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2006-01-01

    4-vinyl pyridine was polymerized on poly(ethylene terephthalate) (PET) film by using lower energy pulsed AC plasma under low pressure in Ar atmosphere. The plasma polymerized coating was characterized by ATR Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), field emission...... scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Different thicknesses Of poly(4-vinyl pyridine) coating under different plasma polymerization conditions were studied. Silver nanoparticles with diameter around 50nm deposit were precipitated...... on the poly(4-vinyl pyridine) coating by UV irradiation in Silver nitride water solution, in order to enhance the anti-microbial properties. Different kinds of modified PET films were tested for anti-microbial properties against yeast (Debaryomyces hansenii) by using microbiological analyser mu-4200...

  2. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  3. Modification of Polyester and Polyamide Fabrics by Different in Situ Plasma Polymerization Methods

    OpenAIRE

    ÖKTEM, T.; SEVENTEKİN, N.

    2000-01-01

    In order to increase the hydrophilicities, and therefore to impart soil resistance and to improve dyeability, poly(ethylene terephthalate) (PET) and polyamide (PAm) fabrics were treated in low-temperature plasmas. Five different modification types were applied. Fabrics were directly treated in acrylic acid, water, air, O2 and argon plasma. The plasma conditions (i.e., exposure time and discharge power) were changed to control the extent of plasma surface modification. Wettability, soil resist...

  4. Thermal bonding of polyimide to form sealed microchannels

    Science.gov (United States)

    Mekaru, Harutaka

    2017-06-01

    Polyimide has high stability, so it is attractive for use in disposable microfluidic chips. Also, it has high resistance to soft X-ray irradiation. However, its high stability makes processing polyimide difficult. In particular, sealed microchannels are difficult to fabricate; additives are usually required. Here, a technique for sealing microchannels by thermal bonding using ordinary polyimide without any special functionalities is developed. First, as a guide to form sealed microchannels in polyimide microfluidic chips, optimum bonding conditions are determined by measuring bonding strength through tensile testing. Trench structures are formed by laser ablation on the surface of a polyimide substrate, and then the polyimide substrate is bonded thermally with a polyimide film under optimal bonding conditions. The water-tightness of the resulting chip is checked by feeding a liquid into the sealed microchannels. The bonding conditions obtained in the tensile test form sealed microchannels on the polyimide microfluidic chip. Using our technique for fabricating a polyimide chip, it will be possible to easily observe microstructures in a cell containing water in a soft X-ray microscope.

  5. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.

    Science.gov (United States)

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa.

  6. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.

    Science.gov (United States)

    Lade, Robert K; Hippchen, Erik J; Macosko, Christopher W; Francis, Lorraine F

    2017-03-28

    Microchannels have applications in microfluidic devices, patterns for micromolding, and even flexible electronic devices. Three-dimensional (3D) printing presents a promising alternative manufacturing route for these microchannels due to the technology's relative speed and the design freedom it affords its users. However, the roughness of 3D printed surfaces can significantly influence flow dynamics inside of a microchannel. In this work, open microchannels are fabricated using four different 3D printing techniques: fused deposition modeling (FDM), stereolithography (SLA), selective laser sintering, and multi jet modeling. Microchannels printed with each technology are evaluated with respect to their surface roughness, morphology, and how conducive they are to spontaneous capillary filling. Based on this initial assessment, microchannels printed with FDM and SLA are chosen as models to study spontaneous, capillary-driven flow dynamics in 3D printed microchannels. Flow dynamics are investigated over short (∼10(-3) s), intermediate (∼1 s), and long (∼10(2) s) time scales. Surface roughness causes a start-stop motion down the channel due to contact line pinning, while the cross-sectional shape imparted onto the channels during the printing process is shown to reduce the expected filling velocity. A significant delay in the onset of Lucas-Washburn dynamics (a long-time equilibrium state where meniscus position advances proportionally to the square root of time) is also observed. Flow dynamics are assessed as a function of printing technology, print orientation, channel dimensions, and liquid properties. This study provides the first in-depth investigation of the effect of 3D printing on microchannel flow dynamics as well as a set of rules on how to account for these effects in practice. The extension of these effects to closed microchannels and microchannels fabricated with other 3D printing technologies is also discussed.

  7. Fanno Flow in Microchannels

    Directory of Open Access Journals (Sweden)

    M.A. Al-Nimr

    2012-12-01

    Full Text Available In this study, the Fanno flow problem has been theoretically investigated using both, first order and second order velocity-slip boundary conditions models and then compared to the no-slip boundary conditions solution. The objective is to study the behavior of the flow predicted by the two slip models. Then, an attempt will be made to establish criteria for using the no-slip and the two velocity-slip models. The Fanno flow is an ideal gas adiabatic flow in constant area duct with friction. It is found that the velocity profile for the two velocity-slip models has the same shape as the no-slip model velocity profile but with an amount of slip at the wall which increases as the Knudsen number, Kn, increases. Also the effect of the slip has on the compressible flow characteristics have been examined. It shows that as the Kn increases, the skin friction coefficient Cf and the Darcy friction coefficient f decrease. Overall, it is concluded that for an adiabatic compressible flow in circular microchannel, for Kn≤0.01 there is no need to apply any velocity-slip model as the no-slip model gives sufficiently accurate predictions. As for the range 0.01≤Kn≤0.1, the first order velocity slip model should be applied and so for this range, there is no necessity to use the second order velocity-slip model.

  8. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel.

    Science.gov (United States)

    Foley, Jennifer O; Mashadi-Hossein, Afshin; Fu, Elain; Finlayson, Bruce A; Yager, Paul

    2008-04-01

    A microfluidic device known to mix bulk solutions, the herringbone microchannel, was incorporated into a surface-binding assay to determine if the recirculation of solution altered the binding of a model protein (streptavidin) to the surface. Streptavidin solutions were pumped over surfaces functionalized with its ligand, biotin, and the binding of streptavidin to those surfaces was monitored using surface plasmon resonance imaging. Surface binding was compared between a straight microchannel and herringbone microchannels in which the chevrons were oriented with and against the flow direction. A 3-dimensional finite-element model of the surface binding reaction was developed for each of the geometries and showed strong qualitative agreement with the experimental results. Experimental and model results indicated that the forward and reverse herringbone microchannels substantially altered the distribution of protein binding (2-dimensional binding profile) as a function of time when compared to a straight microchannel. Over short distances (less than 1.5 mm) down the length of the microchannel, the model predicted no additional protein binding in the herringbone microchannel compared to the straight microchannel, consistent with previous findings in the literature.

  9. Evaporation from open microchannel grooves.

    Science.gov (United States)

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  10. Design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection.

    Science.gov (United States)

    Gao, Keliang; Li, Lei; He, Lingna; Hinkle, Kevin; Wu, Yun; Ma, Junyu; Chang, Lingqian; Zhao, Xi; Perez, Daniel Gallego; Eckardt, Sigrid; McLaughlin, John; Liu, Boyu; Farson, Dave F; Lee, L James

    2014-03-12

    A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.

  11. Microchannel-patterned and heparin micro-contact-printed biodegradable composite membranes for tissue-engineering applications.

    Science.gov (United States)

    Baran, Erkan T; Tuzlakoğlu, Kadriye; Salgado, António; Reis, Rui L

    2011-06-01

    Microchannel-patterned starch-poly(capro-lactone)/hydydroxyapatite (SPCL-HA) and starch-poly(lactic acid) (SPLA) composite membranes were produced for use as a laminated tissue-engineering scaffold that incorporates both physical and biochemical patterns. For this purpose, SPCL (30% starch) blended with inorganic hydroxyl apatite (50%) and SPLA (50% starch) membranes were made with compressive moulding. Consequently, the microchannel structures (width 102 µm, 174 µm intervals) were developed on the composite membranes by means of micro-patterned metal mould(s) and hydraulic pressing. An elastomer poly(dimetylsiloxane) stamp was used to transfer heparin as a biochemical cue over the microchannel surfaces by micro-contact printing (µCP). Toluidine blue staining of developed capillaries and heparin µCP-coated membranes showed that heparin was transferred predominantly over the microchannel surfaces. Fibroblast cell culture over the microchannel-formed and heparin µCP-modified SPCL-HA and SPLA membranes showed distinct growth patterns. In contrast to the uniform cell layer formed on unmodified microchannels, the cells were bridging across the grooves of heparin-printed microchannels. At extended culture periods, the heparin-printed microchannels were covered with a layer of fibroblast cells without cellular ingrowths inside. This study indicated that the topographical pattern could induce an organization of fibroblasts only with the biochemical cue and the cells' functions can be controlled spatially over the microchannels by using both cues.

  12. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  13. X-ray focusing using microchannel plates

    Science.gov (United States)

    Kaaret, P.; Geissbuehler, P.; Chen, A.; Glavinas, E.

    1992-01-01

    We present measurements of the X-ray focusing properties of square-pore microchannel plates (MCP's). Square-pore MCP's contain large numbers of closely packed optical surfaces, as required for grazing incidence X-ray optics. The surface of individual MCP channels has been measured and found to have high microroughness transverse to the channel axis and low microroughness parallel to the axis. The high frequency transverse roughness, on length scales greater than 400 nm, has a rms value of 5.9 nm and a Gaussian autocorrelation function with correlation length of 1.41 micron. We find that the geometric misalignments of the surfaces of different channels limit the angular resolution obtainable with current samples of MCP's to 7.1 arcmin.

  14. Surface modification of Poly(tetrafluorethylene) magnetic stirring bars with plasma of hexamethyldisiloxane and its applications in the stir bar sorptive extraction technique

    OpenAIRE

    R. Baeza-Marrufo; P. Acereto-Escoffié; C. Carrera-Figueiras; D. Muñoz-Rodriguez; A. Ávila-Ortega; J. A. López-Barrera; J. Morales-Corona; Olayo-González, R.

    2012-01-01

    This paper explores the potential of plasma polymerization to modify the surface of stir bars for its use in Stir Bar Sorptive Extraction (SBSE). The modification of the poly(tetrafluoroethylene) surface of stir bars was done through plasma polymerization of hexamethyldisiloxane (30 min, 110 W and 1.4×10-1 Torr). The coating was characterized by contact angle, Fourier transform infrared spectroscopy, energy dispersive x-ray analysis and scanning electron microscopy. The modified stir bars wer...

  15. MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.

    2006-01-01

    With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be

  16. Giant streaming currents measured in a gold sputtered glass microchannel array

    Science.gov (United States)

    Mansouri, Abraham; Kostiuk, Larry W.

    2016-02-01

    Pressure-driven-flow of a dilute aqueous solution in a microchannel with charged walls generates streaming currents (ionic current) and streaming potentials across the microchannel. While generation of streaming currents can be performed in network of parallel circular microchannels or unstructured porous media, accurate measurements of such currents remain a challenge. In this study a gigantic amount of streaming current was successfully generated and measured using a glass microchannel array with special gold sputtered coatings on both its ends. Streaming current as high as 0.7 mA was obtained with moderate pressure drop (124 kPa) across the glass microchannel array that consists of approximately 11 250 000 parallel microchannels with radii of 2.5 μm. Higher streaming currents are also possible to generate (scaled to 142 μA/cm2 of frontal area at a flow rate of 12 cm3/s) with potential applications in surface charge characterizations and electrokinetic power generation. In addition, apparent ζ potential of glass microchannel array surface was estimated with the aid of streaming current data and Levine-Olivare theories and an apparent ζ potential of -65 mV (0 M KCl, κa = 8) is reported.

  17. Flow Behavior in Nanostructured Microchannels with Changing Surface Wettability%亲/疏水纳米结构表面微通道内流体的流动行为

    Institute of Scientific and Technical Information of China (English)

    孟涛; 李伟; 黄宇石; 王枢; 童志平; 郭婷

    2011-01-01

    在毛细管微通道内壁沉积二氧化硅微球并加以亲/疏水改性,以此来构建亲/疏水纳米结构表面微通道,考察了一定粘度的羧甲基纤维素钠水溶液在光滑亲/疏水微通道和粗糙亲/疏水微通道中的流动行为.结果表明,保持压力恒定,光滑毛细管(基材)中的液体流量随着粘度和管长的增加而减小;粘度一定,压力增加,无论壁面光滑或粗糙,疏水管中的流量均大于亲水管,且粗糙管中疏水/亲水流量斜率比大于光滑管;在低压时亲水管流量大于疏水管,而高压时恰好相反.采用滑移理论和牛顿运动定律对上述现象进行了解释,本研究以期为合理地操控微通道内的流体流动提供有价值的指导.%Deposition in the capillary wall to silica microspheres with changing surface wettability, in order to build hydrophilic/hydrophobic and nanostructured micro-channels, the preparation of certain viscosity carboxymethy cellulose sodium aqueous solution, its flow behavior in the substrate capillary and the capillary modification were examined. The results show that keeping the pressure constant, the flux of substrate capillary liquid decreases with increasing viscosity, with the tube length increasing. The viscosity is 14cP, as the pressure increasing, the flux of hy-drophobic channel is faster than hydrophilic channel, and the rough channel of hydrophobic/hydrophilic flow slope ratio is greater than the smooth. It was also found that liquid in hydrophilic channel flows faster than hydrophobic channel in the low-pressure and high pressure was just the opposite, and the slip theory and Newton's laws of motion were employed to explain the phenomena. The results provide novel and valuable guidance for rationally manipulating fluid in microchannels.

  18. Plugging of microchannels by spherical particles

    Science.gov (United States)

    Climent, Eric; Agbangla, Constant; Bacchin, Patrice

    2010-11-01

    We investigate by means of numerical simulations the dynamic formation of 3D structures of microparticle aggregates blocking the flow through microchannels. Both the geometries of a straight channel and a sudden reduction of section are analyzed. We use the Force Coupling Method (Climent & Maxey, 2010) to handle simultaneously multi-body hydrodynamic interactions of a confined flowing suspension together with particle/particle and particle/wall surface interactions leading to the adhesion and aggregation of particles. The basic idea of the Force Coupling Method relies on multipole expansion of velocity perturbations induced by the presence of particles in the flow. Simulation results show that varying the magnitude of DLVO interparticle and particle/wall interactions leads to distinct scenarios of pores clogging. We investigate the kinetics of the microchannel occlusion (corresponding to a temporal decrease of the bulk permeability of the channel). We identify the nature of the fouling mechanism: deposition, interception, bridging (see the papers of Sharp & Adrian (2005), Ramachandran & Fogler (1999) and Marshal, 2007).

  19. Preparation of gradient polyacrylate brushes in microchannels.

    Science.gov (United States)

    Lee, Seongyeol; Youm, Sang Gil; Song, Yeari; Yi, Whikum; Sohn, Daewon

    2012-05-01

    Gradient poly(2-hydroxyethyl methacrylate) brushes were synthesized by surface-initiated atom transfer radical polymerization (ATRP) confined within a microfluidic system on a silicon wafer. For ATRP, surface initiator, 11-((2-bromo, 2-methyl) propionyloxy) undecyltrichlorosilane (BUC), was synthesized, and allowed to self-assemble in a monolayer on the Si wafer, as analyzed by XPS to confirm the presence of an ester group of BUC. A solution containing 2-hydroxyethylmethacrylate, Cu catalyst, and bipyridin was allowed to flow in a microchannel and polymerize, resulting in the brushes with a gradient of thickness on the Si wafer. Using ellipsometry and ATR-IR, we verified the gradients of well established brushes on the Si wafer. AFM and contact angle data showed that wettability of the brushes did not exhibit a linear relationship with hydrophilicity.

  20. Chromatographic behaviour of single cells in a microchannel with dynamic geometry.

    Science.gov (United States)

    Gerhardt, Thomas; Woo, Sangpil; Ma, Hongshen

    2011-08-21

    We present the design of a microchannel with dynamic geometry that imparts different flow rates to different cells based on their physical properties. This dynamic microchannel is formed between a textured surface and a flexible membrane. As cells flow through the microchannel, the height of the channel oscillates causing periodic entrapment of the larger cells, and as a result, attenuating their velocity relative to the bulk liquid. The smaller cells are not slowed by the moving microstructure, and move synchronously with the bulk liquid. The ability of the dynamic microchannel to selectively attenuate the flow rate of eukaryotic cells is similar to a size-exclusion chromatography column, but with the opposite behavior. The speed of smaller substances is attenuated relative to the larger substances in traditional size-exclusion chromatography columns, whereas the speed of the larger substances that is attenuated in the dynamic microchannel. We verified this property by tracking the flow of single cells through the dynamic microchannel. L1210 mouse lymphoma cells (MLCs), peripheral blood mononuclear cells (PBMCs), and red blood cells (RBCs) were used as model cells. We showed that the flow rate of MLC is slowed by more than 50% compared to PBMCs and RBCs. We characterized the operation of the microchannel by measuring the velocity of each of the three cell types as a function of the pressures used to oscillate the membrane position, as well as the duty cycle of the oscillation.

  1. Microchannel apparatus comprising plural microchannels and methods of conducting unit operations

    Science.gov (United States)

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2009-03-10

    Microchannel apparatus comprising a header and plural flow microchannels is described in which orifices connect the header and the flow microchannels. The orifices constrict flow. The ratio of the cross-sectional area of each of the orifices to the cross-sectional area of the flow microchannels connected to the orifices is between 0.0005 and 0.1. Also described is microchannel apparatus for conducting unit operations in which a device comprises two arrays of microchannels, and a unit operation is conducted on a fluid as it passes through the first set of microchannels and into a header where a second unit operation is performed, and then the fluid stream passes into the second array of microchannels where the first unit operation is again performed. Methods of conducting unit operations in the apparatuses are also described.

  2. Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation.

    Science.gov (United States)

    Krasnov, A A; Starkov, V V; Legotin, S A; Rabinovich, O I; Didenko, S I; Murashev, V N; Cheverikin, V V; Yakimov, E B; Fedulova, N A; Rogozev, B I; Laryushkin, A S

    2017-03-01

    In the paper a manufacturing process of three-dimensional (3D) microchannel structure by silicon (Si) anodic etching was discussed. The possibility of microchannels formation allows to increase the active area more than 100 times. In this structure the p-n junction on the whole Si surface was formed. The obtained data allowed to evaluate the characteristics of the betavoltaic converter with a 3D structure by using isotope 63Ni with a specific activity of 10Ci/g.

  3. Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model

    Science.gov (United States)

    Prakash, Shashi; Kumar, Nitish; Kumar, Subrata

    2016-09-01

    CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.

  4. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  5. Cooling Augmentation with Microchanneled Structures

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the heat transfer characteristics and cooling performance of subcooled liquid,water,flowing through rectangular cross-section microchanneled structures machined on a stainless steel plate.Heat transfer or flow mode stransition was observed when the heating rate or wall temperature was increased.This transition was found to be suggestively induced by the variation in liquid thermophysical properties due to the significant rise of liquid temperature in the microstructures.The influence of such parameters as liquid velocity,subcooling,property variation,and microchannel geometric configuration on the heat transfer behavior,cooling performance and the heat transfer and liquid flow mode transition were also investigated.The experiments indicated that both single-phase forced convection and flow boiling characteristics were quite different from those in normal-sized tubes and the heat transfer was obviously intensified.

  6. Microchannel systems for fine organic synthesis

    Science.gov (United States)

    Makarshin, L. L.; Pai, Z. P.; Parmon, V. N.

    2016-02-01

    Characteristic features of application of microchannel systems in organic synthesis are analyzed. The advantages of such systems over conventional chemical engineering equipment, especially for small-scale processes that require fast implementation in industry to obtain small quantities of the product, are shown. Particular examples of successful use of microchannel reactors for various types of organic synthesis are given, primary attention being devoted to the design features of microchannel reactors. The bibliography includes 118 references.

  7. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  8. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2 Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Salih Gulsen

    2014-06-01

    Full Text Available Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2 could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and uncoated screws in different groups. And 15 skeletally mature white New Zealand female rabbits were assigned into three different groups: Group 1(N = 5: No osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 1; group 2 (N = 5: Osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 2; group 3 (N = 5 rhBMP-2 coated Titanium screw inserted into right sacrum of each rabbit in group 3. In summary, using of these coated screws provides new bone formation, but causes less fibrosis and less inflammation than uncoated screws at the interface between the coated screw and bone. Then the plasma polymerization technique provides controlled releasing of rhBMP-2 from the screw to the bone tissue in osteoporotic rabbits.

  9. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  10. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    V S Duryodhan; S G Singh; Amit Agrawal

    2013-12-01

    An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in nonuniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 m hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.

  11. Hybrid slab-microchannel gel electrophoresis system

    Science.gov (United States)

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  12. Enhanced dibenzothiophene biodesulfurization in a microchannel reactor.

    Science.gov (United States)

    Noda, Ken-Ichi; Kogure, Tomonari; Irisa, Shiro; Murakami, Yuji; Sakata, Minoru; Kuroda, Akio

    2008-03-01

    A microchannel reactor system was used in a biodesulfurization process in which the rate of biodesulfurization in the oil/water phase of the microchannel reaction was more than nine-fold that in a batch (control) reaction. In addition, the microchannel reaction system using a bacterial cell suspension degraded alkylated dibenzothiophene that was not degraded by the batch reaction system. This work provides a foundation for the application of a microchannel reactor system consisting of biological catalysts using an oil/water phase reaction.

  13. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  14. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  15. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.

    Science.gov (United States)

    Shao, Chenren; Devoe, Don L

    2013-01-01

    Electroosmotic flow (EOF) is an electrokinetic flow control technique widely used in microfluidic systems for applications including direct electrokinetic pumping, hydrodynamic pressure generation, and counterflow for microfluidic separations. During EOF, an electric field is applied along the length of a microchannel containing an electrolyte, with mobile ions near the charged microchannel walls experiencing a Coulomb force due to electrostatic interactions with the applied electric field that leads to bulk solution movement. The goal of this laboratory is to experimentally determine the fixed channel surface charge (zeta potential) and electroosmotic mobility associated with a given microchannel substrate material and buffer solution, using a simple current monitoring method to measure the average flow velocity within the microchannel. It is a straightforward experiment designed to help students understand EOF physics while gaining hands-on experience with basic world-to-chip interfacing. It is well suited to a 90-min laboratory session for up to 12 students with minimal infrastructure requirements.

  16. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

    DEFF Research Database (Denmark)

    Mesbah, Kiarach; Mai, T.D.; Jensen, Thomas Glasdam

    2016-01-01

    We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N, N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3......-(DMA-PMAMAPS) copolymer were evaluated in terms of surface hydrophilicity, suppression and stability of electro-osmotic flow and prevention of protein adsorption. Surface modification of thiol-ene containing a 20 % excess of thiols with the terpolymer p-(DMA-PMA-MAPS) was found to offer the most stable coating and most...

  17. Bubble nucleation in superhydrophobic microchannels due to subcritical heating

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2016-11-01

    We report on experiments that investigate the effects of heating on laminar flow in superhydrophobic (SH) microchannels. The parallel plate microchannels (180 μm spacing) consist of two surfaces: a rib/cavity structured SH surface and a smooth glass surface. The back of the SH surface is in contact with an aluminum strip that is heated and a camera is used to image through the glass surface to visualize the flow. Thermocouples embedded in the aluminum obtain the temperature profile along the length of the channel. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Both degassed and air-saturated water are used. When air-saturated water is used, the cavities of the SH surfaces act as nucleation sites and air is desorbed out of the water. Depending on the surface type/configuration, large bubbles can form and result in a large increase in fRe and channel surface temperatures. When degassed water is used no bubble nucleation is observed, however, the air trapped in the cavities of the SH surfaces is quickly absorbed and the surfaces transition to a wetted state. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881).

  18. Interplay between Nanochannel and Microchannel Resistances.

    Science.gov (United States)

    Green, Yoav; Eshel, Ran; Park, Sinwook; Yossifon, Gilad

    2016-04-13

    Current nanochannel system paradigm commonly neglects the role of the interfacing microchannels and assumes that the ohmic electrical response of a microchannel-nanochannel system is solely determined by the geometric properties of the nanochannel. In this work, we demonstrate that the overall response is determined by the interplay between the nanochannel resistance and various microchannel attributed resistances. Our experiments confirm a recent theoretical prediction that in contrast to what was previously assumed at very low concentrations the role of the interfacing microchannels on the overall resistance becomes increasingly important. We argue that the current nanochannel-dominated conductance paradigm can be replaced with a more correct and intuitive microchannel-nanochannel-resistance-model-based paradigm.

  19. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  20. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  1. Distributive Distillation Enabled by Microchannel Process Technology

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  2. Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels

    Science.gov (United States)

    Fang, Chen; Steinbrenner, Julie E.; Wang, Fu-Min; Goodson, Kenneth E.

    2010-04-01

    While microchannel condensation has been the subject of several recent studies, the critical impact of wall hydrophobicity on the microchannel condensation flow has received very little attention. The paper experimentally studies steam condensation in a silicon microchannel 286 µm in hydraulic diameter with three different wall hydrophobicities. It is found that the channel surface wettability has a significant impact on the flow pattern, pressure drop and heat transfer characteristic. Spatial flow pattern transition is observed in both hydrophobic and hydrophilic channels. In the hydrophobic channel, the transition from dropwise/slugwise flow to plug flow is induced by the slug instability. In the hydrophilic channel, the flow transition is characterized by the periodic bubble detachment, a process in which pressure evolution is found important. Local temperature measurement is conducted and heat flux distribution in the microchannel is reconstructed. For the same inlet vapor flux and temperature, the hydrophobic microchannel yields higher heat transfer rate and pressure drop compared to the hydrophilic channel. The difference is attributed to the distinction in flow pattern and heat transfer mechanism dictated by the channel hydrophobicity. This study highlights the importance of the channel hydrophobicity control for the optimization of the microchannel condenser.

  3. Micromachining of microchannel on the polycarbonate substrate with CO 2 laser direct-writing ablation

    Science.gov (United States)

    Qi, Heng; Chen, Tao; Yao, Liying; Zuo, Tiechuan

    2009-05-01

    Low-power CO 2 laser direct-writing ablation was used to micromachine a microchannel on the polycarbonate substrate in this work. The influence of the process parameters (the laser power, the moving velocity of the laser beam and the scanning times) on the micromachining quality (the depth, the width and their aspect ratio) of the microchannel was experimentally studied. The depth and width of microchannel both increase with the increase of the laser power and the decrease of the moving velocity of the laser beam. When higher laser power and slower moving velocity were used, the polycarbonate surface bore more heat irradiated from the CO 2 laser for longer time which results in the formation of deeper and wider molten pool, hence the ability to fabricate bigger microchannel. Because of the effect of the laser power on the depth and width of microchannels, higher aspect (depth/width) ratio could be achieved using slower moving velocity and higher laser power, and it would reach a steady state when the laser power increases to 9.0 W possibly caused by the effect of laser power on the different directions of microchannel. The polycarbonate-polycarbonate chip was bonded with hot-press bonding technique.

  4. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Science.gov (United States)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-11-01

    This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  5. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    Science.gov (United States)

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  6. On the eruptive boiling in silicon-based microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.C.; Pan, Chin [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043 (China)

    2008-09-15

    This study investigates experimentally eruptive boiling in a silicon-based rectangular microchannel with a hydraulic diameter of 33.7 {mu}m, a width of 99.8 {mu}m and a depth-to-width ratio of 0.203. The microchannel is made of SOI wafer and prepared using bulk micro-machining and anodic bonding. The surface roughness for both the bottom and the side walls was measured using an atomic force microscope. The evolution of the eruptive boiling of water in the smooth microchannel was clearly observed using an ultra high-speed video camera (up to 50,000 frames/s) at mass fluxes of 417 and 625 kg/m{sup 2} s and a heat flux from 14.9 to 372 kW/m{sup 2}. It is confirmed that eruptive boiling is a form of rapid bubble nucleation after which the bubble merges with a slug bubble downstream in a short distance or evolve to a slug bubble. The bubble frequency in all of the cases studied is provided. Eruptive boiling may be predicted classically with nano-sized cavities that are consistent with the measured surface roughness. (author)

  7. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  8. Effect of PEO coating on bubble behavior within a polycarbonate microchannel array: A model for hemodialysis.

    Science.gov (United States)

    Coblyn, Matthew; Truszkowska, Agnieszka; Mohammadi, Mahshid; Heintz, Keely; McGuire, Joseph; Sharp, Kendra; Jovanovic, Goran

    2016-07-01

    Obstruction of fluid flow by stationary bubbles in a microchannel hemodialyzer decreases filtration performance and increases damage to blood cells through flow maldistribution. A polyethylene oxide (PEO)-polybutadiene (PB)-polyethylene oxide surface modification, previously shown to reduce protein fouling and water/air contact angle in polycarbonate microchannel hemodialyzers, can improve microchannel wettability and may reduce bubble stagnation by lessening the resistive forces that compete with fluid flow. In this study, the effect of the PEO-PB-PEO coating on bubble retention in a microchannel array was investigated. Polycarbonate microchannel surfaces were coated with PEO-PB-PEO triblock polymer via radiolytic grafting. Channel obstruction was measured for coated and uncoated microchannels after injecting a short stream of air bubbles into the device under average nominal water velocities of 0.9 to 7.2 cm/s in the channels. The presence of the PEO coating reduced obstruction of microchannels by stationary bubbles within the range of 1.8 to 3.6 cm/s, average nominal velocity. Numerical simulations based on the lattice Boltzmann method indicate that beneficial effects may be due to the maintenance of a lubricating, thin liquid film around the bubble. The determined effective range of the PEO coating for bubble management serves as an important design constraint. These findings serve to validate the multiutility of the PEO-PB-PEO coating (bubble lubrication, biocompatibility, and therapeutic loading). © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 941-948, 2016.

  9. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Thalla

    2013-01-01

    Full Text Available Polyethylene glycol (PEG grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS, and quartz crystal microbalance with dissipation monitoring (QCM-D. Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate (PET. Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns.

  10. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  11. Active Mixing in a Microchannel

    Science.gov (United States)

    Guo, Chun-Hai; Tan, Jun-Jie; Ren, Deng-Feng; Zhang, Yu-Cheng; Wang, Fu-Hua

    2010-11-01

    We investigate a minute magneto hydro-dynamic mixer with relatively rapid mixing enhancement experimentally and analytically. The mixer is fabricated with brass and polymethyl methacrylate (PMMA) layers. A secondary flow is generated by using the Lorentz force in the fluids. The efficiency of mixing is greatly improved due to the large increase of the contact area between two mixing fluids. The micro particle image velocimetry technique is employed to measure the fluid flow characteristics in the micro-channel. Numerical simulation is performed based on the theoretical model of the computational fluid dynamics and the electromagnetic field theory. The experimental results are in good agreement with the numerical results, which indicates that the mixing area is enlarged by the driving of Lorentz force and the mixing can be enhanced.

  12. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    Science.gov (United States)

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  13. Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2009-12-15

    Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethy1-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of two-phase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

  14. Microchannel Plate Imaging Detectors for the Ultraviolet

    Science.gov (United States)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  15. Characterization of Plasma-Polymerized 4-vinyl pyridine on Poly(Ethylene Terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, Juan; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2005-01-01

    a linear relation between the polymerisation time and the thickness of the surface layer. To further strengthen the antibacterial function the poly-4-vinyl-pyridine surface layer can act as the base for including nano particles of silver precipitated from a salt solution due to ultraviolet radiation....... The mechanical strength of the bond between the substrate and the surface layer has been tested by several methods, and the antibacterial effect of the surface layer with and without silver nano particles has been estimated by measuring electrical resistance as a function of time. The bacteria investigated were......As an efficient way to create an anti-bacterial function on polymer surfaces, we have used plasma polymerisation to create a poly-4-vinyl-pyridine coating on the surface of a common polymer, PET, a polymerisation process that we have shown also works well on several other polymers. We have found...

  16. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  17. A review of entropy generation in microchannels

    Directory of Open Access Journals (Sweden)

    Mohamed M Awad

    2015-12-01

    Full Text Available In this study, a critical review of thermodynamic optimum of microchannels based on entropy generation analysis is presented. Using entropy generation analysis as evaluation parameter of microchannels has been reported by many studies in the literature. In these studies, different working fluids such as nanofluids, air, water, engine oil, aniline, ethylene glycol, and non-Newtonian fluids have been used. For the case of nanofluids, “nanoparticles” has been used in various kinds such as Al2O3 and Cu, and “base fluid” has been used in various kinds such as water and ethylene glycol. Furthermore, studies on thermodynamic optimum of microchannels based on entropy generation analysis are summarized in a table. At the end, recommendations of future work for thermodynamic optimum of microchannels based on entropy generation analysis are given. As a result, this article can not only be used as the starting point for the researcher interested in entropy generation in microchannels, but it also includes recommendations for future studies on entropy generation in microchannels.

  18. Evaluation of an Infiltration Model with Microchannels

    Science.gov (United States)

    Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.

    2015-12-01

    This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were

  19. A Prospective Clinical and Radiographic Assessment of Platform-Switched Laser-Microchannel Implants Placed in Limited Interimplant Spaces.

    Science.gov (United States)

    Nevins, Myron; Leziy, Sonia; Kerr, Eric; Janke, Ulrich; Rasperini, Giulio; Hanratty, James; Pasquinelli, Kirk; Testori, Tiziano; Shapoff, Cary A; Kim, David M

    This multicenter clinical trial of platform-switched laser-microchannel implants supports findings from a previous preclinical trial. Previous information indicated that an interimplant distance narrower than 3 mm would result in decrease in the crestal bone level, but the results of this investigation suggest that a more optimistic clinical result can be anticipated for implants and abutments with a laser-microchannel surface.

  20. Surface Modification of Elastomeric Stamps for Microcontact Printing of Polar Inks

    NARCIS (Netherlands)

    Sadhu, Veera Bhadraiah; Perl, András; Peter, Mária; Rozkiewicz, Dorota I.; Engbers, Gerard; Ravoo, Bart Jan; Reinhoudt, David N.; Huskens, Jurriaan

    2007-01-01

    Chemical modification of the surface of a stamp used for microcontact printing (uCP) is interesting for controling the surface properties, such as the hydrophilicity. To print polar inks, plasma polymerization of allylamine (PPAA) was employed to render the surface of poly(dimethylsiloxane) (PDMS),

  1. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  2. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  3. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  4. Characterization of Plasma-Polymerized 4-vinyl pyridine on Poly(Ethylene Terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, Juan; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2005-01-01

    . The mechanical strength of the bond between the substrate and the surface layer has been tested by several methods, and the antibacterial effect of the surface layer with and without silver nano particles has been estimated by measuring electrical resistance as a function of time. The bacteria investigated were...... the bacteria E. coli as well as some other micro organisms relevant for one of the intended uses, food packaging....

  5. Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet

    Science.gov (United States)

    Lin, Yu-Chun; Wang, Meng-Jiy

    2016-01-01

    Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

  6. Vacuum-assisted fluid flow in microchannels to pattern substrates and cells.

    Science.gov (United States)

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Cho, Cheul H; Townes-Anderson, Ellen

    2014-09-01

    Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon et al 1999 Adv. Mater 11 946) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm(2). Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.

  7. Analysis of Interrupted Rectangular Microchannel Heat Sink with High Aspect Ratio

    Directory of Open Access Journals (Sweden)

    Harshin Kamal

    2017-01-01

    Full Text Available A computational modelling of microchannel heat sinks with high aspect ratio has been performed to compare the geometrical features in the plane parallel to the heating surface and to determine the optimum configuration for the best heat transfer characteristics. A periodic thermal development of flow can cause significant heat transfer enhancement. A consensus on a particular geometrical configuration that provides the best heat transfer characteristics has not been reached in the literature, although many novel ideas have been proposed recently. Firstly the validity and applicability of microchannel sink modelling is presented followed by an optimization of parameters of interrupted microchannel heat sink. Consequences of the multichannel effect due to the introduction of transverse microchamber are also presented. It has been shown that the average Nusselt number of the microchannel heat sink increases by the introduction of a transverse microchamber with the additional advantage of a lower pressure drop. There exists an optimum width for the transverse microchamber for which the interrupted microchannel heat sink shows optimum characteristics.

  8. Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells

    Science.gov (United States)

    Shrirao, Anil B.; Kung, Frank H.; Yip, Derek; Cho, Cheul H.; Townes-Anderson, Ellen

    2014-01-01

    Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology. PMID:24989641

  9. Numerical simulation of two-component flow fluid - fluid in the microchannel T- type

    Directory of Open Access Journals (Sweden)

    Shebeleva A.A.

    2015-01-01

    Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.

  10. Tuning bubbly structures in microchannels.

    Science.gov (United States)

    Vuong, Sharon M; Anna, Shelley L

    2012-06-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row ("dripping"), to multiple rows ("alternating"), to densely packed bubbles ("bamboo" and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters.

  11. Particle Dynamics and Rapid Trapping in Electro-Osmotic Flow Around a Sharp Microchannel Corner

    CERN Document Server

    Zehavi, Matan

    2014-01-01

    We study here the curious particle dynamics resulting from electro-osmotic flow around a microchannel junction corner whose dielectric walls are weakly polarizable. The hydrodynamic velocity field is obtained via superposition of a linear irrotational term associated with the equilibrium zeta potentials of both the microchannel and particle surfaces and the non-linear induced-charge electro-osmotic flow which originates from the interaction of the externally applied electric field on the charge cloud it induces at the solid-liquid interface. The particle dynamics are analyzed by considering dielectrophoretic forces via the addition of a mobility term to the flow field in the limit of Stokes drag law. The former, non-divergence free term is responsible for migration of particles towards the sharp microchannel junction corner, where they can potentially accumulate. Experimental observations of particle trapping for various applied electric fields and microparticle size are rationalized in terms of the growing r...

  12. RESISTANCE EFFECT OF ELECTRIC DOUBLE LAYER ON LIQUID FLOW IN MICROCHANNEL

    Institute of Scientific and Technical Information of China (English)

    GONG Lei; WU Jian-kang

    2006-01-01

    Poisson-Boltzmann equation for EDL (electric double layer) and NavierStokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential,instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.

  13. Microchannel cooling of face down bonded chips

    Science.gov (United States)

    Bernhardt, Anthony F.

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  14. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.

    Science.gov (United States)

    Chen, Chia-Lin; Yang, Ruey-Jen

    2012-03-01

    Preconcentration microfluidic devices are fabricated incorporating straight or convergent-divergent microchannels and hydrogel or Nafion membranes. Sample preconcentration is achieved utilizing concentration-polarization effects. The effects of the microchannel geometry on the preconcentration intensity are systematically examined. It is shown that for the preconcentrator with the straight microchannel, the time required to achieve a satisfactory preconcentration intensity increases with an increasing channel depth. For the convergent-divergent microchannel, the preconcentration intensity increases with a reducing convergent channel width. Comparing the preconcentration performance of the two different microchannel configurations, it is found that for an equivalent width of the main microchannel, the concentration effect in the convergent-divergent microchannel is faster than that in the straight microchannel.

  15. Comparison of Three Methods for Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (Postprint)

    Science.gov (United States)

    2011-04-01

    AFRL-RX-TY-TP-2010-0076 COMPARISON OF THREE METHODS FOR GENERATING SUPERHYDROPHOBIC, SUPEROLEOPHOBIC NYLON NONWOVEN SURFACES Rahul Saraf...Generating Superhydrophobic, Superoleophobic Nylon Nonwoven Surfaces (POSTPRINT) FA8650-07-1-5916 0602102F GOVT L0 QL102006 ^Saraf, Rahul,; ^Lee, Hoon...three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon nonwoven fabric: pulsed plasma polymerization

  16. An Approximate Model of Microchannel Cooling

    Institute of Scientific and Technical Information of China (English)

    ShipingYu; MingdaoXin

    1994-01-01

    Forced convective heat transfer in micro-rectangular channels can be described by a group of two-dimensional differential equations.These equations take the conduction in microchannel wall along the direction of flow of coolants into account,which are more generalized than those which neglect the conduction.For the same reason,they are suitable particularly for gases-cooled microchannels.With only numerical solution to the equations till today,an approximate analytic solution is derived here,From this solution,a rather simple formula can be introduced further,by which the differences between considering the conduction and neglecting it are easily found.In addition,the reasonableness of the classical fin method is also discussed.An experimental example of air-cooled microchannels is illustrated.

  17. Noisy Transition to Turbulence in Microchannels

    CERN Document Server

    Lissandrello, C; Yakhot, V

    2015-01-01

    Here, we study noisy transition to turbulence in a microchannel. We use a microcantilever sensor embedded in the microchannel wall and perform two sets of experiments in the same microchannel: first, we study transition triggered by the natural imperfections of the walls; subsequently, we study transition under artificially added inlet noise. The two experiments result in random flows in which high-order moments of near-wall fluctuations differ by orders of magnitude. Surprisingly however, the lowest order statistics in both cases appear qualitatively similar and can be described by a proposed noisy Landau equation for a slow mode. The noise, regardless of its origin, regularizes the Landau singularity of the relaxation time and makes transitions driven by different noise sources appear similar.

  18. HOT EMBOSSING METHODS FOR PLASTIC MICROCHANNEL FABRICATION

    Institute of Scientific and Technical Information of China (English)

    LIU Junshan; WANG Liding; LIU Chong; LUO Yi

    2006-01-01

    Fabrication of microchannels on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods is demonstrated. The image of microchannels is transferred from a silicon master possessing the inverse image of the microchannel to a PMMA plate by using hot embossing methods. The silicon master is electrostatically bonded to a Pyrex 7740 glass wafer, which improves the device yield from about 20 devices to hundreds of devices per master. Effects of embossing temperature, pressure and time on the accuracy of replication are systematically studied using the orthogonal factorial design. According to the suggested experimental model, the time for the whole embossing procedure is shorten from about 20 min to 6 min, and the accuracy of replication is 99.3%.The reproducibility of the hot embossing method is evaluated using 10 channels on different microfluidic devices, with variations of 1.4 % in depth and 1.8% in width.

  19. Entrance Effects in Microchannel Gas Flow

    Institute of Scientific and Technical Information of China (English)

    T. Lewandowski; S. Jebauer; J. Czerwinska; P. Doerffer

    2009-01-01

    Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For that purpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions which rise in such configuration are related to the existence of optimal size of the holes and the influence of microscale phenomena on the global flow patterns. This paper concentrates on the issue of the entrance effects on the micro-channel flow. It is shown that mass flow rate is only insignificantly influenced by slip effects. Global parameters such as pressure difference and geometrical shape in more pronounced way alter flow behavior. In this paper we concentrate on the numerical investigation of the microchannel flow for Kn < 0.01 and Re < 500. The channel length is finite. Hence, entrance and outlet effects on microchannel flow can be studied.

  20. Flow characteristics in a trapezoidal silicon microchannel

    Science.gov (United States)

    Hao, Peng-Fei; He, Feng; Zhu, Ke-Qin

    2005-06-01

    In this paper, global pressure drop and velocity field were experimentally investigated for water flow in a trapezoidal silicon microchannel with a hydraulic diameter of 237 µm. Microscopic particle image velocimetry (micro-PIV) is used to obtain the velocity profiles at different locations of the microchannel for Reynolds numbers between 50 and 2800. For Re > 700, Δp-Re relationship deviates from the linear behavior and the deviation depends on the Re. The experimental results of the velocity field show that the deviation is due to the entrance effect in microchannel, and the entrance length in our experiments can be predicted byLe/Dh = (0.08-0.09)Re. Velocity profiles and root mean square values of the fluctuating velocity along the centerline obtained by micro-PIV indicate that the transition from laminar flow to turbulent flow occurs for Reynolds number ranging between 1500 and 1800. This result is consistent with the global measurements of the pressure drop.

  1. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...... to selectively purify target cells of desired phase from an asynchronous mixture based on cell cycle-dependent fluctuations in size. We show that ultrasonic separation allows for gentle, scalable, and label-free synchronization with high G1 phase synchrony (84%) and throughput (3 × 106 cells/h per microchannel)....

  2. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...... to selectively purify target cells of desired phase from an asynchronous mixture based on cell cycle-dependent fluctuations in size. We show that ultrasonic separation allows for gentle, scalable, and label-free synchronization with high G1 phase synchrony (84%) and throughput (3 × 106 cells/h per microchannel)....

  3. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.

    Science.gov (United States)

    Li, Xiang; Mearns, Samantha Marie; Martins-Green, Manuela; Liu, Yuxin

    2013-10-21

    Efforts have been focused on developing in vitro assays for the study of microvessels because in vivo animal studies are more time-consuming, expensive, and observation and quantification are very challenging. However, conventional in vitro microvessel assays have limitations when representing in vivo microvessels with respect to three-dimensional (3D) geometry and providing continuous fluid flow. Using a combination of photolithographic reflowable photoresist technique, soft lithography, and microfluidics, we have developed a multi-depth circular cross-sectional endothelialized microchannels-on-a-chip, which mimics the 3D geometry of in vivo microvessels and runs under controlled continuous perfusion flow. A positive reflowable photoresist was used to fabricate a master mold with a semicircular cross-sectional microchannel network. By the alignment and bonding of the two polydimethylsiloxane (PDMS) microchannels replicated from the master mold, a cylindrical microchannel network was created. The diameters of the microchannels can be well controlled. In addition, primary human umbilical vein endothelial cells (HUVECs) seeded inside the chip showed that the cells lined the inner surface of the microchannels under controlled perfusion lasting for a time period between 4 days to 2 weeks.

  4. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior.

    Science.gov (United States)

    Berleman, James E; Zemla, Marcin; Remis, Jonathan P; Liu, Hong; Davis, Annie E; Worth, Alexandra N; West, Zachary; Zhang, Angela; Park, Hanwool; Bosneaga, Elena; van Leer, Brandon; Tsai, Wenting; Zusman, David R; Auer, Manfred

    2016-11-01

    The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required for cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS(-) mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.

  5. A soft microchannel decreases polydispersity of droplet generation.

    Science.gov (United States)

    Pang, Yan; Kim, Hyoungsoo; Liu, Zhaomiao; Stone, Howard A

    2014-10-21

    We study the effect of softness of the microchannel on the process of droplet generation in two-phase flows in a T-junction microchannel. One side of the microchannel has a flexible thin PDMS layer, which vibrates naturally while droplets are generated; the deformation frequency coincides with the frequency of droplet formation. Furthermore, we compare the polydispersity of water-in-oil droplets formed with a microchannel with one soft wall with those formed in a conventional rigid microchannel. We show that deformation of the soft wall reduces the polydispersity in the droplet size.

  6. Probing space charge and resolving overlimiting current mechanisms at the microchannel-nanochannel interface.

    Science.gov (United States)

    Schiffbauer, Jarrod; Liel, Uri; Leibowitz, Neta; Park, Sinwook; Yossifon, Gilad

    2015-07-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting current in a shallow microchannel-nanochannel device. The extended space charge layer develops at the depleted microchannel-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. In comparison to an equilibrium estimate of the surface charge obtained from electrochemical impedance spectroscopy, it is further observed that the effective surface charge appears to change under applied voltage.

  7. T-load microchannel array and fabrication method

    Science.gov (United States)

    Swierkowski, Stefan P.

    2000-01-01

    A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.

  8. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  9. Microchannel Structures of Betavoltaic Silicon Convertors

    Directory of Open Access Journals (Sweden)

    V.V. Starkov

    2015-12-01

    Full Text Available The paper presents the first results of experimental research on the microchannel structures of betavoltaic silicon converters based on the 63Ni isotope. The areas for further optimization of constructive and technological performance with high conversion efficiency were detected experimentally.

  10. Continuous steroid biotransformations in microchannel reactors.

    Science.gov (United States)

    Marques, Marco P C; Fernandes, Pedro; Cabral, Joaquim M S; Znidaršič-Plazl, Polona; Plazl, Igor

    2012-01-15

    The use of microchannel reactor based technologies within the scope of bioprocesses as process intensification and production platforms is gaining momentum. Such trend can be ascribed a particular set of characteristics of microchannel reactors, namely the enhanced mass and heat transfer, combined with easier handling and smaller volumes required, as compared to traditional reactors. In the present work, a continuous production process of 4-cholesten-3-one by the enzymatic oxidation of cholesterol without the formation of any by-product was assessed. The production was carried out within Y-shaped microchannel reactors in an aqueous-organic two-phase system. Substrate was delivered from the organic phase to aqueous phase containing cholesterol oxidase and the product formed partitions back to the organic phase. The aqueous phase was then forced through a plug-flow reactor, containing immobilized catalase. This step aimed at the reduction of hydrogen peroxide formed as a by-product during cholesterol oxidation, to avoid cholesterol oxidase deactivation due to said by-product. This setup was compared with traditional reactors and modes of operation. The results showed that microchannel reactor geometry outperformed traditional stirred tank and plug-flow reactors reaching similar conversion yields at reduced residence time. Coupling the plug-flow reactor containing catalase enabled aqueous phase reuse with maintenance of 30% catalytic activity of cholesterol oxidase while eliminating hydrogen peroxide. A final production of 36 m of cholestenone was reached after 300 hours of operation.

  11. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  12. Non-destructive 3D characterization of microchannels

    Science.gov (United States)

    Heikkinen, Ville; Nolvi, Anton; Kassamakov, Ivan; Grigoras, Kestutis; Franssila, Sami; Hæggström, Edward

    2012-10-01

    Microfluidic devices allow experimentation in smaller space using small amounts of liquid, resulting in improved reaction rates, cheaper equipment, reduced amount of expensive reagents. Very precise channel shape measurements are needed to assure the designed flow pattern. Several 3D imaging devices provide the necessary precision but typically they cannot image inside closed devices. Hence it is difficult to measure the shape of a microfluidic channel without destroying it. We fabricated and investigated samples with different microchannels. Several types of microfluidic channels were prepared in silicon wafer with a subsequent covering by bonding glass wafer on top. Microchannels in polymer have been done using epoxy-type photoresist SU-8. The internal geometry of the channels was measured using a Scanning White Light Interferometer (SWLI) equipped with optics that compensates for the effects of the top glass of the channels. The geometry of the interior of the channels can be measured with a precision similar to surface layer SWLI measurements without destroying the channels.

  13. Steering liquid metal flow in microchannels using low voltages.

    Science.gov (United States)

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-07

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  14. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  15. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling.

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-17

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  16. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-01-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952

  17. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    OpenAIRE

    Wang, Ruijie; Xu, Xinpeng; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. ...

  18. DNA-SMART: Biopatterned Polymer Film Microchannels for Selective Immobilization of Proteins and Cells.

    Science.gov (United States)

    Schneider, Ann-Kathrin; Nikolov, Pavel M; Giselbrecht, Stefan; Niemeyer, Christof M

    2017-02-22

    A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.

  19. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices

    NARCIS (Netherlands)

    Mela, Petra; Berg, van den Albert; Fintschenko, Yolanda; Cummings, Eric B.; Simmons, Blake A.; Kirby, Brian J.

    2005-01-01

    While cyclo-olefin polymer microchannels have the potential to improve both the optical detection sensitivity and the chemical resistance of polymer microanalytical systems, their surface properties are to date not thoroughly characterized. These surface properties dictate, among other things, elect

  20. Laser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel.

    Science.gov (United States)

    Walsh, Timothy; Lee, Jungchul; Park, Keunhan

    2015-03-07

    The present article reports the numerical and experimental investigations on the laser-assisted photothermal heating of a nanoliter-sized droplet in a microchannel when plasmonic particles are suspended in the droplet. Plasmonic nanoparticles exhibit strong light absorption and scattering upon the excitation of localized surface plasmons (LSPs), resulting in intense and rapid photothermal heating in a microchannel. Computational models are implemented to theoretically verify the photothermal behavior of gold nanoshell (GNS) and gold nanorod (GNR) particles suspended in a liquid microdroplet. Experiments were conducted to demonstrate rapid heating of a sub-100 nL droplet up to 100 °C with high controllability and repeatability. The heating and cooling time to the steady state is on the order of 1 second, while cooling requires less time than heating. The effects of core parameters, such as nanoparticle structure, volumetric concentration, microchannel depth, and laser power density on heating are studied. The obtained results can be integrated into existing microfluidic technologies that demand accurate and rapid heating of microdroplets in a microchannel.

  1. New Developments in the Position Sensitive Detectors Based on Microchannel Plates

    Science.gov (United States)

    Tremsin, A. S.; Siegmund, O. H. W.

    2002-11-01

    We report on the latest developments in position sensitive photon counting detectors based on microchannel plates. Substantial improvement of the spatial resolution was achieved with introduction of new readout technology, namely crossed strip (XS) anode, and corresponding processing electronics. The spatial resolution of XS readout appeared to be as small as ~3-4 μm FWHM. Reduction of the total detector gain (down to 106 and potentially lower) without compromising the spatial accuracy allows detector operation at much higher local and global counting rates since the microchannel recharge time becomes smaller. Recent developments of novel microchannel plate technologies provide basis for substantial increase of the spectral sensitivity and quantum efficiency of MCP detectors. We have tested a number of new Silicon micromachined MCPs The new MCP technologies should allow deposition of completely new photocathode materials directly on the front surface of microchannel plates (opaque photocathodes). Opposite to standard glass MCPs new Silicon MCPs can sustain high temperatures (-800 C°) required for the photocathode deposition and activation processes.

  2. Surface modification of carbon nanotubes by plasma polymerization%多壁碳纳米管表面等离子体有机聚合改性

    Institute of Scientific and Technical Information of China (English)

    王宏; 李来风; 张浩; 时东陆

    2007-01-01

    采用等离子体聚合技术在多壁碳纳米管(MWNTs)表面聚合苯乙烯(Styrene)、吡咯(Pyrrole)有机膜.高分辨电镜(HRTEM)分析显示MWNTs内外表面均生成纳米级厚度的有机膜,其中外壁表面厚约7 nm,内壁表面厚约1~3 nm.将经过表面有机膜处理的MWNTs添加到聚苯乙烯中,制备出多壁碳纳米管/聚苯乙烯(MWNTs/PS)复合材料.扫描电镜(SEM)对MWNTs/PS复合材料分析表明,覆膜的MWNT在复合材料中的分散得到改善.通过力学拉伸试验测试了MWNTs/PS复合材料断裂强度和弹性模量与MWNTs含量的关系,证明了经有机覆膜处理的MWNTs与PS形成的复合材料的整体强度得到显著提高.

  3. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  4. Inkjet injection of DNA droplets for microchannel array electrophoresis.

    Science.gov (United States)

    Yasui, Takao; Inoue, Yosuke; Naito, Toyohiro; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2012-11-06

    We demonstrated DNA droplets could be injected with an inkjet injector for microchannel array electrophoresis and attained high throughput analysis of biomolecules. This injection method greatly reduced both analysis time and sample amount, compared with a conventional microchip electrophoresis method, and allowed high parallelization of a microchannel array on a small substrate. Since we do not need to use complicated electric programs or microchannel design, our injection method should facilitate omics analyses and contribute to high performance clinical assays.

  5. Method of producing microchannel and nanochannel articles

    Science.gov (United States)

    D'Urso, Brian R.

    2010-05-04

    A method of making an article having channels therethrough includes the steps of: providing a ductile structure defining at least one macro-channel, the macro-channel containing a salt; drawing the ductile structure in the axial direction of the at least one macro-channel to reduce diameter of the macro-channel; and contacting the salt with a solvent to dissolve the salt to produce an article having at least one microchannel.

  6. Water flow boiling behaviors in hydrophilic and hydrophobic microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Yu, Dongin; Kim, Moohwan [Pohang University of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering

    2009-07-01

    The wettability is one of issues on two-phase flow in a microchannel. However, previous studies of wettability effect on two-phase flow have conducted only isothermal condition. Moreover, most studies have used conventional micro/mini-tubes due to difficulties of their fabrication. The objective of our study is to understand the wettability effect on flow boiling in a rectangular microchannel. In the first, new micro-electro-mechanical-system (MEMS) fabrication technique was developed to obtain a single glass rectangular microchannel and localized six micro heaters. A photosensitive glass was used as base material. The photosensitive glass is hydrophilic, so the hydrophobic microchannel was prepared by coating SAM, flow boiling experiments were conducted in hydrophilic and hydrophobic microchannels with micro heaters. The experiment range was the mass flux of 25 and 75 kg/m{sup 2}s, the heat flux of 30 - 430 k W/m2 and quality of 0 - 0.3. A working fluid was de-ionized and degassed water. The local heat transfer coefficient was evaluated at the local micro heater section. Also, flow regimes in the microchannel were visualized by using a high-speed camera with a long-distance microscope. Heat transfer was analyzed with visualization results. Heat transfer in the hydrophobic microchannel was enhanced by higher nucleation site density and delayed local dryout. The pressure drop in the hydrophobic microchannel was higher than that in the hydrophilic microchannel. (author)

  7. Heat transfer and fluid flow in minichannels and microchannels

    CERN Document Server

    Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R

    2013-01-01

    Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan

  8. Microchannel crossflow fluid heat exchanger and method for its fabrication

    Science.gov (United States)

    Swift, Gregory W.; Migliori, Albert; Wheatley, John C.

    1985-01-01

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  9. Solitary-like waves in a liquid foam microchannel

    Science.gov (United States)

    Bouret, Yann; Cohen, Alexandre; Fraysse, Nathalie; Argentina, Médéric; Raufaste, Christophe

    2016-08-01

    Plateau borders (PBs) are liquid microchannels located at the contact between three bubbles in liquid foams. They are stable, deformable, and can be thought of as quasi-one-dimensional model systems to study surface waves in fluid dynamics. We show that the burst of a bubble trapped in a PB produces local constrictions which travel along the liquid channel at constant velocity, without significant change in shape. These patterns are reminiscent of the depression solitary waves encountered in nonlinear systems. By coupling flow inertia to capillary stresses, we derive a simple model that admits solitonic solutions, which we characterized numerically and analytically in the limit of small deformation. These solutions capture most of the features observed experimentally.

  10. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    Science.gov (United States)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  11. Convective Heat-Transfer Characteristics of Laminar Flow Through Smooth- and Rough-Wall Microchannels

    Science.gov (United States)

    Natrajan, V. K.; Christensen, K. T.

    2009-11-01

    The convective heat-transfer behavior of laminar flow through smooth- and rough-wall microchannels is investigated by performing non-intrusive measurements of fluid temperature using a microscale adaptation of two-color laser-induced fluorescent thermometry for flow through a heated copper microchannel testbed of hydraulic diameter Dh=600,μm. These measurements, in concert with pressure-drop measurements, are performed for a smooth-wall case and two different rough-wall cases with roughness that is reminiscent of the surface irregularities one might encounter due to imperfect fabrication methods. Pressure-drop measurements reveal the onset of transition above Recr=1800 for the smooth-wall case and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nusselt number (Nu) for smooth-wall flow over the range 200flow.

  12. A strategy for design and fabrication of low cost microchannel for future reproductivity of bio/chemical lab-on-chip application

    Science.gov (United States)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.

    2017-03-01

    The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.

  13. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    Science.gov (United States)

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  14. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  15. A Geometric Model for the Dynamics of Microchannel Emulsification

    NARCIS (Netherlands)

    Zwan, van der E.A.; Schroën, C.G.P.H.; Boom, R.M.

    2009-01-01

    Microchannel emulsification is an interfacial tension driven method to produce monodisperse microdroplets, or microspheres. In this paper we introduce a model for describing the dynamics of microchannel emulsification based on simple time dependent geometric shape analysis. The model is based on mec

  16. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  17. Force criterion of different electrolytes in microchannel

    Institute of Scientific and Technical Information of China (English)

    Ren Yu-Kun; Yan Hui; Jiang Hong-Yuan; Gu Jian-Zhong; Antonio Ramos

    2009-01-01

    The control and handling of fluids is central to many applications of the lab-on-chip. This paper analyzes the basic theory of manipulating different electrolytes and finds the two-dimensional model. Coulomb force and dielectric force belonging to the body force of different electrolytes in the microchannel were analyzed. The force criterion at the interface was concluded, and testified by the specific example. Three basic equations were analyzed and applied to simulate the phenomenon. The force criterion was proved to be correct based on the simulation results.

  18. Making bulk-conductive glass microchannel plates

    Science.gov (United States)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  19. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...... of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...

  20. Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    刘学璋; 罗浩; 苏栩; 余志明

    2015-01-01

    A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition (HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray detector (EDX). Results show that the nucleation density is found to be up to 1010 cm−2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.

  1. Experimental Study of Interfacial Friction in NaBH{sub 4} Solution in Microchannel Dehydrogenation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seok Hyun; Hwang, Sueng Sik; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2014-02-15

    Sodium borohydride (NaBH{sub 4}) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous NaBH{sub 4} solution in a microchannel with a hydraulic diameter of 461 μm is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of NaBH{sub 4} in the presence of a ruthenium catalyst, two different flow phases (aqueous NaBH{sub 4} solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

  2. Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination.

    Science.gov (United States)

    Ma, Zeyu; Hong, Yan; Ma, Liyuan; Su, Ming

    2009-05-19

    Membrane distillation can desalinate seawater using low-grade heat energy or solar heat, but it has limited mass fluxes and membrane fouling issues. Glass membranes with integrated arrays of nanospiked microchannels and a narrow pore size distribution are made through a process that involves glass fiber drawing, dissolving template material from microchannels and differential chemical etching. After surface modification, superhydrophobic glass membranes with water contact angles of over 160 degrees are produced because of the formations of ordered arrays of spiked nanostructures. The superhydrophobic membrane has shown better antifouling ability and higher flux than those of existing polymer membranes, especially at high salt concentration, owing to its large pore diameter, straight pore shape, narrow pore size distribution, high chemical and thermal stabilities, and water-repelling ability.

  3. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  4. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  5. A Model for Transport Phenomena in a Cross-Flow Ultrafiltration Module with Microchannels

    Directory of Open Access Journals (Sweden)

    Shiro Yoshikawa

    2010-12-01

    Full Text Available Cross-flow ultrafiltration of macromolecular solutions in a module with microchannels is expected to have the advantages of fast diffusion from the membrane surface and a high ratio of membrane surface area to feed liquid volume. Cross-flow ultrafiltration modules with microchannels are expected to be used for separation and refining and as membrane reactors in microchemical processes. Though these modules can be applied as a separator connected with a micro-channel reactor or a membrane reactor, there have been few papers on their performance. The purpose of this study was to clarify the relationship between operational conditions and performance of cross-flow ultrafiltration devices with microchannels. In this study, Poly Vinyl Pyrrolidone (PVP aqueous solution was used as a model solute of macromolecules such as enzymes. Cross-flow ultrafiltration experiments were carried out under constant pressure conditions, varying other operational conditions. The permeate flux decreased in the beginning of each experiment. After enough time passed, the permeate flux reached a constant value. The performance of the module was discussed based on the constant values of the flux. It was observed that the permeate flux increased with increasing transmembrane pressure (TMP and feed flow rate, and decreased with an increase of feed liquid concentration. A model of the transport phenomena in the feed liquid side channel and the permeation through the membrane was developed based on the concentration and velocity distributions in the feed side channel. The experimental results were compared with those based on the model and the performance of the ultrafiltration module is discussed.

  6. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.

    Science.gov (United States)

    Hammer, Joshua; Han, Li-Hsin; Tong, Xinming; Yang, Fan

    2014-02-01

    Hydrogels are widely used as three-dimensional (3D) tissue engineering scaffolds due to their tissue-like water content, as well as their tunable physical and chemical properties. Hydrogel-based scaffolds are generally associated with nanoscale porosity, whereas macroporosity is highly desirable to facilitate nutrient transfer, vascularization, cell proliferation and matrix deposition. Diverse techniques have been developed for introducing macroporosity into hydrogel-based scaffolds. However, most of these methods involve harsh fabrication conditions that are not cell friendly, result in spherical pore structure, and are not amenable for dynamic pore formation. Human tissues contain abundant microchannel-like structures, such as microvascular network and nerve bundles, yet fabricating hydrogels containing microchannel-like pore structures remains a great challenge. To overcome these limitations, here we aim to develop a facile, cell-friendly method for engineering hydrogels with microchannel-like porosity using stimuli-responsive microfibers as porogens. Microfibers with sizes ranging 150-200 μm were fabricated using a coaxial flow of alginate and calcium chloride solution. Microfibers containing human embryonic kidney (HEK) cells were encapsulated within a 3D gelatin hydrogel, and then exposed to ethylenediaminetetraacetic acid (EDTA) solution at varying doses and duration. Scanning electron microscopy confirmed effective dissolution of alginate microfibers after EDTA treatment, leaving well-defined, interconnected microchannel structures within the 3D hydrogels. Upon release from the alginate fibers, HEK cells showed high viability and enhanced colony formation along the luminal surfaces of the microchannels. In contrast, HEK cells in non-EDTA treated control exhibited isolated cells, which remained entrapped in alginate microfibers. Together, our results showed a facile, cell-friendly process for dynamic microchannel formation within hydrogels, which may

  7. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  8. Experimental evaluations of the microchannel flow model.

    Science.gov (United States)

    Parker, K J

    2015-06-07

    Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.

  9. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient

  10. Fabrication of Pneumatic Microvalve for Tall Microchannel Using Inclined Lithography

    Directory of Open Access Journals (Sweden)

    Maho Kaminaga

    2016-12-01

    Full Text Available We used inclined lithography to fabricate a pneumatic microvalve for tall microchannels such as those used to convey large cells. The pneumatic microvalve consists of three layers. The upper layer is the actual liquid microchannel, which has a parallelogram-shaped cross section of width 500 μm, height 100 μm, and an acute angle of 53.6°. The lower layer is a pneumatic microchannel that functions as an actuator, and the middle layer is a thin polydimethylsiloxane membrane between the upper and lower layers. The operation of the pneumatic microchannel actuator causes the thin membrane to bend, resulting in the bending of the liquid microchannel and its closure. It was confirmed that the closure of the liquid microchannel completely stopped the flow of the HeLa cell suspension that was used to demonstrate the operation of the microvalve. The HeLa cells that passed through the microchannel were also observed to retain their proliferation and morphological properties.

  11. Inertial particle focusing in microchannels with gradually changing geometrical structures

    Science.gov (United States)

    Fan, Liang-Liang; Yan, Qing; Guo, Jing; Zhao, Hong; Zhao, Liang; Zhe, Jiang

    2017-01-01

    The influence of gradually changing geometrical structures on the inertial focusing of particles is systematically investigated by numerical simulations and experiments in this paper. The Saffman lift force, often ignored in the straight microchannel, becomes strong in microchannels with gradually changing geometrical structures, affecting the lateral migration of particles in the microchannels. In comparison with microchannels that have straight and gradually constricting structures, microchannels with gradually expanding structures focus all the particles in a much narrower bandwidth due to the combined effect of the Saffman lift force and the inertial lift force at the appropriate flow rates. Additionally, the influence of the different arrangements of gradually expanding structures on the inertial focusing of particles was also studied. Results suggest that to achieve the single-stream inertial focusing of particles, gradually expanding structures should be designed on one side or symmetrically on two sides of the microchannel. This study is of importance for the better design of the microchannels utilized for the efficient separation and manipulation of particle-related applications, such as microflow cytometry.

  12. Forced—Flow Convection for Liquid Methanol Flowing through Microchannels

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to be initiated at about Re=1000-1500,The fully developed turbulent heat transfer can be predicted by the well-known Dittus-Boelter correlation with mere modification of the original empirical constant coefficient 0.023 to 0.00805.The transition and laminar heat transfer behaviors in microchannels are highly peculiar and complicated,and heavily affected by liquid temperature,velocity and microchannel size.

  13. Microchannel arrays with improved accessibility and use for cell studies and emulsification

    Science.gov (United States)

    Kikuchi, Yuji; Kikuchi, Hiroko E.; Kuboki, Yoshinori; Nakajima, Mitsutoshi

    2000-03-01

    Arrays of microgrooves (groove width; 2, 3, 4, 5, 6, 7, 8, 10, 12, and 14 micrometer, groove interval; width x3, x10, and x20, one size and interval per chip) each connecting a center well and a side edge of a silicon substrate were created by photolithography and anisotropic wet etching. A penetrating hole was made by sand blast at the substrate center for the access to the center well. By tightly covering the substrate surface with a glass plate, the microgroove arrays were converted to microchannel arrays having one ends open at the side edges of the substrate. These microchannel arrays were used for cell trapping for microinjection and also used for emulsification. Poplar (Populus alba) protoplasts were used for the test of cell trapping. Cells showed a very large variation in size and irregularity in shape, and, furthermore, the protoplast preparation contained a number of cell membrane fragments and chloroplasts. Despite the cell size and shape variations and obstruction by the admixtures, many cells could be trapped by aspiration at the channel ends because of their openness to the outside free space and also their large multiplicity in parallel. The free space outside the side of the substrate allowed a free manipulation of a glass micropipette under microscopic observation using transmitted illumination. The microscopic observation direction nearly perpendicular to the movement directions of the micropipette further allowed the movement of the pipette tip nearly always in focus. These led to an easy pointing and puncturing. In addition, the cell trapping points in a line made successive approach to adjacent cells easier. Soybean oil containing 1.5 wt% polyoxyethylene(20)sorbitan monoolete as a surfactant was forced to flow into physiological saline filling the outside of the substrate through the microchannels. Regularly sized oil particles were created by this process with a variation coefficient (S.D./mean) 16% of their diameter. This variation, which is

  14. A prediction-correction scheme for microchannel milling using femtosecond laser

    Science.gov (United States)

    Chen, Jianxiong; Zhou, Xiaolong; Lin, Shuwen; Tu, Yiliu

    2017-04-01

    In this paper, a prediction-correction scheme is proposed to online measure and regulate the milling depth of microchannel using an indicator of laser triggered plasma. Firstly, a prediction model, with respect to the laser fluence and feedrate, is established with several calibration tests using the least square fitting method. It is utilized to change the focal position of objective to track the depth evolution of newly generated surface. Meanwhile, a scanning path for every milling layer with an offset in Z-axis at the beginning and the end of the trajectory, is developed to drive the plasma brightness periodically changing. Then, the milling depth could be obtained when the brightness reaches to the maximum value. By doing so, an online measurement method is presented to estimate the milling depth using the trend of plasma brightness. Furthermore, a correction model is developed to iteratively adjust the feedrate with the online estimated depth. Therefore, the microchannel milling process could be monitored and controlled in a closed-loop manner, in order to accurately regulate the milling depth. Finally, an online measurement and closed-loop microchannel milling is carried out on the self-developed micro-machining center. The effectiveness and correctness of the proposed method are verified by comparing the estimated depth with the actually measured results.

  15. Graphene doped ZnO films for photoelectrowetting on microchannels

    Science.gov (United States)

    Al-Aribe, Khaled; Knopf, George K.

    2017-02-01

    Photoelectrowetting on dielectric surfaces can be used to drive droplets of liquid along reconfigurable paths on a microfluidic chip using controlled optical signals. These electrostatically activated surfaces along the desired path eliminate the need for precision molded channels and discrete functional components such as microvalves and micropumps. The photoelectrowetting effect exploits the surface tension of the droplet to maintain its volume during the transportation pathway and the photoelectric properties of the substrate surface are used to induce reversible fluidic flow. The active light-driven substrate is structured from graphene doped zinc-oxide (ZnO-G) films deposited on ITO coated glass. This substrate is coated from the ZnO-G side with Ruthenium-based dye (N719) to maximize its absorbability. The light triggers two forces that enable the droplet to be transported along the substrate. The first arises from the induced hydrophobicity gradient formed across the droplet contact area with the substrate surface. Exposing the ZnO-G film to a broad spectrum white light source alters the surface's electric potential which induces a change in the droplet's contact angle and the associated hydrophobicity. Once the hydrophobicity gradient is generated the droplet will start to move in the direction of the wetting zone. The second force is also created by the optical input when the absorbed light generates a photoelectric potential that produces a piezo-electrical effect on the ZnO-G film. The light triggered piezo-electrical behavior of the ZnO-G film can be used to generate the erasable microchannels that can guide droplet movement through a microfluidic chip. Preliminary experiments are performed to investigate the photoelectric potential of light activated ZnO-G films.

  16. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  17. Numerical simulation of bubble transport in a bifurcating microchannel: a preliminary study.

    Science.gov (United States)

    Poornima, J; Vengadesan, S

    2012-08-01

    In this paper, we present the computational fluid dynamics (CFD) simulations of bubble transport in a first generation bifurcating microchannel. In the present study, the human arteriole is modeled as a two-dimensional (2D) rectangular bifurcating microchannel. The microchannel is filled with blood and a single perfluorocarbon (PFC) bubble is introduced in the parent channel. The simulations are carried out to identify the lodging and dislodging pressures for two nondimensional bubble sizes, L(d) (ratio of the dimensional bubble length to the parent tube diameter), that is for L(d) = 1 and L(d) = 2. Subsequently, the bubble transport and splitting behavior due to the presence of symmetry and asymmetry in the daughter channels of the microchannel is studied for these bubble sizes. The splitting behavior of the bubble under the effect of gravity is also assessed and reported here. For the symmetric bifurcation model, the splitting ratio (SR) (ratio of bubble volume in bottom daughter channel to bubble volume in top daughter channel), of the bubble was found to be 1. For the asymmetric model, the splitting ratio was found to be less than 1. The loss in the bubble volume in the asymmetric model was attributed to surface tension effects and the resistance offered by the flow, which led to the bubble sticking and sliding along the walls of the channel. With the increase in roll angle, Φ (angle which the plane makes with the horizontal to study the effects of gravity), there was a decline in the splitting ratio.

  18. Motion of an elastic capsule in a constricted microchannel

    CERN Document Server

    Touchard, Antoine; Zhu, Lailai; Brandt, Luca

    2014-01-01

    We study the motion of an elastic capsule through a microchannel characterized by a localized constriction. We consider a capsule with a stress-free spherical shape and impose its steady state configuration in an infinitely long straight channel as the initial condition for our calculations. We report how the capsule deformation, velocity, retention time, and maximum stress of the membrane are affected by the capillary number, Ca, and the constriction shape. We estimate the deformation by measuring the variation of the three-dimensional surface area and a series of alternative quantities easier to extract from experiments. These are the Taylor parameter, the perimeter and the area of the capsule in the spanwise plane. We find that the perimeter is the quantity that reproduces the behavior of the three-dimensional surface area the best. We observe that, in general, area-deformation correlated quantities grow linearly with Ca, while velocity-correlated quantities saturate for large Ca but display a steeper incr...

  19. Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Kutter, Jörg Peter

    2011-01-01

    ), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid......In this paper, we report a simple and precise method to rapidly replicate master structures for fast microchannel fabrication by double replica moulding of polydimethylsiloxane (PDMS). A PDMS mould was surface-treated by vapour phase deposition of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS...

  20. Thermal neutron imaging using microchannel plates

    Science.gov (United States)

    Fraser, George W.; Pearson, James F.; Al-Horayess, O. S.; Feller, W. Bruce; Cook, Lee M.

    1993-02-01

    Microchannel plates (MCPs) are compact electron multipliers of high gain, widely used for the high resolution imaging of charged particles and photons. In this paper, we consider the use of lead glass MCPs for the imaging of thermal neutrons. Two contrasting techniques are described. The first method involves direct neutron detection within a special channel plate structure containing lithium and/or boron. We review the constraints of glass chemistry on the attainable lithium oxide and boron oxide fractions and, hence, on the maximum neutron detection efficiency. The second method involves the detection, using MCPs of standard glass composition, of the internal conversion electrons from a thin gadolinium foil. We present the first measurements of the detection efficiency, pulse height resolution and imaging properties of a pulse-counting MCP/Gd detector system.

  1. Thermoelectric Properties of Silicon Microchannel Plates Structures

    Energy Technology Data Exchange (ETDEWEB)

    Ci, P L; Shi, J; Wang, F; Sun, L; Xu, S H; Yang, P X; Wang, L W [Laboratory of Polar Materials and Devices, Ministry of Education, and Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chu, Paul K, E-mail: lwwang@ee.ecnu.edu.cn [Department of Physics and Material Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2011-02-01

    We have fabricated silicon microchannel plates (MCPs) by photo-assisted electrochemical etching (PAECE) and determined the thermoelectric properties by measuring the Seebeck coefficient of the samples. The samples are composed of regular arrayed lattices with a width of about 5 {mu}m and spacing of about 1 {mu}m. The Seebeck coefficient along the edge of the lattice is 466 {mu}V/K. The silicon MCPs are potential materials for power generation and refrigeration. After oxidation from 30 minutes to 70 minutes and removing the silicon dioxide layer by buffered hydrofluoric acid, the samples show an improved coefficient as high as 1019 {mu}V/K after repeating oxidation and etching 5 times. Our results show that the Seebeck coefficient increases when the wall of the silicon MCPs is thinned.

  2. Dispersion of Suspensions in Unsteady Microchannel Flows

    Science.gov (United States)

    Maxey, Martin; Howard, Amanda; Winklerprins, Lukas; Tripathi, Anubhuv; Yeo, Kyongmin

    2013-11-01

    We explore the dispersion of non-Brownian (Pe >> 1) suspensions in unsteady, low Reynolds number shear flows in a microchannel. Prior experimental work on oscillating Couette flows and Poiseuille flows has shown the importance of strain amplitude in determining the long term distribution of particles across the channel. We will present results from numerical simulations for the early development of these flows and the motion of finite length suspension plugs. The distortion of a plug by the shear flow results in inhomogeneous particle fluxes across the channel. This is largely reversible over the course of a full cycle, giving reversibility in the bulk. Self-diffusion gives irreversibility though at the microscale. As the strain amplitude increases or the initial volume fraction increases irreversibility in the bulk is seen. The dynamics behind these processes and the role of particle pressure will be noted, together with related experimental observations.

  3. Improved lifetime of microchannel-plate PMTs

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A., E-mail: lehmann@physik.uni-erlangen.de [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Britting, A.; Eyrich, W.; Uhlig, F. [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Höhler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); and others

    2014-12-01

    The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈6C/cm{sup 2} integrated anode charge without a substantial QE degradation for the latest PHOTONIS XP85112. This paper will present a comparative measurement of the lifetime of several older and recent MCP-PMTs demonstrating this progress.

  4. Gas flow characteristics in straight silicon microchannels

    Institute of Scientific and Technical Information of China (English)

    丁英涛; 姚朝晖; 沈孟育

    2002-01-01

    Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal sili-con microchannels with different hydraulic diameters. The volume flow rate and pressure ratio are measured in theexperiments. It is found that the friction coefficient is no longer a constant, which is different from the conventionaltheory. The characteristics are first explained by the theoretical analysis. A simplified rectangular model (rectangularstraight channel model) is then proposed. The experimental results are compared with the theoretical predictions basedon the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usuallyuse The difference between the experimental data and the theoretical predictions is found in the high-pressure ratiocasesx. The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studiedto interpret the discrepancy. We discuss two important factors affecting the application extent of different predictionmodels.

  5. Microchannel plate modal gain variations with temperature

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.

    1993-01-01

    Measurements of the modal gain of two high-gain curved-channel microchannel plates (MCPs) at various operating temperatures are presented. Both MCPs were fabricated from the Long Life glass with 12-micron diam channels on 15-micron centers. The modal gain was found to decrease with increasing temperature at a rate of -0.1 percent C. This reduction of gain with temperature is attributed primarily to an axial temperature gradient along each MCP channel creating a nonuniform electric field within the channel that lowers the effective output gain. A lowering of the secondary electron yield resulting from increased phonon scattering of secondary electrons released within the walls of the MCP channels was assessed, but was found to have a negligible contribution to the drop in gain with temperature.

  6. Low noise and conductively cooled microchannel plates

    Science.gov (United States)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  7. Improved lifetime of microchannel-plate PMTs

    Science.gov (United States)

    Lehmann, A.; Britting, A.; Eyrich, W.; Uhlig, F.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Höhler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C /cm2 integrated anode charge without a substantial QE degradation for the latest PHOTONIS XP85112. This paper will present a comparative measurement of the lifetime of several older and recent MCP-PMTs demonstrating this progress.

  8. Continuous acoustic separation in a thermoplastic microchannel

    Science.gov (United States)

    Mueller, A.; Lever, A.; Nguyen, T. V.; Comolli, J.; Fiering, J.

    2013-12-01

    Acoustic manipulation of particles and cells has been widely used for trapping and separation in microfluidic devices. Previously, the resonant components of these devices have been fabricated from silicon, glass, metals, or other materials having high acoustic impedance. Here, we present experimental results showing continuous acoustic focusing and separation of blood cells in a microchannel fabricated entirely from polystyrene. The efficiency and flow rates approach those reported in silicon and glass systems. We find that the optimum operating frequencies differ from those predicted by conventional approximations which have been developed for more rigid materials. Additionally, we introduce a method for fabrication of the devices, using an adaptation of thermofusion bonding that preserves critical channel dimensions. To control channel cross section during bonding, we introduced a collapsible fiberboard material in the bonding press. This structure provided a self-limiting force and mitigated deformation of the polystyrene. Together, these advances may enable new applications for acoustic focusing and separation in medical devices.

  9. Microchannel Reactors for ISRU Applications Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and USRA propose to develop microchannel reactors for In-Situ Resources Utilization (ISRU) using nanofabricated catalysts. The proposed...

  10. Micro-Channel Embedded Pulsating Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  11. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-04-01

    Full Text Available Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS. Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap, channel depth (d, feed per tooth (fz and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness. The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

  12. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Science.gov (United States)

    Monroy-Vázquez, Karla P.; Attanasio, Aldo; Ceretti, Elisabetta; Siller, Héctor R.; Hendrichs-Troeglen, Nicolás J.; Giardini, Claudio

    2013-01-01

    Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS). Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap), channel depth (d), feed per tooth (fz) and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness). The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications. PMID:28809219

  13. Experimental and Numerical Analysis of Micro-Scale Heat Transfer using Carbon based Nanofluid in Microchannel for Enhanced Thermal Performance

    Science.gov (United States)

    Singh, Bhupinder; Singh, Maniratan; Garg, Harry; Kaur, Inderpreet; Suryavanshi, Suman; Kumar, Hemant

    2016-09-01

    The existing heat transfer technologies suffer from numerous limitations and are poor in high performance and high heat dissipation. Liquid cooling using microchannels and nanofluids work with the increased surface area and minimum thermal resistance. Many researchers showed that nanofluids, particularly with carbon based materials, enhance heat transfer rate. In today era, in the case of microelectronics, small miniaturized heat sinks with high heat transfer are being developed, called micro-channel heat sinks (MCHS). The proposed work is concerned about the heat transfer behavior of aqueous suspensions of CNT nanofluids flowing through the triangular shaped microchannel. Significant enhancement of the convective heat transfer is observed and the enhancement depends on the flow conditions i.e. nusselt number, microchannel channel length, nanoparticles concentration. Particle re-arrangement, shear induced thermal conduction enhancement, reduction of thermal boundary layer due to the presence of nanoparticles, as well as the very high aspect ratio of CNT nanofluids are proposed to be possible mechanisms. Results show that thermal boundary layers distorted due to use of carbon based nanofluids and heat transfer coefficient increases about three times as compared to water.

  14. Microporous microchannel plates and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, C.P. Jr.; Boerstler, R.W.; Steinbeck, J.; Winn, D.R.

    2000-04-04

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  15. Microporous microchannel plates and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Jr., Charles P. (New Milford, CT); Boerstler, Robert W. (Woodbury, CT); Steinbeck, John (Fitzwilliam, NH); Winn, David R. (Wilton, CT)

    2000-01-01

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  16. Microporous microchannel plates and method of manufacturing same

    Science.gov (United States)

    Beetz, Jr., Charles P.; Boerstler, Robert W.; Steinbeck, John; Winn, David R.

    2000-01-01

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  17. Laminated microchannel devices, mixing units and method of making same

    Science.gov (United States)

    Bennett, Wendy D [Kennewick, WA; Hammerstrom, Donald J [West Richland, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA

    2002-10-17

    A laminated microchannel device is described in which there is a unit operation process layer that has longitudinal channel. The longitudinal channel is cut completely through the layer in which the unit process operation resides. Both the device structure and method of making the device provide significant advantages in terms of simplicity and efficiency. A static mixing unit that can be incorporated in the laminated microchannel device is also described.

  18. Development of a Microchannel In Situ Propellant Production System

    Science.gov (United States)

    Brooks, Kriston; Rassat, Scot; Hu, John; Stenkamp, Susie; Schlahta, Steve; Bontha, Jagan; Holladay, Jamie; Simon, Tom; Romig, Kris; Howard, Candice

    2006-01-01

    A microchannel-based system is being developed for NASA to produce propellants from atmospheric CO2 on Mars. This system will provide a means of reducing the earth-based launch mass for both sample return and human exploration missions. The atmospheric CO2 will be collected, separated, and compressed with a microchannel thermal swing adsorption system. It will be reacted with hydrogen that has either been electrolyzed from the available subsurface water or brought from earth. Methane and water will be produced by using microchannel Sabatier and Reverse Water Gas Shift reactors, respectively. The water will then separated with a microchannel condenser/phase separator and electrolyzed to produce oxygen and hydrogen. Feed gases will be separated from the products and recycled. The system design requirements will be presented in this paper. The design and fabrication methods of the microchannel CO2 sorption pump, reactors, and phase separators will be described, and the advantages of microchannel architecture will be delineated for each component. Estimates of system mass and volume will also be provided in comparison to conventional hardware. The testing and integration proposed during this project to meet NASA's Technology Readiness Level 5 will also be presented.

  19. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    OpenAIRE

    Mudtorlep Nisoa; Pikul Wanichapichart

    2010-01-01

    Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effec...

  20. Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding

    OpenAIRE

    Lopera, S.; Mansano, R. D.

    2012-01-01

    We present and compare two processes for plasma-based surface modification of Polydimethylsiloxane (PDMS) to achieve the antisticking behavior needed for PDMS-PDMS molding. The studied processes were oxygen plasma activation for vapor phase silanization and plasma polymerization with tetrafluoromethane/hydrogen mixtures under different processing conditions. We analyzed topography changes of the treated surfaces by atomic force microscopy and contact angle measurements. Plasma treatment were ...

  1. Plastic Trash goes Biohybrid"-Rapid and Selective Functionalization of Inert Plastic Surfaces with Biomolecules

    DEFF Research Database (Denmark)

    Schiller, Stefan M; Kambhampati, Dev; Stengel, Gudrun

    2010-01-01

    The covalent functionalization of "inert" polymers such as polypropylene with biomolecules for biocompatible or biosensor surfaces is challenging. Here we present a powerful approach to covalently modify "inert" macromolecular surfaces with biomacromolecules reusing old plastic material. A specia...... with a thin reactive plasma polymerized maleic anhydride nanolayer network, which can be subsequently modified with biomolecules for various applications, e.g., in tissue engineering and as biochips...

  2. Instantaneous slip length in superhydrophobic microchannels having grooves with curved or dissimilar walls

    Science.gov (United States)

    Hemeda, A. A.; Vahedi Tafreshi, H.

    2015-10-01

    Superhydrophobic (SHP) surfaces can be used to reduce the skin-friction drag in a microchannel. This is due to the peculiar ability of these surfaces to entrap air in their pores and thereby reduce the contact area between water and the solid surface. The favorable drag-reduction effect, however, can quickly deteriorate if the surface geometry is not designed properly. The deterioration can be sudden, caused by exposure to excessive pressures, or gradual, due to the dissolution of the entrapped air into the ambient water. The formulations presented here provide a means for studying the time-dependent drag-reduction in a microchannel enhanced with transverse or longitudinal SHP grooves of varying wall profiles or wettabilities. Moreover, different mathematical approaches are developed to distinguish the performance of a sharp-edged groove from that of a groove with round entrance. The work starts by deriving an equation for the balance of forces on the air-water interface (AWI) inside a groove and solving this differential equation, along with Henry's law, for the rate of dissolution of the entrapped air into water over time. It was shown that the performance of a SHP groove depends mostly on the interplay between the effects of the apparent contact angle of the AWI and the initial volume of the groove. The instantaneous slip length is then calculated by solving the Navier-Stokes equations for flow in microchannels with SHP grooves. Our results are compared with the studies in the literature whenever available, and good agreement has been observed.

  3. Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer.

    Science.gov (United States)

    Heintz, Keely; Schilke, Karl F; Snider, Joshua; Lee, Woo-Kul; Truong, Mitchell; Coblyn, Matthew; Jovanovic, Goran; McGuire, Joseph

    2014-07-01

    The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polydimethylsiloxane (PDMS), polycarbonate microchannel, and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. PEO layers were prepared by radiolytic grafting of PEO-polybutadiene-PEO (PEO-PB-PEO) triblock polymers to the material surfaces. Protein repulsion was evaluated by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with β-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and PDMS materials to about 20% of the level recorded on the uncoated materials. Neither the triblocks nor the irradiation process was observed to have any effect on protein interaction with the polyacrylonitrile membrane, or its permeability to urea. This approach holds promise as a means for in situ application of safe, efficacious coatings to microfluidic devices for blood processing that will ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer.

  4. Inertial effects on heat transfer in superhydrophobic microchannels

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian; BYU Fluids Team

    2015-11-01

    This work numerically studies the effects of inertia on thermal transport in superhydrophbic microchannels. An infinite parallel plate channel comprised of structured superhydrophbic walls is considered. The structure of the superhydrophobic surfaces consists of square pillars organized in a square array aligned with the flow direction. Laminar, fully developed flow is explored. The flow is assumed to be non-wetting and have an idealized flat meniscus. A shear-free, adiabatic boundary condition is used at the liquid/gas interface, while a no-slip, constant heat flux condition is used at the liquid/solid interface. A wide range of Peclet numbers, relative channel spacing distances, and relative pillar sizes are considered. Results are presented in terms of Poiseuille number, Nusselt number, hydrodynamic slip length, and temperature jump length. Interestingly, the thermal transport is varied only slightly by inertial effects for a wide range of parameters explored and compares well with other analytical and numerical work that assumed Stokes flow. It is only for very small relative channel spacing and large Peclet number that inertial effects exert significant influence. Overall, the heat transfer is reduced for the superhydrophbic channels in comparison to classic smooth walled channels. This research was supported by the National Science Foundation (NSF) - United States (Grant No. CBET-1235881).

  5. Electric field mediated spraying of miniaturized droplets inside microchannel.

    Science.gov (United States)

    Timung, Seim; Chaudhuri, Joydip; Borthakur, Manash Pratim; Mandal, Tapas Kumar; Biswas, Gautam; Bandyopadhyay, Dipankar

    2016-10-17

    We report a facile and noninvasive way to disintegrate a microdroplet into a string of further miniaturized ones under the influence of an external electrohydrodynamic field inside a microchannel. The deformation and breakup of the droplet was engendered by the Maxwell's stress originating from the accumulation of induced and free charges at the oil-water interface. While at smaller field intensities, for example less than 1 MV/m, the droplet deformed into a plug, at relatively higher field intensities, e.g. ∼1.16 MV/m, a pair of droplets having opposite surface charge was formed. The charged droplets showed an interesting periodic bridging and breakup during their translation motion across the channel. For even higher field intensities, for example more than 1.2 MV/m, the entire droplet underwent dielectrophoresis toward one of the electrodes before experiencing a strong attractive force from the other electrode to deform into a shape of a Taylor cone. With progress in time, mimicking the electrospraying phenomenon, the cone tip periodically ejected a string of miniaturized water droplets to form a microemulsion inside the channel. The frequency and size of the droplet ejection could be tuned by varying the applied field intensity. A water droplet of ∼214 μm diameter could continuously eject droplets of size ∼10 μm or even smaller to form a microemulsion inside the channel.

  6. The Effects of Engineering Design on Heterogeneous Biocatalysis in Microchannels

    Science.gov (United States)

    Jones, Frank; Bailey, Robert; Wilson, Stephanie; Hiestand, James

    The results of a numerical study of the fundamental interactions of engineering design and micromixing on conversion in packed microchannels are presented. Previously, channel-based microreactors made of molded silicon plastic were designed, fabricated, and experimentally tested. These reactors have enzymes immobilized on the channel walls by various methods including layerby-layer nano self-assembly techniques. They also contain molded packing features to add reactive surface area and to redistribute the fluid. An arbitrary but intuitively sensible packing arrangement was initially chosen and used in experimental studies. The current computer simulation study was undertaken to understand how static laminar mixing affects the conversion efficiency. The reactors previously used experimentally have been simulated using CFD-ACE+ multiphysics software (ESI CFD Inc., Huntsville, AL). It is found that packing significantly increases conversion when compared with empty channels over the entire flow rate range of the study (0.25

  7. Effects of rectangular microchannel aspect ratio on laminar friction constant

    Science.gov (United States)

    Papautsky, Ian; Gale, Bruce K.; Mohanty, Swomitra K.; Ameel, Timothy A.; Frazier, A. Bruno

    1999-08-01

    In this paper, the effects of rectangular microchannel aspect ratio on laminar friction constant are described. The behavior of fluids was studied using surface micromachined rectangular metallic pipette arrays. Each array consisted of 5 or 7 pipettes with widths varying from 150 micrometers to 600 micrometers and heights ranging from 22.71 micrometers to 26.35 micrometers . A downstream port for static pressure measurement was used to eliminate entrance effects. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. The experimental data obtained for water for flows at Reynolds numbers below 10 showed an approximate 20% increase in the friction constant for a specified driving potential when compared to macroscale predictions from the classical Navier-Stokes theory. When the experimental data are studied as a function of aspect ratio, a 20% increase in the friction constant is evident at low aspect ratios. A similar increase is shown by the currently available experimental data for low Reynolds number (flows of water.

  8. Effects of forced wall vibration on the onset of flow instability and critical heat flux in uniformly-heated microchannels

    Science.gov (United States)

    Stromberger, Jorg Hermann

    Numerous experimental and theoretical investigations on two-phase flow instability and burnout in heated microchannels have been reported in the literature. However none of these investigations deals with the possible effects of wall vibrations on such flow boiling processes within microchannels. Fluid-structure interaction in ultra high power density systems cooled by high velocity single phase forced convection in microchannels may result in vibration amplitudes that are a significant fraction of the diameter of the channel. Such vibrations may significantly impact vapor bubble dynamics at the wall and, hence, the limiting heat fluxes corresponding to the onset of flow instability and/or burnout. The primary purpose of this research was to experimentally quantify the effect of forced wall vibration on the onset of flow instability (OFI) and the critical heat flux (CHF) in uniformly-heated annular microchannels. The secondary interest of this investigation was to compare the experimental data collected in the single-phase regime to commonly used single-phase forced convection correlations. Experimental data acquired in the flow boiling regime were to be utilized to confirm the validity of common flow boiling correlations for microchannel flow. The influence of forced wall vibration on subcooled single-phase forced convection and flow boiling was examined. The Georgia Tech Microchannel Test Facility (GTMTF) was modified to allow such experiments to be conducted at controlled values of transverse wall vibration amplitudes and accelerations for a range of frequencies. The channel demand curves were obtained for various inner and outer surface heat fluxes. Experiments were conducted for broad ranges of transverse wall vibration amplitudes over a range of frequencies. The experiments conducted in this investigation provide designers of high power density systems cooled by forced convection in microchannels with the appropriate data and correlations to confidently

  9. Efficient generation of ozone in arrays of microchannel plasmas

    Science.gov (United States)

    Kim, M. H.; Cho, J. H.; Ban, S. B.; Choi, R. Y.; Kwon, E. J.; Park, S.-J.; Eden, J. G.

    2013-07-01

    Ozone is produced efficiently in arrays of low-temperature, linear microplasmas having a trapezoidal or parabolic cross-sectional profile and generated within nanoporous alumina (Al2O3) microchannels. Fabricated from aluminum foil by wet chemical processing, micropowder ablation, and one photolithographic step, arrays of microchannel plasma devices 3 cm in length and 250 µm in width at the aperture of the channel produce spatially uniform glow discharges in O2 feedstock gas at a pressure of 1 atm and flow rates of 0.25-2.5 standard litres per minute. Several device and array structures, incorporating embedded electrodes and Al/Al2O3 or glass channels, have been fabricated and tested extensively. A design based solely on microchannels fabricated in nanoporous alumina, flanked by Al electrodes buried in the channel wall, is found to be superior in performance to other materials and geometries. Altering the electric field profile inside the microchannels (by means of the electrode geometry) is found to have a significant impact on the reactor efficiency. Ozone output is observed to scale linearly with the number of microchannels in the array and the feedstock gas flow rate. Efficiencies and O3 concentrations surpassing 85 g kWh-1 and 17 g m-3, respectively, have been measured, and arrays as large as 120 microchannels have been realized to date. The results presented here suggest a new approach to plasma-chemical reactors, one in which ‘massively parallel’ processing of one or more gases in non-streamer (glow) discharges efficiently produces products of commercial value in thousands of micropores or microchannels fabricated in recyclable and inexpensive materials. Reductions of an order of magnitude in the weight and volume of microplasma-based O3 reactors, relative to conventional dielectric barrier discharge technology, appear to be feasible.

  10. Si microchannel plates for image intensification

    Science.gov (United States)

    Smith, Arlynn W.; Beetz, Charles P., Jr.; Boerstler, Robert W.; Winn, D. R.; Steinbeck, John W.

    2000-11-01

    Glass microchannel plates (MCPs) have been in use by numerous manufactuers in a variety of electron multiplication applications. Conventional fabrication of MCPs follow the lines of glass drawing and etching technology. Core and clad glass are drawn together, stacked, drawn again, and finally stacked in the desired pattern. The soluble core is removed with wet chemical processing. These techniques are beginning to run into their feasible limits in terms of channel size, open area ratio, uniformity, and material issues. A strong desire exists to fabricate MCPs with accepted lithographic techniques using Si as the base material to improve uniformity and throughput. Open area ratios of as high as 95% have been achieved using lithography. However, attempts to meet other channel plate characteristics met with little success due to thermal runaway or arcing during operation, high voltage is required for electron gain. Processing improvements have lead to the complete oxidation of the Si matrix eliminating the conducting Si in the channel walls of the Si MCPs allowing high voltages to be supported. Complete oxidation of the Si to silica allows processing temperatures high than conventional glass matrices can withstand. This fact allows for high temperature growth of conductive and secondary emissive materials on the channel walls of the structure. Si MCPs with gain have now been fabricated and tested with voltages comparable to conventional glass MCPs. Channel plate characteristics such as operating voltage, strip current, and gain for Si MCPs will be presented and compared to glass MCPs.

  11. Inertial Focusing of Microparticles in Curvilinear Microchannels

    Science.gov (United States)

    Özbey, Arzu; Karimzadehkhouei, Mehrdad; Akgönül, Sarp; Gozuacik, Devrim; Koşar, Ali

    2016-12-01

    A passive, continuous and size-dependent focusing technique enabled by “inertial microfluidics”, which takes advantage of hydrodynamic forces, is implemented in this study to focus microparticles. The objective is to analyse the decoupling effects of inertial forces and Dean drag forces on microparticles of different sizes in curvilinear microchannels with inner radius of 800 μm and curvature angle of 280°, which have not been considered in the literature related to inertial microfluidics. This fundamental approach gives insight into the underlying physics of particle dynamics and offers continuous, high-throughput, label-free and parallelizable size-based particle separation. Our design allows the same footprint to be occupied as straight channels, which makes parallelization possible with optical detection integration. This feature is also useful for ultrahigh-throughput applications such as flow cytometers with the advantages of reduced cost and size. The focusing behaviour of 20, 15 and 10 μm fluorescent polystyrene microparticles was examined for different channel Reynolds numbers. Lateral and vertical particle migrations and the equilibrium positions of these particles were investigated in detail, which may lead to the design of novel microfluidic devices with high efficiency and high throughput for particle separation, rapid detection and diagnosis of circulating tumour cells with reduced cost.

  12. Microchannel plate special nuclear materials sensor

    Energy Technology Data Exchange (ETDEWEB)

    Feller, W.B., E-mail: bfeller@novascientific.com [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); White, P.L.; White, P.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Siegmund, O.H.W.; Martin, A.P.; Vallerga, J.V. [Sensor Sciences, 3333 Vincent Road, Pleasant Hill, CA 94523 (United States)

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR no. HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to {sup 3}He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing {sup 10}B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to {sup 3}He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of {sup 3}He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small {sup 3}He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a {sup 252}Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial {sup 3}He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  13. Diabatic flow boiling in circular transparent microchannels

    Science.gov (United States)

    Silvério, V.; Moreira, A. L. N.

    2012-11-01

    The horizontally assembled circular microchannel (Dh= 543μm, LHT = 60mm) made of transparent borosilicate glass is kept under constant wall heat flux conditions by means of a transparent metallic thin film deposit at the channel external wall as in Silvério and Moreira [1]. Heat transfer and pressure drop measurements are achieved by measuring the temperature and pressure at the channel inlet and outlet. Temperature is also measured along the channel outer wall. Experiments are carried with two different fluids, ethanol and methanol. Inlet liquid subcooling is of 297K, mass fluxes, G, up to 689kg.m-2.s-1 and imposed heat fluxes, q"s, up to 12.5W.cm-2 at ΔTsub from 0.8 to 50K. Synchronized high-speed visualization and microscope optics are used to determine dominant two-phase flow patterns and characterize hydrodynamic instabilities. Vapor qualities, χ, of -0.1 (indicating a subcooled liquid state) to 0.5 are under investigation. Semi-periodic variation of the flow patterns is noticeable for different flow conditions.

  14. Inertially-induced secondary flow in microchannels

    CERN Document Server

    Amini, Hamed; Di Carlo, Dino

    2011-01-01

    We report a novel technique to passively create strong secondary flows at moderate to high flow rates in microchannels, accurately control them and finally, due to their deterministic nature, program them into microfluidic platforms. Based on the flow conditions and due to the presence of the pillars in the channel, the flow streamlines will lose their fore-aft symmetry. As a result of this broken symmetry the fluid is pushed away from the pillar at the center of the channel (i.e. central z-plane). As the flow needs to maintain conservation of mass, the fluid will laterally travel in the opposite direction near the top and bottom walls. Therefore, a NET secondary flow will be created in the channel cross-section which is depicted in this video. The main platform is a simple straight channel with posts (i.e. cylindrical pillars - although other pillar cross-sections should also function) placed along the channel. Channel measures were 200 \\mum\\times50 \\mum, with pillars of 100 \\mum in diameter. Positioning the...

  15. Performance of Small Pore Microchannel Plates

    Science.gov (United States)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  16. Gas-Liquid Slug Flow in Microchannels

    Science.gov (United States)

    Guenther, Axel; de Mas, Nuria; Jhunjhunwala, Manish; Schmidt, Martin A.; Jensen, Klavs F.

    2003-11-01

    Slug flow is not only an attractive regime for conducting gas-liquid reactions in microchemical systems. It also provides a normal velocity that enhances liquid mixing for high Peclet number flows, e.g. for particle synthesis. We previously extended the flow regime diagrams initially obtained for micro heat-exchangers to the liquid deficient conditions relevant to microreactors. We use silicon-based single microchannels with rectangular and triangular cross-section and hydraulic diameters of 40-400 microns that are capped with Pyrex to provide for optical access. Ethanol, water, toluene, and nitrogen are the working fluids. Superficial velocities are varied between 0.01 and 10 m/s for the gas and 0.001 and 1 m/s for the liquid with corresponding Capillary and Bond numbers between 0.001 and 0.01. We complement pulsed-laser fluorescence microscopy and confocal scanning microscopy with a non-intrusive optical sensor to monitor the transient flow at sampling rates of 10 kHz. Interfacial area, void fraction, slug velocity U_s, and the transversal velocity component introduced by internal circulation in the liquid are determined. For comparable Peclet numbers, the transverse velocity between channel wall and center is lO0.1 U_s and allows for shorter mixing lengths than reported for micromixers with patterned walls. Gas and liquid are completely separated on-chip subsequent to the mixing step.

  17. Peltier effect in doped silicon microchannel plates

    Institute of Scientific and Technical Information of China (English)

    Ci Pengliang; Shi Jing; Wang Fei; Xu Shaohui; Yang Zhenya; Yang Pingxiong; Wang Lianwei; Gao Chen; Paul K.Chu

    2011-01-01

    The Seebeck coefficient is determined from silicon microchannel plates(Si MCPs)prepared by photoassisted electrochemical etching at room temperature(25 ℃).The coefficient of the sample with a pore size of 5 × 5μm2,spacing of 1 μm and thickness of about 150μm is-852 μV/K along the edge of the square pore.After doping with boron and phosphorus,the Seebeck coefficient diminishes to 256 μV/K and-117 μV/K along the edge of the square pore,whereas the electrical resistivity values are 7.5 × 10-3 Ω·cm and 1.9 × 10-3 Ω·cm,respectively.Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon.Based on the boron and phosphorus doped samples,a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect.When a proper current passes through the device,the Peltier effect is evidently observed.Based on the experimental data and the theoretical calculation,the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K),respectively.

  18. Peltier effect in doped silicon microchannel plates

    Science.gov (United States)

    Pengliang, Ci; Jing, Shi; Fei, Wang; Shaohui, Xu; Zhenya, Yang; Pingxiong, Yang; Lianwei, Wang; Chen, Gao; Chu, Paul K.

    2011-12-01

    The Seebeck coefficient is determined from silicon microchannel plates (Si MCPs) prepared by photo-assisted electrochemical etching at room temperature (25 °C). The coefficient of the sample with a pore size of 5 × 5 μm2, spacing of 1 μm and thickness of about 150 μm is -852 μV/K along the edge of the square pore. After doping with boron and phosphorus, the Seebeck coefficient diminishes to 256 μV/K and -117 μV/K along the edge of the square pore, whereas the electrical resistivity values are 7.5 × 10-3 Ω·cm and 1.9 × 10-3 Ω·cm, respectively. Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon. Based on the boron and phosphorus doped samples, a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect. When a proper current passes through the device, the Peltier effect is evidently observed. Based on the experimental data and the theoretical calculation, the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K), respectively.

  19. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik;

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...

  20. Hydrodynamics of the Developing Region in Hydrophobic Microchannels: A Dissipative Particle Dynamics Study

    CERN Document Server

    Ranjith, S Kumar; Vedantam, Srikanth

    2012-01-01

    Dissipative Particle Dynamics (DPD) is becoming a popular particle based method to study flow through microchannels due to the ease with which the presence of biological cells or DNA chains can be modeled. Many Lab-On-Chip (LOC) devices require the ability to manipulate the transport of cells or DNA chains in the fluid flow. Microchannel surfaces coated with combinations of hydrophilic and hydrophobic materials have been found useful for this purpose. In this work, we have numerically studied the hydrodynamics of a steady nonuniform developing flow between two infinite parallel plates with hydrophilic and hydrophobic surfaces using DPD for the first time. The hydrophobic and hydrophilic surfaces were modeled using partial-slip and no-slip boundary conditions respectively in the simulations. We also propose a new method to model the inflow and outflow boundaries for the DPD simulations. The simulation results of the developing flow match analytical solutions from continuum theory for no-slip and partial-slip s...

  1. Heat and mass transfer in a square microchannel with asymmetric heating

    NARCIS (Netherlands)

    Male, van P.; Croon, de M.H.J.M.; Tiggelaar, R.M.; Berg, van den A.; Schouten, J.C.

    2004-01-01

    This paper describes the heat and mass transfer in a square microchannel that is heated from one side. This microchannel represents a reaction channel in a microreactor that is used to study the kinetics of the catalytic partial oxidation of methane. The microchannel is contained in a silicon wafer

  2. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds.

    Science.gov (United States)

    Lim, Hyungjun; Ryu, Jihyeong; Kim, Geehong; Choi, Kee-Bong; Lee, Sunghwi; Lee, Jaejong

    2013-08-21

    We present a process based on nanoimprint lithography for the fabrication of a microchannel mold having nanopatterns formed at the bottoms of its microchannels. A focused laser beam selectively cures the resist in the micrometer scale during nanoimprint lithography. Nanopatterns within the microchannels may be used to control microfluidic behavior.

  3. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    CERN Document Server

    Wang, Ruijie; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. For channels of planar surfaces, simulations are performed in a wide range of Knudsen number and our numerical results show good agreement with the literature results. For channels of ratchet surfaces, simulations are performed for both the slip and transition regimes and our numerical results not only confirm the theoretical prediction [Phys. Rev. Lett. 107, 164502 (2011)] for Knudsen number in the slip regime but also show that the off-diagonal kinetic coefficients for cross coupling effects are maximized at a Knudsen n...

  4. Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices.

    Science.gov (United States)

    Hiratsuka, Atsunori; Muguruma, Hitoshi; Lee, Kyong-Hoon; Karube, Isao

    2004-07-15

    A polymeric bio micro electromechanical systems (BioMEMS) device was fabricated using organic plasma polymerization, by which the surface of a polymeric substrate could easily be modified through vapor-phase deposition of organic thin films. This technique, capable of polymeric deposition of any kind of monomer, can serve the purpose of anti-fouling coating, wettability control, or layer-to-layer interface creation, on the surface of any given chemically-inert polymeric substrate without involving cumbersome surface organic reactions. A prototype device was fabricated to have an array of electrochemical glucose biosensors with the three electrode configuration, each of which has a microfluidic channel (500 microm x 800 microm) for capillary-action-driven sample delivery and the concerned enzymatic reaction. Stressing the advantages of the plasma polymerization process using a polymeric substrate together with some additional features accomplished in our device fabrication, new possibilities in the field of polymeric BioMEMS are discussed.

  5. NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Xu Jie; Gu Chuangang; Wang Tong

    2004-01-01

    The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, (σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient (σv affects the slip velocity greatly. The slip velocity increases with decreasing (σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.

  6. Detection of Aeromonas hydrophila Using Fiber Optic Microchannel Sensor

    Directory of Open Access Journals (Sweden)

    Samla Gauri

    2017-01-01

    Full Text Available This research focuses on the detection of Aeromonas hydrophila using fiber optic microchannel biosensor. Microchannel was fabricated by photolithography method. The fiber optic was chosen as signal transmitting medium and light absorption characteristic of different microorganisms was investigated for possible detection. Experimental results showed that Aeromonas hydrophila can be detected at the region of UV-Vis spectra between 352 nm and 354 nm which was comparable to measurement provided by UV spectrophotometer and also theoretical calculation by Beer-Lambert Absorption Law. The entire detection can be done in less than 10 minutes using a total volume of 3 μL only. This result promises good potential of this fiber optic microchannel sensor as a reliable, portable, and disposable sensor.

  7. Simulation of rarefied gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    王娴; 王秋旺; 陶文铨; 郑平

    2002-01-01

    Analysis and simulation of rarefied nitrogen gas flow and heat transfer were performed with the Knusden number ranging from 0.05 to 1.0, using the direct simulation of Monte Carlo (DSMC) method. The influences of the Kn number and the aspect ratio on the gas temperature and wall heat flux in the microchannels were studied parametrically. The total and local heat fluxes of the microchannel walls varying with the channel inlet velocities were also investigated in detail. It was found that the Kn number and the aspect ratio greatly influence the heat transfer performance of microchannels, and both the channel inlet and outlet have higher heat fluxes while the heat flux in the middle part of channels is very low. It is also found that the inlet free stream flow velocity has small affect on the wall total heat flux while it changes the distribution of local heat flux.

  8. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  9. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    Science.gov (United States)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction

  10. Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties

    Directory of Open Access Journals (Sweden)

    Chin-Yen Chou

    2016-12-01

    Full Text Available In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor made by mixing the treated AuNPs with N-isopropylacrylamide (NIPAAm solution and then applying UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using the ambient environment resistance test to measure the resistance, the lower critical solution temperature (LCST of AuNPs mixed with NIPAAm hydrogel was found to be 32 °C. In common metallic materials, the resistance increased during environmental temperature enhancement. In this study, at ambient temperatures higher than the LCST, the electrode resistance decreases linearly due to the shrinkage structure with AuNPs contacting the circuit electrode.

  11. Flow Vaporization of CO{sub 2} in Microchannel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Jostein

    2002-07-01

    Carbon dioxide is receiving renewed interest as an efficient and environmentally safe refrigerant in a number of applications, including mobile air conditioning and heat pump systems, and hot water heat pumps. Compact heat exchangers for CO{sub 2} systems are designed with small-diameter tubing. The purpose of this study is therefore to provide a better basis for understanding and predicting heat transfer and pressure drop during flow vaporization of CO{sub 2} in microchannels. The ''unusual'' properties of carbon dioxide give heat transfer and two-phase flow characteristics that are very different from those of conventional refrigerants. Examples of these differences are the much higher pressure, the resulting high vapour density, a very low surface tension, and a low liquid viscosity. High pressure and low surface tension has a major effect on nucleate boiling characteristics, and earlier test data have shown a clear dominance of nucleate boiling even at very high mass flux. Heat transfer tests were conducted in a rig using a flat, extruded aluminium microchannel tube of 540 mm length with 25 channels of 0.81 mm diameter. The horizontal test tube was heated by a water jacket in order to get representative boundary conditions for air-to-refrigerant heat transfer (''fluid heating''). Constant heat flux conditions do not simulate these boundary conditions well, and may give unrealistic behaviour especially in relation to dryout and post-dryout heat transfer. Systematic tests at constant heat flux with single-phase CO{sub 2} flow on the inside generated data that were used in the derivation of a model for water-side beat transfer coefficient. A regression based on these data gave a calibrated equation for water-side heat transfer on the form NuNu(Re,Pr). This equation was then used in later experiments to subtract water-side thermal resistance from the measured overall resistance (1/UA), thereby finding the internal heat

  12. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating.

    Science.gov (United States)

    Rivolo, Paola; Nisticò, Roberto; Barone, Fabrizio; Faga, Maria Giulia; Duraccio, Donatella; Martorana, Selanna; Ricciardi, Serena; Magnacca, Giuliana

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties.

  13. Distribution of Evaporating CO2 in Parallel Microchannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2008-01-01

    The impact on the heat exchanger performance due to maldistribution of evaporating CO2 in parallel channels is investigated numerically. A 1D steady state simulation model of a microchannel evaporator is built using correlations from the literature to calculate frictional pressure drop and heat...

  14. Conversion of Biomass Syngas to DME Using a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianli; Wang, Yong; Cao, Chunshe; Elliott, Douglas C.; Stevens, Don J.; White, James F.

    2005-03-01

    The capability of a microchannel reactor for direct synthesis of dimethylether (DME) from biomass syngas was explored. The reactor was operated in conjunction with a hybrid catalyst system consisting of methanol synthesis and dehydration catalysts, and the influence of reaction parameters on syngas conversion was investigated. The activities of different dehydration catalysts were compared under DME synthesis conditions. Reaction temperature and pressure exhibited similar positive effects on DME formation. A catalytic stability test of the hybrid catalyst system was performed for 880 hours, during which CO conversion only decreased from 88% to 81%. In the microchannel reactor, the catalyst deactivation rate appeared to be much slower than in a tubular fixed-bed reactor tested for comparison. Test results also indicated that the dehydration reaction rate and the water depletion rate via a water-gas-shift reaction should be compatible in order to achieve high selectivity to DME. Using the microchannel reactor, it was possible to achieve a space time yield almost three times higher than commercially demonstrated performance results. A side-by-side comparison indicated that the heat removal capability of the microchannel reactor was at least six times greater than that of a commercial slurry reactor under similar reaction conditions.

  15. Laser Doppler velocimetry in Microchannels using integrated optical waveguides.

    NARCIS (Netherlands)

    Pandraud, G.; van den Berg, Albert; Semenov, S.N.

    2000-01-01

    The possibility of laser Doppler velocimetry (LDV) in microchannels, where particles are suspended in a liquid, and where oscillating or evanescent guided coherent light wave is present, is examined theoretically. The conditions for the observation of the transverse and longitudinal collective phore

  16. Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation

    Science.gov (United States)

    Tonkovich, Anna Lee; Yang, Bin; Perry, Steven T.; Mazanec, Terry; Arora, Ravi; Daly, Francis P.; Long, Richard; Yuschak, Thomas D.; Neagle, Paul W.; Glass, Amanda

    2011-08-16

    Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.

  17. Measurement of Threshold Pressure Gradient of Microchannels by Static Method

    Institute of Scientific and Technical Information of China (English)

    SONG Fu-Quan; JIANG Ren-Jie; BIAN Shu-Li

    2007-01-01

    The development of oil fields and laboratory experiment present the threshold pressure gradient (TPG) of liquid flow in low permeability porous media, which is called the micro-size effect in porous media. Some micro-size effects in micro-electro-mechanism systems (MEMS) are not always in agreement with each other. We propose an experiment setup to measure the TPG of microchannels by static method in the microchannels with the diameter ranging from 20-320 μm. The results present the existence of TPG in microchannel, and show an effect that the TPG of microchannel increases with decreasing hydrodynamic diameter. The relation between TPG and diameter is in agreement with single-log normalization. Additionally, the influence of errors in the experiment shows the data of experiment are valid. Finally, the mechanism of micro-size effects is discussed by revealing the facial force between liquid and solid and theory of boundary liquid, but the explanation is still not good, and needs further study.

  18. Lattice Boltzmann simulations of droplet formation during microchannel emulsification

    NARCIS (Netherlands)

    Zwan, van der E.A.; Sman, van der R.G.M.; Schroën, C.G.P.H.; Boom, R.M.

    2009-01-01

    In this study, we compared microchannel droplet formation in a microfluidics device with a two phase lattice Boltzmann simulation. The droplet formation was found to be qualitatively described, with a slightly smaller droplet in the simulation. This was due to the finite thickness of the interface i

  19. Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model

    NARCIS (Netherlands)

    Dijke, van K.C.; Schroën, C.G.P.H.; Boom, R.M.

    2008-01-01

    Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found g

  20. Microchannels affect runoff and sediment yield from a shortgrass prairie

    Science.gov (United States)

    Runoff and sediment yield from rangelands are extremely important variables that affect productivity, but are difficult to quantify. Studies have been conducted to assess erosion on rangelands, but very little has been done to determine if microchannels (rills) affect runoff and sediment yield. Rain...

  1. CO2 dissolution in water using long serpentine microchannels

    OpenAIRE

    Cubaud, Thomas; Sauzade, Martin; SUN, RUOPENG

    2012-01-01

    The evolution of carbon dioxide bubbles dissolving in water is experimentally examined using long microchannels. We study the coupling between bubble hydrodynamics and dissolution in confined geometries. The gas impregnation process in liquid produces significant flow rearrangements. Depending on the initial volumetric liquid fraction, three operating regimes are identified, namely saturating, coalescing, and dissolving. The morphological and dynamical transition from segmented to dilute bubb...

  2. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    Keywords: Solar cell thermal tile, Micro-channel, Electrical efficiency, Thermal modeling. 1. ... than that of the PV modules is heated, while at the same time, the PV module ..... For a number of modified MCSCT tiles connected in series, the outlet ..... Group Technology, Neural Networks, and Non-traditional Optimization and.

  3. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  4. Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide

    Science.gov (United States)

    Wu, Shide; Su, Fangfang; Dong, Xiaodong; Ma, Chuang; Pang, Long; Peng, Donglai; Wang, Minghua; He, Linghao; Zhang, Zhihong

    2017-04-01

    A biosensor based on the plasma polyaniline (pPANI)-modified tin oxide and 3D reduced graphene oxide (SnO2@3D-rGO) nanocomposite was fabricated to detect glucose. The SnO2@3D-rGO nanocomposite was synthesized by simultaneously reducing 3D graphene oxide (3D-GO) and translating SnCl4 into SnO2, followed by pPANI modification. The content of amino groups in the SnO2@3D-rGO@pPANI nanocomposites depended on the plasma input powers used in plasma deposition. The SnO2@3D-rGO nanocomposite was important in the electrochemical biosensor to detect glucose. The fabricated biosensor exhibited a much higher sensitivity than that formed from individual components, namely, SnO2@3D-rGO and pPANI. This biosensor demonstrated a low detection limit of 0.047 ng mL-1 (0.26 nM) (S/N = 3) within the concentration range of 0.1 ng mL-1 to 5 μg mL-1. The selectivity, stability, and practicality of the SnO2@3D-rGO@pPANI-based biosensor were observed. In conclusion, the plasma surface-modified nanocomposite is a promising candidate as biosensor for glucose detection and biological diagnosis.

  5. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    Science.gov (United States)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  6. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  7. Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Christoph Westerhausen

    2016-09-01

    Full Text Available Fifteen years ago, surface acoustic waves (SAW were found to be able to drive fluids and numerous applications in microfluidics have been developed since. Here, we review the progress made and report on new approaches in setting-up microfluidic, continuous flow acoustic mixing. In a microchannel, chaotic advection is achieved by generation of a SAW driven fluid jet perpendicular to the mean flow direction. Using a high speed video camera and particle image velocimetry, we measure the flow velocities and show that mixing is achieved in a particularly controllable and fast way. The mixing quality is determined as a function of system parameters: SAW power, volume flux and fluid viscosity. Exploring the parameter space of mixing provides a practical guide for acoustic mixing in microchannels and allows for adopting conditions to different solvents, as e.g., required for the generation of nanoscale particles from alcoholic phases. We exemplarily demonstrate the potential of SAW based continuous flow mixing for the production of therapeutic nucleic acid nanoparticles assembled from polymer and lipid solutions.

  8. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    Science.gov (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  9. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall

    Science.gov (United States)

    Patlazhan, Stanislav; Vagner, Sergei

    2017-07-01

    The peculiarities of simple shear flow of shear thinning fluids over a superhydrophobic wall consisting of a set of parallel gas-filled grooves and solid stripes (domains with slip and stick boundary conditions) are studied numerically. The Carreau-Yasuda model is used to provide further insight into the problem of the slip behavior of non-Newtonian fluids having a decreasing viscosity with a shear rate increase. This feature is demonstrated to cause a nonlinear velocity profile leading to the apparent slip. The corresponding transverse and longitudinal apparent slip lengths of a striped texture are found to be noticeably larger than the respective effective slip lengths of Newtonian liquids in microchannels of various thicknesses and surface fractions of the slip domains. The viscosity distribution of the shear thinning fluid over the superhydrophobic wall is carefully investigated to describe the mechanism of the apparent slip. Nonmonotonic behavior of the apparent slip length as a function of the applied shear rate is revealed. This important property of shear thinning fluids is considered to be sensitive to the steepness of the viscosity flow curve, thus providing a way to decrease considerably the flow resistance in microchannels.

  10. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.

    Science.gov (United States)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  11. Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders.

    Science.gov (United States)

    Hsu, Jyh-Ping; Ting, Chung-Chieh; Lee, Duu-Jong; Tseng, Shiojenn; Chen, Chur-Jen; Su, Ay

    2007-03-01

    The electrokinetic flow of an electrolyte solution through a microchannel that comprises a bundle of cylinders is investigated for the case of constant surface potential. The system under consideration is simulated by a unit cell model, and analytical expressions for the flow field and the corresponding residence time distribution under various conditions are derived. These results are readily applicable to the assessment of the performance of a microreactor such as that which comprises a bundle of optical fibers. Numerical simulations are conducted to investigate the influences of the key parameters, including the thickness of the double layer, the strength of the applied electric field, the magnitude of the applied pressure gradient, and the characteristic sizes of a microchannel, on the residence time distribution. We show that the following could result in a shorter residence time: thin double layer, strong applied electric field, large applied pressure gradient, and small number of cylinders. Based on the thickness of the double layer, criteria are proposed for whether the flow field can be treated as a laminar flow or as a plug flow, two basic limiting cases in reactor design.

  12. Dynamics of liquid bridges inside microchannels subject to pure oscillatory flows

    Science.gov (United States)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report on 2D simulations of liquid bridges' dynamics in microchannels of uniform wettability and subject to external oscillatory flows. The flow equations were solved using the Cahn-Hilliard diffuse-interface formulation and the finite element method with unstructured grid. It was found that regardless of the wettability properties of the microchannel walls, there is a critical frequency above which the bridge shows perpetual periodic oscillatory motion. Below that critical frequency, the liquid bridge ruptures when the channel walls are philic and detaches from the surface when they are phobic. This critical frequency depends on the viscosity ratio, oscillation amplitude and geometric aspect ratio of the bridge. It was also found that the flow velocity is out of phase with the footprint/throat lengths and that the latter two show a phase difference. These differences were explained in terms of the motion of the two contact lines on the substrates and the deformation of the fluid-fluid interfaces. To characterize the behavior of the liquid bridge, two quantitative parameters; the liquid bridge-solid interfacial length and the length of the throat of the liquid bridge were used. Variations of the interfacial morphology development of the bridge were analyzed to understand the bridge response.

  13. The selective flow of volatile organic compounds in conductive polymer-coated microchannels

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Hooshyar Zare, Ali

    2017-02-01

    Many gaseous markers of critical biological, physicochemical, or industrial occurrences are masked by the cross-sensitivity of the sensors to the other active components present at higher concentrations. Here, we report the strongly selective diffusion and drift of contaminant molecules in air-filled conductive polymer-coated microfluidic channels for the first time. Monitoring the passage of different target molecules through microchannels coated with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) revealed that contaminants such as hexane, benzene, and CO pass through the channel unaffected by the coating while methanol, ethanol, and partly acetone are blocked. The observations are explained with reference to the selective interactions between the conductive polymer surface and target gas molecules amplified by the large wall/volume ratio in microchannels. The accumulated quantitative data point at the hydrogen bonding as the mechanism of wall adsorption; dipole-dipole interactions are relatively insignificant. The presented model facilitates a better understanding of how the conductive polymer-based chemical sensors operate.

  14. Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process

    Science.gov (United States)

    Bigham, Sajjad; Moghaddam, Saeed

    2015-12-01

    For nearly two decades, the microchannel flow boiling heat transfer process has been the subject of numerous studies. A plethora of experimental studies have been conducted to decipher the underlying physics of the process, and different hypotheses have been presented to describe its microscopic details. Despite these efforts, the underlying assumptions of the existing hypothesis have remained largely unexamined. Here, using data at the microscopic level provided by a unique measurement approach, we deconstruct the boiling heat transfer process into a set of basic mechanisms and explain their role in the overall surface heat transfer. We then show how this knowledge allows to relate the bubble growth and flow dynamics to the surface heat flux.

  15. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.

    Science.gov (United States)

    Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p 316L and control groups in each test.

  16. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem; Denkbas, Emir Baki [Nanotechnology and Nanomedicine Division, The Institute For Graduate Studies in Science and Engineering, Hacettepe University, 06800, Ankara (Turkey); Mizrak, Alpay Koray [Institute of Materials Science and Nanotechnology, Bilkent University, UNAM, 06800, Ankara (Turkey); Aktuerk, Selcuk [Department of Physics, Mugla University, 48000 Koetekli, Mugla (Turkey); Kursaklioglu, Hurkan; Iyisoy, Atila [Department of Cardiology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey); Ifran, Ahmet, E-mail: denkbas@hacettepe.edu.t [Department of Hematology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey)

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  17. Responsive Plasma Polymerized Ultrathin Nanocomposite Films

    Science.gov (United States)

    2012-01-01

    al. Soft Matter 2008;4:1796e8. [2] Schmidt S, Motschman H, Hellweg T, von Klitzing R. Polymer 2008;49:749e56. [3] Julthongpiput D, Lin Y-H, Teng J...et al. Nat Mater 2010;9:101e13. [7] Xu W, Yin X, He G, Zhao J, Wang H. Soft Matter 2012;8:3105e11. [8] Luzinov I, Minko S, Tsukruk VV. Prog Polym Sci...Films 2006;515:2618e24. [35] Yagüe JL, Gleason KK. Soft Matter 2012;8:2890e4. [36] Cheng X, Canavan HE, Stein MJ, Hull JR, Kweskin SJ, Wagner MS, et al

  18. High gain micro-channel plate multipliers for particle tracking or single photo-electron counting

    Energy Technology Data Exchange (ETDEWEB)

    Oba, K.; Rehak, P.; Smith, S.D.

    1980-01-01

    Micro-channel plate multipliers have been used to detect the passage of relativistic charged particles. Measurements of the detection efficiency and pulse height response versus micro-channel plate gain are presented for one, two and three micro-channel plate arrays. Values describing temporal response and transit time jitter are also given. In a separate measurement, the response of a single micro-channel plate to individual slow electrons (less than or equal to 1 keV) was studied. By using a special technique output bunches as small as three electrons may be seen for low average micro-channel plate gain. The results of attempts to improve the micro-channel plate response are also presented.

  19. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  20. Electroviscous effect on fluid drag in a microchannel with large zeta potential.

    Science.gov (United States)

    Jing, Dalei; Bhushan, Bharat

    2015-01-01

    The electroviscous effect has been widely studied to investigate the effect of surface charge-induced electric double layers (EDL) on the pressure-driven flow in a micro/nano channel. EDL has been reported to reduce the velocity of fluid flow and increase the fluid drag. Nevertheless, the study on the combined effect of EDL with large zeta potential up to several hundred millivolts and surface charge depenedent-slip on the micro/nano flow is still needed. In this paper, the nonlinear Poisson-Boltzmann equation for electrical potential and ion distribution in non-overlapping EDL is first analytically solved. Then, the modified Navier-Stokes equation for the flow considering the effect of surface charge on the electrical conductivity of the electrolyte and slip length is analytically solved. This analysis is used to study the effect of non-overlapping EDL with large zeta potential on the pressure-driven flow in a microchannel with no-slip and charge-dependent slip conditions. The results show that the EDL leads to an increase in the fluid drag, but that slip can reduce the fluid drag. When the zeta potential is large enough, the electroviscous effect disappears for flow in the microchannel under a no-slip condition. However, the retardation of EDL on the flow and the enhancement of slip on the flow counteract each other under a slip condition. The underlying mechanisms of the effect of EDL with large zeta potential on fluid drag are the high net ionic concentration near the channel wall and the fast decay of electrical potential in the EDL when the zeta potential is large enough.

  1. Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model

    CERN Document Server

    Montenegro-Johnson, Thomas; Smith, David J

    2014-01-01

    Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments, and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warrants investigation. A numerical method is presented for the geometrically nonlinear elastohydrodynamic interaction of active swimmers with domain features. This method is employed to examine hydrodynamic scattering by a model microchannel backstep feature. Scattering is shown to depend on backstep height and the relative strength of viscous and elastic forces in the flagellum. In a 'high viscosity' parameter regime corresponding to human sperm in cervical mucus analogue, this hydrodynamic contribution to scattering is comparable in magnitude to recent data on contact effects, being of the order of 5-10 degrees. Scatter...

  2. Bifurcation behaviors of catalytic combustion in a micro-channel

    Institute of Scientific and Technical Information of China (English)

    Wen Zeng; Maozhao Xie; Hongan Maa; Wei Xua

    2008-01-01

    Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carried out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and the realdence time are used as bifurcation parameters. The influences of different parameters on ignition and extinction behavior are investigated. It is shown that all these parameters have great effects on the bifurcation behaviors of ignition and extinction in the short micro-channel. The effects of flow models on bifurcation behaviors of combustion are also analyzed. The results show that in comparison with the fiat velocity profile model, for the case of the laminar flow model, the temperatures of ignition and extinction of combustion ate higher and the unsteady multiple solution region is larger.

  3. Interface oscillation of subcooled flow boiling in locally heated microchannels

    Science.gov (United States)

    Liu, J. T.; Peng, X. F.

    2009-02-01

    An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

  4. Tracking rare-isotope beams with microchannel plates

    CERN Document Server

    Rogers, A M; Lynch, W G; Tsang, M B; Lee, J; Bazin, D; Coupland, D; Henzl, V; Henzlova, D; Kilburn, M; Wallace, M S; Youngs, M; Delaunay, F; Famiano, M; Shapira, D; Jones, K L; Schmitt, K T; Sun, Z Y

    2013-01-01

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is an adaptation of an assembly used for low-energy beams ($\\sim$1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon ${}^{56}$Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of $\\sim$1 mm for beam intensities up to $5\\times10^{5}$ pps.

  5. Hex-square moire patterns in imagers using microchannel plates

    Science.gov (United States)

    Lawrence, George M.

    1989-01-01

    In electronic imaging detectors using microchannel plates, the mismatch between the pixels on a square mesh and the microchannels on a hexagonal mesh produces moire image defects. Theoretical statistical estimates of the sizes of the microposition offsets and the flat field intensity errors are calculated, showing the trade-off between resolution and position accuracy. A distinction is made between moments of spot images and moments of the single-pixel-response functions. As the resolution between the hex and square meshes is improved, the detector resolution is improved, but at the expense of an about 10 percent moire pattern. These moire patterns will not be properly corrected by dividing by the flat field image.

  6. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Yashunin, D. A., E-mail: yashuninda@yandex.ru [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation); Malkov, Yu. A. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Mochalov, L. A.; Stepanov, A. N. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation)

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  7. Neural signal registration and analysis of axons grown in microchannels

    Science.gov (United States)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  8. Influence of Transverse Magnetic Field on Microchannel Heat Sink Performance

    Directory of Open Access Journals (Sweden)

    K. Narrein

    2016-01-01

    Full Text Available The aim of the present numerical investigation is to analyze the effects of transverse magnetic field on heat transfer and fluid flow characteristics in a rectangular microchannel heat sink (MCHS. The effects of Hartmann number, channel aspect ratio, total channel height and total channel width on heat transfer and fluid flow characteristics are widely investigated. The governing equations for three-dimensional steady, laminar flow and conjugate heat transfer of a microchannel are solved using the finite volume method. The obtained results are discussed with various combinations of pertinent parameters involved in the study. The results reveal that magnetic field can enhance the thermal performance of the MCHS but it is accompanied with a slight increase in pressure drop.

  9. Single-phase convective heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A comprehensive review is conducted on the investigations of the forced single-phase convective heat transfer in non-circular microchannels. The observations and results available in the open literature are inspected and compared for better understanding of the physical nature of the heat transfer performance and providing some lines of future research. There seems to be no unequivocal agreement in the understanding on the relative phenomena and the determination of the heat transfer coefficients in microchannels. The study on the interfacial phenomena and interaction at the interface will be the frontier in this area. Appropriate data reduction and the correlating parameters will be the cornerstone of comparability and evaluation for comprehensive investigations. The selection of correlating parameters will actually be the basis for the better understanding and description of new phenomena.

  10. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  11. The microchannel flow model under shear stress and higher frequencies.

    Science.gov (United States)

    Parker, Kevin J

    2017-02-24

    The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This short technical note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille's Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.

  12. The microchannel flow model under shear stress and higher frequencies

    Science.gov (United States)

    Parker, K. J.

    2017-04-01

    The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid-filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille’s Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.

  13. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  14. Low-dimensional modelling of flame dynamics in heated microchannels

    CERN Document Server

    Bianco, Federico; Legros, Guillaume

    2014-01-01

    This paper presents simulations of stoichiometric methane/air premixed flames into a microchannel at atmospheric pressure. These simulations result from numerical resolutions of reduced-order models. Indeed, combustion control into microchannels would be allowed by fast simulations that in turn enable real-time adjustments of the device's parameters. Former experimental studies reported the occurrence of a Flame Repetitive Extinction/Ignition (FREI) phenomenon provided that a temperature gradient is sustained at the channel's walls. Conducting unsteady one-dimensional simulations including complex chemistry, a late numerical study tried to explain the occurrence of this phenomenon. The present study therefore explores low-dimensional models that potentially reproduce the FREI phenomenon. Provided a calibration of some empirical constants, an unsteady two-dimensional model including one-step chemical reaction is shown to decently reproduce the FREI regime all along the range of mixture flow rates investigated ...

  15. Tumbling of asymmetric microrods in a microchannel flow

    CERN Document Server

    Einarsson, J; Laas, A; Ankardal, S; Angilella, J R; Hanstorp, D; Mehlig, B

    2016-01-01

    We describe results of measurements of the orientational motion of glass microrods in a microchannel flow, following the orientational motion of particles with different shapes. We determine how the orientational dynamics depends on the shape of the particle and on its initial orientation. We find that the dynamics depends so sensitively on the degree to which axisymmetry is broken that it is difficult to find particles that are sufficiently axisymmetric so that they exhibit periodic tumbling ("Jeffery orbits").

  16. A heat transfer model for slug flow boiling within microchannels

    Science.gov (United States)

    Magnini, Mirco; Thome, John

    2016-11-01

    We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.

  17. Design of microchannels for cryostabilization of high temperature superconducting magnets

    Science.gov (United States)

    Cha, Y. S.; Hull, J. R.; Niemann, R. C.

    Microchannel cooling using subcooled liquid nitrogen is proposed to cryogenically stabilize high-temperature superconducting magnets. Various design constraints and parameters are identified and summarized. A graphical method is proposed for the design of microchannel systems. This graphical method helps to reduce the amount of work towards achieving optimum design for a specific application because there are a large number of parameters involved in the design of a microchannel system. The proposed graphical method are illustrated by three examples. The results show that a design window may appear for a given application. Any point within this window is an acceptable design. Another advantage of the graphical method is that, by selecting a design point, the design margin against various design contrains can be easily identified. Any two of the design variables can be selected as the independent variables. The choice depends on specific application and, to a certain extent, on individual preference. The three examples revealed that, for high current density applications, the most scattering constraints are the coolant temperature rise and the fin tip temperatures provided that a moderate pressure drop can be tolerated.

  18. Capillary driven flow of polydimethylsiloxane in open rectangular microchannels.

    Science.gov (United States)

    Sowers, Timothy W; Sarkar, Rohit; Eswarappa Prameela, Suhas; Izadi, Ehsan; Rajagopalan, Jagannathan

    2016-06-29

    The flow of liquid polydimethylsiloxane (PDMS, Dow Corning Sylgard 184, 10 : 1 base to cross-linker ratio) in open, rectangular silicon microchannels, with and without a coating (100 nm) of poly-tetra-fluoro-ethylene (PTFE), was studied. Photolithographic patterning and etching of silicon wafers was used to create microchannels with a range of widths (∼5-50 μm) and depths (5-20 μm). Experimental PDMS flow rates in both PTFE-coated and uncoated channels were compared to an analytical model based on the work of Lucas and Washburn. The experimental flow rates matched the predicted flow rates reasonably well when the channel aspect ratio (width to depth), p, was less than 2. For channels with p > 2, the observed flow rates progressively lagged model predictions with increasing p. The experimental data, including zero flow rates in certain high aspect ratio PTFE-coated channels, can largely be explained by changes in the front and upper meniscus morphology of the flow as the channel aspect ratio is varied. The results strongly suggest that meniscus morphology needs to be taken into account to accurately model capillary flow in microchannels, especially those with large aspect ratios.

  19. Peroxide dental bleaching via laser microchannels and tooth color measurements

    Science.gov (United States)

    Altshuler, Gregory; Belikov, Andrey; Skrypnik, Alexei; Feldchtein, Felix; Pushkareva, Alexandra; Shatilova, Ksenia; Cernavin, Igor; Tuchin, Valery

    2016-12-01

    The aim of this study was to use microchannels drilled by an Er:YAG laser into a human tooth through the enamel into the dentin for direct injection of hydrogen peroxide (HP) to produce a minimally invasive, rapid, tooth bleaching effect. The experiments were conducted in vitro. Five microchannels with a diameter of ˜200 μm and a depth of ˜2 mm were drilled through the palatal side of a human tooth crown using the microbeam of an Er:YAG-laser with a wavelength of 2.94 μm. After injection of an aqueous solution of 31%-HP through the microchannels, the tooth color was evaluated using a VITA shade guide and International Commission on Illumination L*ab color parameters. A tooth model used for the evaluation of the distribution of HP concentration was created and the amount of HP which can be injected into tooth dentin to bleach it safely was estimated. Injection of 1.5±0.1 mm3 of 31%-HP into the tooth led to noticeable bleaching within 3 h and significant improvement of tooth color within 24 h.

  20. Autothermal hydrogen generation from methanol in a ceramic microchannel network

    Science.gov (United States)

    Moreno, Angela M.; Wilhite, Benjamin A.

    In this paper, the authors present the first demonstration of a new class of integrated ceramic microchannel reactors for all-in-one reforming of hydrocarbon fuels. The reactor concept employs precision-machined metal distributors capable of realizing complex flow distribution patterns with extruded ceramic microchannel networks for cost-effective thermal integration of multiple chemical processes. The presently reported reactor is comprised of five methanol steam reforming channels packed with CuO/γ-Al 2O 3, interspersed with four methanol combustion channels washcoated with Pt/γ-Al 2O 3, for autothermal hydrogen production (i.e., without external heating). Results demonstrate the capability of this new device for integrating combustion and steam reforming of methanol for autothermal production of hydrogen, owing to the axially self-insulating nature of distributor-packaged ceramic microchannels. In the absence of any external insulation, stable reforming of methanol to hydrogen at conversions >90% and hydrogen yields >70% was achieved at a maximum reactor temperature of 400 °C, while simultaneously maintaining a packaging temperature <50 °C.

  1. Ceramic Microchannel Development for Compact Fuel Processors of Hydrocarbon Fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel processing is a bridging technology for faster commercialization of fuel cell system under lack of hydrogen infrastructures. Argonne national laboratory has been developing fuel processing technologies for fuel cell based electric power. We have reported the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts, the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  2. Buckling delamination induced microchannel: Flow regulation in microfluidic devices

    Science.gov (United States)

    Kang, Jingtian; Wang, Changguo; Xue, Zhiming; Liu, Mengxiong; Tan, Huifeng

    2016-09-01

    The buckling delamination induced microchannel is employed to regulate fluid flow as a microvalve which can be utilized in microfluidic devices. This microvalve consists of a soft substrate and a stiff thin film, between which there is a pre-set small imperfection. Two critical strain values, namely, on-off strain and failure strain, have been proposed to determine the working strain interval using analytical predictions. Within this interval, the cross-sectional area of the microchannel can be controlled and predicted by different compressive strains of the film/substrate system. The fluid flow rate within this microchannel can be then estimated by both analytical and numerical simulations and adjusted to satisfy different values by alternating the compressive strain. In addition, a demonstrative experiment has been taken to verify the feasibility of this approach. This flexible microvalve has potential in the application where the use of traditional rigid microvalves is improper in flexible microfluidic devices. The method and approach of this paper can provide a general guide for flow rate control in microfluidic devices.

  3. Modulated iontophoretic delivery of small and large molecules through microchannels.

    Science.gov (United States)

    Kumar, Vijay; Banga, Ajay K

    2012-09-15

    The objective of this work was to modulate transdermal drug delivery by iontophoresis though skin microchannels created by microneedles. Calcein and human growth hormone were used as a model small and large molecule, respectively. In vitro permeation studies were performed on porcine ear skin under three different settings: (a) modulated iontophoresis alone, (b) pretreatment with microneedles and (c) combination of microneedles pretreatment and modulated iontophoresis. For modulated iontophoresis, 0.5 mA/cm(2) current was applied for 1h each at 2nd and 6th hour of the study. Methylene blue staining, calcein imaging and pore permeability index suggested maltose microneedles created uniform microchannels in skin. Application of iontophoresis provided two peaks in flux of 1.04 μg/(cm(2)h) at 4th hour and 2.09 μg/(cm(2)h) at 8th hour of study for calcein. These peaks in flux were significant higher when skin was pretreated with microneedles (piontophoresis. This combination also provided significant increase in cumulative amount of calcein and human growth hormone delivered as compared to microneedles or iontophoresis alone (piontophoresis can be used to modulate drug delivery across skin microchannels created by microneedles.

  4. Handcrafted multilayer PDMS microchannel scaffolds for peripheral nerve regeneration.

    Science.gov (United States)

    Hossain, Ridwan; Kim, Bongkyun; Pankratz, Rachel; Ajam, Ali; Park, Sungreol; Biswal, Sibani L; Choi, Yoonsu

    2015-12-01

    Injuries that result in the loss of limb functionality may be caused by the severing of the peripheral nerves within the affected limb. Several bioengineered peripheral nerve scaffolds have been developed in order to provide the physical support and topographical guidance necessary for the naturally disorganized axon outgrowth to reattach to distal nerve stumps as an alternative to other procedures, like nerve grafting. PDMS has been chosen for the base material of the scaffolds due to its biocompatibility, flexibility, transparency, and well-developed fabrication techniques. The process of observing the axon outgrowth across the nerve gaps with PDMS scaffolds has been challenging due to the limited number and fineness of longitudinal sections that can be extracted from harvested nerve tissue samples after implantation. To address this, multilayer microchannel scaffolds were developed with the object of providing more refined longitudinal observation of axon outgrowth by longitudinally 'sectioning' the device during fabrication, removing the need for much of the sample preparation process. This device was then implanted into the sciatic nerves of Lewis rats, and then harvested after two and four weeks to analyze the difference in nerve regeneration between two different time periods. The present layer by layer structure, which is separable after nerve regeneration and is treated as an individual layer during the histology process, provides the details of biological events during axonal regeneration. Confocal microscopic imaging showed the details of peripheral nerve regeneration including nerve branches and growth cones observable from within the microchannels of the multilayer PDMS microchannel scaffolds.

  5. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    Science.gov (United States)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  6. Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management

    Directory of Open Access Journals (Sweden)

    Wang Kang-Jia

    2016-01-01

    Full Text Available Microchannel cooling is a promising technology for solving the three-dimensional integrated circuit thermal problems. However, the relationship between the microchannel cooling parameters and thermal behavior of the three dimensional integrated circuit is complex and difficult to understand. In this paper, we perform a detailed evaluation of the influence of the microchannel structure and the parameters of the cooling liquid on steady-state temperature profiles. The results presented in this paper are expected to aid in the development of thermal design guidelines for three dimensional integrated circuit with microchannel cooling.

  7. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr

    2013-12-15

    This study examined the plasma surface modification of biomimetic hydroxyapatite (HAp) formed on a titanium (Ti) surface as well as its influence on the behavior of preosteoblast cells. Ti substrates pre-treated with a plasma-polymerized thin film rich in carboxyl groups were subjected to a biomimetic process in a simulated body fluid solution to synthesize the HAp. The HAp layer grown on Ti substrate was then coated with two types of plasma polymerized acrylic acid and allyl amine thin film. The different types of Ti substrates were characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy dispersive spectroscopy and X-ray diffraction. HAp with a Ca/P ratio from 1.25 to 1.38 was obtained on the Ti substrate and hydrophilic carboxyl (-COOH) and amine (-NH{sub 2}) functional groups were introduced to its surface. Scanning electron microscopy was used to observe the surface of the HAp coatings and the morphology of MC3T3-E1 cells. These results showed that the -COOH-modified HAp surfaces promoted the cell spreading synergistically by changing the surface morphology and chemical state.-NH{sub 2} modified HAp had the lowest cell spreading and proliferation compared to HAp and -COOH-modified HAp. These results correspond to fluorescein analysis, which showed many more cell spreading of COOH/HAp/Ti surface compared to HAp and NH{sub 2} modified HAp. A MTT assay was used to evaluate cell proliferation. The results showed that the proliferation of MC3T3-E1 cells increased in the order of COOH/HAp/Ti > HAp/Ti > NH{sub 2}/Ti > Ti, corresponding to the effect of cell spreading for 6 days. The change in morphology and the chemical surface properties of the biomaterial via plasma polymerization can affect the behavior of MC3T3-E1 cells.

  8. An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels

    Science.gov (United States)

    Xiong, Renqiang; Chung, J. N.

    2007-03-01

    Adiabatic gas-liquid flow patterns and void fractions in microchannels were experimentally investigated. Using nitrogen and water, experiments were conducted in rectangular microchannels with hydraulic diameters of 0.209mm, 0.412mm and 0.622mm, respectively. Gas and liquid superficial velocities were varied from 0.06-72.3m/s and 0.02-7.13m/s, respectively. The main objective is focused on the effects of microscale channel sizes on the flow regime map and void fraction. The instability of flow patterns was observed. Four groups of flow patterns including bubbly slug flow, slug-ring flow, dispersed-churn flow, and annular flow were observed in microchannels of 0.412mm and, 0.622mm. In the microchannel of 0.209mm, the bubbly slug flow became the slug flow and the dispersed-churn flow disappeared. The current flow regime maps showed the transition lines shifted to higher gas superficial velocity due to a dominant surface tension effect as the channel size was reduced. The regime maps presented by other authors for minichannels were found to not be applicable for microchannels. Time-averaged void fractions were measured by analyzing 8000 high speed video images for each flow condition. The void fractions hold a nonlinear relationship with the homogeneous void fraction as opposed to the relatively linear trend for the minichannels. A new correlation was developed to predict the nonlinear relationship that fits most of the current experimental data and those of the 0.1mm diameter tube reported by Kawahara et al. [Int. J. Multiphase Flow 28, 1411 (2002)] within ±15%.

  9. Skeletal Muscle Regeneration on Protein-Grafted and Microchannel-Patterned Scaffold for Hypopharyngeal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Zhisen Shen

    2013-01-01

    Full Text Available In the field of tissue engineering, polymeric materials with high biocompatibility like polylactic acid and polyglycolic acid have been widely used for fabricating living constructs. For hypopharynx tissue engineering, skeletal muscle is one important functional part of the whole organ, which assembles the unidirectionally aligned myotubes. In this study, a polyurethane (PU scaffold with microchannel patterns was used to provide aligning guidance for the seeded human myoblasts. Due to the low hydrophilicity of PU, the scaffold was grafted with silk fibroin (PU-SF or gelatin (PU-Gel to improve its cell adhesion properties. Scaffolds were observed to degrade slowly over time, and their mechanical properties and hydrophilicities were improved through the surface grafting. Also, the myoblasts seeded on PU-SF had the higher proliferative rate and better differentiation compared with those on the control or PU-Gel. Our results demonstrate that polyurethane scaffolds seeded with myoblasts hold promise to guide hypopharynx muscle regeneration.

  10. Response of microchannel plates to single particles and to electromagnetic showers

    CERN Document Server

    Brianza, L; Del Re, D; Gelli, S; Ghezzi, A; Gotti, C; Govoni, P; Jorda, C; Martelli, A; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Pigazzini, S; Rahatlou, S; Rovelli, C; Santanastasio, F; de Fatis, T Tabarelli; Trevisani, N; [,; Bicocca, Università di Milano; INFN,; di Milano-Bicocca, Sezione; di Roma, Sapienza - Università; ], Sezione di Roma1

    2015-01-01

    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.

  11. Silicon Wafer Fabrication and Microchannel for Cooling System in ALICE ITS

    CERN Document Server

    Pasuwan, Patrawan

    2013-01-01

    My summer student project covered details of the upgrade of Inner Tracking System (ITS) of the ALICE detector. The tasks are divided in two parts. First was on silicon wafer dicing technology and its resistivity under the supervision of Petra Riedler. Next was on silicon wafer microfabrication and cooling system in microchannel under the supervision of Andrea Francescon. ITS upgrade was proposed for better detection performance and reduction of budget. Detectors in the ITS are composed of monolithic silicon pixel chips. The thickness of the chips was proposed to be 50 μm so that particles that pass through them do not lose too much momentum. Working with very thin chips requires suitable dicing technology. Sum- mary of dicing technology is proposed for the most suitable dicing technique. Properties of the chip can be denoted by observing its resistivity. Literature reviews on surface resistivity profile measurement is represented for consideration. Cooling system is very important for the detector. Fluid t...

  12. Response of microchannel plates to single particles and to electromagnetic showers

    Energy Technology Data Exchange (ETDEWEB)

    Brianza, L. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Cavallari, F.; Del Re, D.; Gelli, S. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Ghezzi, A.; Gotti, C.; Govoni, P. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Jorda Lopez, C. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Martelli, A.; Marzocchi, B. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Meridiani, P.; Organtini, G.; Paramatti, R.; Pernié, L. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Pigazzini, S. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Rahatlou, S.; Rovelli, C.; Santanastasio, F. [Sapienza Università di Roma and INFN, Sezione di Roma 1, P.le A. Moro 1, I-00044 Rome (Italy); Tabarelli de Fatis, T., E-mail: tommaso.tabarelli@mib.infn.it [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Trevisani, N. [Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy)

    2015-10-11

    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.

  13. Effects of improved microchannel structures on the separation characteristics of microchip capillary electrophoresis

    CERN Document Server

    Utsumi, Y; Ozaki, M; Terabe, S

    2003-01-01

    We fabricated the electrophoresis microchips using the UV polymerization technique. We employed plastic substrates that were suitable for rapid prototyping instead of glass and quartz. A thick UV negative photo resist was used to form molds and poly-dimethylsilozane (PDMS) was polymerized by a thermal curing process on the mold to obtain replica microchips. Electroosmotic flow (EOF) was measured to evaluate the surface. Rhodamine B and sulforhodamine B are successfully separated using the microchip. Characteristic differences between UV-fabricated and SR-fabricated microchips were evaluated by EOF measurement. It was observed that accurately defined microchannels fabricated by synchrotron radiation (SR) lithography show constant peak heights and FWHMs. Thus the advantage of the application of SR lithography to the mold fabrication is also demonstrated. (author)

  14. Experimental investigation of flow and heat transfer characteristics of R-134a in microchannels

    Science.gov (United States)

    Hegab, Hisham E.; Bari, Abdullahel; Ameel, Timothy A.

    2001-09-01

    Fluid flow and heat transfer characteristics of single-phase flows in microchannels for refrigerant R-134a were experimentally investigated. Experiments were conducted using rectangular channels micro-milled in aluminum with hydraulic diameters ranging from approximately 112-mm to 210-mm and aspect ratios that varied from 1.0 to 1.5. Using overall temperature, flow rate, and pressure drop measurements, friction factors and convective heat transfer coefficients were experimentally determined for steady flow conditions. Reynolds number, relative roughness, and channel aspect ratio were the parameters examined in predicting friction factor and Nusselt number for the experiments. Experiment results indicated transition from laminar to turbulent flow occurred between a Reynolds number of 2,000-4,000. Friction factor results were consistently lower than values predicted by macroscale correlations. Nusselt number results indicated channel size may suppress turbulent convective heat transfer. Results also indicate that surface roughness may affect heat transfer characteristics in the turbulent regime.

  15. Skeletal muscle regeneration on protein-grafted and microchannel-patterned scaffold for hypopharyngeal tissue engineering.

    Science.gov (United States)

    Shen, Zhisen; Guo, Shanshan; Ye, Dong; Chen, Jingjing; Kang, Cheng; Qiu, Shejie; Lu, Dakai; Li, Qun; Xu, Kunjie; Lv, Jingjing; Zhu, Yabin

    2013-01-01

    In the field of tissue engineering, polymeric materials with high biocompatibility like polylactic acid and polyglycolic acid have been widely used for fabricating living constructs. For hypopharynx tissue engineering, skeletal muscle is one important functional part of the whole organ, which assembles the unidirectionally aligned myotubes. In this study, a polyurethane (PU) scaffold with microchannel patterns was used to provide aligning guidance for the seeded human myoblasts. Due to the low hydrophilicity of PU, the scaffold was grafted with silk fibroin (PU-SF) or gelatin (PU-Gel) to improve its cell adhesion properties. Scaffolds were observed to degrade slowly over time, and their mechanical properties and hydrophilicities were improved through the surface grafting. Also, the myoblasts seeded on PU-SF had the higher proliferative rate and better differentiation compared with those on the control or PU-Gel. Our results demonstrate that polyurethane scaffolds seeded with myoblasts hold promise to guide hypopharynx muscle regeneration.

  16. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method.

    Science.gov (United States)

    Dorari, Elaheh; Saffar-Avval, Majid; Mansoori, Zohreh

    2015-12-01

    In microfluidics, two important factors responsible for the differences between the characteristics of the flow and heat transfer in microchannels and conventional channels are rarefaction and surface roughness which are studied in the present work. An incompressible gas flow in a microchannel is simulated two dimensionally using the lattice Boltzmann method. The flow is in the slip regime and surface roughness is modeled by both regular and Gaussian random distribution of rectangular modules. The effects of relative surface roughness height and Knudsen number on gaseous flow and heat transfer are studied. It was shown that as the relative roughness height increases, the Poiseuille number increases and the Nusselt number has a decreasing or increasing trend, depending on the degree of rarefaction. A comparison between the flow and heat transfer characteristics in regular and random distribution of surface roughness demonstrates that in regular roughness, circular flows are more pronounced; Poiseuille number is higher and Nusselt number is lower than that of its equivalent random roughness.

  17. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.

    Science.gov (United States)

    Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L

    2015-03-26

    Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.

  18. Argon/Hexamethyldisiloxane Plasma Effects on Poly Propylene Film Surface Properties

    Science.gov (United States)

    Mortazavi, S. H.; Ghoranneviss, M.; Sari, A. H.

    2010-10-01

    In this work a DC plasma reactor was used for deposition of plasma polymerized coating from hexamethyldisiloxane-Ar (35/65%) mixture on polypropylene films. Surface energy parameter have been calculated using Owens-Wendt approaches with the sessile drop method are used to obtain the dispersive γD and polar γP component of surface free energy. The surface morphology of samples were investigated using scanning electron microscope. Also the chemical properties and wetability of prepared samples were tested using Fourier transform infrared spectroscopy and contact angle measurement, respectively.

  19. Competitive Protein Adsorption of Albumin and Immunoglobulin G from Human Serum onto Polymer Surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2010-01-01

    Competitive protein adsorption from human serum onto unmodified polyethylene terephthalate (PET) surfaces and plasma-polymerized PET surfaces, using the monomer diethylene glycol vinyl ether (DEGVE), has been investigated using radioactive labeling. Albumin and immunoglobulin G (IgG) labeled...... with two different iodine isotopes have been added to human serum solutions of different concentrations, and adsorption has been performed using adsorption times from approximately 5 s to 24 h. DEGVE surfaces showed indications of being nonfouling regarding albumin and IgG adsorption during competitive...

  20. Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow

    Science.gov (United States)

    Natrajan, V. K.; Christensen, K. T.

    2010-11-01

    The convective heat transfer behavior of laminar flow through a smooth- and two rough-wall microchannels is investigated by performing non-intrusive and spatially resolved measurements of fluid temperature via two-color fluorescent thermometry under constant heat flux conditions at three of the four microchannel walls. Pressure-drop measurements reveal that the apparent friction factors for all surfaces agree well with established macroscale predictions for laminar flow through rectangular ducts with the onset of transition at Re > Recr = 1,800 for smooth-wall flow and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nu for smooth-wall flow agrees well with macroscale predictions in both the thermally developing and developed regimes. With increasing roughness, while an enhancement in local Nu is noted for flow in the thermally developing regime, no measurable influence is noted upon attainment of a thermally developed state. These observations are supported by the examination of temperature profiles across the microchannel at various axial positions and Re, which suggest that the thermal boundary layer may be regenerated locally by roughness in the thermal entrance region of the flow resulting in an increased axial distance (compared to smooth-wall behavior) at which thermally developed flow is attained in the presence of roughness. Finally, estimates of the bulk Nu indicate enhancement in convective heat transfer over the smooth-wall case for laminar flow at higher Re while the smooth-wall bulk Nu data are found to agree well with macroscale predictions.

  1. Numerical Investigation of Liquid Flow through Micro-channels with Post Patterned Super-hydrophobic Walls

    Science.gov (United States)

    Amin, A.; Maynes, D.; Webb, B. W.

    2009-11-01

    We numerically investigate the effect of post patterned super-hydrophobic surfaces on the drag reduction for laminar liquid flow through micro-channels. Hydrophobic surfaces exhibiting micro-scale structures can significantly reduce the liquid-solid contact area resulting in reduced surface friction. The effects of cavity fraction (the ratio of cavity area to total surface area) and relative module width (ratio of post/cavity repeating length to channel hydraulic diameter) on the slip-length and on the Darcy friction factor-Reynolds number product, fRe, were explored numerically for the post structured hydrophobic walls. The cavity fraction and relative module width vary from 0.5 to 0.9998 and from 0.01 to 1.5, respectively. In general, as both cavity fraction and relative module width increase fRe decreases. The present results are compared with those for surfaces exhibiting rib/cavity patterns that are parallel and perpendicular to the flow direction. At high cavity fractions the post/cavity structuring produces larger slip-length and greater reduction in fRe than either parallel or perpendicular rib/cavity structures. The results are also compared with scaling laws previously published in the literature.

  2. High Flux Microchannel Receiver Development with Adap-tive Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States)

    2015-08-15

    This project is focused on the demonstration of a microchannel-based solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost.

  3. Optimization of the thermal performance of multi-layer silicon microchannel heat sinks

    Directory of Open Access Journals (Sweden)

    Xu Shanglong

    2016-01-01

    Full Text Available The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm×20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.

  4. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O; McPhate, J; Tremsin, Anton S; Vallerga, J V; Ertley, C D; Richner, N J; Gerard, T M; Frisch, H.; Elam, Jeffrey W.; Mane, Anil U.; Wagner, Robert G.; Minot, Michael J.; O' Mahony, Aileen O; Craven, C A

    2015-07-01

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 mu m and 10 mu m pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.

  5. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O.H.W., E-mail: ossy@ssl.berkeley.edu [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Tremsin, A.S.; Vallerga, J.V.; Ertley, C.D.; Richner, N.J.; Gerard, T.M. [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Frisch, H.J. [University of Chicago, 5640 S. Ellis Ave., Chicago, Il 60637 (United States); Elam, J.W.; Mane, A.U.; Wagner, R.G. [Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Il 60439 (United States); Minot, M.J.; O' Mahony, A.; Craven, C.A. [Incom Inc., 294 Southbridge Road, Charlton, MA, 01507 (United States)

    2015-07-01

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 µm and 10 µm pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.

  6. Microchannel refill: a new method for fabricating 2D nanochannels in polymer substrates.

    Science.gov (United States)

    Li, Jing-min; Liu, Chong; Ke, Xue; Xu, Zheng; Duan, Ya-jie; Fan, Yan; Li, Meng; Zhang, Kai-ping; Wang, Li-ding

    2012-10-21

    In this paper, we present a new approach that is capable of fabricating nanochannels in a poly(methyl methacrylate) (PMMA) substrate. This method, which we call microchannel refill (MR), utilizes the refilling of glassy thermoplastics under thermal compression to reduce a microscopic channel to a nanochannel. It only has two main steps. First, a microchannel is fabricated in a PMMA substrate using normal hot embossing. Second, the microchannel is compressed under a certain temperature and pressure to obtain a nanochannel. We show that a nanochannel with a width as small as 132 nm (with a depth of 85 nm) can be easily produced by choosing the appropriate compression temperature, compression pressure, original microchannel width and original microchannel aspect ratio. Compared with most current nanochannel fabrication methods, MR is a quick, simple and cost-effective way to produce nanochannels in polymer substrates.

  7. Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process

    Institute of Scientific and Technical Information of China (English)

    潘敏强; 李金恒; 汤勇

    2008-01-01

    A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.

  8. Cell Trapping Utilizing Insulator-based Dielectrophoresis in The Open-Top Microchannels

    CERN Document Server

    Jen, Chun-Ping; Chen, Teng-Wen

    2008-01-01

    The ability to manipulate or separate a biological small particle, such as a living cell and embryo, is fundamental needed to many biological and medical applications. The insulator-based dielectrophoresis (iDEP) trapping is composed of conductless tetragon structures in micro-chip. In this study, a lower conductive material of photoresist was adopted as a structure in open-top microchannel instead of a metallic wire to squeeze the electric field in a conducting solution, therefore, creating a high field gradient with a local maximum. The microchip with the open-top microchannels was designed and fabricated herein. The insulator-based DEP trapping microchip with the open-top microchannels was designed and fabricated in this work. The cells trapped by DEP force could be further treated or cultured in the open-top microchannel ; however, those trapped in the microchip with enclosed microchannels could not be proceeded easily.

  9. CTO recanalization by intraocclusion injection of contrast: the microchannel technique.

    Science.gov (United States)

    Carlino, Mauro; Latib, Azeem; Godino, Cosmo; Cosgrave, John; Colombo, Antonio

    2008-01-01

    To assess the utilization of microinjection of contrast for the recanalization of chronic total occlusions (CTO). Microchannels in CTOs have been considered important conduits for CTO crossing, utilizing dedicated guidewires. We postulated that microinjection of contrast immediately distal to the proximal cap of the CTO could identify and enlarge these microvessels, creating a passage for crossing the CTO with a floppy guidewire. A total of 32 patients with a CTO were treated with this technique. Following few millimetres penetration of the proximal fibrous cap of the occlusion with a dedicated CTO guidewire, the over-the-wire balloon was advanced into the proximal portion of the occlusion, and 50-100 microg of nitroglycerine followed by 1 ml of contrast was gently injected into the occluded segment. Technical success of the microchannel technique was defined as the ability to visualize the distal true lumen with microinjection of contrast and thereafter cross the CTO with a floppy guidewire in the absence of any dissection. Overall, technical success of the microchannel technique was obtained in 20 (63%) with angiographic success in 19. In 12 (37%) cases there was a technical failure because of dissection, and we obtained recanalization of the artery in 7 of these 12 cases with another technique. There was only one case of periprocedural myocardial infarction in an unsuccessful procedure and no major adverse cardiac events or subacute stent thromboses were observed. Microinjection of contrast immediately distal to the proximal fibrous cap of a CTO may be an additional technique to facilitate recanalization of CTO. Copyright 2008 Wiley-Liss, Inc.

  10. Filter-matrix lattice Boltzmann model for microchannel gas flows.

    Science.gov (United States)

    Zhuo, Congshan; Zhong, Chengwen

    2013-11-01

    The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.

  11. Propagation Behaviors of an Acid Wavefront Through a Microchannel Junction.

    Science.gov (United States)

    Nabika, Hideki; Hasegawa, Takahiko; Unoura, Kei

    2015-07-30

    Waves in reaction-diffusion systems yield a wealth of dynamic self-assembling phenomena in nature. Recent studies have been devoted to utilizing these active waves in conjunction with microscale technology. To provide a compass for controlling reaction-diffusion waves in microspaces, we have investigated the propagation behavior of one specific variety of the reaction-diffusion wave: an acid wave that utilizes an autocatalytic proton-production reaction. Furthermore, the acid wave that we have investigated occurs in a microchannel with a junction connecting circular and straight regions. The obtained results were compared with a neutralization wave that involves only a neutralization reaction. The acid wave was ignited by the addition of the appropriate amount of H2SO4 into the circular region that was filled with a substrate solution, where proton-consuming and proton-producing reactions followed a rapid neutralization reaction. At this stage, the wave penetrated and propagated into the channel region. Comparison between the acid and the neutralization waves clarified that the acid wave required a minimum threshold of H2SO4 concentration in order to be ignited and that the propagation of the acid wave was temporarily delayed because of the presence of intermediate chemical reaction steps. Furthermore, the propagation dynamics was found to be tuned through the configuration of the microchannel. The importance of microchannel configuration, especially for systems with a junction connecting different shapes, is discussed in terms of Fick's law and in terms of the proton flux from the circular to the straight regions.

  12. Inertial migration of deformable droplets in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaodong; Xue, Chundong; Hu, Guoqing, E-mail: guoqing.hu@imech.ac.cn, E-mail: sunjs@nanoctr.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Li [Research and Development Center, Synfuels China Technology Co., Ltd., Beijing 101407 (China); Jiang, Xingyu; Sun, Jiashu, E-mail: guoqing.hu@imech.ac.cn, E-mail: sunjs@nanoctr.cn [Beijing Engineering Research Center for BioNanotechnology and Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2014-11-15

    The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In

  13. Direct Measurement of Particle Inertial Migration in Rectangular Microchannels

    CERN Document Server

    Hood, Kaitlyn; Di Carlo, Dino; Roper, Marcus

    2015-01-01

    Particles traveling at high velocities through microfluidic channels migrate across streamlines due to inertial lift forces. There are contradictory theories predicting how the inertial lift force depends on flow parameters, but little experimental evidence by which to validate theory. Here we directly measure particle migration velocities and show agreement with numerical simulations and a two-term asymptotic theory that contains no unmeasured parameters. Our data also highlight the previously unconsidered effect of migration forces that act on particles before they enter the microchannel.

  14. Dead-time effects in microchannel-plate imaging detectors

    Science.gov (United States)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  15. Characteristics and applications of advanced technology microchannel plates

    Science.gov (United States)

    Horton, Jerry R.; Tasker, G. William; Fijol, John J.

    1990-10-01

    A method for fabrication of novel thin-filrn continuous dynode electron multipliers is described. We have shown the feasibility of crucial manufacturing steps, including anisotropic dry etching of substrates into photolithographically-defined arrays of high-aspect-ratio channels, and the formation of thin-film continuous dynodes by chemical vapor deposition. We discuss potential performance and design advantages of this advanced technology microchannel plate (AT-MCP) over the conven tional reduced lead silicate glass inicrochannel plate (RLSG-'MCP) and implications for new applications.

  16. Angular Sensitivity of Gated Micro-Channel Plate Framing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Lobban, A; Tutt, T; Bell, P M; Costa, R; Ze, F

    2000-07-24

    Gated, microchannel-plate-based (MCP) framing cameras have been deployed worldwide for 0.2 - 9 keV x-ray imaging and spectroscopy of transient plasma phenomena. For a variety of spectroscopic and imaging applications, the angular sensitivity of MCPs must be known for correctly interpreting the data. We present systematic measurements of angular sensitivity at discrete relevant photon energies and arbitrary MCP gain. The results can been accurately predicted by using a simple 2D approximation to the 3D MCP geometry and by averaging over all possible photon ray paths.

  17. Microchannel laminated mass exchanger and method of making

    Science.gov (United States)

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  18. Analytical heat and fluid flow in microchannels and microsystems

    CERN Document Server

    Cotta, Renato M; Naveira-Cotta, Carolina P

    2016-01-01

    This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.

  19. Computational technology of multiscale modeling the gas flows in microchannels

    Science.gov (United States)

    Podryga, V. O.

    2016-11-01

    The work is devoted to modeling the gas mixture flows in engineering microchannels under conditions of many scales of computational domain. The computational technology of using the multiscale approach combining macro - and microscopic models is presented. At macrolevel the nature of the flow and the external influence on it are considered. As a model the system of quasigasdynamic equations is selected. At microlevel the correction of gasdynamic parameters and the determination of boundary conditions are made. As a numerical model the Newton's equations and the molecular dynamics method are selected. Different algorithm types used for implementation of multiscale modeling are considered. The results of the model problems for separate stages are given.

  20. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Yuschak, Thomas; LaPlante, Timothy J.; Rankin, Scott; Perry, Steven T.; Fitzgerald, Sean Patrick; Simmons, Wayne W.; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  1. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    Science.gov (United States)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small

  2. Application of Plasma Polymerization on Surface Modification of Nanomaterials%等离子体表面有机聚合在纳米材料改性中的应用

    Institute of Scientific and Technical Information of China (English)

    王宏; 黄传军; 李来风

    2010-01-01

    等离子体聚合材料表面改性则是一种赋予基材表面以新的功能的处理技术,本文概述了等离子体聚合表面改性在生物医药、微电子信息、陶瓷及物理学中的应用.

  3. Surface Modification of Low Density Polyethylene Film with Acrylic Acid Plasma Polymerization%丙烯酸等离子体聚合对LDPE薄膜的表面改性

    Institute of Scientific and Technical Information of China (English)

    解林坤; 杜官本; 代沁伶; 柴希娟

    2016-01-01

    为了改变低密度聚乙烯(LDPE)薄膜表面固有的惰性及疏水性,赋予其表面“永久”的亲水性能.以丙烯酸为单体,采用射频辉光放电等离子体聚合的方法对其进行了表面修饰,并用XPS、FTIR-ATR和SEM对改性前后薄膜的表面性能进行了分析.结果表明:聚合处理后薄膜表面O元素的含量明显增加,形成了C-O、C=O、COOH等含氧极性官能团,薄膜表面出现了大小不同的颗粒状丙烯酸聚合物.

  4. Surface Encapsulation of Ceramic Powders by Low Temperature Plasma Polymerization%低温等离子体聚合对超细陶瓷粉体的表面改性

    Institute of Scientific and Technical Information of China (English)

    颜鲁婷; 司文捷; 苗赫濯; 熊韬; 何威; 郭志刚; 蒲以康

    2004-01-01

    利用低温等离子体聚合的方法在超细ZrO2及SiC粉体表面聚合了聚乙烯、聚苯乙烯以及聚甲基丙烯酸甲酯等不同的聚合物层.透射电镜(TEM)、热重(TGA)及漫反射红外光谱的结果表明3 nm~8 nm厚的聚合物膜存在于超细陶瓷粉体的表面.经低温等离子体聚合处理过的ZrO2粉体在有机载体中的分散性显著提高.液体石蜡体系中,经低温等离子体聚合处理过的ZrO2粉体体系的粘度要远远小于未处理的ZrO2粉体体系.

  5. Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules.

    Science.gov (United States)

    Gai, Hongwei; Li, Ying; Silber-Li, Zhanhua; Ma, Yinfa; Lin, Bingcheng

    2005-04-01

    A laser-induced fluorescence imaging method was developed to simultaneously measure flow velocities in the middle and near wall of a channel with particles or single molecules, by selectively switching from the wide field excitation mode to the evanescent wave excitation mode. Fluorescent microbeads with a diameter of 175 nm were used to calibrate the system, and the collisions of microbeads with channel walls were directly observed. The 175 nm microbeads velocities in the main flow and at 275 nm from the bottom of the channel were measured. The measured velocities of particles or single molecules in two positions in a microchannel were consistent with the calculated value based on Poiseuille flow theory when the diameter of a microbead was considered. The errors caused by Brownian diffusion in our measurement were negligible compared to the flow velocity. Single lambda DNA molecules were then used as a flowing tracer to measure the velocities. The velocity can be obtained at a distance of 309.0 +/- 82.6 nm away from bottom surface of the channel. The technique may be potentially useful for studying molecular transportation both in the center and at the bottom of the channel, and interactions between molecules and microchannel surfaces. It is especially important that the technique can be permitted to measure both velocities in the same experiment to eliminate possible experimental inconsistencies.

  6. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  7. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  8. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  9. Laminar flow of micropolar fluid in rectangular microchannels

    Institute of Scientific and Technical Information of China (English)

    Shangjun Ye; Keqin Zhu; Wen Wang

    2006-01-01

    Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.

  10. Dynamics of droplet entrapment in a constricted microchannel

    Science.gov (United States)

    Nekouei, Mehdi; Bithi, Swastika; Vanapalli, Siva

    2016-11-01

    Droplet migration and clogging in confined geometries is a problem of fundamental importance in oil recovery and droplet microfluidics. A confined droplet flowing through a conduit can either be arrested at the constriction or squeeze through it. The dynamics of the trapped and squeezed states are expected to depend on capillary number, drop size, viscosity ratio. Although there have been a number of studies on the dynamics of droplets passing through a constriction, investigations of dynamics of trapped droplets in constricted microchannels is lacking. In this work, we performed three-dimensional simulations of droplet trapping and squeezing process in a constricted microchannel. We also conducted experiments to validate the key results of the simulations. We investigated the impact of different system parameters on the onset of droplet immobilization at the constriction. We found that the continuous phase flows through the corners of the droplet, i.e. gutter flows to play an important role in determining the transition between trapping and squeezing. Therefore we evaluated the effect of different system parameters on gutter flows and found that the hydrodynamic resistance of gutters depends on the viscosity, size and confinement of the droplet.

  11. Analysis of microchannel heat sink performance using nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Chein, Reiyu; Huang, Guanming [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402 (China)

    2005-12-01

    In this study, silicon microchannel heat sink performance using nanofluids as coolants was analyzed. The nanofluid was a mixture of pure water and nanoscale Cu particles with various volume fractions. The heat transfer and friction coefficients required in the analysis were based on theoretical models and experimental correlations. In the theoretical model, nanofluid was treated as a single-phase fluid. In the experimental correlation, thermal dispersion due to particle random motion was included. The microchannel heat sink performances for two specific geometries, one with W{sub ch}=W{sub fin}=100 {mu}m and L{sub ch}=300 {mu}m, the other with W{sub ch}=W{sub fin}=57 {mu}m and L{sub ch}=365 {mu}m, were examined. Because of the increased thermal conductivity and thermal dispersion effects, it was found that the performances were greatly improved for these two specific geometries when nanofluids were used as the coolants. In addition to heat transfer enhancement, the existence of nanoparticles in the fluid did not produce extra pressure drop because of small particle size and low particle volume fraction. (author)

  12. Tracking Submicron Particles in Microchannel Flow by Microscopic Holography

    Institute of Scientific and Technical Information of China (English)

    罗锐; 刘石

    2012-01-01

    Three-dimensional tracking of submicron particles in flows in a micro-channel was carried out using in-line holographic microscopy.A fixed single 0.5 μm fluorescent particle was identified and isolated from dust particles or overlapped particle pair using the laser induced fluorescent(LIF) method.Then in-line microscopic holograms of the fixed single particle were obtained at different positions on the optical axis,i.e.the defocus distances.The holograms of the single particle were used as the model templates with the known defocus distances.The particles in the in-line microscopic holograms of flow in the microchannel were then identified and located to obtain their two-dimensional positions.The defocus distances of those particles were determined by matching each hologram pattern to one of the model templates obtained in the single particle test.Finally the three-dimensional position and velocity of each particle were obtained.

  13. Thermal dependence of electrical characteristics of micromachined silica microchannel plates

    Science.gov (United States)

    Tremsin, Anton S.; Vallerga, John V.; Siegmund, Oswald H. W.; Beetz, Charles P.; Boerstler, Robert W.

    2004-04-01

    Micromachined silica microchannel plates (MCPs) under development have a number of advantages over standard glass MCPs and open completely new possibilities in detector technologies. In this article we present the results of our studies on the thermal properties of silica microchannel plates (sMCPs). Similar to standard glass microchanel plates the resistance of silica MCPs was measured to change exponentially with temperature with a negative thermal coefficient of -0.036 per °C, somewhat larger than that of standard glass MCPs. The resistance also decreases linearly with the applied voltage, with the voltage coefficient of -3.1×10-4 V-1. With the knowledge of these two coefficients, our thermal model allows the calculation of the maximum voltage, which can be applied to a given MCP without inducing a thermal runaway. A typical 25 mm diam, 240 μm thick sMCP with 6 μm pores has to have the resistance larger than ˜30 MΩ to operate safely at voltages up to 800 V. With this model we can also calculate the time required for a given silica MCP to reach the point of thermal equilibrium after a voltage increase. We hope that the ongoing efforts on a proper modification of the sMCP semiconducting layer will lead to the production of new MCPs with a small negative or even a positive thermal coefficient, reducing the possibility of thermal runaways of low-resistance MCPs required for high count rate applications.

  14. Analysis of Deep Drawing Process for Stainless Steel Micro-Channel Array.

    Science.gov (United States)

    Chen, Tsung-Chia; Lin, Jiang-Cheng; Lee, Rong-Mao

    2017-04-18

    The stainless steel bipolar plate has received much attention due to the cost of graphite bipolar plates. Since the micro-channel of bipolar plates plays the role of fuel flow field, electric connector and fuel sealing, an investigation of the deep drawing process for stainless steel micro-channel arrays is reported in this work. The updated Lagrangian formulation, degenerated shell finite element analysis, and the r-minimum rule have been employed to study the relationship between punch load and stroke, distributions of stress and strain, thickness variations and depth variations of individual micro-channel sections. A micro-channel array is practically formed, with a width and depth of a single micro-channel of 0.75 mm and 0.5 mm, respectively. Fractures were usually observed in the fillet corner of the micro-channel bottom. According to the experimental results, more attention should be devoted to the fillet dimension design of punch and die. A larger die fillet can lead to better formability and a reduction of the punch load. In addition, the micro-channel thickness and the fillet radius have to be taken into consideration at the same time. Finally, the punch load estimated by the unmodified metal forming equation is higher than that of experiments.

  15. High pressure-resistant SU-8 microchannels for monolithic porous structure integration

    Science.gov (United States)

    Carlier, Julien; Chuda, Katarzyna; Arscott, Steve; Thomy, Vincent; Verbeke, Bernard; Coqueret, Xavier; Camart, Jean Christophe; Druon, Christian; Tabourier, Pierre

    2006-10-01

    Integrated lab-on-chip (LOC) microsystems dedicated to proteomic analysis require specific pretreatment steps such as protein trypsic digestion, concentration, desalting or separation of biological samples. These steps can be achieved thanks to porous monolithic polymers. This paper deals with the integration of such a polymer into SU-8 microchannels by using a multi-material technology (SU-8, Pyrex and silicon). A solution for the fabrication of complete polymer microchannels which are high pressure- and solvents-resistant is proposed. This technique uses the negative photoresist SU-8 which is compatible with the protein analysis performed here. Our process requires a novel technological step using a silane coupling agent. This modification of the SU-8/Pyrex interface leads to the fabrication of a 100 µm × 160 µm section microchannel (length of 3 cm), closed with a Pyrex® lid by SU-8 bonding resistant to 80 bar. An improvement of the SU-8/monolithic structure is also demonstrated thanks to a specific treatment of the polymer enabling good anchoring of the monolith in the microchannels, and the pressure-resistance tests were also achieved with the monolithic structure integrated in the microchannels. A digestion step of a protein sample of benzoylarginine ethyl ester in a SU-8 microchannel was achieved after the functionalization of a monolith anchored in the microchannel. Analysis by UV/VIS spectroscopy of this in situ digestion has been reported.

  16. Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Tofy Mussivand

    2013-06-01

    Full Text Available Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

  17. Laser beam micro-milling of micro-channels in aerospace alloys

    CERN Document Server

    Ahmed, Naveed; Al-Ahmari, Abdulrahman

    2017-01-01

    This volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and m...

  18. Effects of structural parameters on flow boiling performance of reentrant porous microchannels

    Science.gov (United States)

    Deng, Daxiang; Tang, Yong; Shao, Haoran; Zeng, Jian; Zhou, Wei; Liang, Dejie

    2014-06-01

    Flow boiling within advanced microchannel heat sinks provides an efficient and attractive method for the cooling of microelectronics chips. In this study, a series of porous microchannels with Ω-shaped reentrant configurations were developed for application in heat sink cooling. The reentrant porous microchannels were fabricated by using a solid-state sintering method under the replication of specially designed sintering modules. Micro wire electrical discharge machining was utilized to process the graphite-based sintering modules. Two types of commonly used copper powder in heat transfer devices, i.e., spherical and irregular powder, with three fractions of particle sizes respectively, were utilized to construct the porous microchannel heat sinks. The effects of powder type and size on the flow boiling performance of reentrant porous microchannels, i.e., two-phase heat transfer, pressure drop and flow instabilities, were examined under boiling deionized water conditions. The test results show that enhanced two-phase heat transfer was achieved with the increase of particle size for the reentrant porous microchannels with spherical powder, while the reversed trend existed for the counterparts with irregular powder. The reentrant porous microchannels with irregular powder of the smallest particle size presented the best heat transfer performance and lowest pressure drop.

  19. Slip flow through a converging microchannel: experiments and 3D simulations

    Science.gov (United States)

    Varade, Vijay; Agrawal, Amit; Pradeep, A. M.

    2015-02-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.

  20. Equilibrium adsorption and self-assembly of patchy colloids in microchannels

    CERN Document Server

    Marshall, Bennett D

    2016-01-01

    A new theory is developed to describe the equilibrium adsorption and self-assembly of patchy colloids in microchannels. The adsorption theory is developed in classical density functional theory, with the adsorbed phase and fluid phase modeled using thermodynamic perturbation theory. In this work we propose that the introduction of patches on the colloids greatly enhances the temperature dependent and reversible adsorption of colloids in microchannels. It is shown how bulk fluid density, patch size, temperature and channel diameter can be manipulated to achieve the adsorption and self-assembly of patchy colloids in microchannels.